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Abstract: We consider a canonical ensemble with a fixed number N of triangles for
planar dynamical triangulation models with compact spin in the high temperature region.
We find the asymptotics of the partition function Z(N) and reveal the analytic properties
of the generating function U(x) = }_ Z(N)x". New cluster expansion techniques are
developed for this case. For fixed triangulation it would be quite standard but for random
triangulations one has to deal with the non-zero entropy of the space between clusters.
It is a multiscale expansion, where the role of scale is played by a topological parameter
— the maximal length of chains of imbedded not simply connected clusters.

1. Definitions and Main Results

1.1. Introduction. We consider a model, related to quantum gravity, called the planar
dynamical triangulation model with matter fields in the high temperature region (see the
exact definitions below). Planar models without matter have an extensive history and are
sufficiently well understood, both on physical and mathematical levels. In the physical
literature there is a powerful random matrix method, in mathematics earlier combinato-
rial results by Tutte (see [4, 7]) solve the problem without spin. Random matrix methods
in physics give some information about the Ising model on dynamical triangulations,
see reviews [2, 1]. On the contrary, there are almost no rigorous mathematical results for
models with matter fields.

We develop new cluster expansion techniques. For a fixed triangulation it would be
quite a standard exercise. But for dynamical triangulations the space outside clusters
has non-zero entropy. It is related to diffeomorphism invariance for original continuous
models. Note that for the lattice case we would have only a translation group conserving
the form and the distances between clusters. Our cluster expansion is a kind of multiscale
expansion where the induction parameter n = 1, 2, .. ., has a topological nature. Each
n corresponds to the summation over all configuration with clusters of level not greater
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than n. The level of a cluster is defined by induction: a cluster has level # if inside it all
clusters have level less than n.

One can roughly describe the situation as follows. In the absence of spin the asymp-
totics of the partition function is defined by an algebraic singularity of the generating
function at some point x; on the positive halfaxis. If the perturbation is imposed, an
infinite number of new algebraic singularities x,,, n = 1, 2, ..., positive numbers close
to x4, appear. They have an accumulation point x4, = lim x,. If there exists n such that
Xn < Xgce, then the asymptotics is canonical with the critical exponent — % Otherwise,
for example when x,, < x,_1 for all n, then the asymptotics is not canonical.

The proof consists of two parts. The first part presents an inductive formal cluster
expansion. The second part uses complex analysis to get inductive estimates.

1.2. Triangulations and partition function. Graphs here can have multiple edges but no
loops. Whenever necessary the graphs are considered as 1-dimensional complexes. In
this paper we call triangulation a pair (G, ¢), where G is a graph and ¢ is an imbedding
of G in a closed two-dimensional sphere with a hole, that is a closed disk D. The
following conditions are assumed to hold: if / is an edge of G then ¢ (!) is a smooth
curve in D, and each of the open components of D \ ¢ (G) is homeomorphic to an open
disk, the closure of each open component contains 3 different vertices and 3 different
edges, that is 3 smooth curves ¢ (I;), where I; are edges of G. Note that two vertices of
G can be connected by more than one edge. Triangulation is called rooted if an edge
(the root) on the boundary 8D is specified together with its, say clockwise, direction
(orientation). Two triangulations are called equivalent if there is a homeomorphism
D — D which respects orientation, vertices, edges and the root. Let To(N, m) be the
set of all equivalence classes (called further on also triangulations for brevity) of rooted
triangulations with N triangles and m boundary edges. Let Co(N, m) = |To(N, m)|.

It is very convenient to assume the following conditions which will be the boundary
conditions for the systems of equations below:

CO(Nv O) = CO(N7 1) = Ov CO(Ov m) — 8”‘[,27 CO(lv m) - 8"1,3'

Only the case N = 0, m = 2 needs commentaries: this corresponds to a degenerate
disk, an edge with two vertices.

Let V(T), L(T), F(T), B(T) be correspondingly the sets of all vertices, edges, tri-
angles and boundary edges of T

We denote 7* the dual graph of the triangulation T, its vertices v € V(T*) correspond
to triangles of T', edges | € L(T*) — to pairs of adjacent triangles. All vertices of T*
have degree 3 except vertices corresponding to the triangles (there are not more than
m = |B(T)| of such triangles), incident to at least one boundary edge.

In each triangle of T, or in each vertex v of the dual graph T*, there is a spin o, with
values in the set S, this set is assumed finite for simplicity.

Partition function for the canonical ensemble (with fixed number N > 0 of triangles
and fixed number m > 2 of boundary edges) is defined as

Z(N,m) = Zg(N,m) = > Z(T),
T:F(T)=N,B(T)=m
where the partition function Z(T) for a given triangulation T € To(N, m) is
ZMy=1SI"™" Y exp(—B D ®(0v,0)), N =|F(D)|=|v(T*),

{oy:veV(T*)} <v,v'>
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where < v, v > means a pair of nearest neighbor vertices (that is of adjacent triangles)
v, v € V(T*), ®(s, s') is a real function on S x S, B > 0 — inverse temperature.

The set of all symmetric interactions ® for given S is the Euclidean space R? of
dimension d = |§| + '—‘m%:—l—) We call a set of interactions generic if its complement
has measure 0 in R%.

Further on, for technical reasons only, we shall consider the ensemble with boundary
conditions empty on the internal boundary, that is there are no spins on the triangles of
F(T) adjacent to the boundary of the disk. Somewhere we shall say how to treat more
general boundary conditions.

1.3. Main results. It is known (see [4,7]) that for fixed m as N — oo so that N + m is
even (we always assume this condition in the sequel)

_5 N 27
Zo(N,m) = Co(N,m) ~ ¢p(m)N"Ic" ¢ = 7,¢(m)>0.

Note that Zo(N, m) = 0if N + m is odd. We want to stress that to get the asymptotics
of the partition function itself is certainly more difficult than to get the asymptotics of

. . . 3 N . .
its logarithm. The asymptotics ¢cN ’Zcf’ is called canonical, and the critical exponent

a= —% 1s also called canonical.

Our goal is to prove similar results in the situation with spins. We prove that in
many cases the partition function has canonical asymptotics (with the canonical critical
exponent). In general, there is a constant ¢ = ¢(®, 8) such that

Z(N,m) ~ ¢(m, ®, BN~ 3c".
For example, we have the following result.

Theorem 1. Let
k= [exp(—=pP(0,0") — 1] < 0.

o0’
Then for B sufficiently small Z(N, m) has canonical asymptotics.

We shall see below that this asymptotics, that is the constant ¢(®, 8), is defined by
the level 1 of the multiscale expansion. However, there are exceptions.

Theorem 2. [f ® < 0 is not identically constant, then the asymptotics is not canonical.

Non-rooted triangulations. The easy corollary is that for non-rooted triangulations

of the sphere (thus there is no boundary) we have Zp(N) ~ ¢(8)N _%c(ﬂ)N in the

canonical case, and for ® < 0 the asymptotics is not canonical. The canonical critical
. . . 7

exponent is defined for non-rooted triangulations to be —5.

Example: scaling transformation. Introduce the constant nearest-neighbor interac-
tion W, (0,0’) = p. For non-rooted triangulations the term W gives an overall factor
exp(—BulL*) = exp(—% BuN). However, for the ensembles where m is not fixed, such
interaction W is a nontrivial interaction; it leads to an interesting phase transition in .
Appending ¥, to some interaction & results in a scaling transformation of the generating
functions (see below). Otherwise speaking, appending such interaction changes only the
constant c¢(f) in the asymptotics, and does not change the canonical exponent.
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2. Formal Expansion

2.1. Cluster representation for a fixed triangulation. Assume that the triangulation 7' is
fixed. Expanding the exponent as

exp(—BP(oy, 0y)) = 1 + exp(—BP(oy, 0p)) — 1
one can write

Z(T)=)_a(LY,
L*

where )", . is over all subsets L* of edges of the dual graph T*, and

dLy =1 3 [l & ki=kiow, o) =exp(—pP(0y, o) — 1.

{oyiveV(T*)} i=(v,v)el*

For each pair (T, L*) a triangle & of T is called colored if it corresponds to a vertex of
some edge of L*, and blank otherwise. Denote the set of coloured triangles as V(L*) =
V(T,L%).

Recall that the distance between triangles in dynamical triangulation models is the
distance between the corresponding vertices in the dual graph, that is the length (number
of edges) of the shortest path between them in T*. A set A of triangles is called 1-
connected (or connected) if between each pair of triangles ¢, s € A there is a path,
belonging to A, in which any pair of consecutive triangles are on the distance not greater
than d = 1. For each set A define the external boundary 9, A as the set of triangles on
distance 1 from A, and the internal boundary 9; A as the set of triangles in A on the
distance 1 from the complement of A.

For each pair (7', L*) there is a unique decomposition of the closure of V(L*),

cl(V(L*) =% v(L*) U9, V(L*) = UV;,

where V; = V;(T, L*) are maximal connected subsets of ¢/(V(L*)). Finally

ZM) =1+ Y k(VD)...k(Vp), (1)
r=1{vi,...,

{(Vi.....vp}

where £ = {Vi, ..., V,} is any system (called configuration) of connected subsets of
V(T*) such that dist(V;, V;) > 1 forany i # j, and for any such V,

kvy= S0 svaendl 3 ke ©)
L*:cl(V(L*)=V {oyveV (T} lel™

We call V; clusters for given (T, £), or (T, X)-clusters. That is for a given triangulation
T and the subset ¥ C F(T), (T, X)-clusters are maximal connected components of 3.
Thus in (1) for any i there exists at least one nonempty L} such that c/(V(L})) = V.
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2.2. Hierarchy of clusters and generating functions. For any set V C F(T) the com-
plement F(T) \ V consists of two parts: the exterior part Ext(F(T) \ V), consisting of
all triangles of F(T') \ V, which can be connected with the boundary by a connected
path, belonging to F(T) \ V, and the interior part Int(F(T) \ V), containing all other

triangles.
Let V be one of the (T, X)-clusters. Then the interior part of its complement F(7)\ V
consists of some number » of connected components Vy, ... , V.

ForgivenT aset V C F(T) = V(T*) of triangles is called simple if it is connected
(that is connected) and its interior part is empty. We say that (T, X)-cluster has level 1
if it is simple.

We define (T, )-clusters of level n > 1 by induction: cluster V has level n if n is
the minimal number such that in its interior part there are only clusters of level less than
n. Thus the (T, X)-clusters form a forest (a set of connected trees), where clusters are
vertices of this forest. Two vertices of the tree are connected by an edge if one of the
corresponding clusters is in the interior part of the other one, and their levels differ by 1.

For given T a configuration X is said to be of level 1 if either there are no clusters at
all or all (T, X)-clusters are simple. For given T a configuration X is said to be of level
n > lifall (T, £)-clusters have level not greater than n and at least one of them has
level n. For given T denote forn > 1,

00 (<n)
ZOM =1+ > k() k(Vp), 00(T)
p=1x={Vvy,...V,}
(n)

=+ D k(VD)--k(Vy),

p=13={v1,...V,}

where in the first case the sum with index (< n) is over all configurations ¥ =
{V;, e V,,} of level at most n. The sum with index (n) is over all configurations

Y= {Vl, e Vp} of level n. Let us put
ZOmT) =1,00(1) = 0,
and forn > 0,

ZOWN,my= Y zZ(T),e"N.m= > ",
TeTo(N,m) TeTo(N,m)

Forn > 0let us call

o 0 00
U(”)(x, y) = Z Z Z(")(N, m)xNym, Y(")(X, y) = Z Z ®(”)(N, m)xNym

N=0m=2 N=0m=2

the generating function of level at most n and of level n correspondingly. Then obviously

UP@y = Y r®u, ),

1<k<n

YO, ) =UP%, ), YPU, y) =UMx, y) = U D, y),n > 2.
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Lemma 1. There exists 8 > 0 such that the functions U™ (x, y), Y™ (x, y) and

oo o0
UG, y) =437 % Z(N mxNy™ = lim U (x, y)
N=0m=2

are analytic for x|, |y| < é.

Proof. Note first that the limit

Z(N,m) = lim Z™W(N, m)

exists (in fact, for fixed N, m, the sequence Z"(N, m) < Z"+D(N, m) stabilizes as
n — o¢) and is the partition function for the ensemble with the boundary conditions
defined above. Moreover, there are a priori exponential bounds, easy to prove,

Z(N,m) < cNtm
for some C > 0 depending onlyon ® and 8. O

We shall study properties of the functions U™ by induction in n. If & < 0 we call
the model with the partition function Z® the random cluster model with clusters of the
level not greater than n. For example, the level 0 partition function is the case when there
is no spin at all, and the level 1 corresponds to a special random cluster model, where
only simple clusters are taken into account.

2.3. Level 1 cluster expansion. As it is standard in cluster expansions, we have started
with a resummation formula (polymer expansion, or cluster representation, see [3,6])
for a given triangulation 7. After this in the standard theory some kind of correlation
equations are used. However, here we will have to follow a different way, by incorporating
our expansion into the recurrent formulae of Tutte, that allow to censor all possible
triangulations together with spin configurations on them. The reason is that the “empty
space”, outside the clusters of the expansion, can vary considerably. In other words, the
empty space has nonzero entropy.

Our cluster expansion is inductive: it consists of steps# = 1,2, .... On each step a
new cluster expansion has to be done. It is a kind of multi-scale cluster expansion, where
the role of scale is played by a topological parameter n, the length of maximal chains of
imbedded non-simply connected clusters.

2.3.1. Level 1 cluster function. The nonempty (T, X)-cluster V is called complete if it
contains all triangles of T'. It is obviously simple and thus X consists only of this cluster.
The complete (T, X)-cluster V is unique and we put

K(T) =k(V).

Then the cluster function is defined as

oo o0

1
W, =Wl = 3 Wymt¥y" Wym =W = > K(T).
N=3m=2 T:TeTy(N.m)
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Lemma 2. There exist constants Cy > 0 such that for any B sufficiently small
N
K(T) <(C2B)s, N = [V(T")]. €

It follows that the function W(x, y) is analytic in |x|,|y| < CB~% for some C >
0,a > 0, and W(x, y) together with its first partial derivatives are O(B |x|’ | ylz) Jfor
IxI, Iyl < L

Proof. We have obviously for small 8

[1% < @Bmax|op!tl.

lel*
At the same time, the dual graph is 3-regular and thus 2 |L*| > |V(L*)| > @ As the
number of L* such that V(L*) = V is bounded by 23!/ then from (2) it follows that

K(V) < (C1B)T

for some Cy > 0. For any triangulation T and any L*, given a complete (T, X)-cluster,
we have |V(L*)| > W—(T—)i The number of V giving the complete (T, X)-cluster for
3

given T is not greater than 21V Thus we have the cluster estimate (3). From the
exponential estimate for the number Co(N; m) of rooted triangulations we have the
result if we note also that m < 2N for N > 1.

As clusters are assumed to be nonempty, one can factor out Sx3y2, for any ¢ > 0
and |x/, [y| < ¢ we have by the cluster estimate

Wi,y =gkPlyfo). o

2.3.2. Recurrent equations. Now we shall give a procedure to construct all configura-
tions with simple clusters only from complete clusters and the degenerate disk, that is
the configuration with N = 0,m = 2. It is of primary importance that all complete
clusters have blank triangles on their internal boundary.

The canonical functional equation is the following equation in a small neighbourhood
QeClofx=y=0:

Flx,y) = Fx,)xy ' + F2, xy 432+ T(x, y) — xyFa(x), (4

where we denote

o0 o9} oo
F,y) =) Y Fnmxy™, Fu(x) = Y Fymx".
N=0m=2 N=0

F and F; are unknown functions, J = J(x,y) = > %_3 > oy InmxNy™ is given
and analytic in 9.

Lemma 3. The level | generating function UV = U, satisfies the canonical functional
equation

Ui(x,y) = Ur(x, »)xy 4+ U2, xy L4+ y2 + WO, y) —xyS() (5)
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Fig. 1. Recurrent relation

with
o0
S =50y =Yz, 2)x",
N=0

where it is convenient to use notation S instead of (Uy)3.

Proof. We use the idea of Tutte’s algorithm for censoring all triangulations. We have
ZOW,my =ZON =1, m+1) +88,08m2 + Wnm

+ > ZO N, m)ZO (N2, ma) (6)
N1+Ny=N—-1mi+my=m+1

form > 2, N > 0and
ZO(=1,my) = zOW,0) =z, 1)) = 0.
It follows that
ZW0, m) = 8m2, ZV1, m) = 6 3.

Figure 1 shows the meaning of this recurrent relation. The irst term on the right-
hand of (6) side corresponds to appending a triangle, the next two terms - taking the
degenerate triangulation with N = 0, m = 2 (omitted on the picture) and a complete
cluster with the chosen root edge, the last term — joining together two already constructed
triangulations by appending a triangle. Fat edges denote the root edges and show the
rule to choose the root.

Multiplying (6) on x" y™ and summing Y 5_o > o, we get the result. O

2.4. Inductive resummation formula. The (T, )-cluster V is called a boundary cluster
if it contains all boundary triangles. Let V,,, denote all coloured triangles of V, and let
V'’ be V,, together with the blank triangles, adjacent to the boundary. The complement
of the closure cl(F(T)\ V) = F(T) \ V’ consists of some number r > 0 of nonempty
maximal connected components Ry, ... , R,, isomorphic to a disk, and such that for
each i there is at least one triangle in R; not belonging to V. Note that if » = 0 then
the boundary cluster V is a complete cluster. Denote m; = m; (V) the number of edges
on the boundary of R;. In other words, the boundary of ¢/(F(T') \ V) can be uniquely
subdivided on r circles (they can intersect in some vertices of T), and m; are the lengths
of these circles.
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A configuration of level n is called basic if there is only one cluster of level n and
it is a boundary cluster. We shall construct all configurations of level n from the basic
configurations of level n. Introduce the basic generating function of level n

W, y) = 2Ny wi
N.m

W= 3 Y 3 KOk k(Vy),

TeTo(N,m) p=0{Vy.V1....,V,}

where the sum ) {VoVi....V,) is over all configurations & = {Vy, V1, ..., V,} (for
given T) with a boundary cluster of level n, we denote it Vj.
Assume now that we know the generating functions U®)(x, y) for k < n and thus

we know all S,(,f)(x), k<n,m=23,...,defined similarly to the functions F,, in the
canonical equation. Put

Y00 = SP0), ¥ = SP ), P ) = SO x) — sE D), k > 2

or
SO =Y zOW, mx" =3 v ).
N i<k
Let the boundary cluster Vp have m edges on its exterior boundary, andm;, i = 1, ... , r,
edges on the “interior” boundaries of Vp. Then resummation of the latter formula gives
r
WO,y ="y > k(xS Tk w), ©)
m Vo Kivoky i=1

where the sum ZVO is over all boundary clusters, having m edges on their exterior
boundary, N (V;) is the number of triangles in Vg, mi,i = 1,...,r, is the number of
edges on the i component of the interior boundary of V;- And moreover, it is assumed
that in Zk,,.“.k,, any k; < n — 1 and at least one k; equals n — 1.

2.4.1. Equation for the n't level generating function.

Lemma 4. The function U™ satisfies the canonical functional equation (4) with F =
U™ Fy = S;_")(x), J=J®W=w® 4 ... wm,

We will call such an equation the n'" level equation.

Proof is quite similar to the proof for n = 1. The function J in the canonical recurrent
equation has n new (comparatively to the case without spins) terms in the right-hand side
appear, terms corresponding to the basic functions W) i = 1,... ,n. On Fig. 2 each
of them is represented as a generic (third in the right-hand side) term with a boundary
cluster.

This corresponds to the recurrent equation (6) where instead of Wy ,, we substituted

W,(\f' 1" One can check that in the consecutive iterations of this recurrent relation only
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Fig. 2. Additional term with boundary cluster

configurations of level not more than n appear. And each configuration of level not more
than n can be constructed with this recurrent relation.

Note that all U®) are analytic in some neighborhood of x = y = 0, because
|ZWO(N, m)| < Z(N,m) < CN*™m_ where Z(N, m) is the partition function for the
interaction — [®|. Thus the generating functions and the recurrent equations will be
well-defined in some neighborhood of x = y = 0.

3. Analytic Part

3.1. Level 1.

3.1.1. Algebraic functions. Here we solve the functional equation (5) for the case when
there is no spin, that is when W = 0. We rewrite it in the following form:

QxUL(x, y) +x — y)? =42y SV (x) + (x — y)? —dxy® —dxyW(x,y)  (8)

and denote D its right-hand side. Consider the analytic set {(x, ¥) : 2xU; +x — y = 0}
in a small neighbourhood of x = y = 0. Note that it is not empty, (0, 0) belongs to
this set and it defines a function y(x) = x 4+ O(x?) in a neighbourhood of x = 0. In
particular, it will be shown that y(x) and S(x) are algebraic functions if W = 0. We
have two equations valid at the points of this analytic set

D=0 —=0
ay
or

4x2yzS(x) + (x — y)2 — 4xy3 —4xyW(x,y) =0, &)
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Bx2yS(x) — 2(x — y) — 12xy* —4xW(x, y) — 4xyW,(x, y) = 0
from where one can exclude the function S(x) by multiplying the second equation (9)
by % and subtracting it from the first equation. Then
y=x+2y° —2yW +2y*W; (10)

or
X

T 122 20w, - W)

y an
Here the functions W = W(x, y, 8), § = S(x, B), y = y(x, B) are also functions of
the parameter 8. By the theorem on implicit functions this equation gives the unique
function y(x, 8), analytic for small x with y(0, 8) = 0. It is evident from (11) that the
convergence radius of y(x, 8) is finite. Note that y(x; 8) is odd and S(x; B) is even,
because for any triangulation N —m is even, and thus the coefficients of monomials x‘ y/
of yW; — W have eveni + j. Such symmetry will also hold in all future constructions.

Now we consider the case § = 0 (or W = 0) in more detail. We rededuce here
Tutte results in a different way, suitable for further generalizations. y(x) = 1y(x, 0) is
an algebraic function satisfying the equation y*> + py + ¢ = 0 with p = -4 =7%.
The polynomial f(y) = y3 4+ py + ¢ can have multiple roots only when f = f}ﬁ =0,

which gives x4 = %,/ 727— These roots are double roots because fy” # 0 at these points.
For x4, = ,/727 we have y; = y(x4) = ﬁ,that can be seen from fy’ =3y? — % =0
and f = 0. From (11) it follows that x(—y) = —x(y) and thus y(x) is odd. It follows

that y(x) has both x; = %,/ % as its singular points.

From (9) we know S(x) = S(x, 0), after that Uy (x, y) is explicit from Eq. (8). The
unique branch y(x), defined by Eq. (11), is related to the unique branch of S(x) by the
equation

(1-3y*(x)
I e —— T X
(1 —2y%(x))?

that is obtained by substituting x = y — 2y to the first equation (11).

yA(1 = 3y%)

We know that S(x) has positive coefficients, that is why x = ,/ 22—7 should be among

its first singularities. Then x = —,/ % should also be a singularity of both y(x) and
S(x).
. . 1
The principal part of the singularity at the double root x is y(x) = A(x —x,)*7 for
some integer d. As y; = y(x4) is finite then d > 0. At the same time y’(x) = 1_—6)1)75
that is co for x = x.. It follows that d = 0. For S we have the same type of singularity
Alx — x+)d+% but here d = 1 as S(x4 ) and §'(x) are finite but S”(x.) is infinite.
If we introduce the Riemann surface Sy of the algebraic function y(x), then x(s) and
y(s), s € Sy, are analytic on Sy, except only the points where x = y = oo. The function
S(x(s)) is meromorphic on Sp with poles in the points s where x(s) = 0, y(s) = :t%.

Thus, S(x(s)) does not have poles if, for example, |x| < % Denote

max |y(x(s))| =y < oo.
lxl<$
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3.1.2. The perturbation. Now let B be sufficiently small. To find the first positive sin-
gularity x (8) of y(x, B) put

FO, Y B) =~y +x+2y3 4+ Z(x,y), Z(x, y) = =2y W + 2y* W/, (12)

r_ 12 !
fi=—-1+6y"+Z,.
We can rewrite Egs. (12) as

2 1 1,
Y T8 T8

2y
== =7, - Z.
x 3 y+ 3%y
Consider first the case when we allow only simple clusters with the size N < Ny for
some Ny, thatis when W (x, y) is a polynomial. The same argument as for the level 0 case

gives that y(U(x, g), S,(,,l)(x, pB) are algebraic functions, as well as U (D (x, y). However,
the first singularity x(8) will be different. The fixed point (x, y) = (/ 72—, \/—%') is

perturbed, and the first singularity xfrl)(ﬁ) = x4 (B) will be an analytic function of 8 for
small 8.

Denote now y(O)(x) = yx,0), yDx) = y(x, B). We will need the following
bounds: for some C > 0,

<P - x| < 8, (13)

and, for example, if x is inside the circle of convergence of both one-valued branches
YO (x) and yD(x),

O = yOw| < cp. (14)

However this bound holds also for any x, x| < %, if y©(x) and yD(x) are correspond-
ing branches. Correspondence between branches is established uniquely by analytic
continuation if it is fixed for one point x = 0. It is convenient to use for this continuation
the Riemann surfaces Sp, S; of these two functions correspondingly.

In fact, we have for any x, |x| < %,

fGx,y, B) = f(x, 9,00 = 0B, fy(x,5,B) — f,(x,5,0) = O(B).

Fix somed suchthat(} < § « 8 « 1.Thenthereissuchc > Othat forall pairs (x, y(x)),
outside some cé-neighborhoods O (x4 ) of the branching points x 1, one can choose closed
countours I"(x, y(x)) in the y-plane around y = y(x) so that | f(x, y, 0)] = § for all
y € I'(x, y(x)). Then the bound (14) is readily obtained by the Cauchy formula,

LGB fix,y,0)
Wiy — v Oy — L v h .
YU =y = 0 fm,ym)y G frr ) ?

To get (14) inside O(x4) it could be more convenient to use the convergent Puiseux
series (see for example [8]) at the branching points.
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The bound (13) follows from the graphs of two functions y and x + 2y3 + Z(x, y)
forfixed0 < x < % They have a common tangent at the point x = x4 (f) = xf:)(ﬂ ). If
the sign of the O(B) term in Z(x, y) is plus then xfrl)(ﬁ) < x4(B), if the sign is minus
then xil)(ﬁ) > x4 (B). If the O(B) term in Z(x, y) is zero then one should consider the
O(p?) term.

In the double root x (8) the function y(x) has the main part of the singularity equal
to A(B)(x — x+(ﬂ))d+% with d = 0 because y(x(8)) is finite, but

1+ Z, 1+Z,

VOB = g =~ =

At the same time from the first equation (9) it follows that

s L N IR (15)
xS =—— — e ) R
4y2 2y  4x Y y

and

7

1 W
xS, =2y*y f(x,y, B) + =+ —y’ﬁ

are finite at x = x4 (8), but S, (x4 (8)) = oc. We have also that

X

3.1.3. Asymptotics. In our case S(x, B) has two singular points x4 (8) and —x,(8)
on the radius of convergence. The main parts of the singularities are ¢4 (1 — m)%

and ¢4 (1 + 3:)%37)% correspondingly for some positive constant c. = ¢ (). Thus the

asymptotics of the coefficients of S(x, 8), by Darboux theorem, see [5]) is
1 38 -N I N -N
eyl (—E)N (x4 ()T eyl (—-2-)1\’ (x4 (BN
Thus for even N

zZO(N,2) ~ 20+F_'(—%)N‘%(x+(ﬂ))""’.

3.1.4. Arbitrary m > 2. The generating functions SV (xy = > ZWW, m)xN for
m > 2 can be obtained easily by the following recurrent procedure. Put U = y?R, then

o0
RO,y =Y 800y 2
m=2

and we can rewrite the functional equation as

YR=y+xy? R+ x(R— SM) + y 1 (x,y), SV x) = 5 (x) = R(x,0). (16)
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Then all S,(,,] ) are defined recursively by

xSPE =52 0+x Y SP0SP ) + I (),
Jjtk=m—2

where J(x, y) = Y, Jm+1(x)y™. We see from this that S,(,,l)(x) have similar singulari-
ties as Sél)(x) and for |x| < % and some C > 0,

‘S,(,?)(x)| < |s,<,,”(x, ﬁ)' < (c+Ch™.

Thus we have proved

Lemma 5. The asymptotics for the level 1 partition function is

ZOWN, my ~ ¢V (m, BN~ (x4 (B) V.

3.2. Inductive estimates. The scheme of the induction is the following. We use the
functional equation in Lemma 4, and for fixed n denote the solutions of the n' level

equationas y™ (x, ), S2(") (x, B), U™ (x, y). These functions will be initially defined as
one-valued and analytic functions in |x|, |y| < ¢ for sufficiently small & > 0. However,
they are branches of some multivalued functions. It is convenient to consider these
multi-valued functions as functions on S, or S, x C, where S, is the Riemann surface
of y™(x, B) and C is the complex plane. Thus we shall define a sequence of Riemann
surfaces S,, n = 2, ..., and analytic covering maps ¢ : S, — S,_1, that is

N Sn __)¢(n) Sn_l NN Sl —_)¢(1) c

In fact, we will not need the complete Riemann surface S, but only some open part
D, of it. D, will be defined inductively.
The induction procedure depends on the case. We consider first the case of Theorem 1.

Definition of Dy C S). Let Ogﬂ(x(i] )(ﬂ)) be the 8B-neighborhood of the points

x:(tl )(ﬁ) € C. In the complex plane C the function yV(x, B) has the unique analytic
continuation to the set

Ass = {Ixl < x() + 88] \ (0sp ) (8)) U 03p (—x{" (1))
of the x-plane C. If yV (s(V) = yWD (x(sM, Byon Sy, then put

Di =51y = yVx(9), B x € A,sﬂ]
U @M 05GP (8)) U 055V (8))).

It is instructive to start with the case n = 2. Before studying the 2-level equation
the domain of analyticity the function W® (x, y) should be established. There exist
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constants C, @ > 0 such that the function W® (x, y) is analytic on Dy x D(3), D(y) C
C, and

WD, y)| < €4, D, y) e Dy x DG)

This will be proved below. Note that it is no longer true that W for i > 1 have radius
of convergence of order 87%. The functions

yP(x, 8), SP(x, B), YPx, B), UP(x, y), YP(x, y)

are defined initially in a neighborhood of x = y = 0 as the solutions of the 2-level
functional equation. All these functions have an analytic continuation to Dy C S,
defined as

Dy = @)D
N{s@ YD) = yPx(sD), B), ¥ € Asp U (Osp V()

U 05— (B}

Then the functions x(s?, g), y@(s@, g), S,(,,z)(s(z), B), Y,f,z)(s(z), B) are defined as
one-valued analytic functions on D,. Moreover, U@ (s@, y), Y@ (s@| y) are analytic
functions on Dy x D(y).

Now we can formulate inductive assumptions, definitions and estimates for

Wy, 8), r®B), ¥, (x, B), Y (x, B),

where " (B) is the convergence radius of y™ (x, 8). Using the functional equation and
resummation formula (7) we prove the inductive assumptions for

1 1
werD o ), xR, 1V B, YD (x, B)

in this order.

1. Let s®” € S, and assume that D, is already defined. Then the functions x(s®),
y® (s, B), Sé")(s("), B), SE(s™, By, YrP) (s B) are defined as analytic func-
tions on D,. The functions U™ (s, y), Y@ (s y) wr+D (s yy will be one-
valued analytic functions on D,, x D(¥). Then D, | C 8,4 is defined as

Dat1 = @)~ 1(Dy)
N {s(n-H) :y("+l)(s("+1)) — y(n+1)(x(s(n+l)), ﬂ),x € ASﬂ

U (03" 8) U 0sp(=x"(8))].

2. The function W™ (x, y) is analytic on D,_; x D(c) and

W (D yy < (€)™, (s, y) € Su1 x D).
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3. (n + 1)-level functional equation is defined on D, x D(§), because W+ () y)
is analytic on S, x D(y). However, its unknown functions U@+ (s y) and
y (D (gm) y) will have branching points on S, x D(¥), and thus it is reasonable to
consider them as functions S, 11 x D(¥) without branching points.

4. xﬁf) (B) is defined as the positive singularity of the curve
fEyiB=—y+x+2y+Z"Wx,y) =0

in &, x D(y). We will prove that xg_")(ﬂ) > xil)(ﬁ) foralln > 1 and r(")(ﬂ) =

D B).
5. For any s eD,,

[y ™) — yoD g™ sy < (cpr

6. The functions Y,f,"), m = 2,3, ... are analytic on D, and

IY,f;")(S("))' < (€™, s™ e D,

and have the same (canonical) main singularities at x(i] ) 8).
Lemma 6. Assume that inductive assumptions hold for all k < n. Then they hold also
fork=n+1.
3.2.1. Bounds on the cluster function. To prove the inductive assumptions we need the

following cluster estimate for the cluster functions of levels j = 2,3, .. ..

Lemma 7. Consider the sum Zvo over all boundary clusters Vy with fixed

rrm,mi,...,m, and Ny = N(Vé). Then there exist C,a > 0 such that
37V < (CBY*M < (Cp)§ Mo mmittmr))
Vo

where m is the length of the boundary and m; are the lengths of the interior boundaries
of V.
Proof. As in the proof of (3) we have
%Q
lk(Vo)| < (CB)
andm 4 my + --- + m, < 3Ny. This gives the result. O

Consider for example the case n = 1. Then the function W(z)(x, y) is analytic in
S1 x {y : ly] < ¥} and, by resummation formula, is bounded as

,
IW(Z)(X’ y)‘ < Z y" Z (Cﬂ)af(N°+(m+'"1+'“+’”'))xN° 1_[ ]S,(nl,)(x)‘

N.om  Normy,...m, i=1
a . e
< Zym Z (Cﬂ)z(No+(m+m1+ +m:))  Nomitetm, _ 0(ﬁ2a)_
N.m No,rmy,....m,

In general the estimation of W(”“)(x, y) is quite similar. It follows that the function
WD (x ¥) is analytic, and has the same main singularities at xg)(ﬂ), k=1,...,n,
as UM,
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3.2.2. Singular points.
Lemma 8. The convergence radius of y% is equal to xg_l)(ﬂ).

Proof. Note that the sign of k or of
BY ®(0.0")
0,0’

defines whether xﬁrl)(ﬂ) is less or greater than x (0). The fact that xf) B) > xﬁr])(ﬂ) is
also defined by k& together with two other facts. First one is the existence of boundary
clusters of level 2 of the first order in 8. This will give a first order terms in W®. An
example of triangulation which gives first order term is shown in Fig. 3. Here the triangles
2 and 3 are the colored triangles of the boundary cluster of level 1 (an interaction between
them is shown by the fat horizontal line), the triangles 1 and 4 are blank triangles of the
cluster adjacent to the “exterior” boundary with m = 4, region 5 (not made precise) is
the interior part of the cluster, containing blank triangles of the cluster itself and possibly
other blank triangles but no other clusters.

P

Fig. 3. First order boundary cluster term of level 2

We have the following equation:

Y = x 20 + 20, y®), 20, y®)
= 2y(WD + w?) + 252w 4+ w®)y

We have

WD (x, y) + yW® = 3ky xtsV ) + .

!
Note that y, = —% is never zero for x, y of order one because f, is of order one for
¥

such x, y. We have from k < O that xf)(ﬁ) - xil)(ﬂ) > ¢ff for some £ > 0.
The second fact is the absence of first order terms for boundary clusters of level

greater than 2. It follows that all higher perturbations give that xf) - xﬂ‘) = 0((B)%)
foranyk > 2. O
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3.2.3. Bounds on y"*+D_ Denote the right hand side of (10)
FODGEM,y, By = x + 2y} — 270D )2yt Dy

We want to find the difference AT+D(s™, gy = (D (st gy _ 40 (s gy We
have

FODEMy gy — FM (™ y, g)

d (n+1) d (n)
< (C‘B)a(n+l)’ ‘-—-de(s("), y, B) — %y__(s(n)y v, B)| = (Cﬁ)a(n+1)'

Outside a vicinity of the branching points we have by Cauchy formula

FEFDAE (@, B) Ty B)
LD (AFD (), ), y, B)

FOART (™, By, y, B) .

dFD) A 1) g (m)
AT (5™ 5)=L/y( R
' 2ri Jr

where I' = T'(x(s™, y® (s B))) are the same family of contours, which were used
in step 1 of the cluster expansion. Thus

‘A(n+1)(s(n)’ﬂ)l < (Cﬂ)a("+1).

In the vicinity of the branching points one can again use Puiseux series.
To prove the bound

¢ 08y = xP ()| < cpynh

one could use the same trick for fv’ instead of f, or simply to consider graphs of

F@+D(x, y) for fixed 0 < x < 1, as in step 1. There exists xo(8) such that for fixed

x = xo(f) these functions have common tangent. Then put fo"H) (B) = xp(B).

3.2.4. Bounds on the functions Y,g,"H). Then from

x 1 1 J@th
- + y("+1) +

(nt1), (n+1) _ _
xSy (s B = 4(y(ntD)y2 +2y(n+1) 4x y@tn”

we get

Y2(n+l)(s(n+l))| — ‘Sz(n+l)(s(n+l)) _ Sé")(¢(n+l)s(n)) < (Cﬁ)a(n+1).

For Y, D (s(+Dy = s+D(smtl)y _ g0+D 404D 5y the derivation is similar to
step 1.
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3.3. Proof of Theorem 2. Let now & < 0. Induction procedure for this case should be
done in a different way. But the details are quite similar, and we give only main points for
shortness. Iterating equation (11) we get that the expansion of y(x, 8) at x = 0 has all
coefficients positive, because yWy’ — W has positive coefficients. By the same reason,
the coefficients of y(x, 8) increase when B increases, and the radius of convergence

xﬂr")(ﬁ) of y™ (x, B) decreases as n — oc. Note also that

max_|y(x, 0)] = —=

NG

2
lxl=y/ 35

and is attained at |x| = ,/ 527, because the power series has positive coefficients. Note

that y(x, B) also has its maximum on the circle of convergence on the positive half-axis.
From the first equation we see also that this maximum y(x4+(8), 8) decreases when 8
increases. It is interesting to remark that it follows that cut-off models of level not greater
than n that is the random cluster models, defined at the end of the Sect. 2.2, have the
canonical behaviour. However the complete model has not. The domains D,, should be
chosen as

Dy = [s(") 1y (™) = y® (x(s™), B), x € D(Scn)] :
where ¢, = xi"_l)(ﬁ) — xi") (B) and § > 0 does not depend on 8 and sufficiently small.
Here y" (x, B) is considered as a two valued function on D(5c;,).
Assume that the asymptotics is canonical, that is ¢ (m)N ~3¢N . Then ¢! is the con-
vergence radius and thus equals lim,,_, o xfr")(ﬁ), because if 8P < 0 then x$'+1)(ﬁ) <
x(+") (B). As above one can prove that

OW (N, m) ~ ¢™(m, N2 (x™ (B) V.

Then the asymptotics is bounded above by the sum

3 @ m, HN"FP ()N

H

As Y, ¢ (m, B) converges, then ¢(m) < & forany & > 0.
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