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Abstract. We define a solid N -particle system with the fixed distances r(i, j) =
c(i, j) between any two particles i and j. Its dynamics is defined as the limit
of the dynamics for the system where the Hamiltonian is the sum of the terms
w2(r(i, j) − c(i, j))2 as w2 tends to infinity. Three concrete examples are con-
sidered.
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1. Introduction

We call a collection (system) of point particles x1(t), . . . , xN (t) ∈ Rd a solid
collection if the distances ρ(xi(t), xj(t)) = |xi(t)−xj(t)| between any two parti-
cles remain fixed forever. One can define dynamics for such collection similar to
Euler equations for ideal solids. If the density of particles tends to infinity then
it could be the natural model for real solid. Obviously, such systems cannot be
Newtonian or Hamiltonian without introducing forces of infinite strength. Our
goal is to deduce dynamical equations for solid particle collections from Newto-
nian point particle dynamics. For this we use a weaker notion – asymptotically
(with respect to some parameter ω in the interaction potential) solid systems of
point particles where ρ(xi(t), xj(t)) tend to some constants rij as ω →∞.
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2. 1-dim two-particle problem

Two point particles with masses m1,m2 and Hamiltonian

H =
m1v

2
1

2
+
m2v

2
2

2
+
ω2

2
(x1 − x2 − a)2 + U(x2)

where a > 0. We consider the simplest case when U = −Fx2 with constant
F > 0. The equations are

m1
d2x1
dt2

= −ω2(x1 − x2 − a),

m2
d2x2
dt2

= ω2(x1 − x2 − a) + F.

Introduce a new variable y = m1x1 +m2x2. The sum of two equations gives

ÿ = F =⇒ y = y(0) + ẏ(0)t+ F
t2

2
,

that is, y moves as particle of mass 1. And the mass center

X =
y

m1 +m2
=
m1x1 +m2x2
m1 +m2

moves as the particle of mass M = m1 +m2. This is of course quite known even
for more general particle systems.

Now we should understand the motion of z = x1 − x2 − a.

Proposition 1. Let z(ω, t) be the trajectory of z with initial conditions z(0)−
0, ż(0) = v0. Then for fixed v0, F,m1,m2, a, as ω →∞,

|z(ω, t)| → 0

uniformly in t.

That is, in this limit the distance

ρ(x1 − x2) = |x1 − x2|

does not change at all, despite the constant force F , only the center of mass
moves.

Proof. We have

z̈ = −ω2
( 1

m1
+

1

m2

)
z − F

m2
= −k2z − F

m2
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where

k2 = ω2
( 1

m1
+

1

m2

)
.

The general solution is

z = − F

m2k2
+ C1 cos kt+ C2 sin kt

where

C1 =
F

m2k2
, C2 =

v(0)

k
=⇒ z =

F

m2k2
(cos kt− 1) +

v(0)

k
sin kt. (1)

The proposition follows as k →∞. 2

Note that for large ω2 the particles never collide. That is, if for exam-
ple x1(0) > x2(0), equation (1) gives conditions for no collision, i.e. x1(t) >
x2(t)⇐⇒ z(t) > −a for all t > 0.

3. Restricted two particle problem in R2

Here one particle is fixed at 0 and the second with coordinates x = (x1, x2)
moves in the shifted quadratic potential and constant force F = (f1, f2)

U(x) =
ω2

2
(r − a)2 − (F, x), r =

√
x21 + x22.

Equations (nonlinear) are (we take m = 1)

ẍ1 = −ω2(x1 − a
x1√
x21 + x22

) + f1,

ẍ2 = −ω2(x2 − a
x2√
x21 + x22

) + f2.

Remak 1. One can easily check that for F = 0 one of the possible solutions is

x1(t) = R cosω0t, x2 = R sinω0t

for any fixed R ≥ a and

−ω2
0 = −ω2

(
1− a

R

)
=⇒ ω0 = ω

√
1− a

R
.

Note that if we choose R close to a, then ω0 will be much less than ω. For R = a
there will not be rotation, that is the particle will not move at all. Note that
R < a is impossible as there will not be balancing centrifugal force.
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To get a wider class of solutions we will use conservation of energy H and
of kinetic momentum L = [x, p].

In polar coordinates

v = (ṙ cosφ− rφ̇ sinφ, ṙ sinφ+ rφ̇ cosφ).

Then
m

2
v2 =

m

2

((dr
dt

)2
+ r2

(dφ
dt

)2)
,

L

m
= [x, v] = x1v2 − x2v1

= r cosφṙ sinφ+ r2φ̇ cos2 φ− ṙ cosφr sinφ+ r2φ̇ sin2 φ = r2φ̇,

It follows that

H(t) =
m

2
v2 + U =

m

2

(dr
dt

)2
+
m

2
r2
(dφ
dt

)2
+
ω2

2
(r − a)2 − (F, x)

=
m

2

(dr
dt

)2
+
L2(0)

2mr2
+
ω2

2
(r − a)2 − (F, x).

Then

H(0) =
m

2

(dr
dt

)2
+
L2(0)

2mr2
+
ω2

2
(r − a)2 − (F, x).

It follows that for R(t) = r(t)− a we have

H(0) + (F, x)− ω2

2
(r(t)− a)2 ≥ 0 =⇒ R2(t) ≤ 2(H(0) + (F, x))

ω2
.

Proposition 2. For any initial conditions the particle, for sufficiently large ω
stays always in a narrow ring, around the circle r = a. The width of this ring
tends to 0 as ω →∞.

Proof. If ||x|| < 2a we use the last inequality. If ||x|| ≥ 2a then |R| ≥ a and
R−1||x|| < 2 and we can use inequality

|R(t)| ≤ 2(H(0) + (F, x))

ω2|R|
.

If F = 0 then we get the following first order equation for r(t), or for R(t) =
r(t)− a,

dR

dt
=

√
2H(0)

m
− ω2

m
R2 − L2(0)

2m(a+R)2
. (1)

After solving this equation, we get the first order equation for φ(t)

φ̇ =
L(0)

m(a+R(t))2
=⇒ φ(t) = φ(0) +

L(0)

m

∫ t

0

(a+R(t))−2dt. (2)

In particular, if r(0) = a, then φ(t) = ω0t, where ω0 = L(0)r−2. 2



Asymptotically solid systems of point particles 309

From all this the following statement follows.
We would like to get limiting Euler equations for this model. To do this for

the point (x, y) = (r, ϕ) denote by n1(x, y) = n1(r, ϕ) the unit vector parallel
to vector r and n2(x, y) = n2(r, ϕ) the unit tangent vector perpendicular to
vector r at the point (r, ϕ). Then for any (r, ϕ) vector F will be the sum of two
vectors: Pr,ϕ = (F, n1(r, ϕ))n1(r, ϕ) and Tr,ϕ = (F, n2(r, ϕ))n2(r, ϕ). Then the
components r(t) and ϕ(t) satisfy the system of differential equations

r̈(t) = −ω2(r − a) + (F, n1(r, ϕ)),

ϕ̈(t) = (F, n2(r, ϕ)).

And the limiting equations will be

r(t) ≡ a,
ϕ̈ = (F, n2(r, ϕ)).

4. N-particles in dim 1

We consider one-dimensional system ofN classical point particles (molecules)
of the same mass m and initial configuration at time t = 0

0 = z0(0) < z1(0) = a < z2(0) = 2a < . . . < zN−1(0) = (N − 1)a (1)

for some a > 0. The dynamics of such system is defined by the Hamiltonian

H =

N−1∑
k=1

p2k
2m

+

N−1∑
k=1

V (zk − zk−1)− fzN−1. (2)

It is assumed that one of the particles z0 stays permanently at zero, and zN−1
is subjected to the constant external force f > 0. Concerning the function V (z)
it is assumed that V (z)→∞ as z → 0, V (z)→ 0 as z →∞, V (z) is convex on
the interval (0, b), concave on (b,∞) and has the unique minimum V (a) < 0 at
some a > 0, where a < b <∞.

4.1. Equilibrium stability

Fixed points For quadratic Hamiltonian

V (z) =
ω2

2
(z − a)2

fixed point always exists and is unique, and moreover for any ω2 the distances
zk − zk−1 = h = a+ σ, where

σ =
f

ω2
.
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That is why the static phase transition is as follows: h/a → ∞ if σN → ∞,
and h/a→ 1 if σN → 0. We will see that static and dynamic phase transition
differ only by logarithmic factor.

Lennard-Jones potential The similar fact takes place for more general in-
teractions. Namely, usually the interaction is assumed to be

V (r) = − cn
rn

+
cm
rm

. (3)

Note that for arbitrary 0 < n < m, cn > 0, cm > 0 the function V (r) sat-
isfies all properties, formulated above, and moreover the following holds. If
maxa<h≤b dV (h)/dh ≥ f then the Hamiltonian (2) has the unique minimum,
for which all zk−zk−1 = h > a > 0, and the value h is defined from the equation

dV (h)

dh
= f. (4)

But if maxa<h≤b dV (h)/dh < f , then fixed points do not exist and, under the
action of the force f the chain falls apart. The following statement concerns the
static phase transition for the interaction (3).

Proposition 3. If a = 1/N , then a fixed point exists iff

σ =
f

κ
≤ 1

N
C

where

κ = V ′′(a),

C = C(n,m) =
1

m− n

((m+ 1

n+ 1

)−(n−1)/(m−n)
−
(m+ 1

n+ 1

)−(m−1)/(m−)n)
.

Non-zero temperature For non-zero temperature fixed point becomes Gibbs
distribution. For the existence of the Gibbs distribution it is necessary that
V (x) → ∞ as x → ∞, Then one can say that for non-zero temperature the
existence of the thermal expansion depends on the third term of the expansion
of V at the point a, see [2].

4.2. Dynamical stability

Now we will consider the dynamics of this particle system and get estimates
for the functional

A = A(N, l, f, ω2,m) = max
1≤k,k+l≤N−1

sup
t∈(0,∞)

|zk+l(t)− zk(t)| (5)
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for large N and various l > 0. In despite of apparent simplicity of the quadratic
interaction, the main result of the paper – estimates for the maximal (over all
time interval) deviations from the initial crystal structure are nontrivial and
use some facts from number theory. The question is that, although the model
has a simple fixed point, but as the model is Hamiltonian, then there is no any
convergence to this fixed point.

We consider finite number N of particles and find the neighborhood which
the trajectory never leaves. Then in the limit N →∞. we find the phase tran-
sition using scaling of the parameters, for which the crystal structure changes
only slightly on all time interval, and the scaling for which this supremum grows
with N .

We want to note that there are many papers concerning other problems for
one-dimensional models. Most popular are the Fermi – Pasta – Ulam models [5]
and the Frenkel – Kontorova model [6].

Defining the deviations xk(t) = zk(t) − ka, k = 0, . . . , N − 1, we have the
following Hamiltonian system of linear equations (assuming m = 1)

ẍ0(t) = 0,

ẍk(t) = ω2(xk−1 − 2xk + xk+1), k = 1, . . . , N − 2,

ẍN−1(t) = ω2(−xN−2 + xN−1) + f,

(6)

with initial data (1) and vk(0) = ẋk(0) = 0, k = 1, . . . , N − 1.
Introduce the following auxiliary function

FN (x) = x ln
N

x
, x > 0. (7)

Let us agree that the constants denoted further by c, ci, const, do not depend
on N, l, f, ω and a. The main estimate is as follows.

Theorem 1. Fix some ε ∈ (0, 1), then for any k, l ∈ N, such that

0 ≤ k < k + l ≤ (1− ε)N, (8)

the following inequalities hold

σ(l + c1FN (l)) ≤ sup
t≥0

(xk+l(t)− xk(t)) ≤ σ(l + c2FN (l)), (9)

σ(l − c3FN (l)) ≤ inf
t≥0

(xk+l(t)− xk(t)) ≤ σ(l − c4FN (l)) (10)

for some c1, c2, c3, c4 > 0, where c1, c3 may depend on ε.

See these results and proofs in [1].
Further on we use the procedure, called in physics “double scaling limit”.

Namely, we put a = 1/N and will consider various scalings of σ = σ(N).
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We use the following notation: for positive functions f(x) ' g(x), x ∈ Λ, for
some domain Λ, if there exist such c1, c2 > 0, that on all domain of definition
c1g(x) ≤ f(x) ≤ c2g(x).

Corollary 1. Under the conditions of Theorem 1

|xk+l(t)− xk(t)| ' σ(N)l ln
N

l
.

As the indicator of the phase transition we use the maximal relative extension
(for l = 1)

A

a
= NA

under the strength f . We have a−1A → 1, if σ(N)N lnN → 0 as N → ∞,
and a−1A → ∞, if σ(N)N lnN → ∞. More exactly, if σ < c/(N lnN) for
sufficiently small c > 0, then the distances will never leave some neighborhood(
(1− ε)/N, (1 + ε)/N

)
of 1/N .

Again we get that for ω2 →∞ we have a solid collection of particles.

5. Conclusion

So, we saw that asymptotically solid collection of point particles can be
defined by various types of interaction Hamiltonian. Further plans in this di-
rection could be to use this micro approach to such macro sciences as elasticity
and plasticity of solid matter, or even to soft matter.

The simplest gas collection can be defined, for example, by repulsive po-
tential with small finite support: V (|xi − xj |) = ∞ if |xi − xj | < ε. Or, by
quite general potential where the particles cannot collide. For example, poten-
tial V (|xi − xj |) with quadratic minimum at |xi − xj | = a, as it was done for
derivation of Euler equations for Chaplygin gas, see [4].

What is necessary to do now: 1) find models of “asymptotically liquid” par-
ticle systems, 2) to have complete review of rigorous results and non-rigorous
ideas concerning point particle models of continuum mechanics – possible start-
ing papers for such report are [3,5–18].
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