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Asymptotic Completeness and All That
for an Infinite Number of Fermions

D. D. BOTVICH AND V. A. MALYSHEV

Introduction

The mathematical statistical physics of equilibrium systems is now a com-
prehensive science with a variety of ramifications, methods, and results (see
[MM4], [G]], and [R]).

The situation in the study of dynamics of near-equilibrium systems is
already radically different. Until recently, the investigation of dynamics was
pursued in the following three directions:

(1) general results concerning the existence of dynamics of both equilib-
rium and nonequilibrium type [Rol], [Ro2], [T], [GJ], [DF];

(2) the investigation of free systems [SuS2], [Arl], [Ar2] or those that may
be reduced to them by simple transformations (like the hard rod model and
the XY-model) [SuS1], [ArW]; in such cases all quantities may be computed
explicitly, and the system can be fully controlled;

(3) the investigation of the spectrum in the ground state for the massive
case [GJ], [MM3].

Here we should also note the axiomatic results [BF] about massless theories
for the ground state.

Lately, papers on locally perturbed free classical systems [PSS], [MNT],
[Te] have appeared. By a local perturbation we mean either the case of
an infinite-particle system with interaction inside a bounded region and free
motion of particles outside the region, or the case of a trial particle interacting
with other particles, introduced into a free system of particles. Thus the
other particles interact as the result of its presence, and we may assume
that the region of interaction moves through space together with the particle.
Although there exist results concerning asymptotic completeness even in the
case of translation-invariance [BM2], there is still a lot of ground to cover.

In this survey, we shall concentrate on a vital part of this problem, where
the situation is understood in the main and well in hand.
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First of all, our technique consists in using perturbation theory series sim-
ilar to Dyson-Schwinger series as well as their formal generalizations as given
in the classical papers by Friedrichs [Fr] and Hepp [H]. The key restrictions
that have been imposed in the proofs of convergence of such series [BM1],
[M2] are the following;

(1) the interaction is small and is restricted to a bounded region or vanishes
sufficiently fast at infinity (i.e., there exists a spatial cut-off);

(2) Fermi systems are treated because their creation-annihilation operators
are bounded;

(3) the system has no ultraviolet divergences.

Due to the above restrictions, the perturbation is a small bounded operator.

The main unsolved problem consists in the transition to a translation-
invariant interaction, which implies no spatial cut-off. In our opinion, this is
the only practical way to prove asymptotic completeness.

Until the paper [BM1], there did not exist a single proof of asymptotic
completeness, but there were other weaker results in some other papers [Fr],
[R1], [R2], [H1]-[HS6], [Ch], [R03], [BR2], [El], where a scattering theory
was constructed in Fock space and in C*-algebras for different theories of
this type. However, no proof of asymptotic completeness was obtained. The
asymptotic completeness in the temperature state, with no vacuum polar-
ization for the ground state, follows from [BM1]. By means of a standard
technique of scattering theory, completeness was proved in [Ai] for the case
of a mass slit with vacuum polarization. The convergence of the expansions
in the linked cluster theorem (see the classical books [Fr], [H]) was proved
in [M2]. In particular, this leads to asymptotic completeness in the case of
vacuum polarization without mass slit. By means of similar methods, this
result was later transferred by Aizenstadt to the case of an arbitrary chemical
potential with parity interaction.

Chapter 1 is devoted to the so-called Fock spectral representation of free dy-
namics in the temperature state, i.e., the representation in the form
F(ei’("@h‘)), where # and A" are one-particle Hamiltonians for the parti-
cle and antiparticle. The techniques related to such representations involve
Wick brackets with respect to the corresponding state.

In Chapter 2, by following [Ro3], [E1], we first show how a scattering
theory in C™-algebras is constructed. In §2.3, asymptotic completeness in
the C”-algebra CAR, similar to the one in [BM1], is proved. In §2.4 and 2.5,
this result is used to prove unitary equivalence in the ground and KMS state.
In §2.6, a result concerning unbounded perturbations is formulated. In §2.7,
we compute a unitarily equivalent representation of the Hamiltonian Hgy
for a system with interaction in the S-KMS-state in terms of the creation-.
annihilation operators in Fock space. ’

In Chapter 3, the key result is proved, namely convergence in the famous
“linked cluster theorem”, from which asymptotic completeness under the
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condition of vacuum polarization is derived. This requires much more com-
plex techniques in cluster expansions, namely fermion cancellations in mode-
time cells. For the benefit of the reader, we present the definitions of the
Friedrichs diagrams and the formal renormalization theory suitable for our
case. This chapter can be read independently of Chapter 2.

Chapter 4 is devoted to the application of the techniques used for proving
the convergence of series of Dyson-Schwinger type to the investigation of an
important type of kinetic limit, namely the weak interaction limit. We prove
a result of Domnenkov [Do2], then we discuss some earlier results of Davis
and others [D1]-[D8], [GK1], [FG1], [FG2], [P], [Dul], [Du2] concerning
the weak interaction limit and explain why in Davis’ stronger assumptions
there were no difficulties connected with the estimation of the number of
diagrams.

Some related results are not touched upon in this paper, namely asymp-
totic completeness in the spin system in an ideal Fermi system (see the sur-
vey [BDM]), the translation-invariance case (see [DM], [BM2], [BDM]), and
some other results about to be published.

CHAPTER (. BASIC DEFINITIONS AND NOTATION

§0.1. Fock space. Second quantization

Fock space is a Hilbert space with an additional structure.

Let the separable Hilbert space # be given. Unless stated otherwise, it
will be further treated as complex with scalar product antilinear in the second
argument.

We shall define antisymmetric (fermion) Fock space # = &, (#) over
# and symmetric (boson) Fock space & = & (#).

It is convenient to begin by introducing a more general Fock space

F=5x)=P5", (0.1.1)
n=0
where #© = C (space of constants), F "W = F N F)=F" = F F o
- ® Z (® denotes the tensor product of Hilbert spaces [BR1]), and %
denotes the direct sum of Hilbert spaces, i.e., the space of sequences

D= (0, Oyseens0,,...), 0,€F, (0.1.2)
with finite norm
(@, ©) = ]° = llo, I (0.1.3)
n=0

Observe that if # = L,(X, X, u), then & ™ is the space of square-integra-
ble functions ¢,(x,, ..., x,), x; € X, with respect to the measure u' =
U®---®u (n times).
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In the space ¥ the symmetric group S, acts in a natural way by inter-
changing factors in the tensor products f, ®---® f,, f; € # . The subspace
F ™ invariant with respect to symmetric (antisymmetric) permutations of
elements will be denoted by 7, () (.70(") ); by an “antisymmetric” permuta-
tion we mean a permutation followed by multiplication by +1 depending
on its parity.

DEerFINITION 0.1. Let

-7, F-PI. 0.1.4)
n=0 n=0

In the case mentioned above where # is a space of functions, 9';(")
(Z;(")) consists of symmetric (antisymmetric) functions. We call ., ™ and
9‘;(") n-particle subspaces.

If a bounded operator U, ||U|| < 1, is given in #, we denote by I'(U)
the operator in ¥ acting in each component by

rafie--ef)=UMe - USf) (0.1.5)
and then extended to the entire space # by linearity and continuity. Note
that & and & are invariant with respect to I'(U), and therefore the re-
strictions of I'(U) to these subspaces will be denoted by the same symbol.
If U is unitary in #, then I'(U) is unitary in & and & .

Suppose that 4 is a selfadjoint operator with domain & C # . We let
dT'(h) denote the selfadjoint operator which is the closure of the symmetric
operator in .# actingonany f=f® -®f, €78 9% cF" via

ar(h)(fi®---f)=hfi®fL,® -8 f,+ -+ fi8f,&---®hf, (0.1.6)
(this formula is obtained by formal differentiation of I"(e”h) at the point
t = 0). Thus, dI'(h) may be viewed as acting in % and &, , where it is
also a selfadjoint operator.

§0.2. Creation and annihilation operators. C”-algebra CAR

For all f € #, we shall define the creation and annihilation operators
a*(f) and a(f) in F(#):
a(f)Q =0, a(f)IQ=(0, f£,0,...),
a(f)fie e f)=vnlf, ))fL,®-of), (0.2.1)
a(Nf®-0f)=Vn+1fefie -&f,
where the vector Q=(1,0,0,...) €5 is called vacuum.
It is readily seen that
(a(f )" =a"(f).
These operators can be extended by linearity to operators with dense domain
Gy = F(F) € F consisting of finitary sequences (0.1.2), i.e. such that all

¢, = 0 starting with some n, ¢, € g
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We define linear operators P, in # by

P(fi®-®f)= % Z(il)'"’(fn(l) & 8 fym)s (0.2.2)

nES,

where |z| is the parity of the permutation n. The P, are orthogonal oper-
ators in ,Z(") and .7;(") , respectively.

DEeFINITION 0.2. We set

a(f)=Pualf), duf)=Pa'(f) (0.2.3)
on % , and &, ,, respectively. From here on, we often omit the subscripts
+ in the notation of operators if it is clear which of the spaces # or .7, is
considered. In the case when Fock space consists of sequences of symmetric
(antisymmetric) functions
D= (0, 0,(x)s e, 0%y, s X)) 00 )

the creation and annihilation operators act according to the formulas

(a(f)D),(x,,...,x,) = \/n+1/Ry 0 (X, X, s X, ) f(X)du(x) ,
@ (F)®), (X, ..., x,) = —\/17 S ED g, s Ky x,) £,

nES,
(0.2.4)

where the sign “~” means that the corresponding variable is omitted.
ReMARK. If the norm (0.1.3) is replaced by the norm

2 1 & 2
101 = = >l I (0.2.5)
" n=0

then the operators a"(f) and a(f) will have the form (0.2.4) but without
the factors 1//n and v/n+ 1, which are difficult to remember.

In the antisymmetric (fermion) case, the canonical anticommutation rela-
tions (CAR) hold

a’(fa(g)+a(g)a (f)=(f, &I,

{a(f),a(g)} ={d"(f),d"(8)} =a"(f)a"(g) +a"(g)a" (f) =0,
where O and I are, respectively, the zero and identity operators in ,7a .

It is readily seen that on &%,

la(H)ll = lla™ ()l = 1A, (0.2.7)

i.e., in the fermion case the creation and annihilation operators are bounded.
Furthermore,

a(f): z(") _)’gs'("_l) and a"‘(f): Z(”) _‘9’(”‘*1)

s

(0.2.6)

have the norm

Na( My ey = & (ll,—y = VAL (0.2.8)
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It follows that . , forms a dense set of analytic vectors for a#( f), where
a*=a" ora® =a, ie., forall Qe ,andall zeC,

> @)y el < .
n=0

We shall be interested in the C*-algebra CAR generated by the creation
and annihilation operators acting in Fock space % (#).

DEFINITION 0.3. A C™-algebra 2(#) (or one isomorphic to it) generated
by the operators a(f) and a*(f), f € #, is called the C*-algebra of
canonical anticommutation relations (C*-algebra CAR) over # , where #
is a Hilbert space.

§0.3. Free dynamics and quasifree state on the C"-algebra (7).
The GNS-representation

Let A = h" be a selfadjoint operator in # with dense domain & cCH.
This operator is called a one-particle Hamiltonian.

DEerFINITION 0.4. Any strongly continuous group of *-automorphisms on
the C*-algebra 2 is called a dynamics 7, on A,

DEeFINITION 0.5. A pair (%, 1,), where 2 is a C"-algebra and T, 15 a
dynamics on 2, is called a C"-dynamical system.

DeFiNiTION 0.6. Let (2, rtl ) and (2,, 2) be two C”-dynamical sys-
tems. They are said to be equivalent if there exists a *-isomorphism of
C-algebras y: %, — 2, such that

T2 = yrly_l forall teR.

DerFINITION 0.7. A one-parameter strongly continuous group 10 on the
C”-algebra CAR 2(#) acting on the creation and annihilation operators by

t?(a#(f)) q;feitdl‘(h)a#(f)e—itdr(h) #( zthf) (0.3.1)
is called a free dynamics on U(#) generated by the one-particle Hamiltonian
h.

The last equality in (0.3.1) must be proved Suppose that {e , x € zZ"}

is a basis in # and (he_, e ) Cop =Cprs then

Hozdl"(h)=2c a.a

xXy“x7y?

i[Hy, a(e,)] = ia ( Zczy Z) =—ia (Z cyzez>
y
= —ia(he,) = %a(e”hez)

t=0
In a similar way, we can easily obtain

i, a"(e)] = La(ee)

- . (0.3.2)

t=0
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These equalities yield the last equality in (0.3.1).

Further, let 2 always be a C"-algebra with unit.

DerINITION 0.8. A continuous positive normalized linear functional on
2, i.e., a continuous linear functional satisfying

(A"A) >0 forallAde®

and
<I> =1,

I € % being the unit in the C*-algebra 2, is called a state (-) on the
C"-algebra 2.

DEFINITION 0.9. A quasifree state ( - ), on A(#) is a positive linear func-
tional such that (I); =1 and

k
# # #
@ () -a"(fyho = (=D T4 (£ )a" (£ Do (0.3.3)
n s=1
where the sum is taken over all partitions of the set of indices (1, ..., 2k)
into k pairs (i,, j;), ..., (i, J) with i{ < j, and |z] is the parity of the

permutation @ = (i,, j, -+ Ix> Ji) -
DEeFINITION 0.10. A quasifree state (- ), on (Z") is called gauge-invari-
ant if the gauge-invariance condition is fulfilled:

(a(f)a(g))y = (a’(f)a"(8)y = 0. (0.3.4)

ReEMARK. In order that the functional defined above be a state, i.e., be
positive definite, some supplementary conditions are necessary. It is clear
that if (- ), is a state, then the following equality holds:

(@ (f)a(g),=(f, Bg). (0.3.5)
Here B is a positive linear operator in # such that
05 <B<I,, (0.3.6)

where 0, is zero operator, and Iy is identity operator in # .

It can be proved that condition (0.3.6) is not only necessary but also suf-
ficient in order that (- ), be a quasifree gauge-invariant state (see [SS]).

By (- )OB , we denote a quasifree gauge-invariant state specified by the
operator B in (0.3.5) and by ( - ),, an arbitrary quasifree state on the C*-
algebra A(#).

Observe that the case B = 0, corresponds to the so-called Fock state on
WHZ) .

The definition of the quasifree gauge-invariant state ( - )OB and (0.3.5) yield
the following useful formula

(@ (f,)a’(f,)alg,) - alg)) =0, det{(f;, BE))}. (0.3.7)
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DerFINITION 0.11. A state (- ) is called invariant with respect to the dy-

namics t, if
(t(A4)) = (A4) (0.3.8)

forall A e A(F#), teR.

If (0.3.8) holds, then the dynamics 7, is said to be invariant with respect
to the state (- ).

The assertion that follows provides a necessary and sufficient condition for
the free dynamics to be invariant with respect to a quasifree gauge-invariant
state.

PropoSITION 0.1. The quasifree state { - )OB generated by the operator B

is invariant with respect to the free dynamics r? if and only if the operators
B and h commute, i.e., if

Be™ =¢"B, vieR (0.3.9)

The proof of Proposition 0.1 is self-evident.
We now define the so-called physical Hilbert space /}’;hys
Hamiltonian Hy o
Let (Z’Z oy Q( ) )) be a cyclic GNS-representation of the C*-algebra
2 with respect to the state (- ). By definition, set
Z, = ;%?'

phys

and the physical

)-
Suppose that the dynamics 7, on the C™-algebra is invariant with respect to

the state, in which case we may define a strongly continuous one-parameter
group U, in 7]

hys
U,(n<_)(A)Q(.)) =7z<,>(r,(A)Q<_)), (0.3.10)
which by Stone’s theorem has an infinitesimal generator Hgyg such that
itH
"o (x| (AR L) =7 (7, (49 ). (0.3.11)
We set
Hypys = Heys:

Further, a unitary one-parameter group U, will also be called a dynamics.
It will be clear from the context whether we are dealing with a dynamics in

a C"-algebra or in a physical Hilbert space.

§0.4. A free Fermi gas. KMS-states

DErFINITION 0.12 [BR1]. Suppose that on the C*-algebra 2 a dynamics
7 and a state (-) are given. The state (- ) is called a (7, B)-KMS-state
(B eRU{£oc}) if for all 4, B € 2 there exists a function F, p such that
(1) FA,B is analytic in Dﬂ;
(2) F 4B is continuous and bounded in ﬁﬂ ;
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F, (t) = (47,(B)), VI€R,
(

F, p(t+if)=(1,(B)4), VteR, (0.4.1)

where

Dﬂ:{z:0<82<,8}, for f >0,
De={z:8<3z<0} for g < 0.
If B = +oo, then the (7, 8)-KMS-state is called the ground state.

We define a KMS-state with respect to the free dynamics r? generated by
the one-particle Hamiltonian 4.

PRroOPOSITION 0.2. For each f € R, there exists a unique state { - ) that is
a (ro, B)-KMS-state. Moreover, the state { - ) is a quasifree gauge-invariant
State, with
-1
B = exp(—Bh)(I, + exp(—Bh)) (0.4.2)

ie, (-)=(-)¢.
PrROOF. By the definition of a S-KMS-state, we have
(a(g)a’ () = (@ " fag) = ("1, &) - (a"(f)alg))

if f is an analytic vector for %, in which case

@ Uy +e ™ Na) =1, g,

i.e., the relation (0.4.2) holds. For a monomial of general type, these compu-
tations must be iterated (see {[BR1]); hence it follows that (- ) is quasifree
and B is of the form (0.4.2). W

CHAPTER 1. SPECTRAL PROPERTIES OF
FREE DYNAMICS IN A QUASIFREE STATE

§1.1. The Wick brackets

We define a special mapping of the C~-algebra CAR 2(#) into itself
which will be called the Wick bracket. It will be defined with respect to a
quasifree state ( - ), which is not necessarily gauge-invariant. It will become
clear from the context which state we have in mind.

Let us fix a certain quasifree state (- ) = (- ), on A(#). We shall define
Wick monomials, i.e., the result of the application of Wick brackets to a
monomial of the form

w=d"(f)-d"(f,), feX,

by means of an induction formula which is similar to the one used to deter-
mine Wick monomials for Gaussian systems (see [MM3]).
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Let us first define Wick brackets ::=:: () on monomials and then extend

them by linearity to the entire C”-algebra.
DEFINITION 1.1. (Wick monomials on the C™-algebra CAR 2(#).) We
set

# # # # T,T
ap=dy-a =Y ap:{ap (-0, (1.1.1)
T!
where T = (1,...,n), T is a subsequence of T preserving the order,

T\ T' is the remaining subsequence, and 7n(T, T') is the parity of the
permutation (1,...,n) = (T\T',T"), af =d*(f), fe#.
PrOPOSITION 1.1. The inversion formula holds:

tapi= Y aplap )= 4 T\ T2, (1.1.2)
T!

The proof of this formula is quite similar to that for Gaussian systems
(IMM3]).

In what follows, we shall often denote by : - :, the Wick brackets with
respect to a quasifree gauge-invariant state defined by the operator B.

REMARK. From definition 1.1, we can easily obtain the following formula,
used earlier to introduce the Wick brackets ([B], [E3]) : - :=: - :; with

respect to a quasifree gauge-invariant state ( (- ) = (- )OB ):

a (f) - a (f)alf) alf,)

min(m , n) k
= ¥ U ENTTTE G al,)
k=0 n s=1

xa' ()& (f,) 8 (f,)a"(f,)
X a(fyy) o alf) - 8(f,) o a(fy )

where the sum Zn is taken over all permutations 7 € S,,.n Such that

(1.1.3)

_(1 2 ... 2k—-1 2k 2k+1 ... m+n>
iLoJo-- I Ji r O T
for any sequence 1 < i, < i, < -~ < i, <m, m+1g Jy S m+n,
s=1,..., k, and any increasing sequence r,, ..., r, . . of the numbers
1,2,...,m+n lacking i, ..., i, Ji»+--s Ji - The symbol “”” means

that there is no corresponding creation-annihilation operator in the product.
In the following theorem we present the basic properties of Wick brackets.
THEOREM 1.2 ([B]). Ler : - :=: - : , be the Wick brackets with respect

to a quasifree state (- )= (-),. Then
(1) (14,4, =1 A3A4] 1,

1y a#(fl)---a#(fm) )= :a’(#)(fm)---ai(#)(j"l) ., where a'¥ = a,

* .
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(3)
(a"(f,)d"(f) a8 a"(g,) )
= { % mEn, (1.1.4
| 2D (N () - (@ () (gy))s m=n, T )
where the sum is taken over all substitutions = (/) ) s
(3") If the state (- ), is gauge-invariant, i.e, {-)=(-),, then
(a'(f)-a’(falg)--alg,) 1a (h)---a (h)a(u,) - alu) )
=(d"(f,))---a"(fa(w,)---a(u))a(g,) -~ a(g,)a (h,) - a (b)) (1.1.5)

0,0k, det{(Bf;, uj)}det{((lz, - B)h,, hj)}
forall f,, g ,u;,h,eZ.

PROOF. Properties (1) and (1') follow immediately from the definition of
Wick brackets, and properties (2) and (3) follow from (3').

Let us prove property (3'). Note that both sides of equality (1.1.5) are
linear or antilinear with respect to the same arguments. Therefore it is suf-
ficient to verify this equality for the case when all the f, g, u;, h;, i €N,
are elements of some basis in # .

It is readily seen that if equality (1.1.5) is satisfied for the Wick brackets

* g, with respect to quasifree gauge-invariant states ( - >§ * specified by the
operators B, , where

OZ?SBkgI%’

and
('x’Bky)_}('x$By)9 szyez/s

then it is satisfied also for the Wick brackets : - :p with respect to the
quasifree gauge-invariant state specified by the operator B.

For any operator B, 0, < B <[, , we may, of course, select a sequence
of operators B, such that 0, < B, <1I,, B, hasa discrete spectrum, and

(x5Bky)_}(x’By)a v-x7y€%'

We shall prove equality (1.1.5) for the operator B, with discrete spectrum
{A.},where 0< 4, <1 and /i € N. Let e; be a normalized eigenvector of
the operator B, corresponding to an eigenvalue 4, the set of vectors {e,,
i € N} being an orthonormal basis. Making use of

(e )=3,.  (a"(e)ale))s =6,4,,

equality (1.1.5) can be easily verified for the basis elements. B
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§1.2. The Fock representation of free dynamics in a quasifree state

For brevity of notation, we set ( - )OB = ( - ) in this section. We shall con-

sider the GNS-representation (Z Ty Q< , )) of the C*-algebra A(#)
with respect to a quasifree gauge-invariant state ( - )OB .

Suppose that the free dynamics ‘L'? generated by a one-particle Hamil-
tonian h = A" with dense domain 2, C #, does not affect the invariance
property of { - )OB ,i.e., B and A commute.

Consider the operator Hg,s generated by the free dynamics r? in the
space Ajng = /Z y -

For Hilbert space /# with scalar product (-, -) & » we define the conjugate
space #' with scalar product (-, )}, , where #' coincides with # as a
set, and 1: # — # is a mapping with the following properties

W) =ua(f), fex,
(l(f)al(g))‘g/'z(g9f)}’> f,géfy

For any operator D: # — #Z , we set
p:x-x', Duf)¥uDf), fex.
In what follows, we use the notation B, = (I, — B)l/2 , By = B'*.

THEOREM 1.3 ([B]). Suppose that the quasifree state { - )g is invariant
with respect to the free dynamics r? generated by h. Set # = B #, Z’é' =
B,#'. Let

Znn=<z®...®z/i> ®<%’®...®Z§'> ,
’ Nr—— —

m times * n times * (1. 2. 1)
7= &7

m,n=0

n?

where (®--- ®), denotes the antisymmetrized tensor product of Hilbert spaces.
Then there exist a decomposition of gy into orthogonal and invariant sub-
spaces of the operator Hgyg

o0

Zons = D Zn.
m,n=0

and a unitary operator U: Zjy\g — Zins SUch that

def . o7
Uy & Uly %, ,—%,,

m
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Besides,

m i
Um,nHGNSUr;,In= 217®"'®12’®h®1y®"'®1y
i=1

m+n .f
- I,® @Ikl 0 -0l (122)

i=m+1

on a dense domain @m,n C}/Z\n,n, where

= 1 H

2, n=<.@1®---®.@1> ®<.@2®-~®.@2> ,
as as

m,
N, r— N———
m times n times

and 9, = B9 C #,, D, =B,2'CH .

ProoF oF THEOREM 1.3. For brevity of notation, set Q = Q( g TE
My We shall consider the following subspaces #\g :

Zy = (G @ ()@ (f)al) ) IR, S € 7).

PROPOSITION 1.4, The subspaces %, , are pairwise orthogonal and invari-

ant with respect to the free dynamics

n

%%=éyﬁf (1.2.3)

m,n=0

Proor. The orthogonality of Z’;n’n follows from the properties of Wick
monomials (Theorem 1.2).
From the definition of Wick brackets and the fact that # and B commute,

it follows that
t,(a"(f)-alf, ) =:7(a"(f)---alf, ) o (1.2.4)

are invariant with respect to the operator

in which case the subspaces Z’;n,n

Hgyg- B _
Let the spaces Zn,n be defined by (1.2.1). Define the operators U,  :

A ;??n’n in the following way:

m,

U, a(:a"(f)--a (f,)alg) a(g,) )Q
=(B,f,® ®B,f,),® (B8 ® ®Byg,),.  (1.2.5)

From the properties of Wick monomials and the definition of the operator

U one can readily verify that U,, , is unitary.

m,n?
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We shall prove that relation (1.2.2) holds. We have

-1
{Um,nHGNSUm,n(Blfl ®'”®Blfm)as® (B;gn ® ”'®B;g1)
(Biu,®---@Bu,), ®Byw,® B, }

1¥m
_ i%{n(: a*(e”hfl)---a*(e"hfm)a(e”hgn)---a(e”hgl) e,
n(:a’(uy)---a"(u,)a,)- - a(v,):)Q}

m

as’

m
= {Z(Blfl ®"'®hBlf}c®'“®B1fm)as®(B;gn®'”®B;gl)as
k=1
m+n

- Z (BZfl ®'“®B2fm)as®(B;gn®"'®hIB;fk®'“®B;gl)as’

k=m+1
(Blfl ® "'®B1fm)as ® (B;gn ® "'®B;g1)as}‘

This implies equality (1.2.2). It is readily seen that the subset Z,, , is dense
in #, , . The proof of Theorem 1.3 is complete. W

§1.3. The Fock representation of free dynamics in the KMS-state

We shall consider a free Fermi gas in equilibrium temperature state at
temperature 1/, which is a quasifree gauge-invariant state with

B = exp(—fh) (I, + exp(—Bh)) ", (1.3.1)

where # = —A+ u is the operator in # = L,(R”, dx) and u € R is the
chemical potential, A being the Laplace operator.
Set

g;z déf ®%(n)(%z).
n=0

THEOREM 1.5. In the case of a free Fermi gas in equilibrium state at tem-
perature 1/B, B € R, the operator Hgyg acts in the space

Z’&;Ns=3’a®%'= @ Zn,n’ (1.3.2)

m,n=0

where %, . = L3((R")", dx) ® LY((R")", dx) is the subspace in
L,((R")™", dx) of all functions that are antisymmetric with respect to the
first m and the last n arguments. The operator Hg\s leaves these subspaces
invariant, and its restriction to Zn,n coincides with the operator

A= =A A A u(m =), (1.3.3)
where —A, is the Laplace operator acting on the ith variable.

ProoFr. Theorem 1.5 follows from Theorem 1.3. W
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CoROLLARY. The dynamics e'Hons i the Hilbert space Ains =5, ® Z,'
is determined by

L™ e T(e™™"). (1.3.4)
REMARK. It is easy to see that
Hns =F (# 07,), Hgg = dl(h), (1.3.5)
where
h=hel-10h. (1.3.6)

Theorem 1.5 allows us to apply the operator Hgg on invariant subspaces
as a multiplication operator. Note that such a representation of the operator
does not depend on § € R. Butif f = +oo (the ground state), then B =0,
and for it #yg = &, is one Fock space and not a tensor product of Fock
spaces. In the ground state, the spectrum of the operator Hg\ is bounded
from below, but in the temperature state (KMS-state) it is not bounded either
from below or from above.

§1.4. The ground state for free dynamics

The following proposition is a necessary and sufficient condition on the
operator B in order that the quasifree gauge-invariant state ( - )OB be the
leading one.

PROPOSITION 1.6. In order that the quasifree state { - )g be the leading one,
it is necessary and sufficient to have

I;?’_B=E(0,+oo)+C(E[o,+oo)_E(o,+oo))’ (1.4.1)
where 0 < ¢ < 1, and E, is the spectral measure of the operator h.

ProoF. The proof will be carried out for the case dim# =n < oco. We
may assume that dT'(h) may be represented in the form

dT(h)=>_haa,, (1.4.2)
i=1

where {¢;, i=1,...,n}isa basis in # of normalized eigenvectors of the
operator h, he, = hie,, with a; = a(e), a; = a“(e;), and h; = (e;, he)).
Due to the commutativity of the operators £ and B, each vector e, is also

an eigenvector of the operator B, Be, = b, .

Let T={i,..., i} and set
a;za*(eil)ma*(eik), ar=ale; ) -ale,).
Observe that the elements
: a;aT, : (1.4.3)
for T,T C {l,...,n} are orthogonal with respect to the scalar product

(4,4) = ((A')*A)OB and have zero norm if there are zero eigenvalues of the
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operator B in T or zero eigenvalues of the operator I,-BinT. Itis
the elements of the form (1.4.3) with nonzero norm that generate (g .
Since

[a;ai, D aragp :} =r(T,T):apap:, (1.4.4)
where ) , .
-1, ieT, i¢T,
r(T, T={1, i¢T, ieT,
0, in other cases,

it follows that the eigenvalue of H H\s for the eigenvector : a;aT, : is equal

to
DY h. (1.4.5)

ieT jer’
Proposition 1.6 follows from (1.4.5) and the definition of the ground state.

COROLLARY TO PROPOSITION 1.6. The ground state of a free Fermi gas is
a quasifree gauge-invariant state with

B=0, (1.4.6)

where h = —A is an operator in ¥ = L,(R", dx), A being the Laplace
operator.

CHAPTER 2. THE FERMI SYSTEM WITH LOCAL INTERACTION

§2.1. Local perturbations of free dynamics.
Mpgller morphisms. The Cook criterion

In previous chapters, we considered as the dynamics of the CT-algebra
A(A) the so-called free dynamics r?, constructed by means of the one-
particle Hamiltonian 4.

There exists a certam standard procedure of constructing a new C*-dy-
namical system (2, t, ) using an arbitrary C”-dynamical system A, 1,)
and V =V"eq.

This procedure can be explained as follows. Let 1' be the free dynamics
on A(#) generated by the one- pamcle Hamiltonian h IfV=v"eu#),
we shall determine the dynamics rt , obtained by a local perturbation of the
free dynamics ‘C? , in the following way

rtV(A) L™ ge
=7,(d)+ 34" /A [75 (V), [T (V) [ [z (V), 7(4)]...]]]
n=1 n

xds ---ds,, Ae, (2.1.1)

n

where A} = {0 <5, <--- <5, <t},and H=Hy+V, H, = dT'(h), with the
series on the right- hand side of (2.1.1) converging in the norm for all ¢ € R.

—itH
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Indeed, since
2] = 4], V4 e %),

then
1o (), [t (1), L[5 (), @] 11 < @IVID"I4)

n

and, consequently,

v IIAII 1"

ez (A < 1+E = exp(2 [¢| [V'][) I14]l.

n=1

We shall prove that rtV is indeed a dynamics, i.e., a one-parameter group
of x-automorphisms of the algebra 2A(/#). For this, it is sufficient to prove

the equality (2.1.1), since by the definition of the mapping t,V (see the first

line of (2.1.1)) and selfadjointness of the operator H =dI'(h)+V, T,V isa

group of x-automorphisms in a wider algebra B(F)) of bounded operators

in &, and the equality means that r leaves A(#) C B(¥,) invariant.
Indeed the expression

V0 def it(Hy+V) =

B l‘r . z(B) th —it(Hy+V)

°Be

as is readily verified by differentiating B, with respect to 7, satisfies the
equation

dB,
W lT r ([r (Vy, B)). (2.1.2)
Hence .
B,=Bo+i/ ' 1° ([7,(V), Bl)ds. (2.1.3)
0

If in the right-hand side of (2.1.3) we substitute the expression for le =
'cSVro_s(Bl) , where B' = [1?(V) , B], in the form (2.1.3), then we shall obtain
the first two terms of the series (2.1.1) for 4 = r(i,(B). By repeating this
procedure several times, we obtain the required result.

DEFINITION 2.1. The interaction ¥V = V™ is called local (or bounded) if
Ved.

PROPOSITION 2.1. Let 2 be an arbitrary C*-algebra and 1, be a dynamics
onit, V=V"e. Then rtV is also a dynamics on U and

F =)+ 1 [ 15,0 T V), L, (), 5 (A0
n=1 n
x ds ---ds,, A€

Proor. For the proof, see, for example, [BR1].
Thus by means of the series (2.1.1) we can determine a local perturbation
of any dynamics on an arbitrary C*-algebra 2.
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Now let us define the Mpller morphisms in the C*-algebra 2 ; they are
analogs of wave operators used in scattering theory to prove asymptotic com-
pleteness. By means of the Moller morphisms, we shall also prove asymptotic
completeness in the case of a Fermi gas with small bounded interaction.

Let two dynamics r: and rtz be defined on the C*-algebra 2.

1 2
DEFINITION 2.2 [Ro03]. The mappings 7. ' : % — 2 defined as the limits

1 2
T (4)= lim 70T (4), A€, (2.1.4)

t—too

are called the Moller morphisms for the ordered pair of dynamics (r1 , 12) if
the limits exist.

ProposITION 2.2 [Ro3] (The intertwining property of Mgller morphisms).
Let % be a C"-algebra, and ‘tl, % be two dynamics on A. Then

1 2 2 1
(1) if yp.'" and y.’" exist, then

+
2T =000 (2.1.5)
(2) if yi’rz exist, then
2yl =yl T, vieR; (2.1.6)

1 2 2 H
(3) if y1°" and y,'" exist, then

2 1
2 r',rz 1 77,1

U=y, T,7. , VteR. (2.1.7)

ProOF. It is readily seen that (1) follows from the definition of Mgller
morphisms.
To prove (2), note that for all 4 € A and ¢ € R, we have
2

i
rtzyi T (4) = lim rtzrz_sr;(A)

s—to0

(3) follows from (2) and the definition of Meller morphisms for two dy-
namics ' and 2. B

The case in which the dynamics rtl and 1,2 coincide with 1? or rtV will be
of the greatest interest to us. For this special case we introduce the definition
that follows.

DEFINITION 2.3 [Ro3]. The Mgller morphisms for the pair of dynamics
(‘L’O, ‘[V) , i.e., the mappings y_: A(#) — A(#) defined as the limits

yo(A) = lim 7 1(4), AeUF), (2.1.8)

t—+too

are called the direct Maller morphisms if the limits exist.
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The Mgller morphisms for (rV, TO), i.e., the mappings 7,: A(#) —
A(#) defined as the limits

5.(4)= lim 107, (4), AeAZ), (2.1.9)

t—+oo

are called the inverse Moller morphisms if the limits exist.

ProrosiTION 2.3 [Ro3] (Cook method). If there exists a dense (in the
norm) subset A9° C A such that for all A € A° there isan R > 0 such
that

[z (V), 4]|| € L, (=00, =R]U[R, o)), (2.1.10)

t
2
then y;l " (A) exists forall Ae .

ProoF. Reversing time and integrating both sides of (2.1.2) from ¢, to
t, yields

t2
2, 7, (B)-7), 7, (B) = i/t 2 7 ([«L V), B])du.

1
Hence

t2
|2, o) =<, m B < L), Bl de <o,
1

since 7> and 7! preserve the norm.
1 2
Therefore for all B € 2A°, 7" (B) exist. Since

0
lyo(B) =[Bll, VvBe,
it is easily seen that the limits for y, exist on the entire C *.algebra 2. W

§2.2. The existence of direct Mgller morphisms
under bounded perturbations of the free dynamics

In A7), the set Qlo(/?” ) of finite linear combinations of monomials in
creation-annihilation operators of functions whose Fourier transforms belong
to C(R") is a dense x-subalgebra.

In the algebra 2(#), we shall consider the C”-subalgebra 2,(#) formed
by polynomials in even number of creation-annihilation operators. The el-
ements of the C"-subalgebra 2, (#) will be henceforth called even. In
2%, (#), the set AN(F) = A" (F)NA,(F) is a dense -subalgebra.

In this section, we prove that there exists a dense subset in the set of
even selfadjoint elements of the C*-algebra 2A(#) for which direct Moller
morphisms exist.
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We introduce the following classes of smooth bounded interactions. Sup-
pose that ¥V = V™ is of the form
d
v=>3"v,

" (2.2.1)

* o (k) (k) k) (k

V;'= cka (f;',l) ' (fz m) (f; m+1) ”a(f;',r)n,+n,)’
=1
where d and M, are bounded, m; + n, > 0, and f;(k}) € C,°(R”) for all
i,j,k.

We say that V ¢ Meo ifin (2.2.1) m,+n, are even forall i,and V € °
if m;>0, n,>0 forall i.

It is readily seen that both classes belong to 21° (Z), with &, ¢ Ql (#Z).

REMARK. All further results will also hold for wider classes &, Ja/ of
smooth bounded interactions. In this case, ¥ = V" is of the form

V = Z/le,,.., , m+1""’xm,+n,)a*(x1)

- a( m+k)dxl - dx

x

m+n,
7,e SR, mi4+n, >0, (2.2.1)

If m; + n; are even for all i, then V €. If m; >0 and n, > 0, then
Ves.

Generally, we shall prove all the theorems of this and succeeding chapters
only for interactions from M , #° and will note only briefly the essential
features of the proofs for 1nteract10ns from &7, and & .

We shall use the following notation

moax = m;’:lX m;, = miax n;,

My = Minm, = minn,

in (2.2.1) and (2.2.1'), respectively.

We shall also introduce the class H of one-particle Hamiltonians. We say
that # € H if, in the Fourier representation, 4 is the operator of multiplica-
tion by the function £ (k), £ € C;°(R"), k € R”, the function and its first
two derivatives being bounded by a polynomial in R”, and

dist(S,, G,) >0, measS, =measG, =0,
where S, = {k : VA (k) = 0} is the set of stationary points of the function
£ ,and G o theset of the k € R” for which the matrix of second derivatives
of the function is singular.

Observe that one-particle nonrelativistic Hamiltonians —A+u, u € R, in
R” and on the lattice Z” as well as the relativistic Hamiltonian vV—A + m?,
m > 0, belong to the class H.
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Henceforth, we shall treat the free dynamics r? as being generated by a
one-particle Hamiltonian # belonging to the class H.

THEOREM 2.4 (The existence of direct Mpller morphisms). Let v > 1,
then for V = V™ € o, there exist morphisms

7.(4) = tginoo r:r?(A), VA € WHZ).

REMARK. The existence of Mpller morphisms was first proved by Robin-
son in [Ro3] and generalized by Evans [E1].

Proor. The case in which v = 1, 2 is somewhat different from that of
v>=3.

Let v > 3. By virtue of the Cook criterion, it is sufficient to choose a
dense subset %A° C A(A#) for which condition (2.1.10) is fulfilled.

Let 2° =2°#), ie.,
20 = (a"(fy)--a"(f,)alg)-alg,), m,n20, [, g € Cy (R")}.

If we prove that condition (2.1.10) is satisfied for 4 = a#( f), where f €
C,°(R") is an arbitrary function, then since ’t:‘t? is the x-automorphism
for any fixed ¢+ € R, we shall have shown the existence of y,_(4) for all
Ae’.

Let A=a(f). We have

1), 4] = (|2, V1| < |[[ae™™ ), V]|

d M, m

2221( YA e at (f) - at (7)) -
J=

=1 k=1

& (a1 alf )

! ‘

< ——C—%, (2.2.2)
(1+2))
since by the stationary phase theorem (see, for example, [RS2])
_ c(f, ™)
ith > i
) L —, 223
where C(f, fi(’kj)) is a constant and
d M, m . m+n; .
=2 Y ledc(f ) T <o 224
i=1 k=1 j=1 1#)

Since on the right-hand side of (2.2.2) there is a function belonging to
L,(R), it follows from the Cook criterion that y, (a(f)) exists. The case
a=a"(f) is treated likewise.



60 D. D. BOTVICH AND V. A. MALYSHEV

For v =1, 2, we choose the dense subset 2° in A(A) in the following
way:

2 ={a’(f)--a"(f)alg) --alg,)  m,n 20, F, 8 € CF (R \ {S,})}.

Using g-fold integration by parts, for |¢| > 1, we obtain the following esti-
mate for the function f e C;°(R"\ {S,}):

” C (f, f®
(f. " £9)] < —"Olrtlef) (2.2.5)

where the constant C, (f, fl(kj) ) > 0 also depends on g. If we take g > 2,
then in (2.2.4) we obtain a function belonging to L (R\[-1, 1]).

Theorem 2.4 has been proved for interactions belonging to Meo . To prove
Theorem 2.4 for V' € &, note that we have only to verify the estimate
(2.2.4).

For this, it is sufficient to represent V € &, in the following form

r=Y3"- 3 Cn,, ..., lewi)a*(eNl)...a*(eNm_)
=1 N, N, i
x a*(eNm_H) : --a*(eNm L) (226)

where [leyll =1, ey € Ci°(R”), N, take on values in a countable set ./,
with

d
ZZ Z |Ci(N1""’Nmi+n,)|<ooa (227)

i=l N, N

mi+n+i

and, forall N, N e # and fe¢ CO°° (R”), the following estimates hold

itk c(f)
I(eN’ e f)| < (1 + I[|)6 ’ (228)
—ith C
I(EN, e €N:)| < m, (2.2.9)

where C(f) is a constant depending only on f, and C, & are absolute
constants, with ¢ > 1.

It is easily seen that the estimate (2.2.4) follows from (2.2.6)-(2.2.9).

We shall prove that V' € &/, may be represented in the form (2.2.6).
Suppose first that the Fourier transform of the kernel 7; satisfies

- 0o rmv(m+n,)y .
7;eCy (R )
then we may choose an N so that

supp7; C [-N, N
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for all i. Suppose that

(k) #(k)exp(2mink/A)
e, = y ,

n

keR, (2.2.10)

where the function x(k) belongs to C5°(R), 0 < x(k) < 1, =(k) =1 for
|k| < B, and x(k)=0 forall |k| > B+ 1. The constants d, are chosen so
that e || =1.

We select 4 and B sothat N < B <2N < 4 and

D[
7,=Y C(N) Henl_(kj), (2.2.11)
¥ j=1
where N = (n,,..., np), D, =v(m;+n;). It is readily seen that for any
g there exists a constant C(g) such that
Clg -
ICyl < —I(W_l) M =3 In. (2.2.12)

]

It is clear that for ¢ > max, D, there exists an estimate
Y 1Cxl < o
N

For the functions ey = [1/_ e, (k;), ey = [T, e, (k;), the following esti-
J J
mates hold uniformly in N, N € Z", t,t € R:

(a)

(es e o) | < o T 22.13)
(b) |

L PR T (2214

where the constant 6 > 0 may be made arbitrarily small, C = C(v, 6’) , and
C(F)=C(f, v, d"). By choosing in (2.2.13) and (2.2.14) d=v/2-6>1
for v>3 and 6 < 1, we obtain inequalities (2.2.8) and (2.2.9).

But if 17, € S(R™*"), then we shall use the partition of unity

> aglk) =1, (2.2.15)
N

where diam(supp ag) < const uniformly in N.
Further, we shall represent the kernel 7/ in the form of a sum of finite

kernels %7\7, and using an expansion for faﬁ analogous to (2.2.6) with
an appropriate shift of the functions ey, we can repeat the proof.
The proof of Theorem 2.4 is complete. B
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§2.3. The invertibility of Msller morphisms
for small bounded perturbations of the free dynamics

To prove the invertibility of direct Mpller morphisms, it is sufficient to
prove the existence of inverse Meller morphisms. As in the case of wave op-
erators, it is more difficult to prove the existence of inverse Meller morphisms
than that of direct Moller morphisms.

THEOREM 2.5 [BM1] (The invertibility of direct Meller morphisms). Let
v23; thenfor V=V"¢ &, there exists an g, > 0 such that for |e| < &y
e € R, the direct Moller morphisms

vold) = lim D7(4), vAeq,

exist and are invertible, with
eV

T =yio‘c?oy;l, vt € R. (2.3.1)

t
COROLLARY. Let v > 3; then for V = V" ¢ &, there exists an gy > 0
such that for |e| < ey, € € R, the C*-dynamical systems (A(#), r?) and

(UH), er) are equivalent.

Before proving Theorem 2.5, let us make two remarks.

REMARK 1. In contrast to direct Moller morphisms, inverse ones may exist
or not for » = 1, 2 [Ma] and for arbitrarily small values of the coupling
constant ¢. The corresponding example may be constructed as follows.

ExaMpPLE. Let V = —a'( fo)a(fy); then er is also the free dynamics
generated by the operator 4, = h + &P, where P, is the projection onto the

vector —f,. For 4 = a#( f) the inverse Mgller morphisms are of the form

7.(4) = lim 77" (a"(f))
= lim a* (™™™ f) = ' (W, f), (2.3.2)

t—too
where /Wi are the usual inverse wave operators. As is well known, if # = —A
and the function f; is such that f, € C;°(R") and

/ fitkydk <0, (2.3.3)
-

then the operator A, has an eigenvalue 4, < 0 for arbitrarily small ¢. There-

fore /Wi(ee) do not exist, and consequently ¥, (a#(ee)) also do not exist.

REMARK 2. In Theorem 2.3, the coupling parameter for v > 3 must be
small, and this is essential, since for large values of the coupling constant
¢ bound states may occur. As is easily seen, for v > 3 and large |¢|, the
previous example demonstrates this phenomenon.

PrROOF OF THEOREM 2.5. To prove the existence of ¥ . » by the Cook cri-
terion and by the observation in the proof of Theorem 2.4, it is sufficient to
prove that

I (), a* ()] € L,(R,),
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e, |12 (V), a* ()]l < > forall fe C°(R"). We have
[0 ollde< [TNE ). o)) ar
0 0
NN # 0 0 0
+n§|a|/0 /A;n[a ) B), L (7), 200

x ds, ---ds,dt. (2.3.4)

LEMMA 2.6. In the conditions of Theorem 2.5, there exist a constant C =
C(V,v) > 0 independent of f and a constant C(f, V) > 0 such that the
Jollowing estimates hold:

@
[N awpds < ceir, v, (235

(b)
/Ooo /A Ila"(f), [Tf,(V), [T?z(V), [-..[rfn(V), (V).

x ds, .- ds ds<C"'C(f, V). (2.3.6)

REMARK. It is easy to see that Theorem 2.5 follows from Lemma 2.6 for
g =1/C.

PRrOOF OF LEMMA 2.6. Consider the nth term of the series. First, we shall
estimate the integrand in (2.3.6) by means of a sum

Ia*(f), [zg (1), Lo [5g (V) (V)]0 < ZWsl,..., ,5),

where ). is taken over all admissible diagrams with weights W,. The
admissible diagrams G and their weights are described below. After this, we
shall estimate

/ /ZWG(SI,...,sn,s)dsl---dsnds c"ef, v)
0 " G

by means of a new technique for evaluating sums of diagrams. We shall put

each 5,, i=0,1,...,n+1 (where Sy =S and s, = 0) into correspon-
dence with the vertex with number n+1—1i.
We have

d A sh is,h pk,)
* l *
=Zcha o ( fzm)

i=1 k=1
xa(e™" [ )aEe™ 5 @23

m;+1 m.+n;

Consider the integrand. This is an (n+ 1)-fold commutant. We shall treat
it step by step in n + 1 steps.
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At the first step, in the innermost commutant [r? (r, rg( V)] using canon-
ical anticommutation relations, we carry the creation-annihilation operators
belonging to T? (V) to the right, i.e., we carry operators like

# 0 is,h (k)
a*(e™" 1)
through the operator 7 (V). In other words, we use the relations
a(f)a(g) =—-a(gla(f),

(f)a*(g) a’(ga(f)+(f, gl

or similar ones for a*(f). In this procedure multipliers like
h ok,
(™" 1), e 1), (2.3.8)
or their conjugates will appear. Note that the procedure described above is
performed by turn: first, rg (V) is carried through the leftmost creation-

annihilation operator in rS(V). If a pairing occurs, then we stop carrying

0 (V) through T?(V) and say that a “line” with contribution (2.3.8) has

S’l
appeared. But if no pairing took place, then rg (V') is carried through another

creation-annihilation operator in TS(V) , etc. Note that due to parity of V
the terms with no pairings cancel sach other out since they enter into the
expression for the commutant
0 0
W, = [t (V), 1,(V)]

5

with opposite signs. Therefore only one edge appears at the first step.
Further, we shall represent the next commutant [rg 1 (V), W,] in the same
way, that is by means of a similar procedure of carrying creation-annihilation
operators like Y
#0s,_ (k)
ale"f7)
through W, . At the second step, multipliers like
S, zsh o) is, _ (k1) s,h (k)
( llj’ f,j’) or (e lzjl’ef,j)
appear and again only one edge. And so forth, until step # + 1 when the
operator a#( /) will be carried.
At step v, an edge appears, with a corresponding multiplier like
L o k)
ry= (€™ £ et £, (2.3.9)

1

where v’ =v'(v) >v.
It is readily seen that forall 1< i, j,i',j '<d, 0<v,v <n+1 the
following estimate holds:

Ir,| < < 5> (2.3.10)
(|SU — SU’(U)| + 1)
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where § =v/2—38" > 1, 6 >0 is an arbitrary small constant, and C > 0
does not depend on i, j, i, j,s,, 5, k,, k.

A diagram is a graph with vertices n+ 1, n, ..., 1, 0. The edge of the
graph between the vertices v and v’ appears in our “carrying” procedure
together with the multiplier

C
(I8, = Sy +1)°

All the resulting diagrams will be called the admissible diagrams.

Exactly one edge goes out to the right from each vertex v, and this edge is
paired with the vertex v'(v) < v. Note that at each vertex there are no more
than 2m_, edges going out to the left. By construction, each admissible
diagram is connected. We let G"! denote the set of all admissible diagrams.

Each diagram is correspondingly weighted in (3.3.6).

The weight of a diagram. Let the set of edges {v, v'(v)} correspond to an
admissible diagram G ; then its weight is determined by

n 1
w.=C
¢ IUI<|s

5
— S’UI(U)l + 1)
From the estimate (2.3.10), after a change of variables in each summand,
it follows that the nth term of the series may be estimated by

/w Cn( 2 11 1 )dsl---dsw (2.3.11)

[
n+1 {‘Ul(v)}EG"H v (lsv - Sfu'(v)' + 1)

v

where a unique v'(v) > v corresponds to each v, and the sum is taken

over all collections {v'(v), v = 1,...,n+ 1} such that among the num-
bers v'(1),..., v (n + 1) no more than 2m_,  coincide with [/, where
[=0,1,...,n.

To estimate the overall contribution of all the diagrams, we will make use
of the lemma that follows.

LEMMA 2.7. Suppose that g € L|(R), g(t) > 0, for all t € R. Then for
all n the following estimate holds:

/Anm< > Ilst, - tv'm)) ds, ---ds, < C" (/R g(t)dt)n, (2.3.12)

(v'(v)}eG" ¥
where the sum is taken over all collections of admissible diagrams, and the
constant D > 0 does not depend on n.

It is clear that the estimates (2.3.11) and (2.3.12) yield Theorem 2.5.
PrOOF OF THE LEMMA. The proof of (2.3.12) is similar to that of (4.1) in
[BM1], where it was proved for the case m_, =m_, =2 and
1

TR
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We consider the Riemann sums of the two sides of inequality (2.3.12) and
prove that this inequality holds for the Riemann sums for any d, where d
is the approximation step:

(Y % [Tst, - 1) <d'c" (S ets))

0<ty <<t {v'(v)} V s#0

n
sd”c”(Z--- > Hg(si)). (2.3.13)
5, #0 S, 70 i=1
The sums in (2.3.13) are taken over all t;»S; € Z,, where Z, is the one-
dimensional lattice with step d > 0.
By means of an algorithm, we show that to any collection (Sgs -vv55,),
Sy = 0, from the sum on the right-hand side of (2.3.13) no more than C”
diagrams from the left-hand side will be assigned, with contribution

8(s;)---g(s,).

The algorithm will consist of no more than 2m_ . n steps. We shall enu-

merate the steps
(1, 1),....,(0,2m_,.), ..

At step (1, 1), we take s, and construct an edge from the first vertex
to s, . So we have constructed the vertices 1, s, and the edge between them.
Further, we proceed by induction. Suppose that edges with lengths 5, ..., 5,
have been constructed, and the next step is (i, J).

The rules of the algorithm are the following.

(1) At each step, we construct either one edge or no edge and, correspond-
ingly, either one vertex or no vertex.

(2) If at step (i, j) we decide not to construct an edge, then at the suc-
ceeding steps (i, j'), j' > j, we do not construct edges, either.

(3) At step (i, 1), we select one of the already constructed vertices v,
and at the succeeding steps (i, 1), ..., (i, 2mmax) we may construct edges
only from the vertex v. The vertex v; will be called used at step (i, 1).

(4) The selection of a vertex v, is done uniquely by means of the following
rule: v, is the first (having the least number) of the already constructed ver-
tices that has not been “used” at previous steps, excluding the zero vertex; but
if all constructed vertices have already been “used”, then an unconstructed
vertex having the least number is selected, excluding the zero vertex.

(5) The algorithm stops either at step (n, 2m_,.) or in the case when
there are no unused vertices or else all n edges have been constructed, i.e.,
all the 5., ..., s, have been used up. It is easy to see that each diagram will
be constructed my means of the algorithm, and each collection Sps ey S,
will have been used no more than C” times, where C depends on Mo s
since at steps (i, 1),..., (i, 2m_, ), for each i, 1 <i < n, the algorithm
has the following branches:

(a) the edge is drawn either to the right or to the left;

., (n, D,..oo(n, 2m,).
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(b) at the vertex v,, during these steps no more than 2m_,, lines are
constructed;

(c) if the edge is drawn to the right, we can either reach the zero vertex or
not.

For d — 0, inequality (2.3.13) yields inequality (2.3.12). Lemma 2.7 is
proved, and so is Theorem 2.5 for interactions belonging to Meo. ]

To generalize the proof of Lemma 2.6 to the class .7 , it is easy to see that
it is sufficient to represent V' € %/ in the form (2.2.6) so that the estimates
(2.2.7)-(2.2.9) hold, but this has been proved in §2.2, The proof of Theorem
2.5 is complete. B

§2.4. Unitary equivalence of Hamiltonians
for free and locally perturbed Fermi gas in the ground state

We shall consider free and locally perturbed Fermi gas in the ground state,
i.e., for f — oo. The ground state ( - ) is specified by

(4) = (4Q, Q). (2.4.1)
We shall prove the theorem that follows.

THEOREM 2.8. Let # = L,(R",dx), Hy=dT(h) and H, = Hy+ ¢V,
where h € H and V € &/ . Then for v > 3 there exists ¢, > 0 such that for
|e| < &, the direct wave operators

W, = slim e~"FotelpitHh (2.4.2)

t—xoo
exist and are invertible, with
-1
Hy+eV=W_HW,_. (2.4.3)

REMARK. The statement in Theorem 2.8 concerning the interaction V €
&/, follows from Theorem 2.5. Indeed, since in this case there is no polar-
ization of vacuum, i.e., VQ = 0, we have

e T = o = 0 (2.4.4)
for all t € R. Therefore, for
A=d"(f)---a'(f), feCIR), (2.4.5)
the limit
lim e—it(H0+eV)eith0AQ
t—+oo

= lim o HoteV) yitHy g =itHy it(HoteV) oy _ HAQ (2.4.6)
t—++to00
exists for sufficiently small ¢ by Theorem 2.5. But since linear combinations
of vectors like (2.4.5) are dense in &, it follows that inverse wave operators
exist. Obviously, the same also applies to direct wave operators.
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ProoF OF THEOREM 2.8. In the case V' € &7 , there is also no polarization
of vacuum, but we cannot use Theorem 2.5, since there may be odd mono-
mials in V. However, we shall use the idea behind the proof of Theorem
2.5. Put

Dy = (0, 01s - Py, 0,...), ®yeF o, § €CORY).

The inverse wave operator WiQN may be represented as a perturbation
theory expansion

W ()@, =@, + (~ie)" /0 dt - dn V() V()Dy,
=1 a7 (2.4.6)

W, 0, = lim W, (n®,,

t—+oo
where

A=At 1), O<t <---<t <1},

n
Vit)y=eoye ",

The integrand is the product of Wick monomials and may be represented
as the sum

Vi) -Vt =Y Volty, ..., t,) (2.4.7)
G

of Wick monomials indexed by Friedrichs diagrams G (see §3.1). But the
number of such diagrams is very large, and so we shall use another expansion.
In this new expansion, we shall practically perform a partial resumming of
Friedrichs diagrams.

To V(t,) we assign a vertex v of a certain graph and select in it the
rightmost annihilation operator of the form a(f'"'(z,)), where f (“)(tv) =

o't f @) ; by means of the anticommutation relations
a(/,)a (1" 1,)
=—a’ (/" e,))a(fM )+ (£, U0)), (2.48)

let us carry it to the right up to the vacuum vector Q.

At each such permutation, one of the two terms on the right-hand side of
(2.4.6) arises. If the first term appears, we go on with the translation, if the
second one does, i.e., a pairing takes place, then we say that the edge (v, v')
of the diagram has appeared. If no pairing has resulted from permutations,
such a term makes a zero contribution, since a(f)Q = 0 forall f € #.
Thus we obtain exactly n edges (v, v/(v)) , v=1,..., n. Besides, if the
pairing with the vector @, took place, then we shall say that v'(v) = 0.

Obviously,

1

v/2®
(L+]e, =t

10, M) < € (2.4.9)
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We consider the resulting graph with vertices n, n—1, ..., 1, 0 and edges
(lines) (v, v/(v)) : by construction this graph is connected. We let (G"N de-
note the class of all such graphs.

Note that the graphs from G}, differ from those belonging to G" only in
that there are not one but several (no more than N ) lines incident to the
ZEero vertex.

It is not difficult to see that in this case the following estimate is true:

fv(z,) vt <I>N||
<C ( > 1‘[ L 5), §>1. (2.4.10)
wones, v Uyl +1)

LemMa 2.7, Let g € L (R), g(t) >0, for all t € R. Then the following
estimate holds for all n:

/:O( Y Tlet ~tyw) )dsl---dsnS(N!)C"(/Rg(t)dt)n,

{v'(v)}€G], Y
(2.4.11)
where the sum is taken over all admissible diagrams, and the constant C does
not depend on n.

PrOOF. The proof of Lemma 2.7 is completely similar to that of Lemma
2.7.
Lemma 2.7 implies Theorem 2.8. W

§2.5. Unitary equivalence of Hamiltonians
for free and locally perturbed Fermi gas in KMS-state

We shall consider free and locally perturbed Fermi gas in the temperature

state, i.e., for € R, B #0. Let # = L,(R", dx) and
h=-A+u, (2.5.1)

where u € R is the chemical potential, and A is the Laplace operator in #Z .

Define a free Fermi gas and a Fermi gas with local interaction V' = Ve
A(A#) for temperature 1/8.

DEFINITION 2.4 [BR2]. (A(#Z), r?, (+)g» B) is called a free Fermi gas
at temperature 1/p , where the free dynamics r? is generated by the one-

particle Hamiltonian of the form (2.5.1), and ( - ), is a single ('c? , B)-KMS-

state.
DEFINITION 2.5 [BR2]. (A(#), r:/, (), B) iscalled a Fermi gas with

local interaction V = V* € A(#) at temperature 1/f , where r is a lo-
cally perturbed dynamics, and (- ), is a single (rtV , B)-KMS-state, which
is defined in terms of (- ), as follows
(F*AF),

(A),, = T VA € W(H), (2.5.2)
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where F € A(#) (see [BR2]), and
F & =B/2Ho+Y) B/2H,

B2 s s (2.5.3)
=1+Z(—1”/0 /O /0 0 (V)1 (V)ds, - ds,,
n=1

where the series (2.5.3) converges in the norm.
DEFINITION 2.6. A C*-dynamical system (A, 7) is called L (& )asymp-
totically abelian if

/_°° 4, 7,(B)]l dt < oo (2.5.5)

forall 4, B from a dense (in the norm) x-subalgebra 2° in 2.

There exists the following simple connection between KMS-states and
Mgller morphisms.

ProposITION 2.9 [BR2] Let (A, 1) be Ll(Ql )-asymptotically abelian,
then for each V = V* € A° there exist direct Moller morphisms

0
yi(A)=,l}£},oT—tTt(A)’ A e A7),

and if {-), is (t,V, B)-KMS-state for B € R\ {0}, then the state (ro()) is
also a (z,, B)-KMS-state.

Note that (%, (%), t ) is L, (™A ()7 ))-asymptotically abelian, where 10
is generated by the one-pamcle Hamlltonlan h.

THEOREM 2.10 [BM1]. Suppose that v >3, B € R\ {0}, and V =V"* ¢
Then there exists &y =¢&y(V,v) >0 such that the operators HGNS and
Hé;s are unitarily equivalent for |g| <
ProoF. By Theorem 2.5, we can ﬁnd an &, = g,(V,v) > 0 such that
for |¢| < e, Moller morphisms y . exist and are invertible. Proposition 2.9
implies that the state (y +()ep 1sa (7,, B)-KMS-state on &, (#), but such
a state is unique (see [BR2]). However, due to the gauge-invariance of { - Yo
and (-),, the following equality holds
(7.(4)),y = (4), (2.5.6)
forall 4 € AZ).
Define the operator U_: %NS %NS as
Uy (ro(4)Q) = 7, (1.(4))Q,,, , (2.5.7)
where for conciseness we set =7 b Tev =T )y ? Q, = Q Do ? and
Q, = Q N . The operators U, are unitary. In fact, we have

(Upmy(A4)Qy, Uymy(B)Q o) = (m o (7:(4)Q,, 7 Ty (7:(B))Q,,)
= ((7:(B)) 7.(4)),, = (ro(B"4)),,
= (B*A)o = (no(A)Q(p 7[0( )Qo)-
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Obviously Ran U, = %grfz/s , and the inverse operators U;l can be defined
as follows , ,
U, (neV(A)QeV) =my(7. (A))Q0 (2.5.8)
for all 4 € A(#). By the definition of the operators H Gns and H, GNS’ we
have

g0
eMorvs g (4)Q = 7y (20(4))Q,

itHE, 14
e" Ty (A)2gy = nsV(Tf (4))Q,-

Hence by the relation er(A) =y ir?y;l we get

HEY
U le”HGNSU 7[0( )Q —U lelt GNSnEV(yi(A))QEV

= U 7y (17 (72 () Ry = 70 (277 7. (4)) 9
= 71y(2(4))Q, = "1 (4)Q,.
Thus
¢'fons = U1y | wreR, (2.5.9)
and consequently
UL ' HingU = Hoys: (2.5.10)

The theorem is proved. B
§2.6. The operator H Gns in Hilbert space %NS

Suppose that (%(;zs , Ty, Q) and (%NS , T, , Q) are cyclic represen-
tations of A(#’) for the states (- ), and (- ), , respectively. We let HGNS
and HGNS denote the generators of unitary groups acting in %NS and %I;:s
and generated by the dynamics r? and rV in A(F).

We shall define the operator U: Z’g;s — Z/C?NS by

Ur,(4)Q, = C,ny(4AF)Q,, (2.6.1)
where F is defined in (2.5.3) and
C, = (F"F)O. (2.6.2)

Note that the operator U is unitary. In fact, for all 4, B € A(#) we have
2 * 2 * ook
(Un, (4)Q,, Urn,(B)Q,) = C,,((BF) AF), = C,,(F B AF),
=(B"A), = (n,(4)Q,, 1,(B)Q,).

We shall assume that the perturbation V' is defined by polynomials in
analytic vectors of the operator /. The element F of the C"-algebra %(#)
is invertible for small ¢, and (see [BR2])

F—l —B/2H, /5’/2 Hy+V)

*© n (B2 [ ) 2.6.3
=1+Z(—£)/0 /0/0 to V)t (V)ds, - ds, Y
n=1
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Hence the inverse operator U -1 ZEONS — %VNS acts as follows

Ul ny(4)Q, = C, 'n, (AFHQ,, VA4 e A#). (2.6.4)

ProrosiTION 2.11. The operator HCI}/NS defined in the space %‘1/\15 is uni-
tarily equivalent to the operator H' acting in Z’GONS Jor all A € A(H) such
that my(4)Q, € Z (HgNS) according to the formula

H'ny(A)Qy = HonsTo(A)Q + i (my(V ARy — 1y(4V,))Qp,  (2.6.5)
where

Vs

and @ (HgNs) is the domain of the operator H((?)yNS'

2= Tig(V) €UF)

Proor. We shall prove that the operator in (2.6.5) coincides with the op-
erator U H(I}/NSU =1 We have

1 -1

mo(A)Qy = UHgNS(C;an(AF Q)
=C,'\Un, (ilH,+V, AF'))Q,, (2.6.6)

14 —
UHg U

where the latter equality follows from the definition of H(I}/Ns . Further, by
transforming (2.6.6), we obtain

"7y (A)Q, = ny(i[Hy + V, AF T 1F)Q,

= 1, (i(Hy+ V)A)Q, — ny(iAF ™ (H, + V)F)Q,
= o (i(Hy + V) A)Q) — 1 (147,55 (Hy + V) Qp

14 —
UH U

(2.6.7)
since
F (H+V)F = e—ﬂ/ZHOeﬂ/Z(H0+V)(HO 4 V)e—ﬂ/Z(H0+V)eﬂ/2HO
= e PP (H 4 v)ef /P
e Py L g, (2.6.8)

where we have first used the commutativity of the operators H, + V' and

eT#/2H+V) and the property that the equalities hold
2{H,+VY —B/2(H+V)
e P =PI ITY) (2.6.9)

for the set of analytic vectors of the operator H, in 9‘; , and then the com-

mutativity of the operators H,, and e=#™ and the relation

¢ P/ HahIHy _ g (2.6.10)

which holds for the set of analytic vectors of the operator H,. It is obvious
that (2.6.5) follows from (2.6.7) and (2.6.8). &



ASYMPTOTIC COMPLETENESS FOR FERMIONS 73

We have defined the operator H = U HgNSU ~! in the Hilbert space

Z’é)NS, and now we shall consider the action of the operator H' in ;%NS

constructed in Theorem 1.2. Suppose that

V=a(f)a'(gagalf), f.geX, (f,g=0, (2.6.11)

where f and g belong to the set of analytic vectors 4. Then

Vip=a' (e Na" e g)a(e’ g)a( 7).

8/2

Consider the operator H' in Z//;NS. By Theorem 1.4, the subspaces 7, ,

are invariant with respect to the operator HSNS , but this is not so for the
operator H':

’
H: %;n,n _'%;n—2,n—2@z/;n—l,n—l EB%;n,n 69%;nﬂ,nﬂ—l @%

m+2,n+2°

PROPOSITION 2.12. Denote by b*(f), b(f) (c*(f), c(f)) the creation-
annihilation operators in F, (F,). The right multiplication by the operator
a*(f) corresponds to the operator

"B f)®1+(-1)"1®c(B,f), (2.6.12)
and the multiplication by the operator a(f) corresponds to the operator
b(Blf)®l+(—1)m1®c*(Bzf). (2.6.13)

The left multiplication by the operator a™(f) corresponds to the operator on
the subspace #,,,,

(=)™ (B, f)® 1+ (-1)"1®c(B,f), (2.6.14)
and the multiplication by the operator a(f) corresponds to the operator
(~D)™"b(B, f)® 1+ (-1)"1&c"(B,f). (2.6.15)

PrOOF. We shall prove that the right multiplication by the operator a*(f)
is given by (2.6.12); the rest of the proof is completely analogous.

For A=:a"(f})---a"(f,,)a(f, ) -a(f,,,):, wehave
mo(A)Qy = b"(B, ;) b™ (B, f,) ® ¢ (By ) (B Sy ),
o (@ (F)A)Qy =my(:a" (f)a () - & (f,)a(fniy) - afn) )

+no( S (07N, BA a () d ()
i=m+1
<a(f,,)alf)alf,,): QO)
= (b*(Blf) R1+1® C(Bzf))b*(Blfl) . --b*(Blfm)Qb
® c*(Bme+l) o C*(BZ m+n)Qc' u
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The right multiplication by ¥ corresponds to the operator
!

Vi=("(Bf)®1+1®c(B,f))(b"(B,g)® 1 +1®c(B,g))
x (b(B,g)® 1+ 1®c"(B,g))(b(B,f)®1+1®c"(B,f)), (2.6.16)

and the left multiplication by V/9 j2 corresponds to the operator

!

V,=(b"(B,/)®1+1® c(B,f))(b"(Byg)@1+1® ¢(B,g))
x (b(B;g)®1+1®c’(B,8))(b(B,f)®1+18 (B, f)). (2.6.17)

Observe that B, = Bleﬁ/y’ , B, = Bze_’mh.
It follows from (2.6.16) and (2.6.17) that
! # # # #
W-v= Y ; ;g b @b ()b ()b (u) ® 1
ij k1
# # # #
+ Z Bi ik b (u)b (”j)b () ®c (u)
ik,
# # # #
+ Vi gk b )b () ® ¢ (w)c" ()
i jde,l
# # # #
+ Z ai,j,k,lb (ui)®c (uj)c (uk)c (u1)
i jik,l
# # # #
+ Z & k1 ®c(u)e (uj)c (U )c (),
ivik,l
where LNNT ﬁi,j,k’,, Vi di’j,k’,, € ; k,; aresome constants that
may be equal to zero, u, =B f, u, = B g, uy = B,f, Uy = B,g, us =
B3f, u6=B3g,u7=B4f, u8=B4g_ .. ..
Observe that there is a term of the form 56" ® c*¢” in the expression for
V) =V, , which yields the relation

(V= 1)Q, ®Q, #0.
This means polarization of vacuum, as was to be expected, since

(V =V, )" (V - Vy)do >0 for B>0.

Note that ((V—Vﬂ/:,_)*(V—V,,,/Z))0 =0 for f =0, and there is no polarization
of vacuum,

CHAPTER 3. THE LINKED CLUSTER THEOREM.
ASYMPTOTIC COMPLETENESS FOR
INTERACTIONS POLARIZING VACUUM

£3.0. Introduction

We shall now remove the constraint on the interaction VQ = 0. We
shall prove that, generally speaking, the spectrum of the Hamiltonian for the
perturbed dynamics H, + ¢V 1is shifted or, to be more precise, for small ¢
there exists a real number A, such that H; + &V is unitarily equivalent to
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the operator H,+ A E . Formally speaking, this fact is well known, e.g. from
the famous linked cluster theorem, which represents the main computation
instrument for perturbation theory in the quantum theory of many particles.
The proof of the convergence of the series in this theorem is the main result
of this chapter. This permits us to rigorously prove all its formal corollaries
that can be found in the classical books by Friedrichs [Fr] and Hepp [H].

We shall consider the following two situations:

(1) Z, = Z(L,(R")) is an antisymmetric Fock space over the space
L,(R"), v>3, H=Hy+eV ,where H,=dI'(h) orinthe k-representation

H, = / b(k)a” (k)a(k) dk, (3.0.1)

hk)=\m*+k*, m>0,

(in the relativistic case) or

where V € &/, and

h(k) = Kk

(in the massless case).

Since V = V" € A(#), it follows that H = H, + eV is a selfadjoint
operator in .#, with the same dense domain as for H;.

(2) & =F(L(Z"), Hy=dT(h), h = —=A+ u, is a lattice Laplacian
plus a constant x. Consider the operator H, in the k-representation. As a
result of the Fourier transformation, /,(Z") is mapped into L,(T"”), where

=[0, 2n)” is the v-dimensional torus, Z, =%, (L,(T")), and

H, = /1r bRy’ (k)a(k) dk, (3.0.2)

where V =V" €., and

14
hk) = 2(1 —cos(k,)) + u. (3.0.3)
i=1
We shall assume in this case that x > 0. This implies that the spectrum
of the operator H, is nonnegative. Note that in this case we shall restrict
ourselves to the interaction V' of the form

V= Za i,l f; m)a(f; m+1) (f;"ml_*,[i), (304)

where m, +/, isevenand f, ;€ Coo(TY) forall i, j.

All the results proved below hold in both cases. For the sake of readability,
however, we shall carry out the proofs only for case (2).

Below (§3.6) we shall no longer require that the one-particie Hamiltonian
be nonnegative (4 > 0).



76 D. D. BOTVICH AND V. A. MALYSHEV

§3.1. Friedrichs diagrams. The algebra of Wick exponentials.
The operations I', and T’

We shall consider the vacuum (ground) state on the C"-algebra CAR
%A(L,(R"))
(4) = (4Q, Q), (3.1.1)

which is a quasifree gauge-invariant state with B=0.

The Wick brackets with respect to this state (see Chapter 1) simply mean
that annihilation operators must be moved to the right of creation operators
with due regard for the sign rule. In other words, the Wick brackets act
identically on monomials of the form

W=a'(f))a (falfo) - alfy,)-

The product of several Wick monomials may be expanded into the sum
of Wick monomials. The relevant rule can be easily formulated in terms of
diagrams.

With every monomial

W= /wi(kil sees Ky s Ky gs e ki,mi+1‘)a*(ki1)"'a*(ki,m,.)

x a(k cak, . )dk, - dk (3.1.2)

i,m,+1)" i mt, imtl,

we may associate a diagram G; with m; (/,) numbered left (right) legs, with
a*(k. .) corresponding to the jth left leg and a(k ) to the jth right leg.

i)

Then

i,m+Jj
W W, =Y W, (3.1.3)
G

where the sum is taken over all possible pairings leading to the diagram G
in the disjoint union of the diagrams G, , and

W = /Hw" H dk;; Hlé(ku — k) H”a#(kij) (=19 (3.1.4)
i ij

where the product []’ is taken over all edges (pairs of connected legs i, j
and i’, j') of the diagram G and []” over all unpaired legs. The relations
(3.1.3) and (3.1.4) are easy to prove if we transpose each annihilation oper-
ator to the right of creation operators using the anticommutation relations,
with 7#(G) representing the total number of such transpositions.

The following example will illustrate the notation:

W, =a (f)a(f,), W, =a’(fya (falfy),
WiW,= tWW, + W, —o— W,

=a’(f))a (fa (fa(f)alf;)
+(fy, Ha' (f)a (falfs) — (fy, fHa (fa" (fa(f)
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or schematically

+X>H;M}M}*

Note that : W, W, represents the term in the expansion of W, W, in which
not a single pairing has occured during the transpositions of annihilation
operators.

We shall introduce the following notation (see [H]):

(W,--- W, ). is the sum over all connected diagrams G in (3.1.3);

(-++)oo is the sum over all connected diagrams without external edges in
(3.1.3);

(«++)p = ()¢ = (-++)g 1is the sum over all connected diagrams with at
least one external edge in (3.1.3);

(-++)cg is the sum over all diagrams from the class (---), with external
edges belonging only to creation operators.

Henceforth, we shall only need some algebraic properties of series involv-
ing Wick monomials.

For a formal power series

A= i xmylAm,,

m, =0

where A4, are Wick monomials, we set by definition

/
A= Z x'y A,
m, =0
ProrosiTioN 3.1 [H]. Let
= ! - !
m m
4= 5 x"y4,, B= Y x"yB,
m,{=0 m,I=0
m+1>0 m+1>0

be formal power series in even Wick monomials, where m (l) is the degree
with respect to creation (annihilation) operators.
Then the following identities hold:

A:expB: =:(A:expB:).expB:, (3.1.5)
cexpB:A=:(:expB:A).expB:, (3.1.6)

where (-). refers to all connected diagrams.

ProOF. This can be reduced to a simple combinatorial argument with
reference to the same powers x" y[ (see [Fr], [H]). W
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DeFINITION 3.1 [Fr], [H]. A left connected product W, «£: W,.--W,:
(right connected product : W, --- W, :\_ W, ) is the sum of all Wick mono-
mials belonging to W, :W,...-W,. (:W,---W,: W) whose graphs are con-
nected, each W, corresponding to a particular vertex.

ReEMARK. Usually, identities (3.1.5) and (3.1.6) are written in the form
(see [Fr], [H])

A:expB: =:(AZ:expB:)expB :,
texpB:A=:(:expB:\_A)expB:.

DEFINITION 3.2 [H]. We define Friedrichs operations ' on the mono-
mials

Upy = [ gl K" )0 (K,
ydk, - dk

m+p

for x> 0, by
0
r,(U,) défi/i e, ) dt

- /ump(kl, e NEe—E 2 ix)7'a (k) - (k)
xa(k,,,)---alk,,  )dk, ---dk (3.1.7)

m+p m+p?

and I', (U, ) as the strong limit of I'_ (U, ) as » — 0, where

mp

m+p

Ek'= E::b(kﬂ> EQ = ZE: b(kﬂ,
j=1

j=m+1

and the Glimm operation I" by

F(Ump) = /ump(k1 Y rens km+p)Egla;(k)...a;‘n(k)
x a(k -a(k dk, ---dk__ . (3.1.8)

m+l)" m+p) 1" m+p

Also we define the operation

(£x) def d [ —xlt] 0
15" U] & 5 [ 150U (3.1.9)
It can be reduced to replacing the kernel Ump by the kernel

iy (y s ooy b WE, — Eg % in).

m+p

PROPOSITION 3.2. For x> 0, the following relations are valid:

[Hy™ T (U,,,)] =U

mp?

(3.1.10)

mp

[H(gi”)’ cexp(Iy,(U,,)) :] =:U,expl (U,,):. (L1
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ProoF. The first equality follows from the definition of I', . The first
equality of Proposition 3.2 yields

[H™, exp(T, (U, )]

mp

= [Hy™ o= T, (Uy,,) =T (U,

mp mp

(£)7. .
) —?_HO u] N exp(r:tx(Ump)) .3
where —o— means that Wick monomials with one pairing are taken. But the

expression in brackets is equal to (3.1.11). W

§3.2. Adiabatic wave operators. Linked cluster theorem

We introduce the following additional notation (see [H]).
Define for —oo < ¢, 5 < oo and » > 0 the evolution operator without
adiabatic cut-off

U(t, s) = ' Pogm =5 gisHo (3.2.1)
and with adiabatic cut-off
t
Ui, s)=1- / drvP U, s), (3.2.2)
5

where . . .
V(n)(r) déf e—mlr|eer0 Ve_"H".
It is well known that for finite ¢, s and » > 0O (see [H]) the following
relation holds:

U, ) =1+ (=ie)" [ de - de, V) v, (323)
i=1 Ay
where A = {(t,,...,1,), s <1 <--- <, <t},and the series (3.2.3)
converges in the norm.
The integrand is the product of Wick monomials and may be represented

as the sum 0 "
v V) =Y Wl ) (3.2.4)
G

of Wick monomials indexed by Friedrichs diagrams G (see [Fr]).

Using the equality for » >0
t
CaoO)@) =1 [ U™s)ds,

0,00

and integrating each term in the series (3.2.3) with respect to A,

we get

U0, £+00) = 1+ i(—ie)"l’im{(V---l"izn(VFiu(V))---). (3.2.5)

n=1

Integration with respect to Afoo 0 yields

U™ (%00, 0) = 1+ i(—is)"rm(. Ty (T, (VV) V). (3.2.6)

n=1
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THEOREM 3.3. There exists &, > 0 such that for |e| < e, and either of the
two cases:

(1) —o<t,s<oo0 and »20;

(2) —co<t,s< 00 and x>0
the series

Z( i€) / dt, L (V) v . L, s (3.27)

converges in the norm, and ¢, does not depend on t,s, x. The same holds
if we substitute (---)o, (~++), and (---)qp instead of (---)..

The next theorem can be deduced from this statement in a nonformal way.

THEOREM 3.4 (Linked Cluster Theorem) (see Theorem 2.7 in [H]). In the
hypotheses of Theorem 3.3, the following equalities hold:
U, s) = exp(U™ (1, 5),) 1, (3.2.8)
U, )
(Q, UM, 5)Q)
where the series on the right-hand sides of (3.2.8) and (3.2.9) converge in the

norm.
Let

=:exp(U(t,9),) ) (3.2.9)

war _ UYs) (3.2.10)

T
L(Q, UM, 5)Q)

THEOREM 3.5. If v > 3, then there is an €, > 0 such that for |e| < ¢, the
following limits

slim 7", < T (3.2.11)

(direct adiabatic wave operators) ana’

slim 7,77, (< 7% (3.2.12)

(inverse adiabatic wave operators) exist.

THEOREM 3.6. In the hypotheses of Theorem 3.5, the renormalization con-

stant )

z , (3.2.13)

= |lexp (Z(—a)"(HV---r(V)))CRQ)

n=1

where n is the number of Friedrichs operations (see [H)), is finite. The oper-
ator VZT* is unitary and defines unitary equivalence

HT® = T*(H,+4,), (3.2.14)
where A is defined by a converging Goldstone series (see [H])
A,=(Q,eV 2T Q), (3.2.15)

where V_¢ T is the left connected product.
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Some formal analogs of Theorems 3.3-3.6 are given in [H], in which the
identity (3.2.10) is proved formally, i.e., without proving the convergence of
the relevant series. A nonformal proof of these theorems was first given in
[M2].

Before proving Theorems 3.3-3.6, we shall give a formal proof of Theorem
3.6 (see [H]).

A FORMAL PROOF OF THEOREM 3.6. It follows from (3.2.5) and (3.2.9)
that

70, £00) =: exp (Z(—ie)”rm(w.-rﬁn(Vrﬂ(V)) : --)L) .
n=1

This yields .
T" =:exp(I'.(Q,)): (3.2.16)
as » — 0, where

o0

Q, = (—ie)" (VT (V- -T (VT (V)-)),.

n=1
Using Propositions 3.1 and 3.2, we obtain
H,T* =T Hy+:Q,T": (3.2.17)
and
eVTE = ¢ (VLT T  i=e: (VTH) T :
e (VTE), TF 4e: (VT5)poT™ :

= Z(—e)"(VFi(V---Fi(VFi(V))---))LTi :
n=1

(3.2.18)

+(Q, e(VT),Q) T,

where the last equality follows from the relation ([Fr])
Q, =eV_s:exp(-T(Q,)) : —€(Q, V «: exp(-T,(Q,)) : Q).
The relations (3.2.17) and (3.2.18) imply Theorem 3.6 with

o0

g, = (Q, A(VTi)OOQ) = Z(—e)n(Q, VIV ---T(VT(V)) -+ ) okd) s

" (3.2.19)
where n is the number of I', and we have replaced I', by I' because a
nonzero contribution in (3.2.19) is possible only in the absence of annihila-
tion operators since a(f) =0 forall feZ. R
REMARK. We can prove all these assertions without using the operations
', but using the following identity instead:

%U(“)(t, S)e = —ie(v™M (1) exp UM (e, e s

UM, )= 1.

(3.2.20)
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DEFINITION 3.3. Define the S-matrix (or scattering matrix) by
SEZT! T
s 3.2.21
= :exp (2ni2(—e)”A(Vr_(V-.-r_(Vr_(V))..-)) : ( )
n=1 L

where the operation A applied to the Wick monomial Ump means replacing
its kernel Uy, by the kernel

UKy s s Koy VO(E — E.,).

It follows from Theorem 3.6 that the S-matrix is unitary.

m+p)

§3.3. Proof of Theorem 3.3. Partitioning
into clusters and decomposition into modes

We shall first treat the case ¥ =0, —co<s5,t<o00, v > 3.
We shall further consider the estimate for the expression

Axwm~vmm44mmn (3.3.1)

and show that its modulus is bounded by |t — s|C", where C is a constant
independent of s, £, n. We shall derive Theorem 3.3 using this estimate.

The main difficulty in the proof of this estimate is related to great number
of diagrams involved in it. We shall cancel the diagrams, wherever possible,
in “time clusters”, or “sectors”.

Partitions. Theindices 1, ..., n are the vertices of diagrams. Each subset
a=(a,...,q), a < a, < - < a, of the set (1,...,n) defines a
partition of (1, ..., n) into intervals

Il=[l,a1)={i:1Si<a1},...,Ik=[ak_],ak),1k+l=[ak,n].

Sectors. Each partition defines a subset A, of the region Ai” which we
shall call a sector. It is uniquely determined by the following conditions:

(1) if i, j belong to the same interval I, of the partition «, then there
exists an integer M such that

b eM, M+1)¥ET;

(2) if i, j belong to the partitions I, and I, , respectively, then ¢; and
t; belong to different intervals [M, M + 1) = fm, [L,L+1)=1, ie.
M+#L.

It is obvious that {J A, = Ai”. Henceforth, I, will be called the /th
group of the sector A_ .

Subsectors. A subsector (M, ..., M, +1) of the sector A is defined by
the partition o and integers M, < M, < --- < M, ., . This is a set of all
(t,-oost,), s<t <--- <1, <t,such that t,€[M;, M, +1) for iel.

> n
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Modes. In the space L,(T"), we select the orthonormal basis {e,} Nez s
where e, = Cexpl[i(N, k)], k € T”. The elements of this basis will be
called modes.

Let

d
def
S = U{fl.’l, e fi,'",+l,-}'
i=1
We fix a subsector A (M,,..., M, ). If t € [M;, M, +1], then ¢ =
M, +dt, 0<dt< 1. This yields

Za* iMh téth . 1) ”a(eiM,heiéthf;.’m[Hi). (332)

i=1

Decomposition into modes. We decompose vectors of the form ¢ f, f¢€
S, in the basis {e, }:

=3 Cy [60)ey. (3.3.3)
Nez®
Observe that for any y > 0 there exists a constant C(y) such that the
coefficients C ((St) of the series (3.3.3) satisfy the following inequality
uniformly in fe S, |9t <1

v
ICy 60)] < Iley) . INI =Y IN. (3.3.4)
1
We can prove this inequality using integration by parts. We choose y > v +1
so that
Y ICy ;60 < C < o0 (3.3.5)
Nez¥
For a partition a = (e, ..., a;), we let B denote the following subset
of [0, 1)":

B, ={(01,,...,0,): 0<dt, <+ <61, 1, 0L, <--- <3t

-1
n a,—1

, 0<dt, <--- <1, <1},

Using the notation introduced above, we may write expression (3.3.1) in

the form
Py / [Td6n) ¥ S, (3.3.6)

B, i=1 (NS} G

where, from left to rlght, we have the following:
(1) sums over all partitions;
(2) sums over all subsectors;
(3) integrating within all subsectors;
(4) sums over all modes;
(5) sums over all admissible diagrams.
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Diagrams. A diagram is a graph with vertices 1,2,...,n. Init, m,
right-hand legs (corresponding to annihilation operators) and [/, left-hand
legs (corresponding to creation operators) are incident to each vertex. The
selection of modes assigns an element e, of the basis {ey} ., to each leg.
Each leg is numbered by the index (v, p), where v is the vertex number and
p is the number of the leg at the vertex v . A connected graph formed by a
pairing of some of the legs (v,, p;) and (v,, p,), v, <v,, is an admissible
diagram if the former leg is right-hand and the latter leg is left-hand. Paired
legs are edges of the admissible diagram and will be called internal (or “int”,
for short). Unpaired legs will be called external (or “ext”, for short).

Each diagram appears in expression (3.3.6) with its weight.

Weight of a diagram. Suppose that the partition o = (o, ..., o), the
subsector (M,, ..., M, ), the vector (é¢,...,d¢t,), and the mode va
are fixed. We introduce the function M(v), v=1,..., n,with M(v) = M,
ifved,, i=1,..., k+1. The following expression will be called the weight

of a diagram G:

We=(=1""T] (eih(M(U)_M(v ”, e, €N, )
int !
# iM(v)h
x Cy (61,)Cy, Gt,)[]a" (¢ ey ), (33.7)

ext

where a® = a* if the leg (v, p) is right-hand, and a’ = a if the leg (v, p)
is left-hand.

REMARK. We shall consider a diagram G whose internal edge (vp, v'q)
lies entirely in the interval I, for some ! . Expression (3.3.7) shows that if
N,, # Ny, then W, =0, since M(v) = M(v') and (e, > ey, ) =0. This
will help us to cancel a large number of diagrams.

A subset of vertices I, of the diagram G will be called the /th group of
vertices. Suppose that 4, (B,) is a set of diagram edges (both internal and
external) going out to the right (left) from the /th group of vertices without
pairing the two vertices of this group.

We fix a sector A (M,,.... M, ), a = (a,..., ), of the mode
{N,,}. For each [ =1,...,k+1, welet N, denote some fixed set of
modes, N, ={e,,...,¢}. Let G(N,,..., N, ) be the set of diagrams for

which the modes of legs 4, are exactly N,.

LEMMA 3.7. (1) There exists no more than one diagram G €

G(N,, ..., N,,,) with nonzero weight W,.

(2) For each such diagram, the sets N, contain different modes.

ProoF ofF LEMMA 3.7. It is obvious that the assertions of this lemma

follow from
#, iMh

{a#(eiMheNl), a"(e™"e, )} =0, (3.3.8)
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where {-, -} is the anticommutator, if N, # N, , or else from

@*(e™e,))’ =0. (3.3.9)

If I, = {i;,...., i}, then we use the notation VI[ = V(ti,)"'V(tiq)'
Further, we fix some /, 1</<k+1.

We represent VI, as a sum over Wick monomials (Friedrichs diagrams).
It follows from (3.3.8) and (3.3.9) that there exists only one nonzero di-
agram for which the modes of right-hand free legs coincide with N,, the
modes being different. Assertions (1) and (2) of Lemma 3.7 follow from these
remarks. B

We now return to the estimate for expression (3.3.6). Since all the sums in
it, except the sums over modes, are finite, we may transpose the summation
over modes and the integration over B, to the left. It follows from (3.3.4)
and B_ C [0, 1)" that to prove Theorem 3.3 it is sufficient to establish,
uniformly in modes, the following inequality

R

[t S5 |

<C"|t-s, (3.3.10)

where C is independent of n, s, ¢, modes, and W, is defined by an ex-
pression of the form (3.3.7) in which all C N, (dt,) have been removed.

Further, suppose that the collection of modes is fixed. We can select sets
N, ..., Ny, inno more than (2™==)" ways, where m_, is the maximum
number of creation operators in Wick monomials that enter into V. Hence,
we may assume that N, ..., N, are also fixed. It follows from Lemma
3.7 that each admissible diagram G can be brought into correspondence with
a connected diagram G having k + 1 vertices M, ..., M, , and no more
than m_, n edges.

The weight Wg of the diagram G is specified by

’Wa _ Hi (eih(M(’U)—M(U ))eNup , eN/, )‘ , (331 1)
int v
with ~
W5l < CP W, (3.3.12)
where C, is a constant.

For all M, N € Z", the following estimate holds

: C
dk e (Ke, (k)e™"¥| ¢ — =
VR w(R)ey ) (1 + 1))/

where C is independent of N, M, ¢. In this case, taking account of (3.3.11)
and (3.3.13), we obtain

Wl < (const)” T

int

< (3.3.13)

1

3.3.14
i (3.3.14

72’
M, Y

(v,p) (v’,q)|
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where /(v, p) means that the leg (v, p) belongs to A
Taking account of the above, we have

1
< (const)” Z 11 ", 7

My, im M gy = My o)l
(3.3.15)

We fix M| as an integer belonging to the segment [s, ¢].
LeEMMA 3.8. The following estimate holds

1 00 C R
Z Z HW} M, WS<Z(:WWJ :

k=1M,,.. M, int (w,p) (v',q)l =—00
(3.3.16)

This result can be obtained by applying the standard cluster expansion
techniques (see [MM3]) to the left-hand side of (3.3.16).

Summing over M, vyields the multiplier | — s| in the estimate (3.3.10).
The proof of Theorem 3.3 is complete. W

§3.4. Asymptotic completeness

We can now give informal proofs of Theorems 3.5 and 3.6, obtaining the
asymptotic completeness of the Hamiltonian Hy + ¢V for small ¢ in the
case when the interaction V' polarizes vacuum but is of even parity

ProoF oF THEOREM 3.5. We shall prove that for y = a*( f)a’( 50,
f; € CO(T"), the limit

0
lmZﬂE/-n diydt, V) V) v (B4
%—0 +oo +o0

exists.

Let us consider the nth term of the series (3.4.1). We first prove this
assertion for diagrams belonging to L', i.e., such that they have at least one
external annihilation edge. Repeating the proof of Theorem 3.3 for these
diagrams, we shall obtain the upper bound C"¢", uniformly in .

Further, we shall treat the sum over diagrams having no external annihi-
lation edges. They possess external creation edges that give the contribution

* h—x * ] k —
[Ta" (" ™"e, ) = [ TLa"tk, e ey (k) dk,,.  (3.42)
v,p v,p

We change the variables

’ _ ! _ ! _
L=t =t —t, .., =t —t
and integrate with respect to t'1 . Observe that the limit

0
. . ! .7 i 1
L%l . dt, exp (zt1 UE,,, hk,,) — n|t1|> = —_Zu,p b(kvp) (3.4.3)
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belongs locally to L, if u > 0. Therefore we may expand (Ev, » l)(kw))°1

in modes. Integration with respect to t'1 is equivalent to moving the entire
diagram to the point ¢, = 0. Then we shall use the techniques elaborated in
the proof of Theorem 3.3. W

REMARK (ON THE THE ADIABATIC CUT-OFF). In the above, we considered
wave operators depending on two parameters: the the adiabatic cut-off pa-
rameter » and time ¢. In that case, repeated limits lim,_  lim,  _ were
investigated. It follows from Theorems 3.3-3.6 that these limits exist in the
norm or in the strong sense. The question arises of the role of adiabatic
cut-off and whether we can do without it. Note that the use of the adiabatic
cut-off is characteristic for stationary scattering theory.

Note also that if the limit s-lim,_ _ U(0, ¢) exists without cut-off, then
the limit s-lim,_ , U (”)(0, oo) also exists with adiabatic cut-off, and they are
equal. For example, this situation arises when V € & and VQ =0.

If we analyze the proofs of Theorems 3.3-3.6, we see that these theo-
rems correspond to similar assertions concerning the pertinent wave opera-
tors without the adiabatic cut-off. In that case, however, we must replace all
strong limits with weak limits. But it is not clear now how this can be used
to prove asymptotic completeness.

§3.5. The existence of a perturbed vacuum vector
within a continuous spectrum

In this and the next section, we shall show that the dynamics of the Fermi
system under consideration does not depend significantly on the chemical po-
tential y . The results of §§3.2-3.4 show that a perturbed system is unitarily
equivalent to a “shifted” free system if u > 0. This condition is essential in
proving Theorems 3.3-3.6.

Note that if x4 > 0, the point 4, = 0 of the discrete spectrum of the
operator H, = dT'(h) lies outside or on the boundary of the continuous part
of the spectrum of this operator. When the interaction ¢V is “turned on”,
it is shifted to the point 4, .

If 4 <0, then the discrete spectrum of H;, is contained within its contin-
uous spectrum. It can be verified that also in this case the discrete spectrum
does not vanish, as could be expected. For example, a similar situation arises
for the model of an interacting Fermi gas with spin when the eigenvalue lying
within the continuous spectrum vanishes as soon as the interaction (¢ # 0)
1s “turned on”.

In this section, we prove the above assertion. We use the procedure devel-
oped in §§3.2-3.4 for obtaining the estimates for diagrams. The notation of
those sections will be used.

THEOREM 3.9. Suppose that the one-particle Hamiltonian h has the form
(3.0.3), u € R, and the operator V' is of the form (3.0.4). Then for sufficiently
small ¢, the operator H, = Hy + &V has an eigenvector Q.
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Proor. According to Theorem 3.6, for sufficiently small ¢ the quantity

2

-1

27 = [lexe{ D0V T [0

n=1

is finite. On the other hand, it follows from the results of §3.3 that
z' = lim : = lim—
== (@, U0, 0~ |70, Q)

(3.5.1)

Hence the expression ' / (e”HEQ, Q) is uniformly bounded in ¢. The
lemma that follows can be proved in the same way as Theorem 3.3.

LEmMA 3.10. For a set & dense in 7, there exists a finite limit

o ( itH, o) F)
As is seen from the following general lemma, this limit exists and is finite
forany Fe % .

LEMMA 3.11. Let # be a separable Hilbert space, o, a uniformly bounded
function, a,: R — %, ie,

floyll < M < oo. (3.5.3)
For some vector set {F} dense in %, let the finite limit
thm (a,, F) (3.5.4)

exist. Then this limit exists and is finite for every F € 7 .
Hilbert space is weakly complete. Hence there exists a vector €2, such
that for all F € &,
, ( itHeQ F)
,L‘E’o ( itH, Q, Q)
We show that Q. is an eigenvector of the perturbed operator H, .

First, assuming F = Q in (3.5.5), we have (Q,, Q) =1, ie., Q, #0.
Further, for any s € R

=(Q,, F). (3.5.5)

(e'(t”)HQ F) m (e 0, e—”HﬂF)
(e"9HQ, Q) oo (e"Q, e " Q)
("Q, e 5 FY (e, Q)

(e"HQ, e " Q) (e"™Q, Q)

(@, e " F) (e"™Q,, F)

@, a) - (7,9

£’
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In other words, for any s € R, F € % the following identity holds

(elSHCQ ,F)
Q, F)= L, 3.5.6
@, F) = o g (3.5.6)
Q,, F)(e"™Q,, Q) = ("™Q,, F). (3.5.7)

Differentiating both sides of (3.5.7) with respect to s and assuming s =0,
we get

(Q,, F)(HQ,, Q) =(HQ,, F). (3.5.8)
Since (3.5.8) holds for all F €. , it follows that
HQ, =(HQ, K6 Q)Q,, (3.5.9)

ie., Q, is the eigenvector of H,. The proof of Theorem 3.8 is complete. W

£3.6. Unitary equivalence. The general case

In this section, we shall consider a further generalization of the results of
§3.1, which consists in removing the restriction on chemical potential.

THEOREM 3.12. Let the one-particle Hamiltonian h be of the form (3.0.3),
u € R, and the operator V have the form (3.0.4). Then we can find an ¢, > 0
such that for |e| < &, there exists a A, € R for which the operators H, and
H, + A,E are unitarily equivalent.

ReMARK. The results of the previous section concerning the existence of
a perturbed vacuum vector €, will form the basis for the proof of Theorem
3.12.

PrOOF. We consider the following two dynamics in the C*-algebra A(#):

T?(A) - eitHOAe—itHO ,
TfV(A) — €it(H0+EV)A€_it(HO+EV).

By Theorem 2.5, for sufficiently small ¢, there exist invertible Mgller mor-
phisms in the C*-algebra A(#)

7. (A) = slim 12 1) (4), 4 € AF).

t—xo0

Let Q, be a perturbed vacuum vector of the operator H;+eV, which exists
by Theorem 3.9. We may assume this vector to be normalized, i.e., [|Q,[| = 1.
Weset y=7, .

LEMMA 3.13. For all f € #, the following equality holds:
(va(f))Q, =0. (3.6.1)
Proor. We denote a(f) = ya(f). On one hand, we have

lim 177 (a())Q, = a()Q,. (3.6.2)
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On the other hand, due to the fact that €, is the eigenvector of the oper-
ator H, = H,+ ¢V, we obtain

1227 (@)@, = e Fa(e™ £)e" @,
=|la(e" 1)Q,|| - 0 (3.6.3)

for 1 — +oo. Indeed, let Qg") — Q, in the norm as n — oo, where Qi") is
a finite linear combination of the vectors of the form

a’(fy)-a (f,)Q, feCy (R
Let Q" - Q| < for n> N,. Then
—ith —ith n
late™™ £)Q,|| < [late™™ £)Q|| + 8111 (3.6.4)
Using the anticommutation relations, we may carry the operator a(e' f)

from left to right through the operators a*(f,), ..., a"(f,). After this, the

operator a(e"h f) will contain a finite number of summands, each having a
multiplier of the form _
"1, 1) (3.6.5)

It follows from spectral theory and the Lebesgue theorem (using the abso-
lute continuity of the spectrum of 4 ) that the expressions of the form (3.6.5)
vanish for t — oc. Due to the arbitrary choice of J > 0, this proves the
assertion of Lemma 3.13. B

Lemma 3.14 follows immediately from Lemma 3.12.

LEMMA 3.14. For any A € U(#), we have

(4Q, Q) = ((4)Q,, Q,). (3.6.6)
Define the operator U: %, — %, by
U(AQ) = y(4)Q,. (3.6.7)

The operator U preserves the norm, since
2 * * 2
14Q|" = (4°4Q, Q) = (y(4"A)Q,, Q,) = [y(A)Q|I".
Therefore, it is well defined and isometric. Since A(#) is irreducible in &,
it follows that AQ, = & , and consequently, the image of the operator U

coincides with the entire space 3‘; . Thus, the operator U is unitary.
For any A € A(#), we have

oM 1 40 = eit(HO-&-eV)y(A)Qe _ T;:V(y(A))eit(Ho-f—eV)Qs

= emfy(r?(A))Qe = e"MBUT?(A)Q = e U™

AQ.
(3.6.8)

Here we have used the intertwining property of Mgller morphisms:

eV _ 0
T, oy=7oT,
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and the fact that Q, is the eigenvector of the operator H; + ¢V with the
eigenvalue A, . It follows from (3.6.8) that

ol Ha+eV) ithd, p, itH,

="y U”, (3.6.9)

or
Hy+¢eV = U(H0+/1£)U*. (3.6.10)
The proof of Theorem 3.12 is complete. W

THEOREM 3.15. The Moller morphisms y_ defined by (3.6.2) are unitarily
representable.

Proor. For any B € 2 and the operator U in (3.6.7), the following
relation holds
y(4)BQ, = y(4y~'(B))Q, = Udy™'BQ = UAU"BQ,,
and since B is arbitrary, it follows that
y(A) = UAU". (3.6.11)

CHAPTER 4. THE WEAK COUPLING LIMIT
FOR A QUANTUM SCHRODINGER PARTICLE
INTERACTING WITH A FERMI GAS

§4.1. The weak coupling limit

Suppose that Z; = LZ(R") , v >3, A is an antisymmetric Fock space
over Zg, Com(Z;)isa C *-algebra of compact operators in Z;, A is a
C*-algebra of compact operators in % with unit, and 2, is a C*-algebra
generated by the creation-annihilation operators {a(f), a"(f), fe€ %} in
#y . The selfadjoint operator

Hy=H;®1+1® Hg, (4.1.1)

where H¢ = —A is a Laplace operator in #; and Hy = dT'(Hy) is a second
quantized Laplace operator in % , defines the free dynamics
2(4) = expl(itHy)Aexp(=itH,), A€, teR,

on the C*-algebra 2.
Suppose that wpg is a KMS-state on the algebra 2, at the inverse tem-
perature B . Consider the interaction

V=ij®V}, (4.1.2)
j=1
where p = (p,;, ..., p,) =iV is the momentum operator in #, and

M}
. x oK) * 0 (k) (k) (k) .
V=Y (£ a (1, )alr ", ) al )

N

(k) . .
f.‘l(’ EC((;O(RV), ISJ V,1S1<m1+nj,1<k<Mj, MJ<OO,

(4.1.3)
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where :-: are Wick brackets with respect to a quasifree gauge-invariant state
wy (see Chapter 1). Denote by

k . .
S ={f e CT®R"), 1<j<v, 1IN, 1<k< M)

the set of all functions appearing in the definition of V.

REMARK. The choice of V. in the special form (4.1.3) is deliberate. It
corresponds to the renormalization of the interaction Vj . If Wick brackets
in (4.1.3) are omitted, then the weak coupling limit may not exist.

We set

M =mjax(mj+nj), m. =mj_in(mj+nj).
Let Z, be the linear hull of all functions f € #; such that fe Gy (RY),
and & be the subspace in /#; generated by vectors of the form

a'(fy)--a (f)Q, f,€Z,, j=1,....k,

where Q is the vacuum vector, and f is the Fourier transform of the func-
tion f. The operator H, = H;+ ¢V, ¢ € R, is essentially selfadjoint on
Z,® %, and defines a perturbed dynamics

1;(4) = exp(itH,) Aexp(—itH), A€, teR, (4.1.4)

on A. Let A® B € A. Assuming that w(4® B) = Aw,(B) and extending
the mapping w by linearity and continuity to the entire algebra 2, we define
¥, Ag — A as follows

pA) = 48]1), Ade¥, teR (4.1.5)
In this chapter, we shall be interested in proving the existence of the weak
coupling limit

g%ym@=qu A€, 520, (4.1.6)

elr=s
where T is a quantum dynamical semigroup on 2. With this aim in mind,
it is sufficient to prove the existence of the limit on the right-hand side of
(4.1.6) for all 4 € ng, 0<s<s,, where 2(2 C 2 is a dense subalgebra

and 5, >0.

§4.2. The existence of the weak coupling limit

Suppose that Qig’r is the subalgebra in 2 generated by the unit oper-

ator and projections of the form (g, -)f, f, g€ CS"(R") , suppf €S,,
supp g € S,, where S, is the sphere of radius r in R”. Set

o= .

r20
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Define the correlation functions {g;;, 1<,/ < v} by
8;;(8) = wg(V; V), (4.2.1)
Vi s = exp(isHg)V} exp(—isHp). (4.2.2)

It follows from the definition of the operator V, and the properties of the
KMS-state W that

(1)
|g;;(s)] < const(1 +|s[)™""m" (4.2.3)
(2) if a; '—fo g;;(s)ds, then
Sa,; =%a;, 1<i,j<y; (4.2.4)
(3) the matrix {Re;;, 1<14,j< v} is nonnegative definite over C”.
Suppose that Q = {Ql i 1 < i, j < v} is the positive square root of the
matrix {R(e;; +a;)}. For u= (u;,...,u,)€ R and p = (p,,...,D,),
we set
v v
= Z%aijpipj’ (u, Qp) = Z Qijuipj’ u _Zu (4.2.5)
i,j=1 i,j=1

THEOREM 4.1. There is a quantum dynamical semigroup {T,, s > 0} on
™Ag such that for all A€ mg there exists s, > 0 and
. €
lim 7}(4) = T,(4),
elt=s
uniformly in s € [0,5,]. If A € ng’,, then s, depends only on r. The
generator L of the semigroup T, is of the form (for A € QLg):
~ 1 .
LA)=-Y {—§R(ak,+a1k)[pk, [p, , Al] + iSay,pp; A]}, (4.2.6)

2
k,l=1

and the semigroup itself acts on g as follows
T,(A) = (2Pt)_"/2/ exp(—u 2120 )") exp{itP + i(u, Qp)}
RV

x Aexp{—itP —i(u, Qp)}du.

PrOOF. We shall only outline the main steps in the proof of the theorem.
For A€ th ,» we may consider the following converging series for yf(A)

(4.2.7)

A+Zz£ /wﬂ [Vt,[ zn_,’---[th>A®1]---]])dt1"‘dtn’

(4.2.8)
where

V, = exp(isH,)V exp(—isH,) Z
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The framework for the proof of Theorem 4.1 is provided by the following
estimate for the nth term I ,(A4) of the series (4.2.8)

17, < C"lel" 11" P4, (4.2.9)
where [-] denotes the integer part of a number, the constant C > 0 is
independent of n, and C(4) > 0 depends on 4.

The main difficulty in obtaining (4.2.9) consists in estimating, after the
removal of commutants, expressions of the form
wg(V, , -V, ,)dt, - dt

’I iy Ly ’tl

(4.2.10)

n?
AI

where m: (1,...,n) — (i|,...,i ») 18 a permutation. Assigning each V; "
to the vertex numbered i, we may represent the integrand as a sum of d1a-
grams, which will be referred to as admissible. Each edge r;; of an admissible
diagram will make a multiplicative contribution to the weight of the diagram:

iyt = 1)) = 0,(a"(1,)a"(g, )

where f, g € . Note that several edges may connect two vertices. It is
obvious that all , ; € L(R). Admissible diagrams do not possess loops. This
can be seen directly from the properties of Wick brackets. There are many
unconnected diagrams among admissible diagrams.

The proof of estimate (4.2.9) is simple for the case in which me .. =
myin = 2 if we add edges to make each admissible diagram connected and
then use Lemma 2.7 (see [Do2]).

The case m_, > 2 is much more difficult and requires a combination of
procedures for obtaining the estimates described in Chapters 2 and 3. In this
case, it is necessary to make fermion cancellations. We shall treat that case
in a separate paper. W

On the algebra 2., there exists a state p, invariant with respect to arbi-
trary quantum dynamical semigroups T, (since T(I)=1):

polal+B)=a, acC, B € Com(%). (4.2.11)

THEOREM 4.2. [f the operator V is nonzero, then P, IS a unique invariant
state for the semigroup T,.

REMARK. Theorem 4.1 holds for interactions V of the form
V=Ef,-(p,)®Vj, (4.2.12)
where V is of the form (4.1.3) and f € C°°(R ) are bounded from above
and from below by a polynomial.

§4.3. Discussion

One of the first examples of deduction of the kinetic equation by using
the weak coupling limit is due to Davies [D3]. In the paper referred to, the
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Hilbert space of the system was taken to be finite-dimensional:

N
#=c”,
and the interaction V was of the form
V=0&®, (4.3.1)
where Q is a symmetric matrix of size N x N and
. a'(f)+a
o=ip(fel), o) =2L1EeU) (432)
V2
in which case the functions f, and f, satisfy the supplementary condition
€ f, £)=0 (4.3.3)

for all ¢t € R. Condition (4.3.3) holds when the supports of the Fourier
transforms of the functions f, and f, do not intersect. It follows that

wy(®) =0,
i.e., ® is of the form (4.1.2):
Q=1i:9(/))e(fy):-

In the case under consideration, when interaction with respect to the reser-
voir @ is quadratic and condition (4.3.3) is fulfilled, we can prove the exis-
tence of a quantum dynamical semigroup without using a special procedure
for obtaining the estimates of the sums of a large number of diagrams (see
[D3]). The same remark can also be made about interactions of the first
degree.
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