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Moment-closed Processes with
Local Interaction*

I. A. Ignatyuk, V. A. Malyshev, and S. A. Molchanov

1. General definitions and the simplest model
§1. Introduction

We consider Markov processes &, = (€,(x), x € Z*) where the time ¢ is discrete,
t € Z, , or continuous, ¢ € R . The process £, assumes values in %', where S is
the set of values of each random variable & (x). We take a new look at the
theory of such processes, selecting and studying a class of processes for which,
roughly speaking, the compound moments of order » at a given moment of time
are expressed in terms of the compound moments of orders m <n at the
previous moment. Such processes are quite diverse and they have been studied
in particular cases from different points of view by various authors. Among
them are the voter model, the exclusion process and other concrete models [6].
However, a general point of view on such “explicitly-solvable” processes makes
sense and is worked out here, apparently for the first time.

Let us enumerate the basic phenomena which we observe in this paper:

1. The class of processes that we introduce is in some sense ‘“‘completely
integrable”: the first and second moments are always explicitly analyzed. We
introduce different versions of moment closure and obtain a more intrinsic
description of such processes.

2. Marginally-closed processes are well analyzed in a number of cases with
the help of the elementary technique of cluster expansions or with the help of
Holley—Stroock duality. However, such a situation is uncommon. We propose
a new simple method, giving, apparently, the capability of analyzing an arbi-
trary

* Originally published as a preprint by the Institute for Problems of Information Transmission,
Academy of Sciences of the USSR, Moscow, 1988, 43 pp. Translated by Paul B. Slater.
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marginally-closed process. For this we use the direct process rather than the
dual.

3. Despite what was said in Section 2, the main ideology is based on the
concept of the cluster operator in the sense of [7]: the equation for the n-particle
function is an n-particle cluster operator.

4. The fundamental problem is to describe all the types of phase transitions
which are possible for our class of processes. Another basic problem is to find
moment-closed systems that are natural from a physical point of view.

We have attempted to make this article elementary and to formulate addi-
tional new problems.

The structure of the paper is as follows. We introduce (§2.1) two classes of
processes with local interaction: the moment-closed and marginally-closed pro-
cesses £, for discrete time. We obtain their intrinsic characterization in §2.1,
§1.11 and §5.11. The case of continuous time is considered in Sections 1, 2 and
3 of Part III. The case |S| =2, in general, is well-known (the voter model). We
investigate it from a somewhat different point of view in §3.1. Here, the
elementary technique of cluster expansions gives a complete answer in some
cases.

The latter case is considered in Part II. Central here is §3, where an explicit
representation is given of the two-particle correlation functions in terms of a
direct process. In §2 the possibility of analyzing the dual operator is studied.

The Gaussian case considered in §4 is characterized by its simplicity. In Part
111 §4 the diffusion processes are nonergodic and moment closure is used to solve
quite another type of problem.

§2. Marginal and moment closure

The general definition of a process with local interaction is usually given in
Gibbsian language [2]. We present a simpler definition, embracing numerous
applications.

Let us introduce the probability spaces: (€, Z,, tt;) on which the random
variables &,(x) are given at the moment ¢=0, ‘“the initial data™;
(Q 0, Ziss Ui )s t 2 1, x € 2 describe the “stochastic mechanism™ at the point
(t, x).

All the subsequent events will turn around the product of these spaces

(., 1) = () Zov o) X [(H) (@, T, u,x)].

In other words, we assume that the initial data and the “‘coin-tossing” at the
points (¢, x) are mutually independent.
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Definition 1. The process & (x) is called a (Markovian) process with local
interaction if for all 1, x there exist functions F,.  such that

£t+l(x) =th(ét(x+y)’ wt.x+y’yeQ)’ (1)

where Q is some fixed finite subset of Z, generating all Z*. Let d = diam Q. This
means that for fixed values of £,,¢,, ,(x) is a d-dependent sequence of random
variables. If the dependence in (1) is only on ,,, then the process is called
conditionally-independent.

From now on, complete translational (relative to the shifts on Z*) invariance
is assumed. Since in (1), F and Q are now identical for all ¢ and x, it is enough
to assume the translational invariance of the field &,(x).

Remark 1. Usually in processes with local interaction, there are also included
cases of infinite Q, but with weak dependence on distant &,(x + y), O, Itis
more natural to call this a process with quasi-local interaction.

Now let S be at most countable. Let us consider the finite-dimensional
distribution

P(Sy; 1) = P&, (x) =s,, x € X), |X| < o0, Sy = (s,, x € X).

Using (1), we obtain

P(€,+x(X)=sx,x€le,)=J M du.

ze X+ Q
=A(Sx: 62,2 X +Q), (2

where the integration is conducted over the set w such that for all x e X

FC(x+)), 0.1 ,,y€Q) =5,

Therefore,

PSyi+D)= ¥ A(SX,SX+Q)><< ngasz(é,(z))>

Sy i X+
= X ASx,Sxs0)P(Sxs0: 0. (3)
Sx+o

The chain of equations (3) is similar to the BBGKY chain in statistical physics.
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Definition 2. The process ,(x) is called marginally closed if, using the consis-
tency conditions for P(Sy; ), it is possible to reduce (3) to the form

P(Sx;t‘f'l)zzzfi\x,y(sx» Sy)P(Sy; 1), (4

where the summation is over all ¥ < X + Q such that
Y| <X} (5

Similar definitions with obvious changes can be presented for arbitrary S.
Now let S be an arbitrary subset of R.

Definition 3. The process &,(x) is called moment-closed if its compound mo-
ments

m(Ky; ) = < I cfx(x)>, Ky = (kyy x € X),

xekX
and k, are nonnegative integers, satisfying
mKy;t+1) = zy: ; By y(Kx, Ky)m(Ky; 1) (6)
¥
where the sum is over all Y € X + Q and all X, satisfying
(K= ¥ K = [Kyl ()

For |S| =2, one may suppose that § = {0, 1} and the concepts of marginal
and moment closure coincide. In this case, it is possible to consider only

PE Gy =1,...,8(x) =D =& 0x) - &(xa))

for pairwise distinct Xx;.
Let us now consider the conditionally independent process &’(x) with
S =10, 1}. Such a process is called conditionally-linear if

Pl (x)—1]E) =Y aé(x+y)+c (8)

yegQ

for some constants a, and c.

Assertion 1. The process &,(x) is marginally closed if and only if it is condition-
ally linear.
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The proof follows from the fact that the most general function has, in the case
S = {0, 1}, the form of a polynomial of degree at most |0| and degree at most
1 in each variable.

For (1) to be a probability, it is necessary and sufficient that we have in force
the following consistency conditions

0< Y a,+c<1 for all Q' = Q. 9
xeQ

It follows, in particular, from these that

Y la =1, (10)

xeQ
always, and we consider two cases, either

(1) Y la.] <1, (11)
or

(i) Ya,=1, a,20, c¢=0. (12)

In the latter case we obtain in this way what is known as the voting process.
Using (8), we obtain

n

<€t+l(xl)."§t+l(xn)>=kzocn“k Z Z a, - a,

= z1€@ e Q

X Y lta) el +z0).
1 13 (13)

§3. Expansion by paths

It turns out that the limiting behavior of & as t — oo with S = {0, 1} can be
analyzed by the simplest technique of cluster expansions. This capability is tied
to the fact that inequality (10) §2 is always satisfied. The basis of the expansion
is the convenient graph interpretation of relation (13) §1.

Let us fix the vertices (x,, 4+ 1),...,(x,, ¢+ 1) in Z* x Z_ . They will desig-
nate the left-hand side of (3). To each term of the sum in the right-hand side
of (3), that is, to fixed k,z,,...,z, X;s .- -5 X, We relate the vertices
(@ +x,,0,...,(+x,,7) and edges {, between (x;,¢+1),(z, + X5 0,0,

between (x,,, t + 1), (x,,, z,, t) etc. To each edge {; we assign the number a,, and

L4 123

to the vertex (x;, ¢ + 1), where j is different from all i,, ..., i, we assign the
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number ¢. We call the product of all such ¢ and Q., the contribution of the
diagram so obtained (the cluster of edges).

It is possible to iterate formula (13) §1, ¢ + 1 times, until the moments on the
left-hand side of (13) are expressed in terms of the moments of the initial
distribution &,. It is also convenient to put the expression obtained in this case
in the form of the sum of contributions of the diagrams (clusters of paths).
It is possible to carry out the construction of the cluster of paths by induction
on the moments of time ¢’. Now let there be constructed the vertices
yist)y ..., (Pms t) (in the time band Z* + {t'} = Z' x Z, ). Then, we either
declare the vertex (y;,t),i=1,...,m to be a terminal one and compare the
factor ¢ with it, or take an edge from (y;, t') to the vertex (y,+z,t" —1) for
some z € Q and compare the factor a, with this edge. The process concludes at
the moment ¢’ if all the vertices in the time band ¢’ are terminal ones.

In this way, it is possible to write

() - & (X)) =%:IG =;CK(G) CHG az(c)<( YOZ)‘, “ fo(J’)>, (1)

where the sum is over all possible diagrams (clusters of paths) G, the first
product runs over all edges { of G, and the second over all vertices of G in the
zero time band (slice) (if there are any), and K(G) is the number of terminal
vertices for G.

We call ¢ + 1 — ¢’ the length /(G) of G, where ¢’ is the least time band in which
there are vertices in G. The diagram G, which has no vertices in the zero band,
is assigned to type 1; and the remaining ones, to type 2.

It is possible to write

Civrlx) & () = L0 + L), (2)

where I,(¢) is the sum over all diagrams of type 1 of length not exceeding ¢, and
L(¢) is over all diagrams of length 7 + 1 (the points x,, . . ., x, are always fixed).
Let us define 7,( o) as the sum of the contributions of all diagrams of type 1 of
an arbitrary finite length.

Theorem 1. If o =Y |a,| <1, then for any initial distribution &, the finite-
dimensional distributions or the moments {&,(x,) - - - £,(x,)) converge as t = <0 to
the unique distribution of the limiting random field £ ,,. Moreover,

(X)) - LX) > = I1(0) (3
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and the convergence is exponential, that is,

I, (00) — L,(1)| < (12Ta>°‘

()] < ( 1 ia>na'.

The semi-invariants of £, admit a uniform strong exponential bound in the
sense of [8], in particular

L), 8 (> < Ce*Pl C B >0. ©)

(4

Proof. Let us observe that the sum of the contributions of all diagrams for
<& +1(x))), that is, with one upper vertex, of type 1 of length / equals

ca' < co’, a=Y la,l, a=y a,.

In this case each diagram is a single path. Therefore, the sum of all diagrams for
CEp(xy) - - Eo(x,)> of type 1 of length / does not exceed

Z oVl H ((X’(x) SRR .), (6)
F#ETe{xy " x,) x€T
where
T
r(x) = p(x, X) >
max p(y, z)
»ze@

and p(x, y) is the distance between x and y.

The bound (6) is obtained as follows: from each point of the chosen
nonempty set T < {x,,...,x,} we draw an arbitrary path of length / with a
terminal point. Let us enumerate the points x;,, ... from T and, sequentially
from each, draw a path (of length less than /) up to the intersection with one of
the paths constructed earlier. Expression (6) is the majorant of this procedure.
T, is the union of T and of all the points T preceding x.

Relations (3) and (4) clearly follow from (6). The exponential decrease of the
correlations of the limiting field is proved by the standard technique of the
theory of cluster expansions. Quite another situation occurs in case (ii).

Let Ya,=1,a,>0,xeQ, and let the initial distribution &, satisfy the
following conditions:

(a) it is translationally invariant, in particular
<§0(x)> = P,
(b) <60(x1 ), ey éO(xn)> _’O’ lf diam{xla LY Xn } — 0.
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Let us first observe that then we also have

&ix)) =p.

Therefore, the stationary distribution here is not unique. Let us now consider
the second moment (&, (x,)&,(x,) . In this case, the projections on Z* of the two
paths from (x,, #) and (x,, ¢) can be considered as a random walk on Z' of two
independent particles, emanating from x, and x,, respectively. Let x,(¢#) and
x,(t) be the random position of these particles at the moment t (t is the
“reverse” time of the dual process; see §3). The difference x;(¢) — x,(?) can be
considered as a random walk of one particle, exiting from x, — x, with transition
probabilities
Pz, 23) = Z a.a,.

X, yiXx—y=12zy—12)
It is easy to see that this walk is symmetric. Let us now observe that
I,() =pP(t < 1), (7

where 7 is the stochastic moment at which this walk reaches zero.

In dimensions v =1, 2, we have P(f <) =1 as t - o0, and this means that
I,(1) = p and L,(¢) — 0. Therefore, (£ (x;)¢.(x,)> = p. This means that the limit
field is concentrated on two configurations, “all /”” with probability p and “all 0”
with probability 1 — p. There is quite a different situation in dimensions v > 3.
Here p(f < t) approaches some probability g(x, — x,) and this means that

1,(0) = pg(x; — x;). (®)

Let us denote by p©(x; 1) the probability that x,(z) — x,(r) did not hit 0 for
1’ <1 if x;, — x, = x. It is known that for all d < «©

Y pOx;1) -0 as 1 — 0. (9)

x:|x| <d

Therefore if (&(x,), &(x;)) =0 as |x; — x,| - o0 then

CEo(x1)Eo(x2) > = p2. (10)
A comparison of (9) and (10) gives a definitive answer in dimensions v > 3:
oo (31)8e (x2) > = pg(x; — X,) + p*(1 — g(x, — x2)). (11)

Similar reasoning also holds for the higher moments.

Theorem 2. Let > a,=1,a,>0,x e Q and let &, satisfy (1) and (2). Then for
v =1, 2, the limit distribution is concentrated on the two configurations, “all I”
with probability p and “all 0" with probability 1 — p. If v 2 3, then for each p its
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own limit distribution exists, satisfying (11) and property (b) of the decay of the
correlations.

An obvious corollary of Theorem 2 for v = 1 is the observable growth of long
series of zeros and long series of units, which alternate. A precise statement of
this fact yields {Z,(x,)¢,(x,))> — p. Griffeath [3] observed this effect by means of
computer modeling.

Griffeath’s effect is important in many questions about the division of the
phases in a multiphase system (crystallization from a multiphase melt, etc.). The
transitional situation between Theorems 1 and 2 is of interest. Let
Ya,=1—¢¢<1,v=1,2. Direct computations show that the ergodic state,
considered in Theorem 1, is characterized by a correlational scale /, ~ ¢~ 12, If
“spontaneous voting mistakes” are improbable (this is the meaning of the
constant ¢ =1 —) a,), then long (O(e ~'/?)) series of I’s and 0’s arise.

§4. Duality and clustering

Let % be the set of all finite subsets of Z” (including the empty subset). Let us
denote by A4 the linear operator in / (%) which maps the function

S, Y={y,,...,y,} into
ANX) =Y AXf(V), f(&) =1, (D

where 47 are the coefficients in the moment chain

[e o]

<éz+1(xl)"'ér+l(xn)>= Z z Aﬁ(f:()’n)ﬁz()’m»

m=0{y,.... Ym}
Xz{xh"-sxm}’ Y={y1""’y'"}'

Let us observe that the dual (adjoint) operator A* takes the function 4&,,
equal to 1 at X and O elsewhere, into

€3]

A*3, =Y A%5,. (3)

We observe that 4* leaves the spaces ,(£#) and /,(#) invariant.

If 43 >20and ), A¥ =1, then A* determines a countable Markov chain with
discrete time on % with a transition matrix 4{ (from X to Y). This Markov
chain is the process dual to &, in the sense of Holley and Stroock (see [6]). We
used this process in the preceding section. A wide class of linear operators in
L(#), to which many mathematical physics operators belong, was introduced in



360 1. A. IGNATYUK, V. A. MALYSHEV AND S. A. MOLCHANOV

[7]. It is not hard to prove that the operators 4 and A* (considered in [,(#))
also belong to this class.

Proposition 1. The operators A and A* are multiplicative cluster operators.

In this way, it is possible to say that the process & is moment-closed if and
only if 4 or A* is a finite-particle cluster operator.

Let us remark that in contrast to the transfer matrix which acts in L,,
according to the invariant measure (that is, near to the equilibrium state), the
operators considered here encompass also the “far from equilibrium” situation,
in physics terminology.

II. Processes with discrete time and an arbitrary set of values
§1. Marginally closed processes

Let § be a finite or countable set and let us consider the conditionally-indepen-
dent process £,(x) with values in S, while maintaining all the other assumptions
of Part I. In the set of complex functions on S, let us select the linear basis {4, },
where 6,(s") =1 if s =35, and 0 in the opposite case.

Let us consider the finite-dimensional distributions

pxl~~~x,,(sl’ SRR i t) =P{ét(x1) =81y é,(x,,) =S,,}
= (&,,(&,(x)) - -+ &, (& (xn))D (1)

where all x; are pairwise distinct.
We call the process ¢, conditionally-linear if

PO ) =1]&) = ,ZS ZQ a,(s, )05 (£, (x + ). (2)
sseSye
Let us observe that here in (2) there are no constants on the right-hand side,
since it is possible to make the substitution 1 =Y §(¢,(x)).

It is clear that here conditional linearity is equivalent to marginal closure.
Actually, the sufficiency of condition (2) is verified by a simple computation, but
at the same time condition (2) is already necessary for the one-particle func-
tions.

The correctness conditions of relations (2) have the following form: for any s
and any function s'(y), y € Q,

(1) ZQ a,(s,5'(y)) 2 0,

(3
(i1) Y Y als,s(y)=1.
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From here it easily follows that, for all y and s’,

Y a,(s,s) =q,; (4)

that is, the sum, depends only on y, where ) ¢, =1.

Let us further note that the right-hand side in (2) does not change under the
replacement of a,(s,s’) by a,(s,s") +¢,(s), where )  c,(s) =0 for any s € S.
Consequently, by (i) and (ii), a,(s, s"), y € Q, s” € S, can be chosen in such a way
that

a(s,s)=0

forall ye Q and all 5,5" € S.
Now we move on to analyzing the properties of marginally-closed processes.

One-particle correlation functions

From (2) we have

psst+1) =3 a,(s, )Py (575 ). )

%
Since the initial conditions are translation-invariant, then p (s, f) = p(s, f) does
not depend on x and

pis,t+ 1) = Z b(s, s)p(s’; 1), b(s,s) =Y. a,(s,s’). (6)

The function b(s, 5') is, by (3), a matrix of transition probabilities (from s’ to s)
of some countable Markov chain with a set S of states, which we denote by .#,.
The ergodic property of £, depends in an obvious way on the properties of %, .

Two-particle correlation functions

For x; # x, we have

pxlxz(Sth; t+ 1) = Z Z ayl(slﬁs/l)ayz(s2ssé)

$152€68 yya
X 0,1 (& (31 + ¥1))0,, (£, (X2 + ¥2)) )
=3"a, (51,8)a,,(5 5P, 4, yr+ (87, 555 1)
+Y" a,,(s1,5)a,,(s;, s)p(s’, 1) (7

where ) (}.") are summations over all y, and y, such that x, + y, + x, + y,
(x, +y, = x,+ y,) and over all 57, 5s5(s).
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In distinction from the “direct” process .#,, we consider the dual process £ ¥
(if it exists) with a set of states

E X E={(x,5), (x;,5)}, E=27'xS.
In view of translational invariance, it is possible to reduce it to a process on
LxSxS={(x=x—x,5,5)}
The transition probability from (x, s,, s,) to (x’, 57, 55) equals

T 4,050,508, 55) (8)
Yi—ya=x —Xx
if x #0. But if x =0 and s, #s,, then the point “perishes”; and if 5, = s,, then
it assumes the value p(s,, o). Finally, (8) is the actual probability quite rarely,
but if this is so, then it is possible to calculate the limiting behavior of the
two-particle correlation functions.
The following cases are possible. First let %, contain one essential class and
be nonperiodic.

(A) If &, is nonergodic, then p(x, ) -0 and this means in general that all
finite-dimensional probabilities

Py x, (515« oo 8,5 ) 0.

(B) If.Z, is ergodic, then p(s, #) converges to a unique distribution. From
considerations of compactness, it is easy to prove that there is at least
one invariant (translationally invariant) distribution. The following ques-
tions arise.

(B1) When is this distribution unique?

(B2) If it is unique, then for which initial distributions is there conver-
gence to it?

(B3) The decay of the correlations and the dependence on the parame-
ters (phase transitions of the second kind).

(C) If there are several essential classes and |S| < o0, then does nonunique-
ness hold?

The voting model is related to this case.

It would be very good if the method of expansions into paths allowed one to
conduct an exhaustive analysis here. Apparently, this is not possible. Here we
show that the dual process exists very rarely.

Proposition 1. For the existence of ¥ it is necessary and sufficient that there
exists a dual process L ¥, that is, that b(s, s") is a doubly stochastic matrix and
that a,(s,s") 2 0.
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The process £ ¥ is a countable Markov chain. Let it have one essential class
and let .Z, be ergodic. Then two cases are possible.

(1) The probability of hitting the set x = 0 equals unity. Let us then denote
by g*(x,s,,s;;s) the probability that the dual process ¥¥, exiting from
(x, 51, 8,), at the first hitting of x =0 hits at (0, s, s). This case corresponds,
roughly speaking, to dimensions v =1, 2. However, we do not know whether
this is always so in dimensions D = 1, 2. The answer apparently depends on the
speed of convergence of the chain ¥ to the stationary distribution. This is
always so if |S | < o0, v =1, 2, when the convergence is exponential.

Theorem 1. In case (1) there exists a unique limiting two-particle correlation
function

Py x, (81, 823 00) =Y p(s; 00)g*(x, $1, 555 5). ©)

(2) The probability of hitting x =0 is less than 1. Then the limiting condi-
tional probability (under the condition of not hitting at x = 0) is such, as ¢t — o0,
that the dual process at x # 0 approaches zero for all x. This case corresponds
to dimensions v = 3. The result is similar to the situation in §3.1 and we will not
consider this further.

If the dual process does not exist, in general, another approach is preferable
(see the next section).

In the case of continuous S (we restrict ourselves to the case S = R) we will
understand by the correlation functions the joint densities

Peyoox, (815585 ) =001 — &, (x1)) -+ (s, — &, (X))

and in the definition of conditional linearity

MO =& () &) — X fay(s, $)0(s" = & (x +y) ds’ =3 a s, &i(x +)),
(10)

we restrict ourselves to the case of sufficiently smooth a,(s, s”).

All the rest is fully analogous to the case of discrete S with the exception that
q*(x, sy, 5,; ) = 0 always. We will not discuss this further.

It is of interest to compare the classes of marginaily-closed and moment-
closed processes &, (if S = R). They have a nonempty intersection (for example,
if S = {0, 1} they coincide). There are marginally-closed processes that are not
moment-closed. This follows because the process £,(x) at a given point x is
always marginally-closed, but very rarely moment-closed. At the same time, on
the other hand, Gaussian processes (see below) are moment-closed, but not
marginally closed.
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§2.  The dual operators A*

Instead of /,(#) as in §4.1, we consider a subset #,(Z*, S) of a Fock symmetric
space F,, (L(Z’ x S)) of vectors

(f(‘)xfl(xl’ sl)fo(xl’ S15 X3, SZ), .- )

such that f,(x,,s,, ..., x,, s,) =0 if at least two of the x,, ..., x, coincide.

The restriction of 4* to the direct sum of the two-particle and one-particle
subspaces %(Z"; S) is denoted by A¥. Because of translational invariance, we
may suppose that 4% is an operator in L(Z\{0}, S?) ®L(S). Let
Ors15,(), x #0, be a function from L(Z*\{0}, S? equal to 1 at the point
(x, 51, 5,) and 0 in the remaining cases. Let us define the operator 4¥ by the
equalities (as in §1)

A;‘éx.sl.sz = 2/ ayl(sl’ S,l)aZ(s25 S;)éx-kyz—yl,s’l,s’z + Z” ayl(xls S)ayz(SZ! s)és (1)

for x # 0, where §, = §,,, and
A%5, = A*S,. (2)

In equations (1) and (2) and below it is convenient to identify
L(Z\{0}, S*) ® L,(S) with the subspace ,(Z", S?) of functions equal to 0 at the
points (0, 5,, 5,), 5; # 5.

The basic problem is the analysis of the limiting behavior

((43) 0,500 ) = Brs, 5,5 A5S) (3)

where f = {p, (s, 5,; 0)} is the vector of the initial distribution belonging to /..
It is convenient to pass to the Fourier transform

L(Z' x §%) - L,([ —m, 1]") ® L(S?).

If, for the initial distribution, the correlations decrease sufficiently quickly,
then the Fourier transform of the initial distribution has the form

](i) = Z ei(i'X)Po,x(Sl ,52;0)

= 8(A)p(sy; 0)p(sz; 0) +i;(i’ 515 52) (4

with sufficiently smooth functions £, (4, s,, 5,). It is convenient to rewrite (1) in
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the form

sk - ’ ’
A25x,_\*1,s2_ Z ayl(sl’sl)ayz(SZ’S2)5x+y27yl.s'l,:’2
Y1:Y2:5152

- (1 - 5)(,0) Z ayl(sl s S;)ay2(52, 53)50,3'1.5'2

S1#S52.01.02
x+yy—y1=0

_5)(,0 z ayl(slbs/l)ayz(525s§)5x+y2~yl,s’1,s'2+5x,05s1,56s2,sA,1*55, (5)
Y1y2:51.52
where J,, and J,, are Kronecker symbols.
Now let |S| < 00. Then, in the right-hand side of (5), all besides the first sum
is a finite-dimensional operator.
Let us introduce an S x S-matrix a(A) with elements

as’,s(}') = Z ei(l,y)ay(s, S’), (6)

and the operator 4, in L[ —n, n]*) ® ,,(s?) of muitiplication by the matrix
a(1) ® a( — A). Then the operator A% acts in L,([ —x, n]*) ® L,(S?) and acts as

A¥=4,+ A4, (7)

where A, is a finite-dimensional operator. In this manner, we have reduced the
problem to the analysis of Friedrich’s model (7).
The operator A¥ has an eigenvector

eo=255.

If ¥, is reducible then e, is not a unique eigenvector. The representation (7),
and the fact that iterations of 4%, do not lead out of the class of smooth

X5 1,82

functions, suggest that the asymptotics (3) are equal to

((/I;Zk)tgx,sl,sz’f)

where f'has the form (4), if £, is ergodic, and is determined by the eigenvector
e, with the eigenvalue 1 and the behavior of (4%)'5 at A = 0. In the case of the
existence of a dual process, there corresponds to this, respectively, the hitting of
the “dual particle” at x =0 and its departure to infinity.

§3. The operators A,

Let there be given at time 0 translationally-invariant one-particle p(s; 0) and
two-particle p, (s, 5,; 0) correlation functions. We may consider the set of all
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these functions as a vector

Feh(S)®1,((Z\{0}) x §?). ()

It will always be assumed in addition that at time 0 the process &, possesses the
property of decomposition of the correlations in the sense that (if {-, -> denotes
a semi-invariant)

€95,(C0(0)); 8, (8o (X)) > = poc(51, 525 0) — pls1; 0)p(s2, 0) € [,((Z\{0}) + S?). (2)
Let us then expand the vector
F=heLefieh(®) ®@L(Z\0}) + SHDL(S) =H @ H, @ H =H, (3)

where £, has the components £1(5) = p(s; 0), £, has the components folx, 51, 8,) =
€8,,(80(0)), 3, (£o(x)) > and f, the components £;(s,, 5,) = p(s1; 0)p(sz; 0).
Let us define the operator 4,: # — i,

Ay A A\ (A
A2f= A21 Azz A23 fz (4)
Ay An An/\f;

where 4,: # — H#,,
(i) A, =A4,3=0,

(A11f1)(s) = X b(s, s)A1(s7);

that is, 4,, is the transition matrix of the chain % ;
(i) 43 =A43,=0

(A3 /5)(s51, 8) = Z b(s1, 51)b(s, $3)15(571, 53),
57,55
that is, 4,, is the transition matrix of the chain &, x #,;

(i) (421/1)(x, 51, 5,) = ) 2.a,,(s1, 8)a,,(52,911(5);

Y1 y2:y1=yz=x 35

that is, 4,, acts as }” in formula (7) §1;

(Anfo)(x, 5,.5,) = Z Z ayl(shsll)ayz(sZ’s;).fZ(x + 32— Y1, 51, 5%),

Y12 sish
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that is, 4,, acts as ) in formula (7) §l,

(A fi)(x, 51, 8) = — Z Z ay,(sl, s/l)ayz(sl, $5)(51, 52).

YIY2iX=Y1—Y2 $1.52

Proposition 1. A, is a bounded operator in # .

Proposition 2. Let f be the vector of initial data. Let us write
asf=riefefs.
Then
Pox(81, 82 1) = f5(x, 51, 55) +f5(51, 52). (5)

Proof. Induction on ¢ It is enough to compare formula (7) §1 with the
definition of A,. Let us remark that A4,, is defined for the compensation
“linearly” of the action of 4,; “from the point p, os,, 5,)”.

Now use the definition of 4, to obtain an explicit form of the limiting
two-particle correlation functions.

Theorem 1. Let the chain £, be ergodic and all a (s, s’) =2 0. Let &, be such that

Y |p(s; ©) — p(s; )| < 0. (6)

Then the limit correlation function exists, is unique and equals

Dox(81, 82, 0) = Z‘o Alzz(Azlfl + Azaﬂ)(X; 51, 82) +j;(sls $3), N

where
Sils) =p(s, 0),  filsi, 52) = p(s,; 00)p(sy; ).
Proof. If, at the initial moment of time, £,(x) are independent and have

stationary one-dimensional distributions p(s; o), then formula (7) follows from
the definition of the operator A,. In the general case we write

a(s; t) = p(s; 1) — (p(s; ) (8)
a(sy, 525 1) = p(sy; Dp(s,; 1) — p(sy; 00)p(s,; 00), 9

and introduce the vectors ¥, (7) € #, and V,(f) € #, with components (8) and
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(9), respectively. Then

Pox(81, 525 0) = Z Agz(Azl(]; +y,t—t'—1)+ Azs(f; +ys(t -t 1))

U<t

+A22f;(X;Sl, 53) +£5(51, 52). (10)

For the proof of the theorem it is sufficient to show that, for all
x9y‘_’é09 sl’ Sz,s/l,S;,

) A4 ) —0. (11)

V51,592 X,51.52

For the proof of (11), let us consider the random walk on Z* with transition
probabilities

px—-x’) = Z 9,9y,
Y1y X' =x+ya—y)
It is symmetric, and with probability 1 either is absorbed at 0, or departs to .
But the operator A4,, admits an interpretation as a random walk on Z* with
internal degrees of freedom (s,, 5,) € S2. The theorem is proved.

From this it is possible to obtain more precise representations for the limiting
two-particle correlation function.
Theorem 1 can be carried over to the case of n-particle correlation functions.

§4. Gaussian processes

We call the process &,(x) € R linear if

Eni®) = Y a, (0E&(x+y) +a., (1)
yeQ
where the vectors 4, , = (a, (), a,,) are independent for different values of ¢ or
x.
We say that such a process is ‘“homogeneous Gaussian” if

(1) a,.(y) = a, are constants,
(2) a,, are independent Gaussian variables with mean m and variance ¢2, and
(3) & is a stationary Gaussian process.

It is easy to see that Gaussian processes are moment-closed (but not marginally-
closed).

The convergence of the means m, = (&,(x)) is trivial: they converge if |a| < 1,
where a =) a,. Later, we shall consider the case when m =0 and (&,(x)> = 0.
Here everything is determined by the two-particle correlation functions.
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Let us write

bt(x) = <€t(x/)ét(x, + x)>

Then
by ()= Y aa,b(x+y—y)+0°(x) (2
yy'eQ
or
b, 1 (D) = a(Da( = )b, (2) = 62, (3)
where

ad) =) a, e’ ™,
y

Bi(A) = X b,(x) €.

We can regard (2) as a linear operator in (Z") @ C (if one remembers that it
takes the vector (0, 1) to (¢2, 1)).

Its restriction to /,(Z") is a cluster operator such that, in the terminology of
[7], its cluster functions are different from zero only for one-point sets. There-
fore, under the Fourier transform, it becomes the multiplication operator on the
smooth functions on the torus L,(S*) which arises from a much wider space
(1. (Z") or even the tempered distributions on Z*).

We now present a complete classification of such processes. We begin with
definitions [4], [5].

Definition 1. Let us denote by p¢(x) the probability that |£,(x)| < &. We say that
the process £, is recurrent at x if Y. pi(x) = co, whereas zero recurrence holds if
pi(x) >0 as r - oo. But if the series ) p2(x) converges, we say that the process
& is nonrecurrent at x.

Definition 2. We say that the Gaussian process £, converges as f — oo for a
given &, if, for any x,,...,x, € Z", the distribution &,(x,),..., ¢(x,) has a
nonzero Gaussian limit.

It is clear that, for a convergent process, nonzero recurrence holds at each
point x € Z*. For homogeneous Gaussian processes, we have the following
classification.
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(1) A homogeneous Gaussian process converges as f — oo if (4| < 1 for all
A€e[—m, n].
(2 If
max

Ae[—m, n]v

a(d)| =1,

then the process converges if and only if v = 3. In the contrary case,
nonzero recurrence holds at every point x € Z.
(3) However, if
max

de[—m, n]v

aA)| > 1,

then &, is nonrecurrent at every point x € Z'. (See the proof in [5].)

§5. Moment-closed processes

Definition 1. Let there be given a probability space
(2, Z, 1) =(Q x Qy, Z; X Iy, py X ).
Let us consider the function

F(CU,E)=F(CU,€1,..-,6"),

where w € Q, and ¢, are random variables on Q,. The function F(w, &) is called
linear in the mean if

JF(w,f)dul(w) =Yal +c ()

for real a, and c.

The class of functions that are linear in the mean contains not only the linear
functions of the form (1) §3, but many others also. Typical examples for
applications are the following.

(1) Let there be given on Q,, the processes (stationary in s)

ﬁt,x(s9 wt,x) = (r’t,x,y(sa wt,x), Y€ Q)
Then the function

((x+y)

¢
Fl,8(x+y),yeQ)= Y e,y (8) ds (2)

ye@ Jo

is linear in the mean.
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(2) Let w € R. Then the function

Flw, &) = \/%ﬁexp(—%(w—@z)f(—i)), f@) >0,

is linear in the mean if du,(w) = f(®) dow.

In contrast to the case of marginal closure, where the closure of the equations
for the one-particle correlation functions implies their closure for all, this is not
so in the case of moment closure.

Here, linearity in the mean of the function F from (1) §2 is equivalent to the
closure of the equations for the first-order moments.

It is easy, moreover, to construct examples for which there is not closure for
the second-order moments, and so on.

Remark 1. Another definition of moment closure is of interest when, not Z K.,
but |X| is expressed by the order of the compound moment m(K,, 1) (see No.
2.1). This definition in many cases (but not always, due to the problem of
moments) is equivalent to marginal closure.

Good sufficient conditions for moment closure are given by relationship (2)
for certain restrictions on #,,(s, ®,, x). We will not state them, but limit
ourselves to an important example.

A branching process with diffusion [1]

Let ¢,(x) € Z,, be interpreted as the number of particles at the point x at time
1. Each particle at x, independently of the others, moves with probability g, to
x+y,y #0,y € Q; perishes with probability p, and with probability g, dupli-
cates itself, remaining at x,p +) ¢, = 1.

Let us define for each point (¢, x) an infinite set of independent identically
distributed vectors

ﬁgj‘g = (’15?2+y(wt,x)’ y € Q)’ o= 1, 29 e e

Each component #{2, =1 for y #0 and 2 for y =0 with probability g, or 0,
where not more than one of the components can be different from zero.
Then

Ex—y)

ét+1('x)= Z Z ﬂgﬁ-y,y- (3)

yeQ a=1

Moment closure is obtained automatically from this.
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It is possible to consider similarly the more complicated models of diffusion
with chemical reactions.

Let us now consider a more general case.
The Markov process &,(x) with values in Z!, is naturally interpreted in terms
of particles. Equation (1) can be rewritten in the form

Pl ax)=Ex) +K|E} =frE(x+y),yeQd, K=z —§,(x),
P{ét+dt(x) = ét(x) l gx} =1 —K=Z§( )fK(él(x +y)) dr.

For the first moment m, (¢, x) = {£,(x)) (even without an assumption of homo-
geneity) we obtain in the standard manner

om

a—t‘ = ; K{fx(&:(x + ),y € Q)).

From this it is apparent that for the closure of the equation for m, it is necessary
and sufficient that

ZKfK(xy’y eQ) = Z ayxy' (4)
K yeQ
This equation assumes the form

0
(1, x) = Y aymi (1, x + )
ot 5

and can be solved by the Fourier method.

To ensure nonnegativity, it is necessary to require additionally that
fx(&,(x +y)) =0for K < —¢&,(x). Let us note that the conditional independence
of £, , +(x) with the condition &, has so far not been used. If one requires it, then
it is easy to obtain closed equations even for the higher moments under (4). For
example, if

my(t, sy, X3) = & (x1)¢,(x2))

then
om, ,
o Z a,[my(t; x, +y, x;) + my(t; x,, X, + y)l, x; #x°,
yeg@
amZ ’
ot = Z ayay’mZ(t’x+y,x+y)a Xy =X =X,
yy eg@
etc.

The independence condition is restrictive in a number of cases, since it does
not embrace diffusion processes with reproduction, when one particle, moving
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after a time dt from one point to another, changes &,(x) immediately at both
points (see above, where the case of discrete time was discussed). If one
supposes that the diffusion occurs independently for different particles, and, let
us say, each completes the transition x —»x’,|x —x’|=1 with probability
k dt (x = const), and the branching intensity is a linear function of the form
Y a,¢,(x +y) (a, 2 0), where the distribution of the number of streams at each
branching action is fixed and conditional independence holds for the branching
process, then we obtain an explicitly solvable (in the sense of moments)
branching process scheme with diffusion and local interaction.

§6. Other problems

Many new problems are tied to the nontranslational invariance of the initial
distribution. Besides the natural question of convergence, we present two more.

1. Processes with local interaction in a random medium

Let us limit ourselves to the case |S|=2 and a conditionally independent
process ¢&,,

P{E () =1[E}= T a3&(x+y). (1)

yeg@

In this case, we suppose that the realization a; is determined on some auxiliary
probability space (€, Z,u), and form a ‘“random mean”. The vectors
a* = (a%, y € Q) are mutually independent and identically distributed so that
with probability 1

Ya;=1.
Yy

We are interested in the typical (in the sense of u) behavior of &,(x) as ¢t — 0.

Let us remark that for a given w € Q, it is easy to see that &, (x) is moment-
closed; but if it is averaged over du, then the moment closure is lost, since a; and
&,(x + y) are dependent in the sense of du.

The methods of §3.1 can in many cases be transferred to the generalized
voting model. In this case, instead of the typical symmetric random walks, there
arise random walks in a random medium.

2. The hydrodynamic limit

Papers on the construction of the hydrodynamic picture for an exclusion process
and the voting model (see [9] and the references there) can apparently be
generalized to arbitrary moment or marginally closed processes. In this case, it
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is supposed that the initial data are slowly changing functions of some auxiliary
parameter ¢, which subsequently approaches zero; for example,

Co(x)) = m(ex)

for some smooth function m(r), r € R.

Two versions of the hydrodynamic picture are known, differing among
themselves: the case of the local law of preservation in an exclusion process and
the preservation of mean ‘“‘magnetization” in the voting model. Consideration of
the general class can yield new effects.

A similar problem occurs for kinetic equations. Let us remark that marginal
closure corresponds to the linear kinetic equations, and moment closure to the
hydrodynamic equations.

3. Quantum processes with local interaction

Such processes (which it is natural also to call open systems) are usually
introduced for C*-algebras. We will indicate the Grassmann version, which has
a number of advantages; in particular, there is a complete analog for it of the
conditional mathematical expectation.

Let us consider a Grassmann algebra A with generators £3(x), £3(x),
xeZ,a=1,...,N, and an extended Grassmann algebra ¥ with generators
w?.,of ,p=1,..., N, supplementary to .

Let there be given on U a quasi-state {->, which is white noise on the
generators o (see [8], §1.VII):

<wﬁxd)g:x’> = 6!1' 5xx' 5ﬂﬂ"

and with a restriction of this quasi-state on 2 independent of the white noise.
Then the process with local interaction determines the temporal evolution of the
quasi-state {->, on A. It can be given in the Schrédinger picture by the
homomorphism ¢: A - A:

P(E5(x) = &) = F,(§5 (x +), & (x + ), 0, &),
@(E3(x) = 1(x) = F(&5 (x + ), &5 (x + 1), 0, @),

where, as earlier, F and F depend only on the generators &, &, @ and @ at the
points x +y,y € Q.
Inductively, let

@7 (x) =& 1 (x) = 0" 1(E5(x))

and

(4D, =<p""(A) o
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The latter formula determines a process with local interaction and, as above, it
is of interest to distinguish the class of moment-closed processes. Among them,
of course, are the Gaussian processes, where (), is Gaussian and ¢ is linear in

& and £

III. Processes with continuous time
§1. The analog of conditional independence

If the set S of values is finite or countable, then to define a process E, with
continuous time, it is possible to act as follows: first introduce the process
Er=(EMx),xeA) on the cube AcZ by means of the matrix
H, =(h(o,, d3)), so that

p(SA, r+ dt) =P(SA9 t) + Z h(s/\’ S;\)p(S;\, t) dta (1)

SA

where s, is a configuration on A and

h(SA,S;\) 20, SA¢S;\’
h(s/\,sl\) = - Z h(sA’ S:\)
SAISA FESA
In the case of continuous time, the matrices H,, the nondiagonal elements
h(sa, si) of which are different from zero only if s, and s} differ at a single
point, correspond to conditionally independent processes with discrete time. We
will denote by s, (x, s) the configuration s, = (s,, x € A) in which s, is replaced
by s.
Conditional linearity means, by definition, that

h(sA(x, S), SA) =f(sx+y7y € Q) = ZQ ay(s’ sx+y) (2)

for some real functions a,(-, -) on S?, where, without loss of generality, we may
suppose that a,(s, s) = 0. From the general theory [6], [8], the existence of a limit
process for A "Z’ follows.

Here conditional linearity does not guarantee marginal closure. Before prov-
ing this, let us observe that it is easy to show from (1) that the conditional
probability

Pl a() =5 | &) = (1= 8,6 (9) Ta,(s & (x + ) de
+65(£,(x))<1—dz T as, é,(x+y>)>. 3)

YIS #ES
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Hence
= L L0660 = £ 5 05D 5570
-2 28,(8" S Wax (8,550 — Y ao(s”, pa(s, 1)
YF0 i & s
= %: Z a,(s, W+ ,(5, 1) — g Z by (s WPsx+ (5,575 1); (4
and if
;ay(S”,S’) =b,(s") =b,, (5)

that is, it does not depend on s’, then

an(s )] Z Z ay(s s )px+y(s 1) —bp.(s; 1), b= Z by' (6)

Theorem 1. Condition (5) is necessary and sufficient for a conditionally linear
process to be marginally-closed.

Proof. Necessity was proved above. For the proof of sufficiency, we need to
deduce an equation for the higher correlation functions.
We have, as in (3),

P{f,_,,d,(x,-):Si,l': 1, .. "nlét}

= 2 (1=6,(&(x)) I;[8 6,(8(x)) X a,(si, &, (x; +y))

i=1

n

+ 116,60 »(1 —#t S Y Y as, é,(x,-+y))).

j=1y s;ésj

apxl ..... x,,(s]"--9sn;t)
ot

=Z Z, pxl ..... Xi+ Yoo, x,,(slﬁ"-,s/a'--ssn)ay(si’sl)

- Z Z pxl,...,x,-,x,-+y,x,-+1 ..... x,,(sls cee s Sy 5 > Sns t)ay(sia S’)
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n

- Z Z Z Px, ..... XiXiF Vo Xi s s x,,(sla"-,siys/9"~’ n;t)ay(s”, S/)

i=1(ps)s" #s3;
__"Z Z px1 ..... Xit Voo, x,,(sh"~’s/’--'9sn;t)ay(si,s’)

- bnpx1 ..... Xiyoons x,,(sl’ e Xy t)’

where Y, is over all (y,s’) such that x, + y does not coincide with any
X, j# i orif x; +y =x, then s =35,.

§2. Marginal closure without conditional linearity

The processes of the previous section admit a generalization to the case when,
after a time dt, the configuration can simultaneously change at several points.
Such processes can be marginally closed, but they are never conditionally linear
in the earlier sense.

We also define a class of processes that we will consider here. Let us consider
a system of subsets 4 = {B}, B = Z*, with the following properties:

(1) translational invariance: if B € 4, then all shifts B belong to #;
(2) diam B <d, < o for all Be &;
(3) if BP=Be%, then B ¢ &.

Let S,(B, S;) mean the configuration §, in which the values at the points B
are replaced by S,. Let us consider the matrix H A With

h(SA(B’ SB), Sa) =f8(‘§89 SO(B))’ ()

where O(B) is some set containing B. We will subsequently consider only the
particular case when O(B) = B. Then, as in §1, we have

P{€t+dl(x) =§x3 X € C I Et}

=5, (1= I esco)

xyl:[\alégy(ﬁ,(x)) ) Y Jfo(Sh Cip)dl

B:BNC=5 Sp:Sp.p-=Sp

+ Hcésy(f,(y))(<1—dt » S s(Sh, 6,,B)>- ®

Be#BNC# P Sg:Sgnc#*Spnc
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Then, in obvious notation,

op(Sc: t)
ot

= Z Z ZfB(SB\B’U ga', SB')P(SC\B'a S50

B BAC=B#@ Sgg S;

- Z Z Z Z fs(ga' USpua, Sy u S%\B')P(gc, NN 2]

B:BcCBe@BBAC=F Sp\p Sh\p
- Z Z Z Sa(Sa, Soc UanC)p(§C9 Shes b
BBNC#Q Sp:Spac*Senc Spc
The second and third terms on the right of (3) give, under union,
S
- Z Z Z S8(S8, S5nc Y Ss~IP(Scs S D) (4)
B:BAC=FB #J Sp ¢

If, for all B, Sp ¢ and S, ¢,

ZfB(SBa BC Uganc) = Wa(ganc), (5)
Sp
that is, it does not depend on g5, then (4) equals
~ ~ def ~ ~
— Y ¥s(Ssc)P(Sc; 1) =p(Sc, Hb(c, Sc). (6)
B:BNC#

Condition (5) is similar to the condition (5) of the preceding section. Here,
however, there is a second (more restricted) condition for the analysis of the first
term. We will require that, for all B and for all S,

Z ZfB(SB\B’US~B” B)P(S3) = Z Z V(S S;B')P(Sit)- (7

Sg\g' Sp’ AcB:|4|<|B| S)

Theorem 1. For the process &, defined above, to be marginally closed, it is
necessary and sufficient that conditions (5) and (7) are satisfied.

An example of the slight generalization of the exclusion process [1], where
S ={0, 1} on Z*, where B is any pair of nearest neighbors x, x’, |x —x’| = 1 and
where fgz = (S, S3) = A in any of the following cases:

Sp=Bp=(1, 1),
SB =(0’ 1)9 SB’=(1a 0),
and fp = A if Sg=Sp =(0,0) or Sy =(1,0), Sp=(0, 1).
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§3. Diffusion systems with local interaction and their
moment closure

Let us consider the system of stochastic equations

dé,(X) = a(é,(x +y)’ Y€ Q) th(x) + b(é,(x +y)’ Y€ Q) dt,

which can be rewritten in the form

[\]

&) = &) + f "o dW,(x) + f "bar, (1)

x € Z’, W,(x) are independent Wiener processes, and the stochastic integrals are
understood in the Itd sense. If the function ¢ is smooth, and b grows not faster
than linearly, then the system (1) is solvable by the method of sequential
approximations in an appropriate Hilbert space (say, with the norm
171> =¥, 27Mf?(x)). For the general theory of such equations, including also
their continuous analogs when Z’ is replaced by R’, see Rozovskii’s book [10].
We limit ourselves to formal computations, which in our case are easily
substantiated.

An equation of the first order has the form

dm,(t, x) = {b(&.(x + y), y € Q) dt,
from which it follows that
bl (x+y),yeQ) = ZQ A8 (x +y) (2

is necessary and sufficient for the closure of the equation of the first moment. In
case (2), as earlier, we obtain

%(I;x)= Y am(t; x +y).
ot yeo

In order to compute m,(t; x,, x,) = {£,(x,),(x,)), let us apply the Itd
formula to ¢,(x,) and &,(x,). Because of the independence of w,(x,) and w,(x,)
for x, # x,, this gives

om
a—tz (t x1, x,) = Z ay[mZ(t; X1+ ¥, x2) +my(t; x4, X+ )]

yeg@

For x, = x,, there are the supplemental terms

% &% x) =0’ (x+y),yeQ)+ ZQ am(t;x+y,x)  (yeQ).
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The closure of m, will be ensured in the three cases: (a) ¢%= const; (b)
o’ (& (x+y),yeQ) =Y, c0b,&(x + y)—in this case it is necessary to require
additionally nonnegativity of ¢&,, which is not hard to ensure; and (c)
o (¢, (x+1),yeQ) =3, ,c0C,E(x + & (x +y'). Cases (b) and (c) require
additional analysis of the solvability of the original stochastic equation.

The diffusion processes &,(x), x € Z' with local interaction appear, in a
natural way, in the solution of linear evolution problems in random rapidly-
changing media, for approximately d-form correlations. See, in this connection,
the recent surveys [11], [12]. We will limit ourselves to one example.

§4. Intermittency in chemical kinetics problems

For diffusion processes, instead of general considerations, as above, we consider
the example of a linearized chemical kinetics scheme, where we will discuss quite
different statements of the problem.

Let W,(x) be standard Wiener processes, exiting from the origin, and indepen-
dent for different x € Z.

Let us consider the equation
dg,(x) = (x AL, (x)) dr + &,(x) dW,(x) (D

for the concentration &,(x) at the point x at time ¢.

From general theorems [11], it is not hard to deduce that the solution of (1)
exists and is unique.

This process is nonergodic, but displays very curious asymptotic behavior.
Here intermittency also occurs, but somewhat differently than in §3.1. As
regards the physics interpretation, see [12] for more detail.

In order to obtain intuition about the behavior of &,(x), let us observe that for
k =0 we have, at any point x,

¢ =exp(W, —t)2). (2)

Thus, as t — o0,

ln.’:,__)_l 3)

m(0 = 1> = (exe( o, )

%t pt
—exp{Z 51, 4@
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and therefore

Inm,(t) p(p—1)_
P d 2 ='}’p' (5)

It follows from (2)—(5) that the concentration at each point decreases exponen-
tially, and the moments m,(f) grow exponentially. This means that high (but all
the more rare at ¢ —» c0) peaks of concentration last a time proportional to the
logarithm of their height (for W, — ¢t/2 =1n ¢,).

Now let us consider how the diffusion x influences the growth of the moments
and the asymptotics of &,(x).

Let us first observe that the process &,(x) is moment-closed. In fact, setting

mp(xla sy xp; t) = <£l(xl) e ét(xp)>
and having observed that
Ervad®) = &) +At<x IRy -—2vr<é,(x))+ £,(x) AW, (x) + O(A1)
and
AW, (x) AW, (y) = Até(x — y),
we obtain the moment chain

om

a_t” =H,m, =x(A, + - +A )m,(x,,....x,;0+ (igj o(x; —x,))mp. (6)
We have obtained the Schrédinger equation for p particles on a lattice with

the positive é-form interaction

V(x,,...,x,) = Z d(x; — x;).
i<j
For the first moment we have

om,

at (xa t) =K Aml(xs t), ml(x9 O) = 1,

and this means that for all k = 0,

m,(x, t) _

y; = lim 0.

t— oo

For the second moment, using translational invariance and setting

my(y, ) = my(xy, X;; 1), Y =X =Xy,
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we have

9m,
ot

Let us denote by A* (k) the greatest eigenvalue of the operator in the right-hand

side of (7). It turns out always to exist and gives the limit of the spectrum of this
operator. For v =1, 2,

=2k A,m, + 6(y)m,. (7N

At(k) =1, k>0, At(x) =0, k - 00,
For v 2 3, 1*(x) decreases from 1 to 0 as x varies from 0 to some k, > 0. For
K > Ky, AT (k) =0.
For arbitrary p it is also easy to show that

lim 107

{— 0

=4, (x)

exists, and is an upper boundary of the spectrum of H,. In [12] more detailed
information has been obtained about the behavior of 4 7 ().
A general picture of the behavior of 4} (x)/p is given by

0<Af() <AF@pp<---<Af@p=<---. (8

Physical intermittency signifies an extreme nonuniformity of the field ¢,(x)
over the space as t — 00. A hierarchy emerges of more and more uncommon and
higher and higher peaks of the field, where the peaks on “one scale” correspond
to the formation of the corresponding statistical moment. This leads to the fact
that, for example, the mass (or energy) of a physical field is concentrated as
t - oo “almost entirely” in a very small part of the space. We consider that this
point of view yields a qualitative explanation of many physical effects (activity
centers in catalysis, nonuniformity of the magnetic field of the sun and stars,
etc.). See, in this connection, the cited surveys. The effects of intermittency
relative to random media that are nonstationary (quickly changing) in time, are
related to the effects of localization in the physics of solid disordered bodies,
which are connected to the appearance of exponentially decreasing eigenfunc-
tions for random Hamiltonians of the form H = —A + ¢(x) with a potential,
now independent of .

The strict inequalities in (8), as explained in [11] signify physical intermit-
tency. The strict inequalities can be rigorously proved for small x and for p = 2.

We understood the initial equation du/dt = x Au + w,(x)u in the Itd sense.
However, this standard point of view is not the only one possible, and what is
more, the construction of the Stratonovich stochastic integral is physically more
natural. Indeed, the 6-form time correlations are the limiting case of the
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correlations with the time scale © as T —»0. It is possible, for example, as a
physical model of “‘white noise” w, to consider the “renewal” process across

time 1, w® = [t/1] /\/;, where &,,i=0, +1,..., are standard Gaussian vari-
ables. For ¥ =0 the equation
ou(t)

(D) =
a1 wiu, w(0)=1,

t
U = exp{ f W ds},
0

and as 7 —0 in any natural sense it yields the limit

u©@(t) = exp{w,}

and not exp(w, — t/2), which is obtained using the Itd integral. In the concrete
case of the equation of (1), linearized chemical kinetics, this leads to a shift of
all the moment increments y,(x) by 1/2. However, in other situations (say, in the
theory of a hydromagnetic turbulent dynamo) the differences are more notice-
able. In the physics literature, the symmetric Stratonovich stochastic integral is
always used in such problems.

has the solution

Conclusion

The monograph of Liggett [6] consists largely of models which in one sense or
another admit an explicit solution. In this paper, it is noted that the majority of
these examples belong to the wide class of processes with local interaction:
marginally-closed and moment-closed processes. Marginally-closed processes
admit an explicit solution in purely probabilistic terms. The moment-closed
processes reduce to “finite-particle problems™. In this paper, the foundations are
laid for the theory of this class of processes and many directions and problems
are presented for subsequent analysis.

Afterword

After twenty years from the introduction into the mathematical literature of the
concept of a Markov process with interaction, it has become clear that this class
of stochastic processes is a natural one for modeling a very wide circle of real
phenomena: from the interaction of microscopic particles in the framework of
statistical physics to the interaction of living individuals and the interaction of
computer processors, connected to the system of information exchange. How-
ever, until now there had not existed sufficiently general methods of studying



384 1. A. IGNATYUK, V. A. MALYSHEV AND S. A. MOLCHANOV

such processes, and hundreds of papers are dedicated to the investigation of the
properties of particular, but in exchange in some sense explicitly solvable
(integrable), models. Against this background, the value of the present paper is
clear: in it there is introduced a new broad class of explicitly solvable models,
including those known earlier; moreover, at first a general idea is disclosed, one
that lies at the basis of many previous analyses. The results of the analysis of the
particular models can be extrapolated to the general case, giving useful hypoth-
eses and predictions, important both for the theory of Markov processes with
interaction, and for the applications of this theory. I am convinced that this
paper will find a wide class of interested readers.

R. L. Dobrushin
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