
Markov Processes Relat. Fields 15, 1–8 (2009)
Markov MPRF&��

��
Processes
and
Related Fields
c©Polymat, Moscow 2009

Exchange Processes with a Local

Interaction: Invariant Bernoulli

Measures

V.A. Malyshev and A.A. Zamyatin

Laboratory of Large Random Systems, Moscow State University, Moscow, Russia

Received November 11, 2008

Abstract. A general class of Markov processes with a local interaction is in-
troduced, which includes exclusion and Kawasaki processes as a very particular
case. Bernoulli invariant measures are found for this class of processes.

Keywords: Markov processes with a local interactions, Bernoulli invariant measures,

binary reactions

AMS Subject Classification: 60K35, 822C22

1. Introduction

The goal of this paper is to introduce a class of processes with a local inter-
action which consists in the transformation of the internal degrees of freedom
and/or chemical reactions. We call these processes exchange or Boltzmann pro-
cesses as they model binary interactions of particles. The introduced class of pro-
cesses includes such well-known processes as exclusion processes and Kawasaki
processes.

The definition is as follows. Let G be a finite or countable graph with the set
of vertices V = V (G) and the set of edges L = L(G). Let a set X be given, which
can be interpreted as the set of all characteristics of a site v ∈ V (G) and/or the
set of all characteristics of the particles sitting at v (such as the types of particles,
their form, energy etc.). We define configuration as a function xv , v ∈ V, on the
set of vertices with values in X .

On the set of configurations, XV , a continuous time Markov process ξt =

ξ
G,F,{λl}
t is defined as follows. For each edge l = (v, v′) ∈ L(G), a transition

occurs with the rate λl = λl(xv , xv′), independently of all other edges. For a
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given l, the transition is a simultaneous transformation (binary reaction) of the
spins xv and xv′ ,

(xv(t), xv′ (t)) → (xv(t + dt), xv′(t + dt)) = F (xv(t), xv′(t)) (1.1)

where F : S = X×X → S = X×X is some fixed mapping. We always assume F

to be symmetric, that is Fj = jF , where j(x1, x2) = (x2, x1). This explains why
the order of vertices in (1.1) is not important. Thus, the process on G is defined
by a function F and by a set of symmetric functions λl(xv , xv′ ) = λl(xv′ , xv).

If the set X and graph G are finite, then this defines a finite continuous
time Markov chain, which we denote by ξt. Otherwise, for the existence of the
process, one should impose some weak restrictions on F and λl.

The introduced process is a process with a local interaction, which play
nowadays an important role in constructing physical models, see for example
[1–3]. A particular case are Kawasaki processes, where a pair of points exchanges
spins, that is F is a permutation. Even more popular are exclusion processes
where X = {0, 1}, and F is also a permutation. In general the choice of F should
be determined by the transformation of degrees of freedom of neighbouring
particles (for example of water molecules) or by chemical reactions. As far as
we know, such processes were never studied in sufficient generality.

The first problem to be solved is as follows: for given F and λl, describe all
invariant Bernoulli measures (IBM). A measure µ on XV is called Bernoulli, if
for some probability measure ν on X we have

µ = ν × ν × . . . = νV .

Such measures are well-known and are very important for the study of exclusion
processes, see [3]. In this paper, we give a description of invariant Bernoulli
measures for given F .

2. Invariance criteria

We assume here that X and G are finite, and˙F is assumed to be one-to-one.
Due to compactness, at least one invariant measure always exists. Moreover,
if F is one-to-one, then the uniform measure on XV is invariant. We want to
know for which maps F there exist other invariant Bernoulli measures.

Let ν be a probability measure on X . Let us consider the measure ν2 = ν×ν

on the set S = X × X. Let ν2 take k different values, d1, d2, . . . , dk. Define a
partition {Si} of the set S such that Si consists of all points of S where ν2 takes
the value di.

Note that the map F can be uniquely expanded on a finite number of cycles
on S. Let C1, . . . , Cn be the supports of these cycles.

Definition 2.1. We say that the measure ν agrees with the map F if the sup-
port of any cycle of F belongs to only one of the sets Si, i = 1, . . . , k. In other
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words, the partition {Cj} is finer than the partition {Si}: for any Cj there
exists Si such that Cj j Si.

The following result gives a convenient criterion to check whether a given
Bernoulli measure is invariant for given F .

Theorem 2.1. Assume that X and G are finite and F is one-to-one. Assume

that for any edge l the rates λl = λl(s) satisfy the condition: λl(s) = λl(F
−1(s))

for all s ∈ S. Then the following conditions are equivalent:

1. Bernoulli measure µ = ν × ν × . . . = νV is an invariant measure of the

Markov process ξt for any finite graph G.

2. The measure ν2 is an invariant measure of the Markov process ξt for the

graph G2 with two vertices and one edge between them.

3. The measure ν2 is invariant with respect to F .

4. The measure ν agrees with F in the sense of Definition 2.1.

Proof. Firstly, it is evident that conditions 3 and 4 are equivalent, that is, the
invariance of ν2 with respect to F is equivalent to the fact that ν2 takes constant
values on the support of each cycle of F . It is also evident that 1 ⇒ 2.

Let us prove then that 2 ⇒ 1. In fact, let G, X, F be given and let l be the

edge with vertices v and v′. Denote ξ
(l)
t the Markov chain on XV having only

transitions at the edge (v, v′),

(xv , xv′) → F (xv , xv′)

with the rates λl(xv , xv′), that is, the remaining λl′(xv , xv′) = 0, l′ 6= l. It is
clear that if the condition 2 holds, then the Bernoulli measure νV on G is invari-

ant with respect to any Markov chain ξ
(l)
t . Then we get the assertion from the

following general and evident proposition. Let a colection of Markov processes

ξ
(l)
t on the same state space A be given, with the rates λ

(l)
αβ , α, β ∈ A, α 6= β,

correspondingly. Moreover, let all the processes have the same invariant mea-

sure π = {πα}. Then the Markov process on A with rates µαβ =
∑

l λ
(l)
αβ , α 6= β,

has the same invariant measure. The proof of this proposition is immediately

obtained by summing the equations for stationary probabilities of ξ
(l)
t over l.

Let us prove now that 3 ⇒ 2, that is, if ν2(s) = ν2(F−1(s)) for any s ∈ S

then the measure ν2 is an invariant measure of the Markov process ξt for the
graph G2 with two vertices and one edge between them. To do this, let us write
down the equations for the stationary probabilities of the Markov chain on G2:

λl(s)ν
2(s) = λl(F

−1(s))ν2(F−1(s)), s ∈ S.

They evidently hold under our assumptions. It follows from this that condition 2
implies condition 3 as well. 2



4 V.A. Malyshev and A.A. Zamyatin

3. Description of invariant measures

For given F , Theorem 2.1 allows to check whether a given Bernoulli mea-
sure νV is invariant or not. To classify all invariant measures ν for given F

is a more complicated problem. We give now simple combinatorial algorithms
which allow, for given F , to construct all IBM.

Let ν be a measure taking values a1, . . . , am, all different. Denote Xi = {x :
ν(x) = ai} and Sij = (Xi × Xj) ∪ (Xj × Xi) = Sji. We say that a measure ν

is a general situation measure if all pairwise products aiaj are different. The
partition X1, . . . , Xm defines a (m − 1)-parametric family {(a1, . . . , am), a1 +
. . . + am = 1} of general situation measures. We say that an IBM νV is a
general situation measure if ν is a general situation measure. We will describe all
such measures, under some assumptions. Let us note that for general situation
measures any cycle Ck of F belongs to only one set Sij , that is, all Sij are
different.

A set A ⊂ S is called connected, if for any two elements (a, b), (a′, b′) ∈ A

there exists a chain of elements (ai, bi) ∈ A:

(a, b) = (a1, b1), (a2, b2), (a3, b3), . . . , (an, bn) = (a′, b′)

in which all subsequent pairs have a common element, that is

({ai} ∪ {bi}) ∩ ({ai+1} ∪ {bi+1}) 6= ∅, i = 1, . . . , n − 1.

Obviously, any set B can be uniquely partitioned into connected components.
We are going to give an algorithm for constructing all general situation IBM

in case when all cycles of F are connected.

Theorem 3.1. If all cycles of F are connected then, among the partitions agree-

ing with F , there exists a unique minimal partition {Sij = (Xi×Xj)∪(Xj×Xi)}.
Any general situation IBM belongs to the family of IBM defined by this minimal

partition. The minimal partition {Sij} is constructed by the algorithm given in

the proof of Lemma 3.1

Definition 3.1. A set A ⊂ S is called half-admissible, if it can be represented
as A = X1 × X2, where either X1 = X2 or X1 ∩ X2 = ∅. A set A ⊂ S is called
admissible, if it can be represented as A = (X1 ×X2)∪ (X2 ×X1), where either
X1 = X2 or X1 ∩ X2 = ∅.

Half-admissible and admissible sets are always connected.

Lemma 3.1. For any connected set B ⊂ S, among admissible sets containing

(covering) B there exists a unique minimal admissible set covering B.
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Proof. The proof of this lemma consists in direct construction of such covering
set. Let us construct first a half-admissible set X1 × X2 containing B. To
do this, take some element (a, b) ∈ B. Put, for example, a ∈ X1, b ∈ X2. If
a = b, then it follows that X1 = X2. In this case the minimal set will be the
set X1 × X1, where X1 is the projection of B on X (the projection of the set
B ⊂ S = X × X on X is the set of all elements x ∈ X such that there exists
a ∈ X such that either (a, x) or (x, a) belongs to B).

Consider now the case when a 6= b. Then necessarily b ∈ X2, and also for all
(a, x) ∈ B necessarily x ∈ X2. Continuing this process, due to connectedness of
B, we encounter all elements of B and will construct X1 and X2. During this
process it can occur that some element c belongs both to X1 and to X2. Then,
by definition of half-admissible set, it should be X1 = X2. The symmetrized set
B = (X1 × X2) ∪ (X2 × X1) is called the closure of the set B. The lemma is
proved. 2

Proof of Theorem 3.1. Let Ci be the closure of the cycle Ci. To each cycle Ci

there corresponds a symmetric cycle C
sym
i , where all elements of C

sym
i are the

permutations of the elements of Ci. Moreover, either C
sym
i = Ci or C

sym
i ∩

Ci = ∅. Then Di = C
sym
i ∪ Ci define a covering of the set S, however they

can intersect with each other. If some D1 and D2 intersect, then their union
is connected. In this case one can take D1 ∪ D2, D3, . . . , Dm instead of the
collection of sets D1, D2, . . . , Dm. On each step of this procedure the number
of sets in the covering diminishes by 1, and finally we get a system of non-
intersecting admissible sets which defines the partition {Xi}, and thus all general
situation IBM. The resulting partition does not depend on the order in which
we choose the pairs of intersecting subsets, as at each step we take minimal
admissible set. The theorem is proved. 2

If there exist non-connected cycles, then several families of IBM are possible,
as Example 3.3 shows. An algorithm for constructing all such families is similar,
but more involved, we discuss it below.

Example 3.1. Let us consider Kawasaki processes, when F is the permutation.
In this case all cycles have the length 1 or 2. Then each Xi consists of one point
only, and each Sij consists of one (if i = j) or two (if i 6= j) elements. Then any
Bernoulli measure is invariant.

Example 3.2. Let F (a, b) = (f(a), f(b)), where f is a one-to-one mapping
X → X having the cycles Xi. Then Sij = (Xi ×Xj)∪ (Xj ×Xi) define all IBM.

Example 3.3. The simplest example when there exist two general situation
IBM is as follows. Let X consist of four points, that is X = {x1, x2, x3, x4}. Let
any cycle of F consist of one point only, except for the fllowing two cycles:

C1 = {(x1, x2), (x3, x4)} ⊂ S
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and the symmetric one,

C
symm
1 = {(x2, x1), (x4, x3)},

consisting of two points. Then there are two admissible partitions, X1 =
{x1, x3}, X2 = {x2, x4} and X ′

1 = {x1, x4}, X ′
2 = {x2, x3}, which define two

one-parametric families of general situation IBM.

Further on, we shortly describe the algorithm for constructing all families
of IBM in the general case. Let us show first that for any set B ⊂ S there
exists a unique minimal covering (that is, the covering belonging to any such
covering of the set B) by non-intersecting half-admissible sets. In fact, if B is
not connected, then for any connected component Bi of B consider its closure
Bi. It is easy to see that Bi do not intersect. Then the minimal half-admissible
sets covering them do not intersect as well.

Let Ci be all cycles of F , and Cij be all connected components of the cycle
Ci. Take the closure Cij of each Cij . Firstly, for any i we construct a minimal
admissible set Ai containing all Cij . The problem is that there can be several
such Ai (see Example 3.3). Then for given Ai we construct, as above, (already
unique) minimal partition {Skl} such that each Ai belongs to one of the sets
Skl.

4. Generalizations and remarks

Maps which are not one-to-one

Let us consider the case when F is not one-to-one. A point s ∈ S is called
cyclic if s = F n(s) for some n > 0, where F n is the nth iteration of the map
F . The set of cyclic points is subdivided onto cycles. The remaining points are
called inessential.

From the definition of invariant (with respect to F ) measure it easily follows
that the invariant measure is zero on the set of inessential points. Let a measure
ν on X take values a0 = 0, a1, . . . , ak. Put Xi = {x ∈ X : ν(x) = ai}, X0 6= ∅.
Then (X0 × X) ∪ (X × X0) contains the set of inessential points and possibly
also some cycles. Let C1, C2, . . . , Cm be all the cycles of the map F which do
not belong to (X0 × X) ∪ (X × X0).

If, instead of X , we consider the set X \ X0, then (X \ X0) × (X \ X0) is
invariant with respect to F , is a union of the cycles C1, C2, . . . , Cm, and moreover
the map F on (X \X0)× (X \X0) is one-to-one. It means that the description
of invariant measures can be reduced to the case when F is one-to-one.

Countable X

This case is quite similar to the case when X is finite. In fact, if F has
infinite cycles, then ν2 should be zero on them. Thus, one can delete from X
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the projections of all infinite cycles, that is we can restrict ourselves to the case
when all cycles are finite. All the rest is similar to the case of finite X .

Oriented graph

Our results take place also in more general case when the graph G is oriented.
The map F from S = X × X to itself is not necessary symmetric. Moreover
the intensities λl(xv , xv′) may be non-symmetric functions of the spin values.
However, the condition λl(xv , xv′ ) = λl(F

−1(xv , xv′)) should be fullfilled.

Links with physics

The introduced processes have many links with physics, on the intuitive
level. For example, the book [4] explains many facts of behaviour of liquids
and amorphous bodies using stochastic exchange interaction between nearby
molecules. It gives an alternative to the common approach based on hard-balls-
type models.

However when one tries to derive an exchange process from the existing
fundamental physical theory, one encounters many difficulties. For example,
what is the set of states (that is the set X introduced above) for the water
molecules? The simplest classical model of water molecule includes at least the
lengths of segments OH and the angles between them. The known quantum
mechanical model is even more complicated: it defines a tetrahedron using
molecular orbitals [5]. Moreover, it is known that chemical bonds of hydrogenic
character may appear between closely situated water molecules — one molecule
can have up to 4 such bonds. They form a random graph of bonds (edges) which
presumably defines such properties of water as density, viscosity, heat capacity
etc., and their abnormal character comparing with other liquids. In this context
one can remark that the time dependence, even random, λl = λl(t) does not
change the invariant measures, under keeping the symmetry condition for any t.
This means also that the graph G itself (depending on the configuration of
particles in the space) does not play an important role, as we can consider the
complete graph where some λl = 0.

Some problems

It could be interesting to get similar results for the case when X is a smooth
manifold. In this case conservation laws play an important role. In the frame
of this paper, an additive conservation law is a function G on X such that if
F (x, y) = (x1, y1) then

G(x) + G(y) = G(x1) + G(y1).

If ν is an IBM and C is an arbitrary constant, then the conservation law is

G(x) = C ln ν(x).

Other interesting possibilities are when F is random (see some examples
in [6]) or even when F is quantum and X is a Hilbert space.
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