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Abstrat. In the �rst part of this paper we give a short review of the hierarhy

of stohasti models, related to physial hemistry. In the basement of this hi-

erarhy there are two models � stohasti hemial kinetis and the Ka model

for Boltzman equation. Classial hemial kinetis and hemial thermodynam-

is are obtained as some saling limits in the models, introdued below. In the

seond part of this paper we speify some simple lass of open hemial rea-

tion systems, where one an still prove the existene of attrating �xed points.

For example, Mihaelis �Menten kinetis belongs to this lass. At the end we

present a simplest possible model of the biologial network. It is a network of

networks (of losed hemial reation systems, alled ompartments), so that

the only soure of nonreversibility is the matter exhange (transport) with the

environment and between the ompartments.
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1. Introdution

Relation between the existing (mathematial) physial theory and future

mathematial biology seems to be very intimate. For example, equilibrium is

a ommon state in physis but in biology equilibrium means death. Biology

should be deeply dynamial but this goal seems unreahable in full extent: even

in simplest physial situations the time onsuming omplexity of any study of

loal dynamis is out of the present state of art. Thus the only possibility would

be to onsider simpler dynamial models (mean �eld et.) but to go farther in

their struture. The obvious �rst step should have been related to hemial
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kinetis and hemial thermodynamis. Here we present a review of these �rst

results and disuss what should be the seond step.

In the �rst part of this paper we give a short review (in more general terms

than in [15℄) of the hierarhy of stohasti models, related to physial hemistry.

In the basement of this hierarhy there are two models � stohasti hemial

kinetis and the Ka model for Boltzman equation. Classial hemial kinetis

and hemial thermodynamis are obtained as some saling limits in the models,

introdued below.

If some physial onditions, as reversibility, are assumed for a losed (without

matter exhange) system, then we have su�iently simple behaviour: one an

prove onvergene to a �xed point. However, in many models of physial hem-

istry and biology, no reversibility ondition is assumed, and the behaviour an

be as ompliated as one an imagine. Here we have already some gap between

physis and biology, and it is neessary to �ll in this gap. In the seond part

of this paper we speify some simple lass of open hemial reation systems,

where one an still prove the existene of attrating �xed points. For example,

Mihaelis �Menten kinetis belongs to this lass. At the end we present a sim-

plest possible model of the biologial network. It is a network of networks (of

losed hemial reation systems, alled ompartments), so that the only soure

of nonreversibility is the matter exhange (transport) with the environment and

between the ompartments.

2. Mirodynamis

Any moleule of mass m an be haraterized by translational degrees of

freedom (veloity v 2 R

3

, oordinate x 2 R

3

) and internal, or hemial (for

example, rotational and vibrational) degrees of freedom. Internal degrees of

freedom inlude the type j = 1; : : : ; J of the moleule and internal energy fun-

tionals K

j

(z

j

); z

j

2 K

j

, in the spae K

j

of internal degrees of freedom. It is

often assumed, see [11℄, that the total energy of the moleule i is

E

i

= T

i

+K

j

(z

j;i

):

We onsider here the simplest hoie when K

j

is the �xed nonnegative number,

depending only on j. It an be interpreted as the energy of some hemial

bonds.

We onsider the setX of ountable loally �nite on�gurationsX=fx

i

; v

i

; j

i

g

of partiles (moleules) in R

3

, where eah partile i has a oordinate x

i

, veloity

v

i

and type j

i

. Denote by M the system of all probability measures on X with

the following properties:

� Coordinates of these partiles are distributed as the homogeneous Poisson

point �eld of partiles on R

3

with some density .
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� The vetors (v

i

; j

i

) are independent of the spae oordinates and of the

other partiles. The veloity v of a partile is assumed to be uniformly

distributed on the sphere with the radius de�ned by the kineti energy

T = m(v

2

1

+v

2

2

+v

2

3

)=2 of the partile, and the pairs (j

i

; T

i

) are distributed

via some ommon density p(j; T );

X

j

Z

p(j; T ) dT = 1:

Our �rst goal will be to de�ne random dynamis on X (or deterministi

dynamis on M). It is de�ned by a probability spae (X

0;1

; �), where � =

�

0;1

is a probability measure on the set X

0;1

of ountable arrays X

0;1

(t) =

fx

i

(t); v

i

(t); j

i

(t)g of trajetories x

i

(t); v

i

(t); j

i

(t) on intervals I

i

= (�

i

; �

i

), where

0 � �

i

< �

i

� 1. The measure � belongs to the set of measures M

0;1

on

X

0;1

(t), de�ned by the following properties:

� If for any �xed 0 � t < 1 we denote by �(t) the measure indued by �

on X, then �(t) 2M.

� The trajetories x

i

(t); v

i

(t); j

i

(t) are independent, eah of them is a Markov

proess (not neessary time homogeneous). This proess is de�ned by ini-

tial measure �(0) on X, by birth and death rates, de�ning time moments

�

i

; �

i

, and by transition probabilities at time t, independent of the mo-

tion of individual partiles but depending on the onentration densities



t

(j; T ) at time t.

� The evolution of the pair (j; T ) for the individual partile in-between the

birth and death moments is de�ned by the following Kolmogorov equa-

tions, whih ontrol the one-partile proess

�p

t

(j

1

; T

1

)

�t

=

X

j

Z

(P (t; j

1

; T

1

jj; T ) p

t

(j; T )�P (t; j; T jj

1

; T

1

)p

t

(j

1

; T

1

)) dT

(2.1)

de�ning Markov proess with distributions p

t

(j; T ). The probability kernel

P depends however on p

t

(j; T ) itself, we shall make it preise below.

The dynamis we will desribe here is based on some earlier mathematial

models and entral dogmas of physial hemistry. The simplest way to rigorously

introdue the measure � is by the limit of �nite volume random dynamis. Initial

onditions for this dynamis are as follows: at time 0 some number n

(�)

(0)

of moleules are thrown uniformly in the ube �, their parameters (j; T ) are

independent and have some ommon density p

0

(j; T ), not depending on �. Let

n

j

(t) = n

(�)

j

(t) be the number of type j moleules at time t.
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Input-Output (I/O) proesses

Heuristially, our time sale is suh that for the unit of time eah moleule

does O(1) transitions. Then for any maroquantity q of substane its O(q)

part may hange. One should hoose time sales for input-output proesses

orrespondingly.

The (output) rate of the jumps n

j

! n

j

� 1 is denoted by �

(0)

j

, that is with

this rate a moleule of type j is hosen randomly and deleted from �. Similarly,

the (input) rate of the jumps n

j

! n

j

+1 is denoted by �

(i)

j

, that is a moleule

of type j is put uniformly in � with this rate. Dependene of both rates on

the onentrations an be quite di�erent. To get limiting I/O proess after

(anonial) saling one an assume that

�

(0)

j

= f

(0)

j

�; �

(i)

j

= f

(i)

j

�; (2.2)

where f

j

; g

j

> 0 are some funtions of all 

(�)

1

; : : : ; 

(�)

J

, 

(�)

j

= n

j

=� are the

onentrations. However, mostly we restrit ourselves to the ase when f

j

are

funtions of 

j

only. In other words, an individual type j moleule leaves the

volume with rate f

(0)

j

(

(�)

j

)=

(�)

j

. Denote

f

j

= f

(i)

j

� f

(0)

j

: (2.3)

Stohasti hemial kinetis

The hierarhy presented here depends on what parameters of a moleule

are taken into aount. In stohasti hemial kinetis only type is taken into

aount. The state of the system is given by the vetor (n

1

; : : : ; n

J

). There are

also R reation types and the reation of the type r = 1; : : : ; R, an be written

as

X

j

�

jr

M

j

= 0

where we denote by M

j

a j type moleule, and the stoihiometri oe�ients

�

jr

> 0 for the produts and �

jr

< 0 for the substrates. One event of type

r reation orresponds to the jump n

j

! n

j

+ �

jr

; j = 1; : : : ; J: Classial

polynomial expressions (most ommonly used)

�

r

= A

r

Y

j:�

jr

<0

n

��

jr

j

for the rates of these jumps de�ne a ontinuous time Markov proess, a kind of

random walk in Z

J

+

. This dependene an be heuristially dedued from loal

mirodynamis. However, polynomial dependene is not the only possibility,

see [31℄. Moreover, there an be various salings for these rates. The saling

A

r

= a

r

�



r

+1

; 

r

=

X

j:�

jr

<0

�

jr
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where a

r

are some onstants and � is some large parameter, is alled anonial

beause the lassial hemial kinetis equations

d

j

(t)

dt

=

X

r

R

j;r

(~(t)) (2.4)

for the densities



j

(t) = lim

�!1

�

�1

n

(�)

j

(t)

follow in the large � limit, with some polynomials R

j;r

(see below and [17℄).

Problem. It is important to give (at least heuristi) loal probabilisti models

to explain other than polynomial dependene and salings for the rates. For

example for arbitrary homogeneous funtions as in [31℄.

It is assumed that at time t = 0 as �!1; �

�1

n

(�)

(0) �! (0):

Chronologially, the �rst paper in stohasti hemial kinetis was by Leon-

tovih [21℄, whih appeared from disussions with A.N. Kolmogorov. Other

referenes see in [24℄. In 70s stohasti hemial kinetis for small R; J was

studied intensively, see reviews [9,22℄. At the same time the general tehniques

to get limiting equations (2.4) appears in probability theory [6, 32℄. Now there

are many experimental arguments in favor of introduing stohastiity in hem-

ial kinetis [1, 2, 24℄.

Stohasti energy redistribution

In the lassial Ka model [23℄ the moleules i = 1; : : : ; N have the same

type, but eah moleule i has a veloity v

i

or kineti energy T

i

. In ollisions

the veloities (or the kineti energies) hange somehow. There is still ontinuing

ativity with deeper results onerning the Ka model, in partiular onvergene

rate, see for example [5℄.

One should merge Ka type models with stohasti hemial kinetis. Then

eah moleule i aquires a pair (j

i

; T

i

) of parameters: type j and kineti energy

T . However this is not su�ient to get energy redistribution. One should intro-

due also �hemial� energy. As it is ommonly aepted, the general idea is that

the energy of hemial bonds of a substrate moleule an be redistributed be-

tween produt moleules, part of the energy transforming into heat. To desribe

this phenomena in well-de�ned terms we introdue fast and slow reations. Fast

reations do not touh hemial energy, that is types, but slow reations may

hange both kineti and hemial energies, thus providing energy redistribution

between heat and hemial energy.

Examples of reations:

1. All hemial reations are assumed slow � unary (unimoleular) A! B,

binary A + B ! C +D, synthesis A + B ! C, deay C ! A + B et. In any

onsidered reation the total energy onservation is assumed, that is the sum of



342 V.A. Malyshev

total energies in the left side is equal to the sum of total energies in the right

side of the reation equation.

2. Fast binary reations of the type A + B ! A + B, whih orrespond to

elasti ollisions and draw the system towards equilibrium.

3. Fast proess of heat exhange with the environment, with reations of the

type A+B ! A+B, but where one of the moleules is an outside moleule.

If there is no input and output, then the Markov jump proess is the follow-

ing. Consider any subset i

1

< : : : < i

m(r)

of m(r) = �

P

j:�

jr

<0

�

jr

substrate

moleules for reation of type r.

On the time interval (t; t+ dt) these moleules have a �ollision� with prob-

ability �

�(m(r)�1)

b

r

dt, where b

r

is some onstant. Let the parameters of these

moleules be j

k

= j(i

k

); T

k

= T (i

k

). Denote

T =

m

X

i=1

T

i

; K =

m

X

i=1

K

j

i

and T

0

;K

0

are de�ned similarly for the parameters j

0

1

; : : : ; j

0

m

; T

0

1

; : : : ; T

0

m

0

of m

0

produt moleules. The reation ours only if

T +K �K

0

� 0 (2.5)

and then the energy parameters of the produt partiles at time t+ 0 have the

distribution de�ned by some onditional density P

r

(T

0

1

; : : : ; T

0

m

0

�1

jT

1

; : : : ; T

m

)

on the set 0 � T

0

1

+ : : :+ T

0

m

0

�1

� T +K �K

0

. By energy onservation then

T

0

m

0

= T +K �K

0

�

m

0

�1

X

i=1

T

0

i

:

This de�nes a Markov proessM

�

A

(t) on the �nite-dimensional spae (note that

T 2 R

+

)

Q

�

A

=

[

(n

1

;:::;n

J

)

R

n

1

+

� : : :�R

n

J

+

where the union is over all vetors (n

1

; : : : ; n

J

) suh that for the array

�

A =

(A

1

; : : : ; A

Q

) of positive integers and for any atom type q = 1; : : : ; Q;

X

j

n

j

a

jq

= A

q

where a

jq

is the number of atoms of type q in the j type moleule. In other

words, eah atom type de�nes the onservation law A

q

= onst.

Now, using onditional densities P

r

, we de�ne the �one-partile� transition

kernel

P (t; j

1

; T

1

jj; T ) =

X

r

P

(r)

(t; j

1

; T

1

jj; T ); (2.6)
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that is the sum of terms P

(r)

orresponding to reations r, whih we de�ne for

some reation types. For unimoleular reations j ! j

1

the produt kineti

energy T

1

is uniquely de�ned, thus P

j!j

1

is trivial and for some onstants u

jj

1

;

P

(j!j

1

)

= u

jj

1

Æ(T +K �K

1

� T

1

):

For binary reations j; j

0

! j

1

; j

0

1

;

P

(j;j

0

!j

1

; j

0

1

)

=

X

j

0

; j

0

1

Z

dT

0

dT

0

1

b

j;j

0

!j

1

; j

0

1

P

j;j

0

!j

1

; j

0

1

(T

1

jT; T

0

)

� 

t

(j

0

; T

0

) Æ(T +K + T

0

+K

0

�K

1

� T

1

�K

0

1

� T

0

1

):

In partiular, for �fast� ollisions (whih do not hange type) we have the same

transition kernel but with j = j

1

; j

0

= j

0

1

. We see that P

(j;j

0

!j

1

;j

0

1

)

depend on

the onentrations 

t

(j; T ) = p

t

(j; T ) (t): They are de�ned via the Boltzman

type equation

�

t

(j

1

; T

1

)

�t

= f

j

(

j

) +

X

j

Z

�

P (t; j

1

; T

1

jj; T ) 

t

(j; T )

� P (t; j; T jj

1

; T

1

) 

t

(j

1

; T

1

)

�

dT (2.7)

whih is similar to the Kolmogorov equation but inludes also birth and death

terms.

All tehnialities about the derivation of the limiting proesses see in Ap-

pendix of [15℄.

Spae dynamis

To get thermodynamis we need also volume, pressure et. Thus it is nees-

sary to de�ne spae dynamis and also saling limit.

In the jump proess, de�ned above, eah partile i independently of the

others, in random time moments

�

i

(!) < t

1i

(!) < : : : < t

in

(!) < : : : < �

i

(!)

hanges its type and kineti energy (thus veloity). For eah trajetory ! of the

jump proess we de�ne the loal spae dynamis as follows. It does not hange

types, energies, veloities, but only oordinates. If at jump moment t of the

trajetory ! the partile aquires veloity ~v(!) = ~v(t+0; !) and has oordinate

~x(t; !), then at time t+ s

~x(t+ s; !) = ~x(t; !) + ~v(!)s (2.8)

unless the next event (jump), onerning this partile, of the trajetory ! ours

on the time interval [t; t+ s℄. We assume periodi boundary onditions or elasti

re�etion from the boundary. We denote this proess by X

�

(t), the state spae

of this proess is the sequene of �nite arrays X

i

= fj

i

; ~x

i

; ~v

i

g. Thus eah

partile i has a pieewise linear trajetory in the time interval (�

i

; �

i

).



344 V.A. Malyshev

Theorem 2.1. The thermodynami limit X

0;1

(t) = X



(t) of the proesses

X

�

(t) exists and its distribution belongs to M

0;1

.

Proof. See [15℄.

3. Saling limit

Now we de�ne more restrited (thanM) manifolds of probability measures on

X: the grand anonial ensemble for a mixture of ideal gases with one important

di�erene � fast degrees of freedom are gaussian and slow degrees of freedom

are onstants K

j

, depending only on j.

We onsider a �nite number n

j

of partiles of types j = 1; : : : ; J in a �nite

volume �. Remind that for the ideal gas of the j type partiles the grand

partition funtion of the Gibbs distribution is

�(j; �) =

1

X

n

j

=0

1

n

j

!

�

n

j

Y

i=1

Z

�

Z

R

3

Z

I

j

d~x

j;i

d~v

j;i

�

exp�

�

n

j

(�

j

�K

j

)�

n

j

X

i=1

m

j

v

2

j;i

2

�

=

1

X

n

j

=0

1

n

j

!

(��)

n

j

exp�(�

j

�K

j

)n

j

= exp(��

j

exp��̂

j

)

where

�

j

= �

�3=2

�

2�

m

j

�

3=2

; �̂

j

= �

j

�K

j

:

General mixture distribution of J types is de�ned by the partition funtion

� =

Q

J

j=1

�(j; �). The limiting spae distribution of type j partiles is the

Poisson distribution with onentration 

j

. We will need the formulas relating



j

and �

j

:



j

=

hn

j

i

�

�

= �

�1

� ln�

��

j

= �

j

exp��̂

j

;

�

j

= �

�1

ln

�

hn

j

i

�

�

�1

j

�

= �

j;0

+ �

�1

ln 

j

+K

j

; (3.1)

where �

j;0

= ��

�1

ln �

j

is the so alled standard hemial potential, it orre-

sponds to the unit onentration 

j

= 1. We put  = 

1

+ : : :+ 

J

.

We will need Gibbs free energy G and the limiting Gibbs free energy per

unit volume

g = lim

�!1

G

�

=

X

�

j



j

:

De�ne by M

0

� M the set of all suh measures for any �; �

1

; : : : ; �

J

, and

by M

0;�

its subset with �xed �.
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In the proess de�ned above the kineti energies are independent but may

have not �

2

distributions, that is the veloities may not have Maxwell distribu-

tion. We fore them to have it by speifying some trend to equilibrium proess

(elasti ollisions) and heat transfer (elasti ollisions with outside moleules)

proesses.

Assume that there is a family M(a); 0 � a < 1, of distributions �

a

on R

+

with the following property. Take two i.i.d. random variables �

1

; �

2

with the

distribution M(a). Then their sum � = �

1

+ �

2

has distribution M(2a). We

assume also that a is the expetation of the distribution M(a). Denote p(�

1

j�)

the onditional density of �

1

given �, de�ned on the interval [0; �℄. We put

P

(f)

(T

1

jT; T

0

) = p(T

1

jT + T

0

)

and of ourse T

0

1

= T + T

0

� T

1

. Denote the orresponding generator by H

(f)

N

.

We model heat transfer similarly to the fast binary reations, as random

�ollision� with outside moleules in an in�nite bath, whih is kept at onstant

inverse temperature �. The energy of eah outside moleule is assumed to have

�

2

distribution with 3 degrees of freedom and with parameter �. More exatly,

for eah moleule i there is a Poisson proess with some rate h. Denote by

t

ik

; k = 1; 2; : : : ; its jump moments, when it undergoes ollisions with outside

moleules. At this moments the kineti energy T of the moleule i is trans-

formed as follows. The new kineti energy T

1

after transformation is hosen

orrespondingly to onditional density p on the interval [0; T + �

ik

℄, where �

ik

are i.i.d. random variables having �

2

distribution with density x

1=2

exp(��x).

Denote the orresponding onditional density by P

(�)

(T

1

jT ). In fat, this pro-

ess amounts toN independent one-partile proesses, denote the orresponding

generator H

(�)

N

.

Thus we an write the generator as

H = H(s

f

; s

�

) = H

(r)

+ s

f

H

(f)

+ s

�

H

(�)

where H

(r)

orresponds to slow reations and s

f

; s

�

are some large saling fa-

tors, whih eventually will tend to in�nity.

We will fore the kineti energies to beome �

2

using the limit s

f

!1.

Theorem 3.1. The limits in distribution

C



(t) = lim

s

f

!1

X



(t); O

;�

(t) = lim

s

�

!1

C



(t)

exist for any �xed t. Moreover, the manifold M

0

is invariant with respet to

the proess C



(t) for any �xed rates u; b; h. The manifolds M

0;�

are invariant

with respet to O

;�

(t).

Thus, in the proess C



(t) the veloities have Maxwell distribution at any

time moment. For the proess O

;�

(t) moreover, at any time t the inverse
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temperature is equal to �, that is there is heat exhange with the environment.

Our individual moleules still undergo Markov proess, but simpli�ed. At the

same time, the marovariables undergo deterministi evolution on M

0;�

.

Markov property � hemial kinetis restoration

Note that initially the jump rates depend on the energies. We show that,

after the saling limit, the proess restrited on the types will also be Markov.

We assume that there are only unary and binary reations but we do not need

reversibility assumption here.

Lemma 3.1. The proess, projeted on types, that is the proess (n

1

(t); : : : ;

n

J

(t)) is Markov. It is time homogeneous for unary reation system and time

inhomogeneous in general.

Proof. Reall that the jump rates were assumed to have simplest energy depen-

dene, that is ollisions our independently of the energies, but reations our

only if energy ondition (2.5) is satis�ed. Write g

�

(r) = P(j�j > r) for the �

2

random variable � with inverse temperature �.

Assume K

1

� : : : � K

J

and onsider �rst the ase of unary reations. It

is easy to see that the proess O

;�

(t) an be redued to the Markov hain on

f1; : : : ; Jg with rates v

jj

0

= u

jj

0

if j � j

0

, and v

jj

0

= g

�

(K

j

0

�K

j

)u

jj

0

if j < j

0

.

We used here that the kineti energy distribution is �

2

at any time moment.

Similarly for the binary reation j; j

0

! j

1

; j

0

1

we de�ne the renormalized

Markov transition rates as (j; j

0

! j

1

; j

0

1

) = b

j;j

0

!j

1

;j

0

1

if K

j

+K

j

0

� K

j

1

+K

j

0

1

and

(j; j

0

! j

1

; j

0

1

) = b

j;j

0

!j

1

;j

0

1

Pfj�

1

+ �

2

j > K

j

1

+K

j

0

1

� (K

j

+K

j

0

)g

if K

j

+K

j

0

< K

j

1

+K

j

0

1

. Here �

i

are independent and �

2

with inverse temper-

ature �. It is ruial here the use of the saling limit for fast reations.

Thus, in the thermodynami limit we get the equations without the energies,

that is the lassial hemial kinetis

d

j

(t)

dt

=

X

r

R

j;r

(~(t)) + f(

j

): (3.2)

2

Example: monotoniity of Gibbs free energy for losed system with only unary

reations

Assume now that the ontinuous time Markov hain on f1; : : : ; Jg with rates

u

jj

0

is irreduible. We say that this Markov hain is ompatible with the equi-

librium onditions

�

1

= : : : = �

J

(3.3)
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if its stationary probabilities �

j

, or stationary onentrations 

j;e

= �

j

, satisfy

the following onditions

ln 

1;e

+ (�

1;0

+K

1

) = : : : = ln 

J;e

+ (�

J;0

+K

J

):

Remark. This ompatibility ondition should appear naturally in loal dynam-

is, but it is not lear how to dedue it in the mean �eld dynamis. Note that

reversibility is not a su�ient ondition for the ompatibility ondition.

To exhibit monotoniity for dynamis one needs speial Lyapounov funtions

in the spae of distributions. For Markov hains this is the Markov entropy with

respet to stationary measure �

j

;

S

M

=

X

p

j

ln

p

j

�

j

;

see for example [14℄.

Reall that the equilibrium funtion � Gibbs free energy g(t) � undergoes

deterministi evolution together with the parameters �

j

or 

j

. We will show that

at any time moment it oinides with the Markov entropy up to multipliative

and additive onstants.

Theorem 3.2. If the ompatibility ondition (3.3) holds, then

g(t) = �+

1

�C

S

M

(t) (3.4)

and monotone behaviour of the Gibbs free energy density follows.

Proof. We have

g = lim

�

G

�

=

X

j



j

�

j

= �

�1

X

j



j

ln 

j

+

X

j



j

(�

j;0

+K

j

) (3.5)

= �

�1

X

j



j

ln 

j

+

X

j



j

(�� �

�1

ln 

j;e

)

= �+ �

�1

X

j



j

ln



j



j;e

where the �rst and the seond equalities are the de�nitions, in the third and

the fourth equalities we used the formula

�

j

= �

�1

ln

�

hn

j

i

�

�

�1

j

�

= �

j;0

+ �

�1

ln 

j

+K

j

; (3.6)

where

�

j;0

= ��

�1

ln�

j

= ��

�1

�

�

d

j

2

ln� + lnB

j

�

(3.7)
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is the so alled standard hemial potential, it orresponds to the unit onen-

tration 

j

= 1 for the equilibrium density, see for example [15℄.

At the same time

S

M

=

X

p

j

ln

p

j

�

j

= C

X



j

ln



j



j;e

:

We see that for unary reations one does not need reversibility assumption.

2

Monotoniity of Gibbs free energy for losed system with binary reations

For binary reations a similar result holds (we will not formulate it formally).

However, we do not have Markov evolution for the onentrations anymore.

Instead, we have the Boltzman equation for the onentrations, that is the

so alled nonlinear Markov hain on f1; : : : ; Jg. Then, instead of the Markov

entropy one should take the Boltzman entropy with respet to some one-point

distribution p

(0)

j

(see de�nitions in [17℄)

S

H

(t) = �

X

p

j

(t) ln

p

j

(t)

p

(0)

j

whih oinides with the Markov entropy for ordinary Markov hains. For the

monotoni behaviour of the Boltzman entropy, one should assume reversibility

or a more general ondition � unitarity, alled loal equilibrium in [17℄. Under

this ondition the monotoniity of the Boltzman entropy was proved in [17℄. We

get the same formula as (3.4) if we replae S

M

by �S

H

.

Note that under these onditions p

j

(t) is a time inhomogeneous Markov

hain. In fat, in the long run, that is as t ! 1, the transition rates for

one-partile inhomogeneous Markov hain, in the viinity of the �xed point,

is asymptotially homogeneous. This shows that binary ase is asymptotially

lose to the unary ase.

4. Open thermodynami ompartments

Reversible and nonreversible proesses

Our systems in �nite volume evolve via Markov dynamis. It is not known

when and how this dynamis ould rigorously be dedued from the loal phys-

ial laws. However, there are many arguments that reversibility is a neessary

ondition for this. Reversibility is a partiular ase of the unitarity property

of the sattering matrix of a ollision proess. It was alled loal equilibrium

ondition in [8, 17℄).

The reversibility gives strong orollaries for the saling limits � 1) Boltz-

man monotoniity and 2) attrative �xed points. We all hemial networks

with properties 1) and 2) thermodynami ompartments. Denote the lass of



Fixed points for stohasti open hemial systems 349

suh systems T. These systems are a little bit more general than the systems,

orresponding to the systems with loal physial laws (in partiular, having

onvergene to equilibrium property). For example, any unimoleular reation

system belongs to T, beause, as we saw above, the Markov entropy is the

Boltzman entropy here. However, biologial systems obviously are not of lass

T. There are di�erent ways to generalize lass T systems.

The �rst one is quite ommon: in hemial and biologial systems stohas-

ti proesses usually are not assumed to be reversible. However, without the

reversibility assumption the time evolution ould be as ompliated as possible

(periodi orbits, strange attrators et.). That has advantages � one an adjust

to real biologial situations, and disadvantages � too many parameters, even

arbitrary funtions. Normally, the rate funtions R

j;r

an be rather arbitrarily

hosen, typial example where this methodology is distintly pronouned is [33℄,

onnetions with physis lost et. In other words, theory beomes meaningless

when one an adjust it to any situation.

Another way ould be a hierarhy of proedures to introdue nonreversibility

in a more autious way. Eah further step to introdue nonreversibility is as

simple as possible and eah is related to time saling, for example, reversible

dynamis is time saled and projeted on a subsystem. We start to study here

the simplest type of suh proedures. In our ase the Markov generator will be

the sum of two terms,

H = H

rev

+H

nonrev

; (4.1)

where the �rst one is reversible and the other one is not, but the latter or-

responds only to input and output proesses. One of tehnial reasons to

hoose suh nonreversible hamiltonian is to keep invariane of the manifolds

M;M

0

;M

0;�

.

In priniple, another philosophy is possible � large deviation or other rare

event onditioning, this we do not disuss here.

Example 1: steady states for open unimoleular systems

We onsider the ase with J = 2 and unary reations only, however the

following assertions help to understand how more general open systems an

behave. Consider �rst the thermodynami limit, and then the stohasti �nite

volume problem.

In the thermodynami limit the following equations for the onentrations



j

(t); j = 1; 2, hold:

d

1

dt

= ��

1



1

+ �

2



2

+ f

1

;

d

2

dt

= �

1



1

� �

2



2

+ f

2

;

where �

1

= u

12

; �

2

= u

21

and f

j

are de�ned by (2.3). Possible positive (i.e.,



1

; 

2

> 0) �xed points satisfy the following system:

f

1

(

1

) + f

2

(

2

) = 0; ��

1



1

+ �

2



2

+ f

1

(

1

) = 0:
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For example, for onstant f

j

a positive �xed point exists for any  su�iently

large and equals



1

=

�

2

� f

2

�

1

+ �

2

; 

2

=

�

1

� f

1

�

1

+ �

2

:

In the linear ase, that is for f

j

= a

j



j

, for the existene of a positive �xed point

it is neessary and su�ient that a

j

have di�erent signs and ja

j

j < �

1

+�

2

. Then

the positive �xed point is unique and is de�ned by



1

=

�

2



�

1

+ �

2

� a

1

:

For faster than linear growth of f

j

�xed points annot exist for large .

We see from these formulas that the equilibrium �xed point



1

=

�

2



�

1

+ �

2

; 

2

=

�

1



�

1

+ �

2

(for the orresponding losed system) is slightly perturbed if f

j

(or a

j

) are

small. Moreover, the perturbed �xed point is still attrative. This is true in

more general situations as well.

Now onsider the stohasti (�nite volume) ase.

Proposition 4.1. Assume that f

j

are onstants. In a �nite volume the proess

is ergodi if

P

f

j

< 0, transient if

P

f

j

> 0 and null reurrent if

P

f

j

= 0.

Proof. Note that the number of partiles is onserved and the number of states

is �nite if there is no I/O, otherwise the Markov hain is ountable: a random

walk on Z

2

+

= f(n

1

; n

2

) : n

1

n

2

� 0g. There are jumps (n

1

; n

2

)! (n

1

�1; n

2

+1)

or (n

1

; n

2

)! (n

1

+1; n

2

�1) due to reations, denote their rates �

1

n

1

; �

2

n

2

orre-

spondingly. There are also jumps (n

1

; n

2

)! (n

1

�1; n

2

); (n

1

; n

2

)! (n

1

; n

2

�1)

due to input-output with the parameters a

j

� and b

j

� orrespondingly.

Transiene and ergodiity an be obtained using Lyapounov funtion n

1

+n

2

and the results from [7℄. To prove null reurrene note that for su�iently large

 the system should be in the neighbourhood of the �xed point, whih exists for

 su�iently large. Thus one an also use the same Lyapounov funtion. 2

General onlusion is that only null reurrent ase is interesting. However,

models with onstant rates are too naive. It is reasonable that there are reg-

ulation mehanisms whih give more omplex dependene of f

j

on the rates.

Unfortunately, there is no �rm theoretial basis to get exat dependene of

reation and I/O rates on the densities.

Example 2: stohasti Mihaelis �Menten kinetis

The generator for Mihaelis �Menten kinetis is of type (4.1) only in some

approximation. This model has 4 types of moleules: E (enzyme), S (substrate),

P (produt) and ES (substrate-enzyme omplex). There are 3 reations

E + S ! ES; ES ! E + S; ES ! E + P
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with the rates k

1

�

�1

n

E

n

S

; k

�1

n

ES

; k

2

n

ES

orrespondingly. We an also �x

somehow the output rate for P and input rate for S.

If k

2

= 0 then, as a zero'th approximation, we have a reversible Markov

hain. In fat, there are onservation laws

n

E

+ n

ES

= m(E); n

S

+ n

ES

= m(S)

for some onstantsm(E);m(S). Thus we will have random walk for one variable,

say n

ES

, on the interval [0;min(m(E);m(S))℄, with jumps n

ES

! n

ES

� 1.

Suh random walks are always reversible. The stationary probabilities for this

random walk are onentrated around the �xed point of the limiting equations

of the lassial kinetis

d

ES

dt

= k

1



S



E

� (k

�1

+ k

2

)

ES

(4.2)

de�ned by



ES

=



S

a+ b

S

for some onstants a; b, de�ned by m(E);m(S). If k

2

> 0 but small ompared

to k

1

; k

�1

; then up to the �rst order in k

2

we have the P prodution speed

d

P

dt

= k

2



ES

= k

2



S

a+ b

S

:

We ould also look on this kinetis as on the simple random walk. We have to

introdue (arbitrarily) output rate for the produt P and adjust the input rate

of S so that the system beomes null-reurrent. In fat, due to the onservation

law n

E

+ n

ES

= m(E) we have random walk on the half strip f(n

S

; n

ES

)g =

Z

+

� (0;m(E)). The null-reurrene ondition an be obtained using methods

of [7℄, we will not disuss this here.

5. Network of thermodynami ompartments

We all thermodynami ompartments, introdued above, networks of rank 1.

We saw that they have �xed points, and thermodynamis plays the entral role

there. It an be some tightly dependent and/or spae loalized system of hem-

ial reations.

Network of rank 2 onsists of verties � � networks of rank 1, and direted

edges, that is ompartments are organized in a direted graph. Direted edge

from ompartment � to ompartment �

0

means that there is a matter �ow from

� to �

0

. Matter exhange between two ompartments suggests some transport

mehanism. It is natural that there is a time delay between the moments of

departure from � and arrival to �

0

. The simplest probabilisti model ould be

the following. Eah j type moleule leaves � for the destination �

0

with rates
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f

j;�;�

0

, similar to de�ned in (2.2), and after some random time �(j; �; �

0

) arrives

to �

0

. Times �(j; �; �

0

) are independent and their distribution depends only on

j; �; �

0

. One an imagine that there is an e�etive distane L(�; �

0

) between

� and �

0

and some transportation mehanism, whih de�nes e�etive speed to

go through this distane. For example, it an be transport through membrane,

whih an be represented as a layer [0; L℄ � R

2

of thikness L. During time

�(j; �; �

0

) the partile is absent from the network, it has left � but has not yet

arrived to �

0

.

Denote by 

�;j

the onentration of type j moleules in the ompartment �.

Limiting equations are

d

�

0

;j

(t)

dt

= f

(i)

�

0

;j

(

�

0

(t))� f

(0)

�

0

;j

(

�

0

(t)) +

X

�

f

j;�;�

0

(

�

(t� �(j; �; �

0

))

�

X

�

f

j;�

0

;�

(

�

0

(t)) +

X

r

�

�

0

;jr

R

�

0

;r

(

�

0

(t))

where 

�

= (

�;1

; : : : 

�;J

), f

(i)

�;j

is the input rate to � from external environment,

f

(0)

�;j

is the output rate from � to the external environment. Note that these

equations are random due to random delay times � . In the �rst approximation

one an onsider � onstant, however random time delays seem very essential to

restore randomness on the time sale, higher than mirosopi, in the otherwise

deterministi lassial hemial kinetis.

Note that the above written equations follow from a similar mirosopi

model � we will not formally formulate it, beause it is obvious from our

previous onstrutions: the orresponding manifold is �

�2A

M

�

, where A is the

set of ompartments,M

�

is the manifold for the ompartment �.

The following problems and phase transitions an be disussed in the de�ned

model on the rigorous basis (in progress):

1. The method of thermodynami bounds in the thermodynami networks,

de�ned in [30℄.

2. (Phase transitions due to transport rates.) Normal funtioning of the

network an be lose to the system f

�;j;e

g of equilibrium �xed points in eah

ompartment �. Suh situation an be alled homeostasis. Homeostati regula-

tion � keeping the system lose to some system f

�;j;e

g. If there is no transport,

then the ompartments are independent and the �xed points inside them are

pure thermodynami. Under some transport rates the �xed points hange in a

stable way, they smoothly depend on the transport parameters. However, under

some hange of the transport rates, the �xed points may hange drastially: the

system goes to other basin of attration.

3. (Phase transition due to time desynhronization.) It is known now that

even a deease an be a onsequene of timing errors. For a network of rank 2,

having for instane a yli topology (this is alled iruit in [29℄), assume that

the input rates hange periodially or randomly in time. The question is: to
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what proess the onentrations onverge and with what speed ? This time

behaviour ould be the next step in the analysis of the struture of logial

networks in the sense of [29℄.
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