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Abstract. All mathematical journals, including MPRF, now look like random
collections of papers in one of the immense domains of mathematics like analysis,
algebra, probability etc. But there are other classifications of mathematical
domains (theories), where techniques from all mathematics can be used, but all
activity is concentrated around some very important applied problem. One of
such applied problems we consider here, and it leads us, in particular, to one
of many possible projects in probability theory. One of our goals is to get the
journal out of the state, where it serves as a stock of random papers. Submitted
to MPRF papers, which appear to be in the framework of this project, will be
reviewed and published as fast as possible.
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Random branching processes, a still popular part of probability theory, in-
cludes beautiful mathematics and seems to have analogs in the common life.
For example, dynamics and growth of populations, tree and bush branches,
branching of transport routes. However, as always, the life appears to be more
complicated. And the question arises: is life a branching or/and accumulation
process 7 For example, cell division process can be described with different de-
grees of detailing. In particular, physics has the law of mass conservation. And
due to this law each cell division provides cells with smaller masses. But it is
clear that the cells live in some environment, which somehow appends neces-
sary particles or components to new cells. Moreover, not only to increase their
mass but also to conserve their structure. To obtain more complete picture, it
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is helpful to firstly to consider simplest but rigorous mathematical models of
such appending, even without getting closer to the biological point. And it can
be encouraging that immediately one sees many different examples of random
processes of accumulation and growth.

It is not clear yet how deep and wide can be the structure of such models.
But a good point is that such models are available for pure mathematician where
he will see pure mathematical problems without any connection with reality.

That is why it is natural to start a project — to describe mathematical
models how micro particles can accumulate, form clusters and complex macro
structures. There are many applied examples — growth of the organism, tumor,
warehouse, pile of rubbish, city and country. How to start:

1) One of the possibilities to start was to find in the existing books or papers
some problem and to solve it. But I saw immediately that there is a lot of
books where even in the title there were words “Mathematics of Growth”. And
I started to think — to read all these books or to read them in random sequence
until finding at least one interesting mathematical problem.

2) Another possibility for anyone is, without looking at these books, to invent
some solvable but non-trivial models and then compare them with existing state
of art. This I did here.

1. Particle accumulation in one point

First of all, as always, it is natural to start with one-dimensional models.
Initially, at time ¢ = 0, in each point k € Z there is a particle with probability
p (independently of other points) and no particles with probability g, where
p+ q = 1. Each particle starts simple discrete time random walk with jump
probabilities p_, p4 on 1 correspondingly to the left and to the right. All these
random walks are mutually independent and particles do not see each other.
When a particle hits point 0 it stays in it forever. Let N(¢) be the number
of particles at point 0 at time t. The problem is to find asymptotics of the
distribution of random variable N (¢) for large ¢.

Cases with increasing complexity.

1.1. p- = 1,py = 0. At time ¢ to point 0 will come those and only
those particles which at time ¢ = 0 are in the segment [0, ¢], hence this case is
evidently reduced to CLT for the sum of N + 1 i.i.d. random variables N(t) =
Eo+& +& + ...+ &N, equal to 1 or 0 with probabilities p, g correspondingly.

1.2. p— > py,
13. p_ = py,
1.4. P <Py

1.5. Essential complication — particles wander independently but cannot
jump to the point (except point 0 of course) where there is already or will be
simultaneously another particle. Here it could be more convenient to consider
continuous time random walk.
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1.6. On the plane lattice or in any Z¢, particles are scattered initially and
perform simple random walk similarly, and stop when they hit the origin. Much
more complicated cases — if, instead of the whole plane, we consider areas with
corners, for example a quarter plane.

1.7. It is also interesting to consider accumulation of particles not in one
point but in bounded or even unbounded domains. Note that in many cases it is
possible to restrict oneself to discrete random walks. Continuous time and space
could seem to be only technical generalization. But these generalizations can
be important to simplify the problems using Brownian motion and stochastic
differential equations. For example, assume there is a random point field of
particles on R2. They start to move via some stochastic process. Initially there
is a circle of radius one. When some particle touches this circle, its radius
increases on some € > 0 — then the same problems as above.

2. Clusters

Here there is one more complication — accumulation warehouse is not fixed
but can change its volume and even its form.

Increasing volume of the simplest cluster

2.1. The same situation as in one-dimensional case on Z,. When the first
particle stays at point 0, but the next incoming stays at the point 1, the third
one — at point 2. And so on — if at time ¢ the volume (the length of this chain
of accumulated particles) is V(t), then the first particle getting to the point
V(t) + 2 increases the volume on 1: V(t) — V(¢) + 1.

The problem is the same — find asymptotics of the distribution of V(¢) for
big times.

2.2. In two-dimensional case, as in point 1.6, but only the first particle gets
stuck at point (0,0). When some particle hits one of 4 points at the distance 1
from the origin, it stays at the same point, etc. Here it is interesting not only
the rate of volume increase but also the form of its domain.

2.3. Another example is when particles are initially scattered in the half-
plane Z; x Z. And their fixation occurs when they hit the vertical line {0} x
Z. But also other particles which come to a distance 1 from any of already
fixed particle. Here random fluctuations of the boundary of growing domain is
interesting to understand.

Association of particles into clusters

3.1. Let finite number of particles be initially on Z. They wander inde-
pendently but with strong restriction — when the distance between some two
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particles becomes equal to 1, they stay immobilized. Problem — how many clus-
ters appear and of what sizes. This depends of course on the initial conditions.
The same problem for larger dimension.

3.2. Another variant — when two particles are at a distance of 1, this cluster
of two particles does not stay immobilized, but starts its own random walk as
a whole according to some rules to be exactly defined. The same for clusters
of k particles. Also the question is the distribution of volumes and forms of
the clusters for large times. Example — what is the mean volume of appeared
clusters.

3.3. Models where there are restrictions on the form of clusters could be even
more interesting. The simplest example is the following. When the distance
between two particles becomes 1, connect them conditionally by an edge on the
lattice. One can imagine that some physical laws connect two small molecules
into one. Afterwards, some third particle can join this pair. It can be that these
physical laws are such that any particle is allowed to be at distance 1 with not
more than two particles. Then any growing clusters will be “long molecules”
like “worms”. One of the problems — the mean length of such “worms”.

3.4. Many other interesting problems appear if we assume that the worms
can stir somehow. For example, assume that any edge of the worm can rotate on
90 degrees, but without touching other edges of this worm. Then closed worms
can appear. Again the question concerning their number and forms. This is
sufficiently complicated problem, there are no any analytic methods for similar
problems. And only qualitative rough estimates can be obtained.

3.5. And also the branching can appear, if we assume that clusters can
divide (like cells). The simplest model here is the model 3.3 with worms. Assume
additionally that one of the particles can randomly escape from the warm. Then
instead of one worm we get two worms and one particle, which again take part
in the process. It is even more appealing to consider, instead of warms, more
complicated graphs, which resemble picture and even structure of the biological
cells.

3. What science, called “mathematics of growth”, now exists and
what else can be

There are many papers and books (see references below), where already the
title contains words “mathematics of growth”. I will mention some directions
of this research:

1) After collecting applied statistical information, one can find some param-
eters of the growth process. For example, the increase or decrease percentage
(for some time interval) of several population groups depending on the age, re-
gion, etc. Then, assuming constant growth rates (that is the derivatives do not
change) during this time period, one can write down linear differential equations,
which define change of densities, for example of various age groups. Classical
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branching process was an interesting generalization. The most known practical
application of such models is the population dynamics.

2) In some works [4,8,9] the biological structure is considered as soft solid
state and its growth is understood as the change of its volume (tension or
compression). Here a lot of equations of continuum mechanics can be used.

3) The models considered in sections 1 and 2 can also be considered as
cluster growth models, or even as formation of large particle systems with local
interaction. In many references of [2-15] there are applied examples for some
models of stochastic processes above. For example in section 1.1.2 of [4] it is said
that the tooth growth occurs when particles from environment join the surface
of the tooth, as in section 2.3 above.

4) Applied problems of economical growth [15-17] require development of
mathematical models which are completely different from the existing game like
models. It is believed that probability theory appeared from card games, and
afterwards was generalized to currency exchange games. Other (in particular,
multiscale) mathematical problems concerning finance also exist but are not so
popular.

5) The question how growth on macro scale is related to micro scale (growth
of smaller parts of the organism) is related in fact to all mathematical biophysics,
which demands even more attention than mathematical physics. Concerning
similar problems for the whole world, see [1].
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