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was a very curious person and had wide scope in probability. Obviously he
could bring his own vision for statistical physics of economic phenomena which
is now at its very beginning.

Abstract. On the real axis there are point particles of two kinds: plus particles
on the positive part moving to the left, and minus particles on the negative
part moving to the right. When plus particle and minus particle collide both
disappear. It is clear that two phases are always separated. For one particular
model of such kind we study the movement of the boundary between phases in
the large density limit.
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1. Introduction

On one-dimensional lattice Zε = εZ = {εm : m ∈ Z} , ε > 0, there are
particles of two types — “plus particles” and “minus particles”. Denote by
ν±

m(t) the number of plus(minus)-particles at site εm at time t. We define
a continuous time Markov process on [0,∞) by the following conditions:

(1) at time 0 all plus particles have positive coordinates, all minus particles
have negative coordinates;
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(2a) any plus particle, independently of other particles, performs a simple ran-
dom walk: that is it jumps from εm to ε(m + 1) with rate µ+ and from
εm to ε(m − 1) with rate λ+;

(2b) any minus particle, independently of other particles, performs a simple
random walk, that is it jumps from εm to ε(m+1) with rate λ− and from
εm to ε(m − 1) with rate µ−;

(3a) if a plus particle jumps to a site where there are minus particles, it imme-
diately annihilates with one of the minus particles at this site;

(3b) if a minus particle jumps to a site where there are plus particles, it imme-
diately annihilates with one of the plus particles at this site.

At any time t > 0 the state of the process is the vector (ν±
m(t), m ∈ Z).

However, it follows from (3a) and (3b) that for any m and t

ν+
m(t)ν−

m(t) = 0.

Moreover, all minus particles are always to the left of the leftmost plus particle.
It will be convenient to define βε(t) ∈ Zε as the point where the last annihilation
before time t happened. We call it the phase boundary.

Note that there are no problems with the existence of this process.
Besides the interpretation related to annihilation of particles there is another

one — the microdynamics of the price formation, where the market contains
many players and is formed by their behaviour. Namely, βε(t) is the price of
some product at time t. Plus particles (bears) want to lower the price of this
product (we assume further on that α+ = λ+ −µ+ > 0), minus particles (bulls)
want to increase the price (we assume α− = λ− − µ− > 0). Annihilation is
a bargain which is performed when the demand and offer prices meet together.
Recent models of price formation [2–5] have much in common with our model,
however they are closer in spirit to queueing models. Our model is closer to
statistical physics models. Anyway, all such models cannot pretend on practical
implementation, mainly because external influence on the action of players is
not taken into account.

We consider the large density limit ε → 0 under the time scaling t = τε−1,
where t is microtime and τ is macrotime. Our goal is to find asymptotic be-
haviour of the price β(τ) = limε→0 βε(t) as the result of many micro-bargains.

2. Main result

Initial distribution of particles

We assume for simplicity that at time t = 0 the distribution of plus particles
is (inhomogeneous) Poisson with density ρ+(εm), where ρ+(x) is some strictly
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positive continuous function on (0,∞). This means that the random variables
ν+

m(0) are independent and have Poisson distribution with rate ρ+(εm). Simi-
larly, the distribution of minus particles is (inhomogeneous) Poisson with density
ρ−(εm), where ρ−(x) is some strictly positive continuous function on (0,∞).

Notation

Next we introduce main definitions and give their intuitive interpretation.
Our interpretation concerns the situation of large density limit when, instead
of point particles on a lattice, there is a continuous media of infinitesimally
small particles of two types, the particles move with fixed velocities −α+ < 0,
α− > 0 and have initial densities ρ±(x) correspondingly. That is there are no
fluctuations. Define the functions

M−(r) =

0
∫

−r

ρ−(y) dy and M+(r) =

r
∫

0

ρ+(y) dy for r ≥ 0. (2.1)

We interprete M±(r) as the cumulative mass of plus (minus) particles on the
distance less than r from zero. Under above assumptions on ρ± we see that the
functions M±(r) are strictly increasing on (0, +∞) and, therefore, the inverse
functions r±(M), defined by the equation

M±(r±(M)) = M,

exist and are strictly increasing. For example, the function r+ = r+(M) defines
the interval (0, r+) where the mass of plus particles equals M . Then the function

T (M) :=
r−(M) + r+(M)

α− + α+
(2.2)

defines the time interval (0, T (M)) during which mass M of plus and mass M
of minus particles annihilate. The function T (M) is also strictly increasing on
[0, +∞) and is invertible. Denote its inverse function by M(T ). The place where
the latter of these particles meet

r+(M(T )) − α+T = −r−(M(T )) + α−T = β(T ) (2.3)

is the coordinate of the boundary at time T . Excluding from the system (2.3)
the terms that are linear in T , we get

β(T ) = r+(M(T ))
α−

α− + α+
− r−(M(T ))

α+

α− + α+
.

Scaling limit for the stochastic model

Here we return to the stochastic particle model and formulate the main
result.
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Theorem 2.1. For any fixed τ ≥ 0 the following convergence in probability

holds

βε(ε
−1τ) → β(τ) (ε → 0),

where the function β : R+ → R is deterministic and has the following explicit

form

β(τ) =
−α+r−(M(τ)) + α−r+(M(τ))

α− + α+
.

Corollary 2.1. Consider the homogeneous case ρ−(y) ≡ ρ−, y < 0, ρ+(y) ≡
ρ+, y > 0. All functions defined above are linear: M−(r) = ρ−r, M+(r) = ρ+r,
r±(M) = M/ρ±,

T (M) = M
ρ−1
− + ρ−1

+

α− + α+
,

M(T ) = T
α− + α+

ρ−1
− + ρ−1

+

,

and, hence, the phase boundary βε(τε−1) moves with an asymptotically constant

velocity:

βε(τε−1) → β(τ) = τ
−α+ρ−1

− + α−ρ−1
+

ρ−1
− + ρ−1

+

= τ
−α+ρ+ + α−ρ−

ρ+ + ρ−
.

3. Proof

Our plan is to show that the limiting behavior of βε(t) in the stochastic model
corresponds to the deterministic evolution described in (2.1)–(2.3). To do this
we need some control over the random fluctuations in the limit ε → 0. Now we
fix M and consider the following random variables Ai,± = Ai,±(M), i = 0, 1, 2,
(we will prove that they are of the order o(ε−1)):

1. Denote by Qε,± = Qε,±(M) the number of (±)-particles which were at
time t = 0 correspondingly in the intervals

I◦+ = (0, r+(M)) ∩ Zε and I◦− = (−r−(M), 0) ∩ Zε. (3.1)

Define A0,± = Qε,± − Mε−1.

2. All particles among them will be annihilated during time t = T (M)ε−1

except of the number A1,± of them.

3. Define A2,± as the number of plus and minus particles which were not at
time t in the intervals (3.1) but were annihilated during time t = T (M)ε−1.
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This control can be achieved by use of exponential bounds for some families
of events. The proof uses some ideas from [1].

Definition 3.1. We say that a family of events A = {Aε}ε>0 has a property
of exponential asymptotic sureness (e.a.s.) if there exist constants KA > 0,
qA > 0, εA > 0 such that for all ε < εA the following inequality holds

P (Aε) ≥ 1 −KA exp
(

−qAε−1
)

.

In the sequel, for breavity, we say sometimes that the event Aε has probabil-
ity exponentially close to one. We will use the following fact: if two sequences
A = {Aε}ε>0 and B = {Bε}ε>0 have the property e.a.s., then this property
holds also for the sequence C = {Aε ∩ Bε}ε>0.

It is helpful to enumerate the particles at time 0 somehow with the only
condition that

· · · ≤ x−

3 (0) ≤ x−

2 (0) ≤ x−

1 (0) < 0 < x+
1 (0) ≤ x+

2 (0) ≤ x+
3 (0) ≤ · · ·

Denote by q−(1) and q+(1) the indices of plus and minus particles of the first
annihilating pair. One can assume that if some plus (minus) particle jumps to
a site where there are several minus (plus) particles then it annihilates with the
minus (plus) particle having minimal index. Let σ1 be the time moment when
the first annihilation occurs. Since particles move independently, their order
can change in time, so, in general, x−

q
−

(1)(0) 6= x−

1 (0) and x+
q+(1)(0) 6= x+

1 (0).

Similarly, we define q−(m) and q+(m) as the indices of the particles of the m-th
annihilating pair and σm as the time moment of the m-th annihilation.

Fix some M > 0. Let Nε = [Mε−1]. Consider the Nε-th pair of annihilating
particles, x−

q
−

(Nε)
and x+

q+(Nε). The main idea is to prove that for small ε the

random time σNε
is close to the value T (M)ε−1 and the random coordinate

x−

q
−

(Nε)(0) ∈ Zε is close to −r−(M). In more precise terms, it is sufficient to

prove that for any small fixed positive numbers κ0, κ1, ζ−, ζ+ with probability

exponentially close to one (as ε → 0) the following holds:

(a) the moment σNε
belongs to the time interval (t0(M, ε), t1(M, ε)), where

t0(M, ε) = (T (M) − κ0)ε
−1,

t1(M, ε) = (T (M) + κ1)ε
−1; (3.2)

(b) the starting point of the minus particle x−

q
−

(Nε)(0) belongs to the set

(−r−(M) − ζ−,−r−(M) + ζ−) ∩ Zε;

(c) similarly, the starting point of the plus particle x+
q+(Nε)(0) belongs to the

set (r+(M) − ζ+, r+(M) + ζ+) ∩ Zε.
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Let us prove the theorem assuming that the above statements (a)–(c) are
proved. Recall that βε(σNε

+ 0) = x−

q
−

(Nε)
(σNε

) = x+
q+(Nε)(σNε

). Individual

motion of a minus particle is a simple random walk on Zε with the mean drift
α−ε = (λ− − µ−) ε, so applying the upper bound of the large deviation theory,
we get that for any fixed i ∈ N, s > 0 and δ0 > 0 with probability exponentially
close to one

x−

i (sε−1) − x−

i (0) ∈ ((α− − δ0) s, (α− + δ0) s) .

In fact, even stronger result holds: for fixed s2 > s1 > 0 and δ0 > 0 the family
of events {Dε}, where

Dε =
{

x−

i (sε−1) − x−

i (0) ∈ ((α− − δ0) s, (α− + δ0) s) , ∀s ∈ [s1, s2]
}

,

has a property of e.a.s. Together with (a) this gives

x−

q
−

(Nε)(σNε
) − x−

q
−

(Nε)
(0) ∈ ((α− − δ0) (T (M)− κ0) , (α− + δ0) (T (M) + κ1))

with probability exponentially close to one. Combining the latter statement
with the statement (b) we conclude that with probability exponentially close to
one

x−

q
−

(Nε)
(σNε

) ∈ (α−T (M) − r−(M) − γ, α−T (M)− r−(M) + γ)

where γ = γ(δ0, κ0, κ1, ζ−) > 0 can be made arbitrary small, i.e.,

γ(δ0, κ0, κ1, ζ−) → 0 as max(δ0, κ0, κ1, ζ−) → 0.

Using (2.2) we see that

−r−(M) + α−T (M) = −r−(M) + α−

r−(M) + r+(M)

α− + α+

= −r−(M)
α+

α− + α+
+ r+(M)

α−

α− + α+

and, hence,

βε(σNε
) → −r−(M)

α+

α− + α+
+ r+(M)

α−

α− + α+

in probability as ε → 0.
To finish the proof of theorem we need only to check that

βε(σNε
) − βε(ε

−1T (M)) → 0 as ε → 0.

This corresponds to continuity property of the border on the macroscopic time
scale τ = T . To establish this fact we should take into account that: 1) due
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to the drift assumption (α± > 0) the random sequence {σm+1 − σm, m ∈ N}
admits uniform exponential estimates for the tails of the distribution functions
of σm+1 − σm (we refer the reader to [6] for the corresponding techniques); 2)
in finite microtime t the displacements of walking particles have the order O(ε)
while in finite macrotime τ their displacements have the order O(1). We omit
the details.

To prove the statement (a) we need the following main lemma. Denote by
N−(0, tm(M, ε)) the set of minus particles that collide with plus particles on the
time interval (0, tm(M, ε)).

Lemma 3.1. For any sufficiently small κ2, κ3 > 0 the following events

Fε =
{

|N−(0, t0(M, ε))| < (M − κ2)ε
−1

}

,

Gε =
{

|N−(0, t1(M, ε))| > (M + κ3)ε
−1

}

have the probabilities exponentially close to one.

Lemma 3.1 follows from Lemmas 3.2 and 3.3. Lemma 3.2 deals with the
initial distribution of particles and Lemma 3.3 controls the deplacements of
minus and plus particles.

Lemma 3.2. Let y1 < y2 ≤ 0 and 0 ≤ z1 < z2. Then for any δ > 0 the

following families of events have probabilities exponentially close to one:

Lε = {the number of minus particles sitting at time t = 0 in the set

(y1, y2) ∩ Zε is between
(∫ y2

y1
ρ−(y) dy − δ

)

ε−1

and
(∫ y2

y1
ρ−(y) dy + δ

)

ε−1},

Rε = {the number of plus particles sitting at time t = 0 in the set

(z1, z2) ∩ Zε is between
(∫ z2

z1
ρ+(y) dy − δ

)

ε−1

and
(∫ z2

z1
ρ+(y) dy + δ

)

ε−1}.

Lemma 3.3. For any δ1 > 0 each family of events

Aε = {all particles x±

k (0) ∈ (−r−(M) + δ1 , r+(M) − δ1) ∩ Zε collide

with particles of opposite sign till the time moment t(M)ε−1},

Bε = {on the time interval t ∈ (0, sε−1) none of minus particles, started at

t = 0 from the set (−∞,−r−(M) − δ1) ∩ Zε, collides with any

plus particle, started at t = 0 from the set (r+(M) + δ1, +∞) ∩ Zε},

satisfies the e.a.s. property. Moreover, fix any y, κ > 0 and consider the following

subsets of Zε:

S−

2 = (−∞,−y − κ) , S−

1 = (−y, 0) , S+
1 = (0, y) , S+

2 = (y + κ, +∞) .
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Define the events

Vε = {on the time interval t ∈ (0, sε−1) none of minus particles, started at

t = 0 from S−

2 , will meet some minus particle, started from the set S−

1 };

Uε = {on the time interval t ∈ (0, sε−1) none of plus particles, started at

t = 0 from S+
2 , will meet some minus particle, started from the set S+

1 }.

Then the families of events {Vε} and {Uε} have the e.a.s. property.

Proofs of Lemmas 3.2 and 3.3 are based on standard probabilistic methods [6]
and are omitted. Let us explain now how using these two lemmas one can get,
for example, the upper bound for |N−(0, t0(M, ε))| in Lemma 3.1.

Firstly, we include in this bound all minus particles starting at t = 0 from the
set (−r− ( M(T (M) − κ0) ) − δ5, 0) where δ5 > 0 is small and will be fixed later.
By Lemma 3.2 there is no more than (M− (r− ( M(T (M) − κ0) ) + δ5) + δ6) ε−1

of such particles e.a.s. for small δ6 > 0.
We should add to this bound all minus particles that started at t = 0 from

the set (−∞,−r− ( M(T (M) − κ0) ) − δ5) and annihilated in the time interval
(0, t0(M, ε)) with some plus particles. We will show now that with probability
exponentially close to one the number N◦(0, t0(M, ε)) of such minus particles
can be estimated as cε−1 where c > 0 is any prefixed small constant. Indeed,
by Lemma 3.3 (again in the sense of e.a.s.) the minus particles in question
can annihilate only by colliding with some plus particles, started at t = 0 from
the set (0, r+ ( M(T (M)− κ0) ) + δ5). By Lemma 3.2, the number of the plus
particles in this set is bounded by (M+ (r+ ( M(T (M)− κ0) ) + δ5) + δ6) ε−1.
From this bound we should exclude plus particles which was annihilated in col-
lisions with minus particles started from the set (−r− ( M(T (M) − κ0) ) + δ5, 0),
since by the part “Vε” of Lemma 3.3 during the time interval (0, t0(M, ε))
the latter minus particles will go ahead of the minus particles started from
(−∞,−r− ( M(T (M)− κ0) ) − δ5). By Lemma 3.2, initially there was no less
than (M− (r− ( M(T (M)− κ0) ) − δ5) − δ6) ε−1 particles in the set

(−r− ( M(T (M) − κ0) ) + δ5, 0) .

So using the mean value theorem from analysis we get

ε · N◦(0, t0(M, ε)) ≤ (M+ (r+ ( M(T (M)− κ0) ) + δ5) + δ6)

− (M− (r− ( M(T (M) − κ0) ) − δ5) − δ6)

= M(T (M) − κ0) + M ′
+(θ1)δ5 + δ6

−
(

( M(T (M) − κ0) ) − M ′
−(θ2)δ5 − δ6

)

≤ δ5(‖M
′
−‖C + ‖M ′

+‖C) + 2δ6.
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Hence, in the sense of e.a.s.,

ε · |N−(0, t0(M, ε))| ≤ (M−(r−(M(T (M) − κ0))

+ δ5) + δ6) + δ5(‖M
′
−‖C + ‖M ′

+‖C) + 2δ6

= M(T (M) − κ0) + M ′
−(θ3)δ5

+ δ5(‖M
′
−‖C + ‖M ′

+‖C) + 3δ6

≤ M(T (M) − κ0) + δ5(2‖M
′
−‖C + ‖M ′

+‖C) + 3δ6.

It follows from (2.2) and assumptions on ρ± that M ′(t) ≥ k for some k > 0.
Therefore, M(T (M) − κ0) ≤ M − kκ0. Given κ0 > 0 we are allowed to chose
positive constants δ5 and δ6 as small as we like. So, finally, we get that with
probability exponentially close to one the following estimate holds

|N−(0, t0(M, ε))| ≤
(

M −
kκ0

2

)

ε−1 .

The lower bound for |N−(0, t1(M, ε))| can be obtained in a similar way.
To get the proof of statement (b) one should combine Lemma 3.3 with the

following lemma.

Lemma 3.4. For any κ5 > 0, the event

Hε =
{

x−

i (0) ∈ (−(1 + κ5)r−(M), 0) ∀i ∈ N−(0, t1(M, ε))
}

has the property of e.a.s.

Proof of this lemma uses arguments similar to the proof of Lemma 3.1. The
statement (c) is just a symmetric modification of the statement (b).

References

[1] V. Malyshev and A. Zamyatin (2007) Accumulation on the boundary for a
one-dimensional stochastic particle system Problems of Information Transmission

43 (4), 331–343.

[2] I. Rosu (2008) Liquidity and information in order driven markets. Preprint,
September 2008, Univ. of Chicago.

[3] I. Rosu (2009) A dynamic model of the limit order book. Review of Financial

Studies 22, 4601-4641.

[4] R. Cont, S. Stoikov and R. Talreja (2008) A Stochastic model for order book
dynamics. To appear in Operations Research.
http://ssrn.com/abstract=1273160.



584 V.A. Malyshev and A.D. Manita

[5] Ch. Parlour and D. Seppi (2008) Limit order markets: a survey. In: Handbook

of Financial Intermediation and Banking, Anjan V. Thakor, Arnoud W. A. Boot
(eds.). Elsevier, 63–94.

[6] G. Fayolle, V. Malyshev and M. Menshikov (1995) Topics in Constructive

Theory of Countable Markov Chains, Cambridge Univ. Press.


