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Abstra
t. In the �rst part of this paper we give a short review of the hierar
hy

of sto
hasti
 models, related to physi
al 
hemistry. In the basement of this hi-

erar
hy there are two models � sto
hasti
 
hemi
al kineti
s and the Ka
 model

for Boltzman equation. Classi
al 
hemi
al kineti
s and 
hemi
al thermodynam-

i
s are obtained as some s
aling limits in the models, introdu
ed below. In the

se
ond part of this paper we spe
ify some simple 
lass of open 
hemi
al rea
-

tion systems, where one 
an still prove the existen
e of attra
ting �xed points.

For example, Mi
haelis �Menten kineti
s belongs to this 
lass. At the end we

present a simplest possible model of the biologi
al network. It is a network of

networks (of 
losed 
hemi
al rea
tion systems, 
alled 
ompartments), so that

the only sour
e of nonreversibility is the matter ex
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1. Introdu
tion

Relation between the existing (mathemati
al) physi
al theory and future

mathemati
al biology seems to be very intimate. For example, equilibrium is

a 
ommon state in physi
s but in biology equilibrium means death. Biology

should be deeply dynami
al but this goal seems unrea
hable in full extent: even

in simplest physi
al situations the time 
onsuming 
omplexity of any study of

lo
al dynami
s is out of the present state of art. Thus the only possibility would

be to 
onsider simpler dynami
al models (mean �eld et
.) but to go farther in

their stru
ture. The obvious �rst step should have been related to 
hemi
al
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kineti
s and 
hemi
al thermodynami
s. Here we present a review of these �rst

results and dis
uss what should be the se
ond step.

In the �rst part of this paper we give a short review (in more general terms

than in [15℄) of the hierar
hy of sto
hasti
 models, related to physi
al 
hemistry.

In the basement of this hierar
hy there are two models � sto
hasti
 
hemi
al

kineti
s and the Ka
 model for Boltzman equation. Classi
al 
hemi
al kineti
s

and 
hemi
al thermodynami
s are obtained as some s
aling limits in the models,

introdu
ed below.

If some physi
al 
onditions, as reversibility, are assumed for a 
losed (without

matter ex
hange) system, then we have su�
iently simple behaviour: one 
an

prove 
onvergen
e to a �xed point. However, in many models of physi
al 
hem-

istry and biology, no reversibility 
ondition is assumed, and the behaviour 
an

be as 
ompli
ated as one 
an imagine. Here we have already some gap between

physi
s and biology, and it is ne
essary to �ll in this gap. In the se
ond part

of this paper we spe
ify some simple 
lass of open 
hemi
al rea
tion systems,

where one 
an still prove the existen
e of attra
ting �xed points. For example,

Mi
haelis �Menten kineti
s belongs to this 
lass. At the end we present a sim-

plest possible model of the biologi
al network. It is a network of networks (of


losed 
hemi
al rea
tion systems, 
alled 
ompartments), so that the only sour
e

of nonreversibility is the matter ex
hange (transport) with the environment and

between the 
ompartments.

2. Mi
rodynami
s

Any mole
ule of mass m 
an be 
hara
terized by translational degrees of

freedom (velo
ity v 2 R

3

, 
oordinate x 2 R

3

) and internal, or 
hemi
al (for

example, rotational and vibrational) degrees of freedom. Internal degrees of

freedom in
lude the type j = 1; : : : ; J of the mole
ule and internal energy fun
-

tionals K

j

(z

j

); z

j

2 K

j

, in the spa
e K

j

of internal degrees of freedom. It is

often assumed, see [11℄, that the total energy of the mole
ule i is

E

i

= T

i

+K

j

(z

j;i

):

We 
onsider here the simplest 
hoi
e when K

j

is the �xed nonnegative number,

depending only on j. It 
an be interpreted as the energy of some 
hemi
al

bonds.

We 
onsider the setX of 
ountable lo
ally �nite 
on�gurationsX=fx

i

; v

i

; j

i

g

of parti
les (mole
ules) in R

3

, where ea
h parti
le i has a 
oordinate x

i

, velo
ity

v

i

and type j

i

. Denote by M the system of all probability measures on X with

the following properties:

� Coordinates of these parti
les are distributed as the homogeneous Poisson

point �eld of parti
les on R

3

with some density 
.
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� The ve
tors (v

i

; j

i

) are independent of the spa
e 
oordinates and of the

other parti
les. The velo
ity v of a parti
le is assumed to be uniformly

distributed on the sphere with the radius de�ned by the kineti
 energy

T = m(v

2

1

+v

2

2

+v

2

3

)=2 of the parti
le, and the pairs (j

i

; T

i

) are distributed

via some 
ommon density p(j; T );

X

j

Z

p(j; T ) dT = 1:

Our �rst goal will be to de�ne random dynami
s on X (or deterministi


dynami
s on M). It is de�ned by a probability spa
e (X

0;1

; �), where � =

�

0;1

is a probability measure on the set X

0;1

of 
ountable arrays X

0;1

(t) =

fx

i

(t); v

i

(t); j

i

(t)g of traje
tories x

i

(t); v

i

(t); j

i

(t) on intervals I

i

= (�

i

; �

i

), where

0 � �

i

< �

i

� 1. The measure � belongs to the set of measures M

0;1

on

X

0;1

(t), de�ned by the following properties:

� If for any �xed 0 � t < 1 we denote by �(t) the measure indu
ed by �

on X, then �(t) 2M.

� The traje
tories x

i

(t); v

i

(t); j

i

(t) are independent, ea
h of them is a Markov

pro
ess (not ne
essary time homogeneous). This pro
ess is de�ned by ini-

tial measure �(0) on X, by birth and death rates, de�ning time moments

�

i

; �

i

, and by transition probabilities at time t, independent of the mo-

tion of individual parti
les but depending on the 
on
entration densities




t

(j; T ) at time t.

� The evolution of the pair (j; T ) for the individual parti
le in-between the

birth and death moments is de�ned by the following Kolmogorov equa-

tions, whi
h 
ontrol the one-parti
le pro
ess

�p

t

(j

1

; T

1

)

�t

=

X

j

Z

(P (t; j

1

; T

1

jj; T ) p

t

(j; T )�P (t; j; T jj

1

; T

1

)p

t

(j

1

; T

1

)) dT

(2.1)

de�ning Markov pro
ess with distributions p

t

(j; T ). The probability kernel

P depends however on p

t

(j; T ) itself, we shall make it pre
ise below.

The dynami
s we will des
ribe here is based on some earlier mathemati
al

models and 
entral dogmas of physi
al 
hemistry. The simplest way to rigorously

introdu
e the measure � is by the limit of �nite volume random dynami
s. Initial


onditions for this dynami
s are as follows: at time 0 some number n

(�)

(0)

of mole
ules are thrown uniformly in the 
ube �, their parameters (j; T ) are

independent and have some 
ommon density p

0

(j; T ), not depending on �. Let

n

j

(t) = n

(�)

j

(t) be the number of type j mole
ules at time t.
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Input-Output (I/O) pro
esses

Heuristi
ally, our time s
ale is su
h that for the unit of time ea
h mole
ule

does O(1) transitions. Then for any ma
roquantity q of substan
e its O(q)

part may 
hange. One should 
hoose time s
ales for input-output pro
esses


orrespondingly.

The (output) rate of the jumps n

j

! n

j

� 1 is denoted by �

(0)

j

, that is with

this rate a mole
ule of type j is 
hosen randomly and deleted from �. Similarly,

the (input) rate of the jumps n

j

! n

j

+1 is denoted by �

(i)

j

, that is a mole
ule

of type j is put uniformly in � with this rate. Dependen
e of both rates on

the 
on
entrations 
an be quite di�erent. To get limiting I/O pro
ess after

(
anoni
al) s
aling one 
an assume that

�

(0)

j

= f

(0)

j

�; �

(i)

j

= f

(i)

j

�; (2.2)

where f

j

; g

j

> 0 are some fun
tions of all 


(�)

1

; : : : ; 


(�)

J

, 


(�)

j

= n

j

=� are the


on
entrations. However, mostly we restri
t ourselves to the 
ase when f

j

are

fun
tions of 


j

only. In other words, an individual type j mole
ule leaves the

volume with rate f

(0)

j

(


(�)

j

)=


(�)

j

. Denote

f

j

= f

(i)

j

� f

(0)

j

: (2.3)

Sto
hasti
 
hemi
al kineti
s

The hierar
hy presented here depends on what parameters of a mole
ule

are taken into a

ount. In sto
hasti
 
hemi
al kineti
s only type is taken into

a

ount. The state of the system is given by the ve
tor (n

1

; : : : ; n

J

). There are

also R rea
tion types and the rea
tion of the type r = 1; : : : ; R, 
an be written

as

X

j

�

jr

M

j

= 0

where we denote by M

j

a j type mole
ule, and the stoihiometri
 
oe�
ients

�

jr

> 0 for the produ
ts and �

jr

< 0 for the substrates. One event of type

r rea
tion 
orresponds to the jump n

j

! n

j

+ �

jr

; j = 1; : : : ; J: Classi
al

polynomial expressions (most 
ommonly used)

�

r

= A

r

Y

j:�

jr

<0

n

��

jr

j

for the rates of these jumps de�ne a 
ontinuous time Markov pro
ess, a kind of

random walk in Z

J

+

. This dependen
e 
an be heuristi
ally dedu
ed from lo
al

mi
rodynami
s. However, polynomial dependen
e is not the only possibility,

see [31℄. Moreover, there 
an be various s
alings for these rates. The s
aling

A

r

= a

r

�




r

+1

; 


r

=

X

j:�

jr

<0

�

jr
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where a

r

are some 
onstants and � is some large parameter, is 
alled 
anoni
al

be
ause the 
lassi
al 
hemi
al kineti
s equations

d


j

(t)

dt

=

X

r

R

j;r

(~
(t)) (2.4)

for the densities




j

(t) = lim

�!1

�

�1

n

(�)

j

(t)

follow in the large � limit, with some polynomials R

j;r

(see below and [17℄).

Problem. It is important to give (at least heuristi
) lo
al probabilisti
 models

to explain other than polynomial dependen
e and s
alings for the rates. For

example for arbitrary homogeneous fun
tions as in [31℄.

It is assumed that at time t = 0 as �!1; �

�1

n

(�)

(0) �! 
(0):

Chronologi
ally, the �rst paper in sto
hasti
 
hemi
al kineti
s was by Leon-

tovi
h [21℄, whi
h appeared from dis
ussions with A.N. Kolmogorov. Other

referen
es see in [24℄. In 70s sto
hasti
 
hemi
al kineti
s for small R; J was

studied intensively, see reviews [9,22℄. At the same time the general te
hniques

to get limiting equations (2.4) appears in probability theory [6, 32℄. Now there

are many experimental arguments in favor of introdu
ing sto
hasti
ity in 
hem-

i
al kineti
s [1, 2, 24℄.

Sto
hasti
 energy redistribution

In the 
lassi
al Ka
 model [23℄ the mole
ules i = 1; : : : ; N have the same

type, but ea
h mole
ule i has a velo
ity v

i

or kineti
 energy T

i

. In 
ollisions

the velo
ities (or the kineti
 energies) 
hange somehow. There is still 
ontinuing

a
tivity with deeper results 
on
erning the Ka
 model, in parti
ular 
onvergen
e

rate, see for example [5℄.

One should merge Ka
 type models with sto
hasti
 
hemi
al kineti
s. Then

ea
h mole
ule i a
quires a pair (j

i

; T

i

) of parameters: type j and kineti
 energy

T . However this is not su�
ient to get energy redistribution. One should intro-

du
e also �
hemi
al� energy. As it is 
ommonly a

epted, the general idea is that

the energy of 
hemi
al bonds of a substrate mole
ule 
an be redistributed be-

tween produ
t mole
ules, part of the energy transforming into heat. To des
ribe

this phenomena in well-de�ned terms we introdu
e fast and slow rea
tions. Fast

rea
tions do not tou
h 
hemi
al energy, that is types, but slow rea
tions may


hange both kineti
 and 
hemi
al energies, thus providing energy redistribution

between heat and 
hemi
al energy.

Examples of rea
tions:

1. All 
hemi
al rea
tions are assumed slow � unary (unimole
ular) A! B,

binary A + B ! C +D, synthesis A + B ! C, de
ay C ! A + B et
. In any


onsidered rea
tion the total energy 
onservation is assumed, that is the sum of
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total energies in the left side is equal to the sum of total energies in the right

side of the rea
tion equation.

2. Fast binary rea
tions of the type A + B ! A + B, whi
h 
orrespond to

elasti
 
ollisions and draw the system towards equilibrium.

3. Fast pro
ess of heat ex
hange with the environment, with rea
tions of the

type A+B ! A+B, but where one of the mole
ules is an outside mole
ule.

If there is no input and output, then the Markov jump pro
ess is the follow-

ing. Consider any subset i

1

< : : : < i

m(r)

of m(r) = �

P

j:�

jr

<0

�

jr

substrate

mole
ules for rea
tion of type r.

On the time interval (t; t+ dt) these mole
ules have a �
ollision� with prob-

ability �

�(m(r)�1)

b

r

dt, where b

r

is some 
onstant. Let the parameters of these

mole
ules be j

k

= j(i

k

); T

k

= T (i

k

). Denote

T =

m

X

i=1

T

i

; K =

m

X

i=1

K

j

i

and T

0

;K

0

are de�ned similarly for the parameters j

0

1

; : : : ; j

0

m

; T

0

1

; : : : ; T

0

m

0

of m

0

produ
t mole
ules. The rea
tion o

urs only if

T +K �K

0

� 0 (2.5)

and then the energy parameters of the produ
t parti
les at time t+ 0 have the

distribution de�ned by some 
onditional density P

r

(T

0

1

; : : : ; T

0

m

0

�1

jT

1

; : : : ; T

m

)

on the set 0 � T

0

1

+ : : :+ T

0

m

0

�1

� T +K �K

0

. By energy 
onservation then

T

0

m

0

= T +K �K

0

�

m

0

�1

X

i=1

T

0

i

:

This de�nes a Markov pro
essM

�

A

(t) on the �nite-dimensional spa
e (note that

T 2 R

+

)

Q

�

A

=

[

(n

1

;:::;n

J

)

R

n

1

+

� : : :�R

n

J

+

where the union is over all ve
tors (n

1

; : : : ; n

J

) su
h that for the array

�

A =

(A

1

; : : : ; A

Q

) of positive integers and for any atom type q = 1; : : : ; Q;

X

j

n

j

a

jq

= A

q

where a

jq

is the number of atoms of type q in the j type mole
ule. In other

words, ea
h atom type de�nes the 
onservation law A

q

= 
onst.

Now, using 
onditional densities P

r

, we de�ne the �one-parti
le� transition

kernel

P (t; j

1

; T

1

jj; T ) =

X

r

P

(r)

(t; j

1

; T

1

jj; T ); (2.6)
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that is the sum of terms P

(r)


orresponding to rea
tions r, whi
h we de�ne for

some rea
tion types. For unimole
ular rea
tions j ! j

1

the produ
t kineti


energy T

1

is uniquely de�ned, thus P

j!j

1

is trivial and for some 
onstants u

jj

1

;

P

(j!j

1

)

= u

jj

1

Æ(T +K �K

1

� T

1

):

For binary rea
tions j; j

0

! j

1

; j

0

1

;

P

(j;j

0

!j

1

; j

0

1

)

=

X

j

0

; j

0

1

Z

dT

0

dT

0

1

b

j;j

0

!j

1

; j

0

1

P

j;j

0

!j

1

; j

0

1

(T

1

jT; T

0

)

� 


t

(j

0

; T

0

) Æ(T +K + T

0

+K

0

�K

1

� T

1

�K

0

1

� T

0

1

):

In parti
ular, for �fast� 
ollisions (whi
h do not 
hange type) we have the same

transition kernel but with j = j

1

; j

0

= j

0

1

. We see that P

(j;j

0

!j

1

;j

0

1

)

depend on

the 
on
entrations 


t

(j; T ) = p

t

(j; T ) 
(t): They are de�ned via the Boltzman

type equation

�


t

(j

1

; T

1

)

�t

= f

j

(


j

) +

X

j

Z

�

P (t; j

1

; T

1

jj; T ) 


t

(j; T )

� P (t; j; T jj

1

; T

1

) 


t

(j

1

; T

1

)

�

dT (2.7)

whi
h is similar to the Kolmogorov equation but in
ludes also birth and death

terms.

All te
hni
alities about the derivation of the limiting pro
esses see in Ap-

pendix of [15℄.

Spa
e dynami
s

To get thermodynami
s we need also volume, pressure et
. Thus it is ne
es-

sary to de�ne spa
e dynami
s and also s
aling limit.

In the jump pro
ess, de�ned above, ea
h parti
le i independently of the

others, in random time moments

�

i

(!) < t

1i

(!) < : : : < t

in

(!) < : : : < �

i

(!)


hanges its type and kineti
 energy (thus velo
ity). For ea
h traje
tory ! of the

jump pro
ess we de�ne the lo
al spa
e dynami
s as follows. It does not 
hange

types, energies, velo
ities, but only 
oordinates. If at jump moment t of the

traje
tory ! the parti
le a
quires velo
ity ~v(!) = ~v(t+0; !) and has 
oordinate

~x(t; !), then at time t+ s

~x(t+ s; !) = ~x(t; !) + ~v(!)s (2.8)

unless the next event (jump), 
on
erning this parti
le, of the traje
tory ! o

urs

on the time interval [t; t+ s℄. We assume periodi
 boundary 
onditions or elasti


re�e
tion from the boundary. We denote this pro
ess by X

�

(t), the state spa
e

of this pro
ess is the sequen
e of �nite arrays X

i

= fj

i

; ~x

i

; ~v

i

g. Thus ea
h

parti
le i has a pie
ewise linear traje
tory in the time interval (�

i

; �

i

).
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Theorem 2.1. The thermodynami
 limit X

0;1

(t) = X




(t) of the pro
esses

X

�

(t) exists and its distribution belongs to M

0;1

.

Proof. See [15℄.

3. S
aling limit

Now we de�ne more restri
ted (thanM) manifolds of probability measures on

X: the grand 
anoni
al ensemble for a mixture of ideal gases with one important

di�eren
e � fast degrees of freedom are gaussian and slow degrees of freedom

are 
onstants K

j

, depending only on j.

We 
onsider a �nite number n

j

of parti
les of types j = 1; : : : ; J in a �nite

volume �. Remind that for the ideal gas of the j type parti
les the grand

partition fun
tion of the Gibbs distribution is

�(j; �) =

1

X

n

j

=0

1

n

j

!

�

n

j

Y

i=1

Z

�

Z

R

3

Z

I

j

d~x

j;i

d~v

j;i

�

exp�

�

n

j

(�

j

�K

j

)�

n

j

X

i=1

m

j

v

2

j;i

2

�

=

1

X

n

j

=0

1

n

j

!

(��)

n

j

exp�(�

j

�K

j

)n

j

= exp(��

j

exp��̂

j

)

where

�

j

= �

�3=2

�

2�

m

j

�

3=2

; �̂

j

= �

j

�K

j

:

General mixture distribution of J types is de�ned by the partition fun
tion

� =

Q

J

j=1

�(j; �). The limiting spa
e distribution of type j parti
les is the

Poisson distribution with 
on
entration 


j

. We will need the formulas relating




j

and �

j

:




j

=

hn

j

i

�

�

= �

�1

� ln�

��

j

= �

j

exp��̂

j

;

�

j

= �

�1

ln

�

hn

j

i

�

�

�1

j

�

= �

j;0

+ �

�1

ln 


j

+K

j

; (3.1)

where �

j;0

= ��

�1

ln �

j

is the so 
alled standard 
hemi
al potential, it 
orre-

sponds to the unit 
on
entration 


j

= 1. We put 
 = 


1

+ : : :+ 


J

.

We will need Gibbs free energy G and the limiting Gibbs free energy per

unit volume

g = lim

�!1

G

�

=

X

�

j




j

:

De�ne by M

0

� M the set of all su
h measures for any �; �

1

; : : : ; �

J

, and

by M

0;�

its subset with �xed �.
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In the pro
ess de�ned above the kineti
 energies are independent but may

have not �

2

distributions, that is the velo
ities may not have Maxwell distribu-

tion. We for
e them to have it by spe
ifying some trend to equilibrium pro
ess

(elasti
 
ollisions) and heat transfer (elasti
 
ollisions with outside mole
ules)

pro
esses.

Assume that there is a family M(a); 0 � a < 1, of distributions �

a

on R

+

with the following property. Take two i.i.d. random variables �

1

; �

2

with the

distribution M(a). Then their sum � = �

1

+ �

2

has distribution M(2a). We

assume also that a is the expe
tation of the distribution M(a). Denote p(�

1

j�)

the 
onditional density of �

1

given �, de�ned on the interval [0; �℄. We put

P

(f)

(T

1

jT; T

0

) = p(T

1

jT + T

0

)

and of 
ourse T

0

1

= T + T

0

� T

1

. Denote the 
orresponding generator by H

(f)

N

.

We model heat transfer similarly to the fast binary rea
tions, as random

�
ollision� with outside mole
ules in an in�nite bath, whi
h is kept at 
onstant

inverse temperature �. The energy of ea
h outside mole
ule is assumed to have

�

2

distribution with 3 degrees of freedom and with parameter �. More exa
tly,

for ea
h mole
ule i there is a Poisson pro
ess with some rate h. Denote by

t

ik

; k = 1; 2; : : : ; its jump moments, when it undergoes 
ollisions with outside

mole
ules. At this moments the kineti
 energy T of the mole
ule i is trans-

formed as follows. The new kineti
 energy T

1

after transformation is 
hosen


orrespondingly to 
onditional density p on the interval [0; T + �

ik

℄, where �

ik

are i.i.d. random variables having �

2

distribution with density 
x

1=2

exp(��x).

Denote the 
orresponding 
onditional density by P

(�)

(T

1

jT ). In fa
t, this pro-


ess amounts toN independent one-parti
le pro
esses, denote the 
orresponding

generator H

(�)

N

.

Thus we 
an write the generator as

H = H(s

f

; s

�

) = H

(r)

+ s

f

H

(f)

+ s

�

H

(�)

where H

(r)


orresponds to slow rea
tions and s

f

; s

�

are some large s
aling fa
-

tors, whi
h eventually will tend to in�nity.

We will for
e the kineti
 energies to be
ome �

2

using the limit s

f

!1.

Theorem 3.1. The limits in distribution

C




(t) = lim

s

f

!1

X




(t); O


;�

(t) = lim

s

�

!1

C




(t)

exist for any �xed t. Moreover, the manifold M

0

is invariant with respe
t to

the pro
ess C




(t) for any �xed rates u; b; h. The manifolds M

0;�

are invariant

with respe
t to O


;�

(t).

Thus, in the pro
ess C




(t) the velo
ities have Maxwell distribution at any

time moment. For the pro
ess O


;�

(t) moreover, at any time t the inverse
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temperature is equal to �, that is there is heat ex
hange with the environment.

Our individual mole
ules still undergo Markov pro
ess, but simpli�ed. At the

same time, the ma
rovariables undergo deterministi
 evolution on M

0;�

.

Markov property � 
hemi
al kineti
s restoration

Note that initially the jump rates depend on the energies. We show that,

after the s
aling limit, the pro
ess restri
ted on the types will also be Markov.

We assume that there are only unary and binary rea
tions but we do not need

reversibility assumption here.

Lemma 3.1. The pro
ess, proje
ted on types, that is the pro
ess (n

1

(t); : : : ;

n

J

(t)) is Markov. It is time homogeneous for unary rea
tion system and time

inhomogeneous in general.

Proof. Re
all that the jump rates were assumed to have simplest energy depen-

den
e, that is 
ollisions o

ur independently of the energies, but rea
tions o

ur

only if energy 
ondition (2.5) is satis�ed. Write g

�

(r) = P(j�j > r) for the �

2

random variable � with inverse temperature �.

Assume K

1

� : : : � K

J

and 
onsider �rst the 
ase of unary rea
tions. It

is easy to see that the pro
ess O


;�

(t) 
an be redu
ed to the Markov 
hain on

f1; : : : ; Jg with rates v

jj

0

= u

jj

0

if j � j

0

, and v

jj

0

= g

�

(K

j

0

�K

j

)u

jj

0

if j < j

0

.

We used here that the kineti
 energy distribution is �

2

at any time moment.

Similarly for the binary rea
tion j; j

0

! j

1

; j

0

1

we de�ne the renormalized

Markov transition rates as 
(j; j

0

! j

1

; j

0

1

) = b

j;j

0

!j

1

;j

0

1

if K

j

+K

j

0

� K

j

1

+K

j

0

1

and


(j; j

0

! j

1

; j

0

1

) = b

j;j

0

!j

1

;j

0

1

Pfj�

1

+ �

2

j > K

j

1

+K

j

0

1

� (K

j

+K

j

0

)g

if K

j

+K

j

0

< K

j

1

+K

j

0

1

. Here �

i

are independent and �

2

with inverse temper-

ature �. It is 
ru
ial here the use of the s
aling limit for fast rea
tions.

Thus, in the thermodynami
 limit we get the equations without the energies,

that is the 
lassi
al 
hemi
al kineti
s

d


j

(t)

dt

=

X

r

R

j;r

(~
(t)) + f(


j

): (3.2)

2

Example: monotoni
ity of Gibbs free energy for 
losed system with only unary

rea
tions

Assume now that the 
ontinuous time Markov 
hain on f1; : : : ; Jg with rates

u

jj

0

is irredu
ible. We say that this Markov 
hain is 
ompatible with the equi-

librium 
onditions

�

1

= : : : = �

J

(3.3)
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if its stationary probabilities �

j

, or stationary 
on
entrations 


j;e

= �

j


, satisfy

the following 
onditions

ln 


1;e

+ (�

1;0

+K

1

) = : : : = ln 


J;e

+ (�

J;0

+K

J

):

Remark. This 
ompatibility 
ondition should appear naturally in lo
al dynam-

i
s, but it is not 
lear how to dedu
e it in the mean �eld dynami
s. Note that

reversibility is not a su�
ient 
ondition for the 
ompatibility 
ondition.

To exhibit monotoni
ity for dynami
s one needs spe
ial Lyapounov fun
tions

in the spa
e of distributions. For Markov 
hains this is the Markov entropy with

respe
t to stationary measure �

j

;

S

M

=

X

p

j

ln

p

j

�

j

;

see for example [14℄.

Re
all that the equilibrium fun
tion � Gibbs free energy g(t) � undergoes

deterministi
 evolution together with the parameters �

j

or 


j

. We will show that

at any time moment it 
oin
ides with the Markov entropy up to multipli
ative

and additive 
onstants.

Theorem 3.2. If the 
ompatibility 
ondition (3.3) holds, then

g(t) = �
+

1

�C

S

M

(t) (3.4)

and monotone behaviour of the Gibbs free energy density follows.

Proof. We have

g = lim

�

G

�

=

X

j




j

�

j

= �

�1

X

j




j

ln 


j

+

X

j




j

(�

j;0

+K

j

) (3.5)

= �

�1

X

j




j

ln 


j

+

X

j




j

(�� �

�1

ln 


j;e

)

= �
+ �

�1

X

j




j

ln




j




j;e

where the �rst and the se
ond equalities are the de�nitions, in the third and

the fourth equalities we used the formula

�

j

= �

�1

ln

�

hn

j

i

�

�

�1

j

�

= �

j;0

+ �

�1

ln 


j

+K

j

; (3.6)

where

�

j;0

= ��

�1

ln�

j

= ��

�1

�

�

d

j

2

ln� + lnB

j

�

(3.7)
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is the so 
alled standard 
hemi
al potential, it 
orresponds to the unit 
on
en-

tration 


j

= 1 for the equilibrium density, see for example [15℄.

At the same time

S

M

=

X

p

j

ln

p

j

�

j

= C

X




j

ln




j




j;e

:

We see that for unary rea
tions one does not need reversibility assumption.

2

Monotoni
ity of Gibbs free energy for 
losed system with binary rea
tions

For binary rea
tions a similar result holds (we will not formulate it formally).

However, we do not have Markov evolution for the 
on
entrations anymore.

Instead, we have the Boltzman equation for the 
on
entrations, that is the

so 
alled nonlinear Markov 
hain on f1; : : : ; Jg. Then, instead of the Markov

entropy one should take the Boltzman entropy with respe
t to some one-point

distribution p

(0)

j

(see de�nitions in [17℄)

S

H

(t) = �

X

p

j

(t) ln

p

j

(t)

p

(0)

j

whi
h 
oin
ides with the Markov entropy for ordinary Markov 
hains. For the

monotoni
 behaviour of the Boltzman entropy, one should assume reversibility

or a more general 
ondition � unitarity, 
alled lo
al equilibrium in [17℄. Under

this 
ondition the monotoni
ity of the Boltzman entropy was proved in [17℄. We

get the same formula as (3.4) if we repla
e S

M

by �S

H

.

Note that under these 
onditions p

j

(t) is a time inhomogeneous Markov


hain. In fa
t, in the long run, that is as t ! 1, the transition rates for

one-parti
le inhomogeneous Markov 
hain, in the vi
inity of the �xed point,

is asymptoti
ally homogeneous. This shows that binary 
ase is asymptoti
ally


lose to the unary 
ase.

4. Open thermodynami
 
ompartments

Reversible and nonreversible pro
esses

Our systems in �nite volume evolve via Markov dynami
s. It is not known

when and how this dynami
s 
ould rigorously be dedu
ed from the lo
al phys-

i
al laws. However, there are many arguments that reversibility is a ne
essary


ondition for this. Reversibility is a parti
ular 
ase of the unitarity property

of the s
attering matrix of a 
ollision pro
ess. It was 
alled lo
al equilibrium


ondition in [8, 17℄).

The reversibility gives strong 
orollaries for the s
aling limits � 1) Boltz-

man monotoni
ity and 2) attra
tive �xed points. We 
all 
hemi
al networks

with properties 1) and 2) thermodynami
 
ompartments. Denote the 
lass of
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su
h systems T. These systems are a little bit more general than the systems,


orresponding to the systems with lo
al physi
al laws (in parti
ular, having


onvergen
e to equilibrium property). For example, any unimole
ular rea
tion

system belongs to T, be
ause, as we saw above, the Markov entropy is the

Boltzman entropy here. However, biologi
al systems obviously are not of 
lass

T. There are di�erent ways to generalize 
lass T systems.

The �rst one is quite 
ommon: in 
hemi
al and biologi
al systems sto
has-

ti
 pro
esses usually are not assumed to be reversible. However, without the

reversibility assumption the time evolution 
ould be as 
ompli
ated as possible

(periodi
 orbits, strange attra
tors et
.). That has advantages � one 
an adjust

to real biologi
al situations, and disadvantages � too many parameters, even

arbitrary fun
tions. Normally, the rate fun
tions R

j;r


an be rather arbitrarily


hosen, typi
al example where this methodology is distin
tly pronoun
ed is [33℄,


onne
tions with physi
s lost et
. In other words, theory be
omes meaningless

when one 
an adjust it to any situation.

Another way 
ould be a hierar
hy of pro
edures to introdu
e nonreversibility

in a more 
autious way. Ea
h further step to introdu
e nonreversibility is as

simple as possible and ea
h is related to time s
aling, for example, reversible

dynami
s is time s
aled and proje
ted on a subsystem. We start to study here

the simplest type of su
h pro
edures. In our 
ase the Markov generator will be

the sum of two terms,

H = H

rev

+H

nonrev

; (4.1)

where the �rst one is reversible and the other one is not, but the latter 
or-

responds only to input and output pro
esses. One of te
hni
al reasons to


hoose su
h nonreversible hamiltonian is to keep invarian
e of the manifolds

M;M

0

;M

0;�

.

In prin
iple, another philosophy is possible � large deviation or other rare

event 
onditioning, this we do not dis
uss here.

Example 1: steady states for open unimole
ular systems

We 
onsider the 
ase with J = 2 and unary rea
tions only, however the

following assertions help to understand how more general open systems 
an

behave. Consider �rst the thermodynami
 limit, and then the sto
hasti
 �nite

volume problem.

In the thermodynami
 limit the following equations for the 
on
entrations




j

(t); j = 1; 2, hold:

d


1

dt

= ��

1




1

+ �

2




2

+ f

1

;

d


2

dt

= �

1




1

� �

2




2

+ f

2

;

where �

1

= u

12

; �

2

= u

21

and f

j

are de�ned by (2.3). Possible positive (i.e.,




1

; 


2

> 0) �xed points satisfy the following system:

f

1

(


1

) + f

2

(


2

) = 0; ��

1




1

+ �

2




2

+ f

1

(


1

) = 0:



350 V.A. Malyshev

For example, for 
onstant f

j

a positive �xed point exists for any 
 su�
iently

large and equals




1

=

�

2


� f

2

�

1

+ �

2

; 


2

=

�

1


� f

1

�

1

+ �

2

:

In the linear 
ase, that is for f

j

= a

j




j

, for the existen
e of a positive �xed point

it is ne
essary and su�
ient that a

j

have di�erent signs and ja

j

j < �

1

+�

2

. Then

the positive �xed point is unique and is de�ned by




1

=

�

2




�

1

+ �

2

� a

1

:

For faster than linear growth of f

j

�xed points 
annot exist for large 
.

We see from these formulas that the equilibrium �xed point




1

=

�

2




�

1

+ �

2

; 


2

=

�

1




�

1

+ �

2

(for the 
orresponding 
losed system) is slightly perturbed if f

j

(or a

j

) are

small. Moreover, the perturbed �xed point is still attra
tive. This is true in

more general situations as well.

Now 
onsider the sto
hasti
 (�nite volume) 
ase.

Proposition 4.1. Assume that f

j

are 
onstants. In a �nite volume the pro
ess

is ergodi
 if

P

f

j

< 0, transient if

P

f

j

> 0 and null re
urrent if

P

f

j

= 0.

Proof. Note that the number of parti
les is 
onserved and the number of states

is �nite if there is no I/O, otherwise the Markov 
hain is 
ountable: a random

walk on Z

2

+

= f(n

1

; n

2

) : n

1

n

2

� 0g. There are jumps (n

1

; n

2

)! (n

1

�1; n

2

+1)

or (n

1

; n

2

)! (n

1

+1; n

2

�1) due to rea
tions, denote their rates �

1

n

1

; �

2

n

2


orre-

spondingly. There are also jumps (n

1

; n

2

)! (n

1

�1; n

2

); (n

1

; n

2

)! (n

1

; n

2

�1)

due to input-output with the parameters a

j

� and b

j

� 
orrespondingly.

Transien
e and ergodi
ity 
an be obtained using Lyapounov fun
tion n

1

+n

2

and the results from [7℄. To prove null re
urren
e note that for su�
iently large


 the system should be in the neighbourhood of the �xed point, whi
h exists for


 su�
iently large. Thus one 
an also use the same Lyapounov fun
tion. 2

General 
on
lusion is that only null re
urrent 
ase is interesting. However,

models with 
onstant rates are too naive. It is reasonable that there are reg-

ulation me
hanisms whi
h give more 
omplex dependen
e of f

j

on the rates.

Unfortunately, there is no �rm theoreti
al basis to get exa
t dependen
e of

rea
tion and I/O rates on the densities.

Example 2: sto
hasti
 Mi
haelis �Menten kineti
s

The generator for Mi
haelis �Menten kineti
s is of type (4.1) only in some

approximation. This model has 4 types of mole
ules: E (enzyme), S (substrate),

P (produ
t) and ES (substrate-enzyme 
omplex). There are 3 rea
tions

E + S ! ES; ES ! E + S; ES ! E + P
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with the rates k

1

�

�1

n

E

n

S

; k

�1

n

ES

; k

2

n

ES


orrespondingly. We 
an also �x

somehow the output rate for P and input rate for S.

If k

2

= 0 then, as a zero'th approximation, we have a reversible Markov


hain. In fa
t, there are 
onservation laws

n

E

+ n

ES

= m(E); n

S

+ n

ES

= m(S)

for some 
onstantsm(E);m(S). Thus we will have random walk for one variable,

say n

ES

, on the interval [0;min(m(E);m(S))℄, with jumps n

ES

! n

ES

� 1.

Su
h random walks are always reversible. The stationary probabilities for this

random walk are 
on
entrated around the �xed point of the limiting equations

of the 
lassi
al kineti
s

d


ES

dt

= k

1




S




E

� (k

�1

+ k

2

)


ES

(4.2)

de�ned by




ES

=




S

a+ b


S

for some 
onstants a; b, de�ned by m(E);m(S). If k

2

> 0 but small 
ompared

to k

1

; k

�1

; then up to the �rst order in k

2

we have the P produ
tion speed

d


P

dt

= k

2




ES

= k

2




S

a+ b


S

:

We 
ould also look on this kineti
s as on the simple random walk. We have to

introdu
e (arbitrarily) output rate for the produ
t P and adjust the input rate

of S so that the system be
omes null-re
urrent. In fa
t, due to the 
onservation

law n

E

+ n

ES

= m(E) we have random walk on the half strip f(n

S

; n

ES

)g =

Z

+

� (0;m(E)). The null-re
urren
e 
ondition 
an be obtained using methods

of [7℄, we will not dis
uss this here.

5. Network of thermodynami
 
ompartments

We 
all thermodynami
 
ompartments, introdu
ed above, networks of rank 1.

We saw that they have �xed points, and thermodynami
s plays the 
entral role

there. It 
an be some tightly dependent and/or spa
e lo
alized system of 
hem-

i
al rea
tions.

Network of rank 2 
onsists of verti
es � � networks of rank 1, and dire
ted

edges, that is 
ompartments are organized in a dire
ted graph. Dire
ted edge

from 
ompartment � to 
ompartment �

0

means that there is a matter �ow from

� to �

0

. Matter ex
hange between two 
ompartments suggests some transport

me
hanism. It is natural that there is a time delay between the moments of

departure from � and arrival to �

0

. The simplest probabilisti
 model 
ould be

the following. Ea
h j type mole
ule leaves � for the destination �

0

with rates



352 V.A. Malyshev

f

j;�;�

0

, similar to de�ned in (2.2), and after some random time �(j; �; �

0

) arrives

to �

0

. Times �(j; �; �

0

) are independent and their distribution depends only on

j; �; �

0

. One 
an imagine that there is an e�e
tive distan
e L(�; �

0

) between

� and �

0

and some transportation me
hanism, whi
h de�nes e�e
tive speed to

go through this distan
e. For example, it 
an be transport through membrane,

whi
h 
an be represented as a layer [0; L℄ � R

2

of thi
kness L. During time

�(j; �; �

0

) the parti
le is absent from the network, it has left � but has not yet

arrived to �

0

.

Denote by 


�;j

the 
on
entration of type j mole
ules in the 
ompartment �.

Limiting equations are

d


�

0

;j

(t)

dt

= f

(i)

�

0

;j

(


�

0

(t))� f

(0)

�

0

;j

(


�

0

(t)) +

X

�

f

j;�;�

0

(


�

(t� �(j; �; �

0

))

�

X

�

f

j;�

0

;�

(


�

0

(t)) +

X

r

�

�

0

;jr

R

�

0

;r

(


�

0

(t))

where 


�

= (


�;1

; : : : 


�;J

), f

(i)

�;j

is the input rate to � from external environment,

f

(0)

�;j

is the output rate from � to the external environment. Note that these

equations are random due to random delay times � . In the �rst approximation

one 
an 
onsider � 
onstant, however random time delays seem very essential to

restore randomness on the time s
ale, higher than mi
ros
opi
, in the otherwise

deterministi
 
lassi
al 
hemi
al kineti
s.

Note that the above written equations follow from a similar mi
ros
opi


model � we will not formally formulate it, be
ause it is obvious from our

previous 
onstru
tions: the 
orresponding manifold is �

�2A

M

�

, where A is the

set of 
ompartments,M

�

is the manifold for the 
ompartment �.

The following problems and phase transitions 
an be dis
ussed in the de�ned

model on the rigorous basis (in progress):

1. The method of thermodynami
 bounds in the thermodynami
 networks,

de�ned in [30℄.

2. (Phase transitions due to transport rates.) Normal fun
tioning of the

network 
an be 
lose to the system f


�;j;e

g of equilibrium �xed points in ea
h


ompartment �. Su
h situation 
an be 
alled homeostasis. Homeostati
 regula-

tion � keeping the system 
lose to some system f


�;j;e

g. If there is no transport,

then the 
ompartments are independent and the �xed points inside them are

pure thermodynami
. Under some transport rates the �xed points 
hange in a

stable way, they smoothly depend on the transport parameters. However, under

some 
hange of the transport rates, the �xed points may 
hange drasti
ally: the

system goes to other basin of attra
tion.

3. (Phase transition due to time desyn
hronization.) It is known now that

even a de
ease 
an be a 
onsequen
e of timing errors. For a network of rank 2,

having for instan
e a 
y
li
 topology (this is 
alled 
ir
uit in [29℄), assume that

the input rates 
hange periodi
ally or randomly in time. The question is: to
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what pro
ess the 
on
entrations 
onverge and with what speed ? This time

behaviour 
ould be the next step in the analysis of the stru
ture of logi
al

networks in the sense of [29℄.
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