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ABSTRACT. - In this paper, we solve the problem of non ergodicity and
null recurrence for random walks in the quarter plane with zero drifts in
the interior of the domain. A general criterion for null recurrence is

given and then used to construct sub and supermartingales by means of
Lyapounov functions, which are here functionals of quadratic forms.

RESUME. 2014 Dans cet article nous resolvons le problème de non ergodicité
et de recurrence nulle pour des marches aléatoires dans le quart de plan,
lorsque les derives moyennes sont nulles à l’intérieur de cette region. Un
critère general de recurrence nulle est donne et utilise pour la construction
de fonctions de Lyapounov (sous et supermartingales) qui sont en general
des fonctionnelles de formes quadratiques.

Classification A.M.S. : 60 G 07, 60 J 15, 60 J 10.
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1. INTRODUCTION AND PRELIMINARIES

We consider a discrete time homogeneous irreducible and aperiodic
Markov chain ~={~~0}, with state space the lattice in the positive
quarter plane Z + _ ~ (i, j ) : ~7~0 are in tegers ~, and satisfying the recursive
equation

where the distribution of 8n + 1 depends only on the position in the

following way ("maximal" space homogeneity)

Moreover we assume, for the one step transition probabilities, the follow-
ing conditions:
A (Lower boundedness)

B (Moment condition)

denotes the euclidian norm and E is an arbitrary but
strictly positive number. In fact, as remarked later in section 3, only the
existence of second moments is necessary. But the technical derivations
are then more involved and will not be given here for the sake of clarity.

NOTATION. - We shall use lower case greek letters a, P, ... to denote

arbitrary, points of Z~, and then will mean the one step transition
probabilities of the Markov Also a>0 is equivalent to

Define the vector

of the one step mean jumps (drifts) from the point a.
Setting
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181RANDOM WALKS IN A QUARTER PLANE WITH ZERO DRIFTS. I

we have

Condition B ensures the existence of M (a), for all a E Z + . By the homo-
geneity condition A, only 4 different drift vectors take place:

Remark. - (i ) all our results will be valid if one changes arbitrarily a
finite number of transition probabilities.

(ii ) given Çn = a, the components of 9" + 1 might be taken bounded from
below not by -1, but by some arbitrary number -K>-~ provided
. first, that we keep the maximal homogeneity for the drift vectors

M (a) introduced above (i. e. 4 of them only are different);
. secondly, that the second moments and the covariance of the one

step jumps inside Z~ (i. e. from any point a>0) are maintened constant.
These last facts will emerge more clearly in the course of the study.
The classification problem for these random walks was studies first

in [1] and, in the case of bounded jumps, completely solved except for the
case M=0. This was generalized later, in many papers, for unbounded
jumps [3,4,5,11,14].

Nothing was precisely known for the case M=0, up to now, and, in
fact, this problem in many aspects is of a very different nature. In

particular, intuition does not give us the evidence that the random walk
can exhibit an ergodic behaviour when M = 0.
To the author’s knowledge, there exist at least 3 methods which would

allow to solve some particular cases of the problem:
1. The analytic approach [8]. Now there are only some preliminary

results into this direction.

2. The semi-analytic approach, using well-known explicit results about
one-dimensional random walks. E. g. when the random walks inside the
quarter-plane is the "composition" of independent random walks along

’ 

both axis, then it is easy to prove that the mean time to reach the boundary
is infinite and thus, for any parameters the chain is not ergodic
when M=0.

3. The method of Lyapounov functions. It seems to be the most general
approach and we use it here.

4. It is also worth mentioning a pure martingale method used in (14).
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One of the main differences between the cases M # 0 and M = 0 is the

following: the case M # 0 is in a sense locally linear and M = 0 is locally
quadratic. The local second order effects are well caught by quadratic
Lyapounov functions first introduced in [5]. But the global Lyapounov
function is not quadratic and this causes additional difficulties. There are
some general questions about constructive criteria of ergodicity, nonergod-
icity etc. We tried unsuccessfully to use the existing criteria for non

ergodicity. They all seem to work only either for I-dimensional problems
or for linear functions. One of our difficulties was to find a completely
new one. We give it in section 2. We do not known whether it could be

essentially generalized, but it allows to get the complete solution in our
case.

For M=0, we get the ergodicity conditions in terms of the second
moments and the covariance of the one-step jumps inside Z +,

and of the angles (counter clockwise oriented ) cpx, cpy (see Fig. 1).
Here cpx is the angle between M’ and the negative x-axis, cpy is the angle

between M" and negative y -axis. So, if 03C6x~03C0 2 and 03C6y~03C0 2, then

THEOREM 1.1. - If at least one of the following 4 conditions holds

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



183RANDOM WALKS IN A QUARTER PLANE WITH ZERO DRIFTS. I

then the random walk ~ is not ergodic.

If cpx, cpy  ~ , then the random walk ~ is ergodic f
2

and non ergodic if

Moreover if (1 2) holds together with cpx + cpy  ~ , then the random walk
2

is null recurrent.

Remark 1: It follows easily from the statement of the theorem that the
mean first entrance time of 2 into the boundary, when starting from
some arbitrary point a > 0 at finite distance, is finite (resp. infinite) if R  0

(resp. R > 0), since in this case the vectors M’ and M" can be properly
chosen to satisfy ( 1. 1 ) [resp. ( 1. 2)]. The exact value of this mean first
entrance time was obtained in [ 14] and could also be easily derived from
our study.
Remark 2. - It is clear from the formulation of the theorem that we

do not consider the cases when either cpx = ~ , cpy 
= 0 or cpy = ~ , cpx = O.

2 2

Also, we miss the case

The proof will be given in section 3.

Remark 3. - There are intimate connections with a series of papers
(see for example [15, 16]). Nonetheless these connections are not immediate
and deserve a separate discussion.

2. GENERAL CRITERIA FOR THE NULL RECURRENCE
OF COUNTABLE MARKOV CHAINS

Let us consider a discrete time homogeneous Markov chain 2 with
a countable state space X={~}, n =1, 2, ... The one step transition

probabilities are denoted by is assumed to be irreducible and

aperiodic. Let 03BEn be the state of 2 at time n.

Vol. 28, n° 2-1992.
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In this section, we recall some known criteria for recurrence, ergodicity
and non ergodicity which will be used in the sequel. Meanwhile,
theorem 2. 5 is completely new and enables us to get explicit results in
section 2.

THEOREM 2. l. - For the irreducible Markov chain ,2 to be recurrent, it

is sufficient there exists a positive function f(x), x E X, such that

when i - ~, and A is a finite set.

THEOREM 2.2 (Foster). - An irreducible aperiodic Markov chain 2 is
ergodic if and only if there exist a positive function f(x), x E X, E > 0 and a
finite set A such that

Proof - See [10]. For non trivial generalisations of this criterion,
see [2].

THEOREM 2. 3. - For an irreducible Markov chain ~ to be non ergodic,
it is sufficient that there exist a function f(x), x E X, and constants c, m

such that:
1. for every n, all XE { x : f (x) > c }, where

the sets { x f (x) > c ~ and ~ x f (x) _ c ~ are non empty.
2. E (I. f’ (In + 1) -f (In) ) x)  m for every n, x E X.
Under the stronger condition

with probability 1, for some fixed constant Ç), 0  Ç)  00, this theorem

was first proved in [9].

Proof. - In its present form, it was apparently given in [ 12], by using
explicitly the Markov context. It seems interesting here to point out that
it is in fact a direct consequence of the following general

THEOREM 2.4. - Let us consider an arbitrary sequence of random
variables (Sn), n >-_ o. Let Fn the a-algebra generated by So, S 1, ..., Sn,
where So will be taken constant with probability one (this does not restrict
the generality). Let ’t be the following Fn-stopping time, C being a real
constant,

Introduce the stopped sequence

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



185RANDOM WALKS IN A QUARTER PLANE WITH ZERO DRIFTS. I

where

Suppose that, for n >_ 1,

Then E (i) = 00.

Thus, for any n, I, 1 ~/~,

whence, immediately,

Assume E (t)  00. Then, from (2 . 3), (2 . 4) and Cauchy’s criterion, it
follows that Sn is a submartingale converging almost surely (a. s.) and
in [The convergence a. s. is here obvious since, by the hypothesis,

P (t  oo ) =1 and thus Sn = Sn ^ 03C4 S03C4]. Thus we have

But, by the definition of t, which yields a contradiction.
Hence E (t) = oo and the proof of theorem 2 . 4 is concluded..
The proof of theorem 2. 3 becomes now straightforward, by choosing

Ço being taken constant, and

The proof of theorem 2. 3 is concluded..
One of our main results is the following

THEOREM 2 . 5. - For an irreducible Markov chain ~ to be null recurrent,
it is sufficient that there exist two functions f(x) and cp (x), x E X, and a

Vol. 28, n° 2-1992.
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finite subset A E X, such that the following conditions hold:
1. cp (x) >_ 0, V x ~ X;
2. For some positive a, y, E, with 0  E  a and 1 _ a  2,

Proof. - Let us suppose that such functions exist. Conditions 1, 3 and
4 b on cp (x) show immediately, by using theorem 4 .1, that Ie is recurrent.
We shall now assume that Ie is ergodic and then come to a contradiction,
thus proving the null recurrence.

Let us denote

Since £f is assumed to be ergodic, E (t)  00.

It will be convenient throughout this study to choose Ço to be a constant
such that Ço ~ A. The two following auxiliary lemmas will be useful for
us.

LEMMA 2 . 6. - Let n >-- 1, be a sequence of random variables such
that (3n - B a. s. and

Then, for any s, 

and, in particular,

Proof. - This is a classical result. See for instance [1 3]..

LEMMA 2. 7. - Let the of theorem 2. 4 be now positive random
variables and 03C4 an arbitrary Fn-stopping time. If, for all n >_ 1 and a, E real
numbers such that 1 _ oc _ 2, 0  E _ a,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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then

Proof. - Define

The following estimate takes place, from Taylor’s formula,

where 08~1, 
The right member of (2.9) can be rewritten as

where we have used the elementary inequalities

Thus taking conditional expectation in (2.9) and using (2. 5) and (2.6),
we get

where lA = 
1 if A is true,

0 otherwise.

It follows from (2.10) that

The finiteness of E (i) yields (2 . 7) . The convergence in L~ 1 of to 

is now a direct consequence of lemma 2. 6, since Sn is a positive supermar-

tingale and n  ST.
Lemma 2. 7 is proved..
Let us return, to the proof of the theorem. Since A is a finite set,

Vol. 28, n° 2-1992.
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Since 2 is assumed to be ergodic, P (i  oo ) =1 and there exist two
random variables à and b such that

Moreover, lemmas 2 . 6 and 2 . 7 entail that the r. are uniformly
integrable and converge to à in the Ll-sense. Using condition 2 of

theorem 2. 5, we have

Thus the family (~), ~0, dominated by a uniformly integrable family, is
also uniformly integrable, This shows that b is the L1-limit of bn and

On the other hand, condition 4 a shows that bn is a submartingale and

From condition 3, we can choose i so that

Doing so, we get from the estimate (2 . 11 ), which does not depend on the
initial position Ço,

and this last inequality contradicts (2 .12). Thus necessarily E (i) = oo and
the proof of theorem 2. 5 is completed..

3. PROOF OF THE MAIN RESULT (THEOREM 1.1)

Let us introduce the linear function cp : R -+ R+,

We also shall write, for any vector y = (x, y)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



189RANDOM WALKS IN A QUARTER PLANE WITH ZERO DRIFTS. I

LEMMA 3 . 1. - Let p, q>O, be such that the vectors M’ and M" have
the following properties (see Fig. 2)

Then, for all (x, y) E Z + , (x, 3.) ~ (0, 0),

i. e. cp (~n) is a positive submartingale. 

Proof - Immediate by using the linearity of cp and the fact that

We claim that the conditions of lemma 3.1 hold in each of the cases

(i )-(iv) of theorem 1.1. They are also valid in the case
(a)

which yields

LEMMA 3 . 2. - If, for the random walk 2, the conditions of lemma 3 .1
are fulfilled, then 2 is not ergodic.

Proof - It is a direct consequence of theorem 2. 3. It is worth mention-
ing that this result holds under the mere assumption.

which is weaker than the condition B stated in section 1..
Let us consider now the case

(b)

Then we have the property opposite to that of lemma 3 .1, since now the
vectors M’ and M" look inside the simplex bounded by the two positive
axis and the line px + qy = D (see Fig. 3).

It means that there exist /?>0, such that the linear function

yt) be a positive supermartingale. Thus the random walk Ef is

recurrent. Our goal is to distinguish between positive and null recurrence.
To that end, we introduce the following functional of quadratic form

where 1.

Vol. 28, n° 2-1992.
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We want to adjust u, v and 8 to satisfy the conditions of theorem 2 . 5.

Define, for the sake of brevity,

where (see section 1),

in which case, ad libitum, f(x, y) will be rewritten as 
We shall estimate the quantity

LEMMA 3. 3. - There exists 8> 0 and a constant D such that

for all (x, y), such that (x2 + y2) > D2, where, as usual, I (!) (z) ]  K z ~ I and
o (z) 

--+ 0 as z tends to a given limit. In particular, o (1) means a function
z

which tends to zero when D ~ 00.

Proof. - From Taylor’s formula we have

where y (x, y) is a random variable such that (note that

and

It suffices to prove ~ (x, y) = (b -1 ) (~ ( 1 ) + o ( 1 ).
(i ) Case of bounded jumps. The result is immediate from the definition

(3 . 4), after using ~(l+z)~-~=(8-l)~), for z sufficiently small,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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since, from the boundedness of the jumps

(ii ) Case of unbounded jumps. Let us under the form

with

where z is some positive real number and

We have, according to (3.4),

Hence, using condition A of section 1 on the lower boundedness of jumps,
we have for fixed z > 0

where a, b, c are positive constants depending only u, v. It follows that,
for (x2 + y2) > D2, zJD,

which gives an estimate for Wl (x, y).
On the other hand, AQ (x, y) is positive, as emerges

from (3 .9), whence

It follows that

Hence

To estimate the right member of (3 .11 ), we use the following simple result,
valid for any random variable X, such that E [I X Ir]  oo,

Vol. 28, n° 2-1992.
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Therefore, taking into account the moment condition B ensuring
we get

Choosing again z  JD in (3. 12) yields

Finally, (3.10) and (3.13) together imply ~(.~=(l-8)~(l)+o(l)
and the proof of lemma 3 is concluded..

Remark: It is possible to refine the above proof, assuming only the
existence of moments of order two. However we shall omit it, to avoid
unnecessary excursions, which would obscure the readability and the

general ideas.
We continue with the proof of theorem 1.1.
It follows from (3 . 6), that one can find D and 8, 081, such that, if

E[AQ(~-,~)]>0, then H(x,~)~0, for any x, y satisfying x2 + y2 > D, or
equivalently, from (3.5),

But E[AQ(~-~)]>0, x2 + y2 > D2, is equivalent, by using (3. 9), to the
following system of inequalities

for some u, v > 0.
Thus if (3.14) is satisfied, there exist two functions

f (x, y) = (ux2 + vy2 + and cp (x, y) = px + qy, such that, when

the conditions 1, 3, and 4 of theorem 2. 5 hold, simply taking

a = 2 in the statement of the theorem. Moreover in this case, condition 2
of theorem 2 . 5 becomes immediately fulfilled, since for x and y sufficiently
large, 081,

But, since from the assumptions My >_ 0, M~  0, Mx >__ 0, M§’  0, we
conclude that (3 .14) holds for some u, v > 0, if

which is simply an other way of rewriting (1 2).
We have proved the "null recurrence" part of theorem 1. 1.
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To prove the ergodicity part of the theorem, we proceed as in [5], by
introducing again the quadratic form

and showing that Foster’s criterion (2.2) can be satisfied, for some u, v,
8>0.
With the notation above, we have, from (3 . 9),

Since E[Q(9~ey)]=~(l), we get from (3 . 15), after taking
into account the boundary conditions on the axes,

Thus, for some E > 0 and some finite subset we have K(x,y) -E,
V~~E, provided that the following system can be satisfied, for some u,

The inequalities Mx >__ 0, M§’  0, My >__ 0, M~  0, show at once that (3. 16)
can be satisfied for u > 0, v > 0, if ( 1.1 ) holds, that is

In this case the remaining conditions of Foster’s criterion are clearly
fulfilled and the random walk is ergodic.
The proof of theorem ( 1. 1 ) is terminated..
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