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Probabilistic methods for Jackson
networks
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Abstract

We construct explicitly Lyapounov functions for Markovian Jack-
son networks. Two direct corollaries are obtained : first a proof of
the necessary and sufficient conditions for ergodicity, without using
the famous Jackson’s product form ; secondly, an exponential con-
vergence rate to the stationary distribution. We also consider small
perturbations of the transition probabilities (yielding thus non Jackson
networks) and prove that the corresponding stationary distribution is
an analytic function of these perturbations.
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INTRODUCTION

Jackson networks are now classical models for communication networks.
Jackson [1] obtained the famous product form for their stationary proba-
bilities. Sufficient ergodicity conditions follow from this product forme. The
proof of the necessity of these conditions was obtained by many authors {2,
3, 4]. From the general theory of countable Markov chains, it follows that the
n-step transition probabilities converge to the stationary probabilities when
n — oo. But not much is known about the rate of this convergence. The
only result is exponential convergence under some smallness assumption in
(5]-

Here we the consider the basic Markovian Jackson networks, i.e. with Poisson
arrivals and exponential service times. In this case, they are equivalent to a
class of random walks in ZY = {(z1,...,zn) : zi 2 0 are integers}, where N
is the number of nodes in the network. In this paper, and this is the main
result, we provide an explicit construction of Lyapounov functions, which
appear to be piecewise linear.

Using the results of {7], we get a corollary showing exponential convergence
for any ergodic Jackson network. Also we introduce a class of networks which
are not of Jackson’s type, but are weak perturbations of Jackson networks.
Typical examples are e.g. weak dependence between nodes, simultaneous
arrivals, etc... We prove that the stationary probabilities, which cannot be
given by a product-form, nonetheless depend analytically on the parameters.
In particular, mutatis mutandis, these networks have ergodicity conditions
still obtained directly from the Jackson’s system of linear equations for the
mean number of visits to the various nodes.

Let us emphasize that we never use Jackson’s product form in the proofs.

1 Ergodicity conditions for Jackson networks

Here we recall some well-known facts and prove a useful geometric lemma.
We consider an open Jackson network with N nodes restricting ourselves here
to the simplest assumptions : independent Poisson inputs with parameter
A; > 0 at any node i, exponential service times with parameters p; > 0 and
FIFO service discipline. After a customer completes service at the i-th node,
he is immediately transferred with probability p;; to the end of the queue at
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node j, j =1,...,, N and, with probability

N
Pio=1=) pi,
j=1

he leaves the network. It will be convenient (and we shall do it, although it
be not necessary) to assume that p; = 0, for all 7.

In other words, we consider a continuous time random walk L on ZV with
transition intensities Aop, from the state a = (a?, ..., &™) to the state ,H-t—- (8,

Boi =X, il f-a=e,

Ao = { Hio = M Pios ffﬂ-a=—e.~
Wi; = Wi pij , 1fﬁ—a=—e,-+ej, (11)

1<i,j<N.

Here ¢; is the vector (0,...,0,1,0,...,0), with i-th coordinate equal to 1. It is
convenient to denote the zero vector by e;. We recall now Jackson’s equa-
tions. Assuming a stationary regime, we denote by v; “the mean number
of customers” visiting node j and coming from the outside world or from
the other nodes during a unit time interval. Using the law of large numbers
Jackson wrote the following system of equations (we call it Jackson’s system)’

N
v; =/\J'+ZI/,' Pii » J=1,..,N. (1.2)

i=1
Let us note that these equations can be solved by the following iteration
scheme

o0

N
v = /\j + Z Z/\i ff) ) (13)

k=1 i=1
where

(k)
(pij ) = Pk ’ P= (p!‘j)l',j=0,1,.‘.,N7

and Doi = 0, l?é 0, Poo = 1.
The series on the right-hand side of (1.3) converges if

i <ca - e, (1.4)

ey B,
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for some ¢ > 0, C > 0.
For this it is necessary and sufficient to assume the classical

Condition (A): Starting from any state, we reach 0 with a positive prob-
ability (a.s.) in the Markov chain with N + 1 states 0,1,..., N, and defined
by the stochastic matriz P.

Thus we can rewrite (1.3) as

N
v; = /\j-l-z:/\.' m?j s

i=1
where my; is the mean number of hittings of j starting from i in this finite-
state Markov chain. Thus it is immediate to see that the solution of (1.2) is

unique. The following well-known theorem holds :

Theorem 1.1 (Jackson). The network is ergodic iff
v; <pj forall j=1,..,N.

Below we give a new proof of this theorem by means of a geometrical ap-
proach, which will be useful in the rest of the study. Later on, we will use
several results for discrete time Markov chains, borrowed from [7]. We note
that all of them could be easily rewritten for the continuous time case. To
avoid this rewriting, we introduce the following discrete time random walk
Lin Zf. Its transition probabilities are taken to be

Pap = Wa /\ag s (1.5)

for some constants w, satisfying
0 < wy < (Z )\Qg)_l .
B

E.g., if we choose

Waq = (Z /\aﬁ)—l y

8

IPore
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we get the natural and standard imbedded chain. In fact, it will be more
convenient to choose

we = w < min O Xas)t. (1.6)
B

It is well known that L is ergodic if and only if L is, and that the correspond-
ing stationary distributions 7 and # are the same :

To = Tq (1.7

We want to recall now some basic definitions from [7].
Consider the discrete time homogeneous Markov chain L, which is assumed to
be irreducible and aperiodic unless otherwise stated. The set of states is Z’_:_’.

Let pgkg be the k-step transition probabilitieson L, M*(a) = (M¥(a), ..., Mf(a))
be the vector of the mean jumps from the point « in k steps,

M*(a) = ;w — a)pl.

For the sake of brevity, we shall write pf,lg = pag and M*(a) = M(a).

For any A C {1,2,..., N}, we define the face B* of Rf = {(r1,...,rn) : ri 2 0 real}
by BN = {(r1,..,rn) i1 >0, 1€ A; 7y =0, 1 € A}

It is sufficient for our purpose to consider random walks satisfying the fol-
lowing conditions, which are stronger than in {7] :

o boundedness of the jumps :

Pap =0, for [a—-p|>1,
where

lal = miax[a.-l , a=(ag,...,an);
e homogeneity condition : for any A and for any a € BAN Zf_’,

Pop = Pata,f+a »
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foré.llaEBAﬂZf, ﬂGZf.

Obviously the random walk L, which is equivalent to the Jackson network
under study, does meet these conditions.

We define now the first vector field on RY, which is taken to be constant in
any B”" and equal to

MAEM(Q),QGBA.

For the Markov chain L, we have the following crucial property

My=fo+>_ fi, (1.8)
ien
where, for : =0, 1,...N,
N
fi=w) pij(—ei+e5). (1.9)
i=0

So f; represents the contribution of the transition from the i-th node (includ-
ing the virtual 0-node).

It is clear that the 2N mean jump vectors M, are the vertices of a paral-
lelepiped which we denote by []. Its initial point can be taken fo and the
edges drawn from this point are f,..., fx. This parallelepiped can be degen-
erate if the vectors fi, ..., fv are linearly dependent. We shall use below the
following combinatorial criterion of ergodicity, equivalent to Jackson’s one.

Lemma 1.2 Jackson’s network is ergodic iff [] is not degenerate and the
point 0 € RN is one of its interior points. Moreover, if the origin does not
belong to [1, then this chain is transient.

Proof ; Let us consider the following system of equations, with respect to

€15 45 €Ny

fotea fit..ten fn=0. (1.10)

Note that [] is not degenerate iff this system is not degenerate. In this case
the system (1.10) has a unique solution and 0 is an interior point of [] iff
0<eg<l,fori=1,..,N.

Inserting (1.1.), (1.9) into (1.10), we get
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N N N N
0=fo+ D & fi=2 Xiej+D ey pipi(—cite;)=
i=1 =1 ;=0

i=1

N N N
= Z/\J e; + Zfi l‘i(_ei + Z Dij ej) =
I=1 =1

=0

N N N N
=D A& =D €ipieit Y € pi Y pije
j=1 =1 3=0

=1

N
(Aj — €& mi + ) & pi pij)e;

i=1

il
<

M=

7

which coincides with (1.2) for ¢; = p; = ﬁl .

Thus, when 0 is an interior point of [T and [] is not degenerate, ergodicity
follows from Jackson’s explicit formulae for the stationary probabilities but
in the nert sections we prove it without using Jackson’s results.

Let now 0 lie on the boundary of [] (this includes the case of a degenerate [J,
when [] coincides with its boundary). Assume first that [] is not degenerate.
Then there exists a hyperplane £ of dimension N —1 in RV, such that 0 € £
and [] belongs to the closure of one of the two half-spaces defined by L.
Denote this closure by £t and consider the straight line [, passing through
0 and perpendicular to £. Let z be the coordinate on ! which is positive on

"L*. For any point a € RY, let f(e) be the value of the z-coordinate of the

orthogonal projection of a onto I. But since all the M) ’s belong to £, it
follows that

Zpaﬂf(ﬁ) ~ f(a) 20, f(a) > 0 for an infinite number of a € Zf_’.
B8

Consider the sequence of random variables &, ¢1, ... constituting the chain L,
and the corresponding sequence f(&). Let r be the time of first visit of ¢, to
the set {a: f(a) <0} and 5(t) = f(éar). So we have

E(na/&, . bo) =1 20,
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It is then well-known that ET = oo, which proves the non-ergodicity. We
refer the reader to lemma 1.4 and theorem 1.7 of [7] and to more general
results in [10]. For a degenerate [], the proof is the same and, with regard
to the transience, we have

YsPasf(B) — fa) 2 €, f(a) > 0 for an infinite number of a € zy,

for some € > 0. Then the proof follows by lemma 1.3 or theorem 1.6 of [7].

2 Main results

Theorem 2.1 Let L be a Jackson network such that 0 lies inside [] and 135,%

its time-t transition probabilities. Then there exist constants C(a) > 0 and
x > 0, such that, for any a, B,t,

7o — B3 < Cla)e™ .

Let us now fix some Jackson network with transition intensities Aqp. In ad-
dition to the Jacksonian jumps of this network, we also permit any jump
a — f3 satisfying boundedness and homogeneity conditions, but the intensi-
ties vog of these additional jumps are small, in some sense to be made precise

later and in particular in the following

Theorem 2.2 If a fired Jackson network with intensities Ayp is such that 0
lies inside [, then there exists vo > 0 such that, for

Vaopg < Vo

the resulting network (which is not necessarily Jacksonian) has stationary
probabilities analytically depending on vag. Moreover, this analytic family is
in fact an analytic Lyapounov family (see section { for the definition).

Remark 1 In particular, one can expand the stationary probabilities 7o as
a convergent series in vog. For such perturbed Markov chains, we also have

an ezxponential convergence to the stationary state.

Remark 2 If 0 lies inside [], ergodicity follows from Theorem 2.1. Thus,
as it was stated, we proved ergodicity without using Jackson’s product form.
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3 Geometric construction

Let us recall that [] is the convex hull of the points M, (the ends of the
vectors My having their initial point at 0).
Let a be a fixed point of RN. We define

N
I’=F“={a+¥ Bi fi: Bi 2 0},

so that I' represents a multidimensional cone (with vertex a) generated by
the vectors fi. It will be convenient to put

Fa={a+) Bifi: fi20},AC{L,.,N}.

1EA
Thus
[* = ?1,....N)
and we define the surface I’ of T by

Whenever a = fo, we shall simply write T, Ty, etc...

Sc‘aling : Let us denote by al', al', al'y, a > 1, the scaled geometrical
objects respectively, with vertex aa.

Lemma 3.1 When 0 lies inside [], the set
RY n(al)
s compact for any o > 1.

Proof : Let us first note that, if it is compact for some a, then it is compact
for any a. Hence we can choose a in a convenient way, e.g. putting

azfo.

We rll\?w remark Fhat the ray fo+B:if;, 0 < fB; < oo, intersects the face z; = 0
of.RJr , as f; has its e;-component negative and the others are positive. From
this, the announced compactness is readily seen. For instance, we can rewrite

RS U et T e b

S
T X R T T L




=1

N N
fo+ Y Bifi=w) Ciei, (3.1)
=1
with
N
Ci=X +) aipi—aj,
=1
after having set
o = pj Bj - i
Choosing a ray a; =tri, i 20, t 2 0, we see that its intersection with R
is an interval of finite length, since

icj =N AT (= po) — 2ol = 2N — P

and the coefficient of t is negative.

Let us now consider some I, with | A| = N — 1. This def)ivne':s an afline
hyperplane (of dimension N — 1) in RN, which subdivides R” into 2 half-
spaces '}, T';. We denote by [’} the half-space containing r.

Lemma 3.2 Under the conditions of lemma 3.1, let us consider an arbitrary
Ty with |A]= N — 1. Then any vector Ma:, with

NEN, (3.2)
which has its initial point in Ty, lies in ri.

Proof : Let us first show that M, .~} has this property for all T's, such
that | A | = N — 1. For this, choose a = —M{l,...:z\(}- Let. us note .that 0ell
iff 0 € (=°[1). Then the vector M(,..N}s with initial pox'nt a (which l?elongs
to all T'x simultaneously), has 0 as its final point and is thus contained in

ry.

Let us take now e.g. A = {2,..., N} and any A’ such that 1 € A (?hoosing
again @ = —M{,..N} = —fo— E fi— Z fi, we see that the point
H i€t i#0,i¢A
b=a+ Y. fi
i#£0,ign!
belongs to 'y and b+ Ma =0 € rf.
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Lemma 3.3 If a lies strictly inside RY then TS , | A| = N — 1, has the
property : .
FaNBN =0, forAN CA,

where B denotes the closure of B.

Proof: Let again A = {2,..., N}, then

N
A={a+d B fi}.

1=2
But the vector
N N
a+z ﬂjfj’—‘zci €,
1=2 i=1

since C| is strictly positive, cannot belong to the region B*', where the first
coordinate is zero.

Let us introduce the following function, with domain Rf,

fizo fo=q, for z€al®. (3.3)

This “piecewise linear” function, obtained by scaling, is our main Lyapounov
function, as will be shown in section 5.
Y

4 Analytic Lyapounov families

Here we give a compact reformulation of some results in [7] which are nec-
essary to prove the main results. Let us consider a family of Markov chains
{L"}, v € D, where D is an interval of the real axis containing 0, with the
same state space S. The matrix P, = (p;;(1,v)); jes, the elements of which
are transition probabilities, can be considered as a bounded linear operator
in the Banach space {1(S). Let us assume that P, is analytic in v, as a func-
tion in D with values in the Banach algebra of bounded operators in /;(S5).
This means that P, can be expanded in Taylor series, as

P,=3% Pv, (4.1)
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where the P, ‘s are bounded linear operators satisfying

| Pl < Ca™, (4.2)

for some C, a > 0, i.e. the series is convergent for |v| sufficiently small.
Under these conditions, we say that we have an analytic family of Markov
chains.

Definition 1 We say that an analytic family is an analytic Lyapounov fam-
ily if, in addition, the following conditions are fulfilled : there ezist non-
negative functions f* :1 — fY, and strictly positive integer valued functions

k¥ :i— kY, defined fori€ S, v €D, such that

1) sup k! =b< oo}
i€SweD
(ii) the series

2 exp (=b ff),
i€S
defined for any b, > 0, converges uniformly in v € D ;
(iii)  there exist d > 0 such that

pij(1,v) =0, for all v € D, whenever |f} — f/| > d;
(iv) there exist n > 0 and § > 0 such that, for any ¢ € S and any
. def (.
j €Vi={j:sup pi(l,v) >0},
veD
p]-;(n,O) >4 y
where p;; (n,v) are the n-step transition functions for the Markov chain L” ;

(v) for all v € D, i € S — B, where B is a finite subset of S, and for
some € > 0,

> bk ) ff = ff < —€.
j€s
By Foster’s criterion, L, is ergodic for any v € D.

We say that a Markov chain L = L° is an analytic Lyapounov Markov chain,
if the family L” = L° is analytic Lyapounov.
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Remark 3 In the rest of the paper, we shall essentially use f! = f;.

Theorem 4.1 If L¥ is an analytic Lyapounov family, then there exists vy > 0,
such that the following results hold :

1. there exist Cq, 8, > 0, such that
wi(v) < Cyexp (=62 1), (4.3)
foralli€ S, veD;,

2. there ezist constants o4, Ca, 83 > 0, such that

2 Ipij(n,v) — m; (v)| < C3 ezp (—bsn)

J€S
forallveD,ie€S n>0;f;
9. the stationary probabilities m;(v) are analytic in v, for v} < v and all

t€S.

See theorem 4.2 and lemmas 4.3, 4.6 in [7].

5 Lyapounov functions

In this construction, we use the Lyapounov function (3.3), taking k. = &
sufficiently large. In the rest of this section, the main lemmas and theorems
are quoted without proof.

Theorem 5.1 Let us consider a Jackson network such that 0 € [], and
choose the function f, as in (3.3), with the point a lying inside Rf. Then,
for this Lyapounov function, the Jackson network under consideration is an
analytic Lyapounov Markov chain.

Lemma 5.2 Let us fiz ¢ > 0 sufficiently small. There ezists pg > 0 such
that, for any = € Zf_’ with

p= p(x,aRl_:_,) > Po
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and for any k such that
po < kd =k S P,

we have

Yo fy - fo < e (5.1)

Lemma 5.3 Again choose ¢ > 0 sufficiently small and + = 1,...,n. Then
there exist p; > 0 such that, for any z € ZQ’ with

- A .
p = max p(z, BY) > pi, (5.2)
and for any k such that
pi<kd=k<p,

we have
ZP;(:’:,) fy_fr < —e€. (5-3)
v
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