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Gibbs Families

V. MALYSHEV LN.R.I.A. Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay
Cedez, France

Abstract. Gibbs random field is now one of the ceniral objects in probability theory.
We define a generalization of Gibbs distribution, when the space (lattice, graph) is not
fized but random. Moreover, randomness of the space is not given independently of the
configuration but both depend on each other. We call such objects Gibbs families because
they appear to parametrize sets of ordinary Gibbs distributions. Moreover, they are well
suited to study local probability structures on graphs with random topology. First results
of this theory are presented here.

Gibbs random field [2, 3] is now one of the central objects in probability
theory. Here we define a natural generalization of Gibbs distribution, when the
space (lattice, graph) is not fixed but random. Moreover, randomness of the space
is not given apriori and independently of the configuration but both depend on
each other. We call the introduced objects Gibbs families because, as it will be
shown, they parametrize sets of Gibbs distributions on fixed graphs.

We present here the foundations of such theory. Two central definitions are
given. The first one is Gibbs family on the set of countable spingraphs (spingraph
is a graph with a function on its vertices) with the origin (a specified vertex). To
deal with countable graphs where no vertex is specified we define the notion of
empirical distribution. The conditional measure on the configurations of a given
graph G gives standard Gibbs field on G with the same potential. We discuss some
examples of Gibbs families.

This paper is selfcontained, but it is a part of the series of papers by the
author starting with [5] concerning new connections between computer science
and mathematical physics.

1 Definitions

Spingraphs We consider non-directed connected (unless otherwise stated)
graphs G (finite or countable) with the set V' = V(G) of vertices and the set
L = L(G) of links. The following properties are always assumed: between each
pair of vertices there is 1 or 0 edges; each node (vertex) has finite degree (the
number of edges incident to it).

A subgraph of G is a subset Vi C V of vertices together with some links
connecting pairs of vertices from Vi and inherited from L. A regular subgraph
G(V1) of G is a subset Vi C V of vertices together with ALL links connecting
pairs of vertices from V; and inherited from L.

The set V of nodes is a metric space with the following metrics: the distance
d(z,y) between vertices z,y € V is the minimum of the lengths of paths connecting
these vertices. The lengths of all edges are assumed to be equal, say to some
constant, assumed equal to 1.

295



296 Mathematics and Computer Science

Spingraph a = (G, s) is a graph G together with a function s : V' — S, where
S is some set of spin values. Spingraphs are always considered up to isomorphisms.
Isomorphism here is an isomorphism of graphs respecting spins. Denote Gy (An)
- the set of equivalence classes (with respect to isomorphisms) of connected finite
graphs (spingraphs) with N vertices.

Spingraphs with the origin Define the annular neighbourhood (e, v; a, b)
to be the regular subgraph of « defined by the set V(y(a,v;a,b)) = {v' : a <
d(v,v") < b}. Oa(v) = y(a,v;0,d) is the d-neighborhood of v,0(v) = O;(v). Let
Ro(G) = max,ev () d(0,v) be the radius of graph G with respect to vertex 0.
Thus R,(O(v)) = 1. Radius of a graph is R(G) = min,cy gy B, (G).

We will also consider graphs with one specified vertex, the origin. In this case
isomorphisms are also assumed to respect the origin. When we want to emphasize
that the graphs are given together with an origin v we shall write it as G(¥), G(¥)
etc.

Let G](\?) (ASS)) - the set of equivalence classes of finite graphs (spingraphs)
with respect to isomorphisms, with origin 0 and having radius N with respect to
0. Further on, spingraph will mean its equivalence class. Let 4 = UAﬁS) be the
set of all finite spingraphs with the origin 0.

o-algebra and free measure Let A be an arbitrary set of finite spingraphs
a = (G,s). Let G = G(A) be the set of all graphs G such that there exists s with
a = (G, s) € A. We assume always that if a = (G, s) € A then for any s’ all (G, s
also belong to A.

A is a topological space which is a discrete (finite or countable) union of
topological spaces Tg = SV(9) G € G(A). We consider the Borel o-algebra on A.
It is generated by cylindrical subsets A(G, B,,v € V(G)), G € G, where B, are
some Borel subsets of S. A(G, B,,v € V(G)) is the set of all @ = (G, s) such that
G is fixed and functions (configurations) s(v) : V(G) — S are such that s(v) € B,
for all v € V(G).

Let some nonnegative measure Ag on S be given. The following nonnegative
measure A4 (not necessarily a probability measure) on A4

M(AG, Byove V(@)= [ ro(By) (1)
veV(G)

is called a free measure.

Regular potentials Potential is a function ® : Uy Ay — RU {+oc}, that
is a function on the set of finite spingraphs invariant with respect to isomorphisms
of spingraphs. We say that ® has a finite radius if ®(a) = 0 for all o with radius
greater than some ry < oco. Unless otherwise stated we shall consider only radius 1
case, that is r9 = 1. Fix potential ® and measure Ay on S. The energy of spingraph
a is defined as

H@ = 3 @I(B)).a=(G,s) (2

BCV(G)
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where the sum is over all subsets B of V(G), I'(B) is the regular subgraph of o
with V(I'(B)) = B. Gibbs A-family with potential @ is the following probability
measure g4 on A

Z’i—j(“) = Z ' exp(~BH(a)),a € A 3)

assuming Z # 0 and the stability condition
Z=2(A) = / exp(—BH(a))dA4 < 00 ()
A

Here 8 > 0 is the inverse temperature.

Markov property The set Agg) of countable spingraphs with the origin
is a topological space. The basis of its open subsets is defined as follows. Let C
be an arbitrary open subset of the set ASS) of all spingraphs with radius N with
respect to the origin. Then the basis consists of sets of all countable spingraphs
such that (for some N and some Cp) their N-neighborhood of the origin belongs
to Cn. We again take the Borel o-algebra as the basic o-algebra.

For notational convenience we give definition only for potential of radius 1.
For any spingraph « with the origin 0 we call v(a, 0; N, N) its N-slice, y(a, 0;0, N)
- the N-interior, v(e,0; N, 00) - the N-exterior parts. Note that N-slice and the
exterior part may be non-connected. There are no links connecting (N — 1)-interior
and (N + 1)-exterior parts of the graph: this will give us an analog of the Markov
property. For given NV and given some finite graph v (it may be non-connected)
let A(< N,v)C AES) be the set of all finite connected spingraphs a having radius
N with respect to the origin and such that « is the N-slice of «.

Definition 1 We call measure u on A o Gibbs family with regular potential ®
if, for any v and any N -exterior part with N-slice v, the conditional distribution
on the set of spingraphs o having fized exterior part (that is on N -neighborhoods
with N -slice «y) coincides a.s. with the Gibbs family with potential ® on A(< N, 7).

In particular, it depends only on the spingraph « but not on the whole N-
exterior part.

Boundary conditions Boundary condition is a sequence vy () of mea-
sures on the set of finite (not necessary connected) spingraphs . Intuitively - on

N-slices. Gibbs family on A§3’ with boundary conditions vy (%) is defined as

pv@) = 27 Vo) 3 [ exp(-HEOMnsi)0 € AT 6)

§€A(a,y)

where A(a,v) is the set of all spingraphs from A§3)+1 with (N + 1)-slice v and
N-interior part a. Note that A(a,~) is finite for any «, .
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Non-regular potentials Gibbs family with non-regular potential & on A
here is defined similarly but with the energy of a defined by the formula

H(a) =) @(y),a=(G,s) (6)

vCa

where the sum is over all (not necessary regular) subspingraphs v of a.

A particular case is the "chemical” potential. It is given by a function ® equal
to a constant zg for each vertex (independently of spins in this vertex), equal to a
constant 2q for each link (independently of spins in both vertices of the link) and
equal 0 otherwise. Then

Hy(a) = 2V (a) + 21 L(«) (7

where V' (a), L(a) are the numbers of vertices and links in a.

2 Limiting correlation functions

Compactness Gibbs families on the set Aéﬂ) of connected countable sp-
ingraphs with fixed vertex 0 can be obtained as weak limits of Gibbs families
on finite graphs. There are 3 sources of non-existence of limiting Gibbs families:
non-existence of finite Gibbs families (see examples below), non-compactness of S,
the distribution for a finite Gibbs family can be concentratred on the graphs with
large degrees of vertices (ultraviolet problem). The assumptions of the following
propostion correspond to this list, but the compactness could be proven under
weaker conditions.

Let AY (r) ¢ AD be the set of countable spingraphs where each vertex has
degree not greater than r.

Proposition 1 Assume S to be compact. Assume that for all N there exists a
Gibbs family with potential ® on Aﬁ\?). Assume that ® has radius 1 and ®(O(v)) =
oo if the degree of v is greater than some constant r. Then there exists a Gibbs
family with potential ®, with support on A (r).

Proof. Consider the Gibbs family px on A(NO). Let iy be an arbitrary prob-
ability measure on A((,g) such that its factor measure on Ag\?) coincides with .

Then the sequence jix of measures on the set ,45,2’ is compact, that can be proved
by the standard diagonal process by enumerating all possible N -neighborhoods.
Moreover, any limiting point of fiy is a Gibbs family with potential .

Generators To give examples of Gibbs families it is useful to introduce the
following classes of graphs. Consider a set of "small” graphs G|, ..., G of the same
radius r with respect to a specified vertex 0. Graph G is said to be generated by
G, ..., Gy if each vertex of G has a neighborhood (of radius r) isomorphic to one
of G1,...,Gk. Let G(G1,...,Gy) be the set of all graphs generated by Gy, ..., Gy.
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With each system G(G1, ..., Gx) and fixed S we associate the following class
F(G1,...,Gy) of potentials & = ®(G,s) if G = G, for some i = 1,...,k, ®(G,s) =
oo for all other graphs with the same radius r and (G, s) = 0 for all graphs with
Ro(G) # 7.

Nonexistence This class of potentials satisfies the previous compactness
criteria if there exist Gibbs families on finite graphs. However this is not always
the case.

For example, consider the case £k = 1,r = 1. If G; is a finite complete
graph then it is "selfgenerating” but there are no countable graphs generated
by it. Introduce some graphs with radius 1: g, with k£ + 1 vertices 0,1,2,3,....k
and k links 01,02, ...,0k, and g4 s with k + 1 vertices 0,1,2,3, ...,k and 2k links
01,02,...,0k,12,23, ..., k1. One can see after several iterations that the pentagon
G = g5 5 cannot generate any countable graph.

Gibbs families and Gibbs fields ;From the following simple result it be-
comes clear why the introduced distributions are called Gibbs families. Let i be a
Gibbs family with potential ®. Assume that the conditions of the previous propo-
sition hold. Consider the measurable partition of the space Ag,g)of spin graphs:
any element S¢ of this partition is defined by a fixed graph G and consists of all
configurations sg on G.

Theorem 1 For any given graph G the conditional measure on the set of config-
urations sg is a.s. a Gibbs measure with the same potential ®.

Thus, any Gibbs family is a convex combination (of a very special nature) of
Gibbs fields (measures) on fixed graphs, with the same potential, with respect to
the measure v = v(u) on the factor space A((,%)/ {S¢} induced by p.

The following lemma reduces this result to the corresponding result for Gibbs
families on finite graphs where it is a straightforward calculation.

Lemma 1 Let u be a Gibbs family on .Af)g) with potential ®. Let vn(y) be the
measure on N-slices induced by p. Then p is a weak limit of Gibbs families on
ASVO) with potential ® and boundary conditions {vn(v)}.

Topological phase transition We say that Gibbs family with potential ®
is a pure Gibbs family if it is not a convex combination of Gibbs families with the
same potential. If there are more than one pure Gibbs family with potential ® we
say that Gibbs family with potential & is not unique. Intuitively, nonuniqueness of
Gibbs families can be of two kinds: due to the structure of configurations (inherited
from usual Gibbs fields) and due to topology of the graph. The following example
(using Cayley graphs of abelian groups) gives an example of a ”topological phase
transition”. '

Let U492 be the graph isomorphic to the 2-neighborhood of 0 on the lattice
Z%. Then the following graphs belong to G(Uy). This is Z¢ itself and any of its
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factorgroups Z(ky, ..., k) with respect to some subgroup of Z¢, generated by some
vector (ky, ..., kq), k; > 1.

Consider now Ising Gibbs fields on Z(ki,...,kq) with some potential from
F(Gh). More exactly, take S = {~1,1} and introduce the following potential &.
®(Ud,2, 8v,,,) 18 equal to the energy of the configuration sy, , corresponding to the
nearest neighbor Ising model on Uy ,. For all other spingraphs a of radius 2 we
put ®(a) = oo, we put ®(a) = 0 if the radius of « is different from 2.

We know from statistical physics that for any such graph there is only one
Gibbs field with potential ® for 3 sufficiently small. The following theorem shows
that the Gibbs family with potential @ is not unique, however, each pure Gibbs
family we found is a Gibbs field on the fixed graph.

Theorem 2 For any 8 sufficiently small there are countable number of pure Gibbs
families with potential ®.

Proof. An example (for d = 2) of a pure Gibbs family with potential ® is the
unique Gibbs field on Z x Z, for any n > 5. Consider the (unique) Gibbs random
field y1(n) with potential  on this infinite cylinder. Take the induced measure
vn(p(n)) on N-slices, that is on non-connected union of two circular strips of
length n. Using Lemma 1 take Gibbs families with potential ¢ and boundary
conditions vx (u(n)). Then the graph is uniquely defined (one can construct slice
N —1,N -2, ... by induction). Thus, this Gibbs family coincides the with the pure
Gibbs field on the correponding graph. Another interesting possibility are Gibbs
fileds on twisted cylinders, that is on the sets obtained from the strip Zx{1,2,...,k}
if for each n we identify the points (n,1) and (n + j, k).

3 Empirical correlation functions

We constructed probability measures on Af)g) in quite a standard way, using stan-
dard Kolmogorov approach with cylindrical subsets. However, one cannot use sim-
ilar approach to define a probability measure on the set A, of equivalence classes
of countable connected spingraphs. The problem is that it is not at all clear how to
introduce finite-dimensional distributions here, because the vertices are not enu-
merated (there is no coordinate system). Thus all Kolmogorov machinery fails.
However one can propose an analog of finite-dimensional distributions. We call
the resulting system an empirical distribution.
Assume S to be finite or countable. Let us consider systems of numbers

= {p0).Te A} 0<pr) <1, ®)

Le. I' is an arbitrary finite spingraph with origin 0. We assume the following
compatibility condition: for any k¥ = 0,1,2, ... and any fixed graph I'y of radius &
we have

> P(Tesr) = p(Ti), k= 0,1,2, .. 9)

A
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where the sum is over all I'y4 of radius & + 1 such that Og(0,T'x41) is isomorphic
to I'y. It is assumed that the summation is over equivalence classes of spingraphs.
We assume also the following normalization condition

> (o) =1 (10)

where I'g is the vertex 0 with any possible spin on it.

Definition 2 Any such system 7 is called an empirical distribution.

One can also rewrite compatibility conditions in terms of conditional proba-
bilities
> p(Cepr [Th) =1 (11)

j .

where the summation is as above and

P(Lkt1)

P(Lry1 | Te) = p(Ty)

(12)

Thus we consider A% as a tree where vertices are spingraphs and a link between
[y11 and Ty exists iff T'y, is isomorphic to the k-neighborhood of 0 in Tg4;.

Examples of empirical distributions can be obtained via the following limiting
procedure. Let pup - probability measure on Ayx. For any NV and any I' € Aio),a €
An put

P = () (13)

where n™V(a,T') is the number of vertices in a having their k-neighborhoods iso-
morphic to I'. Denote 7y = {p™(I)}.

Lemma 2 Assume that S is finite. Assume that for any r

pun(min R(a) <r)—0 (14)
a€EAN
as N — 0o. Then any weak limiting point of Ty is an empirical distribution.

Proof. Note that for any ng there exists such Ny = Ng(ng) such that for
any N > Ng numbers py(I') satisfy compatibility conditions for all [ with radius
n < ng. Finiteness of S implies compactness.

Interesting question is how one could characterize empirical distributions
which can be obtained via this limiting procedure.
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Empirical Gibbs families Note that for a given 7 the numbers p([) for

all T with Ry(I") = N define a probability distribution 7 on A53)~ Foranyn < N
let mx n(7) be the probability that n-slice of I is equal to ~, and 7N,n(I'y) be the
probability that the neighborhood O,(T") of 0 is isomorphic to T',,.

For any v and any I, with n-slice 7 introduce conditional probabilities

WN,n(Fn)

7rN,n(7) (15)

TN (laly) =
An empirical distribution 7 is an empirical Gibbs family with potential @ if for
any n < N,7,I', the distribution 7y »(I's|y) is the Gibbs family with potential &
on the set spingraphs I';, with n-slice 4, that is

TNn(Tnly) = 2, (v) exp(=H(T)) (16)

We see that in this case mn »,(T,|y) do not depend on N.

Two-dimensional quantum gravity (or string in zero dimension) In
the following examples there is no spin, the free measue is trivial, and the partition
function contains summation over the corresponding graphs.

We consider graphs corresponding to the set of all triangulations T of two-
dimensional sphere with N triangles, where combinatorially isomorphic triangu-
lations are identified. Another way to specify such graphs is to use the poten-
tial ® such that ®(0,(v)) = oo if O;(v) # g for some ,k > 2.. Put also
®(Ks5) = ®(K33) = oo, where K is the complete graph with 5 vertices, K33
is the graph with six vertices 1,2,3,4,5,6 and all links (4,7),1=1,2,3,7=4,5,6
(by Pontriagin-Kuratowski theorem this singles out planar graphs). In all other
cases put ® = 0. This model is called in physics pure two-dimensional gravity or
quantum string in zero dimensions.

Theorem 3 There exists a unique limit p(T') = imy_, o pn(T). Moreover, p([)
is an empirical Gibbs family with potential ®.

Proof. We shall prove this by giving explicit expressions. Denote the number
of triangulations with specified vertex 0 and fixed 04(0) = Ty, let T'y have u
triangles and k& boundary links (with both vertices on the d-slice). The external
part is the triangulation of the disk with N — u triangles and also with k& boundary
links. The number D(N —u, k) of such triangulations (this follows from results by
Tutte, see [4], pp.21, 25) has the following asymptotics as N — oo

D(N —u,k) ~ k" 1p(k)N~2cN-v (17)
Thus the probability of I (at vertex 0) is
PY(I) ~ Kt p(k)N = 2N~ Cr (W) (18)

where s
Co(N) ~aN~z2¢N (19)
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is the number of triangulations with N triangles. The function ¢ and constants
c,a are known explicitely but we do not need this. It can be proved (see similar
statements in [4]) that probabilities for the case of specified origin and without it
are asymptotically the same as N — oo.

Trees Trees cannot be characterized locally. That is they cannot be singled
out from the set of all graphs via restrictions on subgraphs having radius not
greater than some constant. It is interesting, however, that a local probabilistic
characterization of trees can be given using Gibbs families. More exactly, one
can define empirical Gibbs families with radius 1 potential and such that the
distribution has its support on the set of trees. We give an example with p-regular
trees.

Consider the set A, of all p-regular graphs with N vertices, that is graphs
with all vertices having degree p. Consider Gibbs family on An , with potential
® = 0. Otherwise speaking, we define Gibbs family on Ay with the following
potential ® : ® = 0 on all radius 1 graphs, where 0 has degree p, and ¢ = oo for
all other radius 1 graphs.

Theorem 4 p™¥([}) have limits p(Tx) = 1 for p-ary tree of height k, and 0 oth-
erwise.

Proof. The case ® = 0 can be reduced to combinatorics. To prove the theorem
we need some techniques from graph enumeration.

Lemma 3 The asymptotics of the number C,(N) of connected p-regular graphs

with N wvertices

(pN - 1)(pN - 3)...
Ni(phHN

Cpl(N) ~ (20)
Proof. We use a combinatorial method to prove this lemma. Such method
is known and was applied to other situations. It consists of several statements,

see [1], section 9.4. We call graph labelled if both vertices and legs are labelled
(enumerated). The scheme of the proof is the following:

1. Number of labelled p-regular graphs is (pN — 1)(pN — 3)....
2. Almost all labelled p-regular graphs are connected.
3. Almost all p-regular graphs are asymmetric.

4. It follows from 1-3 that almost all p-regular graphs are connected.

In the same way on can show that the number of p-regular graphs with no
cycles of length ¢ at vertex 0, is equal asymptotically to the number of all graphs.
It follows that the probability that in a vertex there are no cycles tends to 1 as
N - .

An interesting problem is to generalize this result for the case with § =
{-1,1} and Ising type interaction.
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