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Critical states of strongly interacting many-particle

systems on a circle

V. A. Malyshev

1 Introduction

In multicomponent systems with strong local interaction one can encounter some phenomena
absent in the standard systems of statistical physics and other multicomponent systems. Namely,
a system with N components in the bounded volume of order 1 (macroscale) has the natural
microscale of the order 1

N
. Applying the macroscopic force (of order 1) on the system, and thus

on any of its components, one normally gets changes on the macroscale itself and simultaneously
small, of the order 1

N
, changes of the microcomponents, see for example [7]. In the systems,

considered below, with the strong Coulomb repulsion between the particles, however, one can
observe the influence of such force on the equilibrium state only on a scale, much smaller
that the standard microscale. Otherwise speaking, the information about the macroforce is not
available neither on the macrocale nor on the standard microscale, but only on a finer scale.
If this phenomenon does not depend on the continuity properties of the applied force, then
the mere existence of the equilibrium depends essentially on the continuity properties of the
external force.

The model Consider the system

0 ≤ x1(t) < ... < xN(t) < L (1)

of identical classical point particles on the interval [0, L] with periodic boundary conditions
(that is on the circle S of length L). The dynamics of this system of points is defined by the
system of N equations

m
d2xi

dt2
= −

∂U

∂xi

+ F (xi)− A
dxi

dt
(2)

where A ≥ 0, F is the external force, and the interaction is given by

U(x1, ..., xN ) = V (x2 − x1) + V (x3 − x2) + ... + V (x1 − xN)

where x1 − xN should be understood as x1 + (L − xN ), otherwise speaking, here and further
on the differences are taken clockwise. It is assumed that the potential V is symmetric and
repulsive, and moreover

V (x) = V (−x) > 0, V (r) = αr−a+1 > 0, r = |x|

f(r) = −
dV (r)

dr
= α(a− 1)r−a > 0 (3)
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We assume further that a > 1 and put α(a − 1) = 1, that is f(r) = r−a. Fixed (critical)
configurations X = (x1, ..., xN) of the system are defined by the equations

f(xk − xk−1) + F (xk)− f(xk+1 − xk) = 0, k = 1, ..., N (4)

assuming that positive forces are directed clockwise, and that x0 = xN , xN+1 = x1. Our goal
will be to study these equations.

The results If F ≡ 0, then it is evident that the fixed configuration is unique up to
translation, and for any i = 1, ..., N

|xi+1 − xi| =
L

N

If F is not identically zero, the situation is essentially more complicated. However, we have the
following general result.

Теорема 1 Let the external force F (x) be a bounded function. Assume that there exists a

sequence (x
(p)
1 , ..., x

(p)
Np
), p = 1, 2, ..., of fixed configurations with Np → ∞. Then for p → ∞

uniformly in i = 1, ..., Np

|x
(p)
i+1 − x

(p)
i | ∼

L

Np

Existence and uniqueness of the fixed configuration do not have such general general results,
but have interesting effects, related to N → ∞. Let the force be potential on the circle, that is

∫
S
F (x)dx = 0

then the potential can be defined as

W (x) =
∫ x

0
F (x)dx

If W (x) is smooth, then the minimum of the potential

U(x1, ..., xN) +
N∑
i=1

W (xi)

satisfies the equation (4), this minimum thus being the solution of these equations. At the same
time we have

Лемма 1 Let F (x) be left-continuous function with finite number of gaps. If there exists a

sequence Np → ∞ such that for any p there exists at least one fixed configuration (x
(p)
1 , ..., x

(p)
Np
),

then ∫
S
Fdx = 0 (5)

that is the force F (x) is potential on the circle.
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The proof of this lemma will be obtained during the proof of lemma 2.
If the potential W (x) is not smooth, even if the force is potential, the equations (4) are far

from being always solvable, that is critical points cannot exist at all. This is not surprising,
similar phenomenon exists for example in the following simplest model with one particle, where
there is no critical point on the interval [0, L]: the particle moves in the field of the external
force F (x) = F1 > 0, x ∈ [0,M ], 0 < M < L, and F (x) = F2 < 0, x ∈ (M,L]. However we
concentrate only on phenomena related to the number of particles N → ∞

Even the simplest case of the piecewise constant function shows that the existence of the
equilibrium is not generic. Let F (x) = F1 on the interval (0,M ] of the circle S, F (x) = F2 on
its complement (M,L]. We shall often denote M1 = M,M2 = L −M , N1, N2 - the number of
particles on the intervals (0,M ] and (M,L] correspondingly, N = N1 +N2.

Our goal is to prove the following results.

Теорема 2 Fix L,M = L
2

and F (x) = F > 0, x ∈ (0,M ], F (x) = −F, x ∈ (M,L]. Then for
sufficiently large even N there is a continuum of fixed configurations. More exactly, for any
point x ∈ S there is a fixed configuration

0 < x1 < ... < xN
2
≤

M

2
< xN

2
+1, ..., xN ≤ L,

containing x (that is x coinsides with some xk). Moreover, the number of points on the intervals
(0,M ] and (M,L] is the same, and ∆k = xk+1 − xk = ∆N−k for all k = 1, ..., N

2
.

If N is odd, there is no fixed configurations.

During the proof we shall explicitely construct the existing fixed configurations.

Теорема 3 For any 0 < C1 < C2 < ∞ and any sequence N
(p)
1 , N

(p)
2 → ∞ so that

N
(p)
1

N
(p)
2

→ γ 6=

1, starting from some p there is no fixed configurations for any L,M, Fi such that

C1 < L,M, Fi < C2

At the same time one can always change the value of the function F at one or two gap
points (that is at the points M or L) so, that there exists a fixed configuration with one or two
particles at the gap points.

2 Proofs

2.1 Uniform asymptotics

Let us prove theorem 1. For any p there exists at least one 1 ≤ k(p) ≤ N with

∆
(p)
k(p) = x

(p)
k(p)+1 − x

(p)
k(p) ≤

L

Np

Thus there can be two cases. Either for p → ∞

∆
(p)
k(p) ∼

L

Np
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either there is a subsequence pn such that for any ǫ > 0 and all pn

∆
(pn)
k(pn)

≤
L

Npn

(1− ǫ)

Let us prove that in the first case the theorem holds. In fact, let us sum up the equations (4)
with k = k(p) + 1, ..., m. Here m can be any number of

m = k(p) + 1, ..., N, 1, ..., k(p)− 1

(we consider the indices modulo N , that is we identify xk and xk+N for any integer k). Then

f(∆(p)
m ) = f(∆

(p)
k(p)) + F (x

(p)
k(p)+1) + ...+ F (x(p)

m )

and thus for some C = sup |F (x)| > 0

f(∆(p)
m ) = f(∆

(p)
k(p)) + r(p)m , |r(p)m | ≤ CNp

or

∆(p)
m = ((∆

(p)
k(p))

−a + r(p)m )−
1
a ∼

L

Np

(1 + r(p)m

La

Na
p

)−
1
a

The result follows from this. Let us prove now that the second case is impossible. Quite similarly,
for any sufficiently large pn and all m

∆(pn)
m ≤ (1− ǫ)

L

Npn

(1 + r(pn)m

La(1− ǫ)

Na
pn

)−
1
a ≤ (1−

ǫ

2
)
L

Npn

From this, summing over по m = 1, ..., N , we get L ≤ (1− ǫ
2
)L, which is impossible.

2.2 Existence conditions

The following lemma (together with lemma 1) gives a list of obstructions for the existence of
the fixed points.

Лемма 2 • If the quotient F2

F1
is irrational, then there are no fixed points.

• For fixed Mi, Fi, N the fixed configuration can exist not more than for one partition of the
number N = N1 + N2, where Ni is the number of particles on the interval of length Mi

correspondingly.

• Let Mi, Fi be fixed. Then a necessary condition of existence of at least one fixed configuration
for any p in a sequence N (p), p = 1, 2..., is the existence of the partition N

(p)
1 +N

(p)
2 = N

such that
M1

M2

= −
F2

F1

=
N

(p)
1

N
(p)
2

(6)

Proof. Note that for fixed N a necessary condition for the configuration to be fixed is the
condition ∑

F (xi) = 0 (7)

which is obtained by summing the equations (4). In our case (7) becomes

F1N1 + F2N2 = 0 (8)
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From this the two first assertions of the lemma follow. Let us note that there appears the
necessary condition of the arithmetic character: F1 and F2 should be commensurable.

Note now that by theorem 1 for p → ∞

|
L

Np

Np∑
i=1

F (x
(p)
i )−

Np∑
i=1

F (x
(p)
i )(x

(p)
i+1 − x

(p)
i )| → 0

and thus
L

Np

Np∑
i=1

F (x
(p)
i ) →p→∞

∫
S
Fdx = F1M1 + F2M2

which gives the proof of lemma 1, as by (7) the left part is identically zero. Besides this, we get
the first equality in (6), and the second follows from (8).

2.3 Auxiliary problem on the segment

Consider the system of identical classical point particles on the interval [0, L] ∈ R

0 ≤ x1 < ... < xN ≤ L

with the same interaction (3) but with the completely inelastic boundary conditions. This
means that if one of the extreme particles reaches one of the end points of the interval, it stops
and can leave this point only if the resulting force becomes directed to inside the interval. Then
the equilibrium condition is the following system

F (0)− f(x2) ≤ 0, F (L) + f(L− xN−1) ≥ 0

f(xk − xk−1) + F (xk)− f(xk+1 − xk) = 0, k = 2, ..., N − 1 (9)

We will consider the fixed configurations such that x1 = 0, xN = L. One can show that there
are no others but we will not need this.

Лемма 3 Assume that the external force F > 0 is constant. Then for sufficiently large N

the fixed point (x1, x2, ..., xN) such that x1 = 0, xN = L, exists and is unique, moreover ∆k =
xk+1 − xk, k = 2, ..., N − 1, analytically depends on L, F and ∆1.

Proof. It is convenient to introduce δk by

∆k = xk+1 − xk =
L

N − 1
(1 + δk)

We have from (9)
f(xk+1 − xk) = f(x2) + (k − 1)F (10)

or

f(
L

N − 1
(1 + δk))− f(

L

N − 1
(1 + δ1)) = (k − 1)F

Rewrite

(1 + δk)
−a − (1 + δ1)

−a = Qk = (k − 1)q, q = (
L

N − 1
)aF (11)

or
1 + δk = [(1 + δ1)

−a +Qk]
−

1
a (12)
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that defines δk as the real analytic function of L, F, δ1 for L > 0, F > 0, |δ1| < 1. One can write

δk = [1− aδ1 +
a(a + 1)

2
δ21 +O(δ31) +Qk]

−
1
a − 1 =

= δ1 − a−1Qk +
a−1(a−1 + 1)

2
Q2

k − (a−1 + 1)δ1Qk + g3(δ1, N, k) (13)

where
g3(δ1, N, k) = O((|δ1|+Qk)

3)

is the real analytic function of L, F, δ1 for L > 0, F > 0, |δ1| < 1.
Summing over k and using the condition

N−1∑
k=1

δk = 0

we get

N−1∑
k=1

δk = 0 = (N − 1)δ1 − (a−1 + (a−1 + 1)δ1)
N−1∑
k=2

Qk +
a−1(a−1 + 1)

2

N−1∑
k=2

Q2
k

+
N−1∑
k=2

g3(δ1, N, k)

It follows

δ1 = (N − 1)−1((a−1 + (a−1 + 1)δ1)
N−1∑
k=2

Qk −
a−1(a−1 + 1)

2

N−1∑
k=2

Q2
k) +G(δ1, N) =

= (a−1 + (a−1 + 1)δ1)q(
N

2
− 1)−

a−1(a−1 + 1)

2
q2
(N − 2)(2N − 3)

6
+G(δ1, N)

G(δ1, N) = (N − 1)−1
N−1∑
k=2

g3(δ1, N, k) = O((|δ1|+QN−1)
3) = O((|δ1|+N−a+1)3)

As the latter equation can be written as δ1 =
∑

∞

n=0 cnδ
n
1 , where in the righthand part there is

an analytic function with small coefficients cn, then by subsequent iterations we get the unique
solution for δ1. Moreover

δ1 = a−1q(
N

2
− 1) +

a−1(a−1 + 1)

12
q2(N − 2)(N − 3) + J1(N), J1(N) = o(N−2a+2) (14)

δN−1 = δ1 − a−1QN−1 +
a−1(a−1 + 1)

2
Q2

N−1 − (a−1 + 1)δ1QN−1 + g3(δ1, N,N − 1) =

= −a−1q(
N

2
− 1) +

a−1(a−1 + 1)

12
q2(N − 2)(N − 3) + JN−1(N), JN−1(N) = o(N−2a+2) (15)
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2.4 Construction of fixed configurations

Note that if X = (x1, ..., xN) is a fixed configuration on the circle with given F (x), then any
its subsequence (without gaps) Xkl = (xk, ..., xl) is a fixed configuration on the segment [xk, xl]
(with the same force F (x)) in the sense of the section 2.3. In fact, restricting on the segment
we neglect the part of the force at the end points, directed to inside the interval. It means
that at the end points the force becomes directed to outside the segment, which gives first two
inequalities in (9). Vice-versa, if for a given configuration X = (x1, ..., xN) Xkl = (xk, ..., xl) will
be the fixed configuration (with the same force F (x)) on the segment of the circle in-between
the points xk and xl (in the clockwise order), and the configuration Xkl = (xl−1, ..., xk+1) will
be the fixed configuration on the segment in-between the points xl−1 and xk+1, then X is the
fixed configuration on the circle. Such situation is called glueing. In the symmetric case, that
is under the conditions of theorem 2, in glueing we use the mirror symmetry.

Symmetric case Let us prove theorem 2. Let N be even and x ∈ S. We will construct the
fixed configuration, containing x, for the case of equal number N

2
of points on the intervals

(0,M ] and (M,L].
Let us consider the fixed configuration with N

2
+ 2 points

0 = y1 < ... < yN
2
+2 = M +m

on the interval [0,M +m] (m > 0 being a small real number) with constant force F > 0, as in
the section 2.3. By lemma 3 it is unique and has the differences

∆k = yk+1 − yk =
M +m
N
2
+ 1

(1 + δk), k = 1, ...,
N

2
+ 1

N
2
+1∑

k=1

∆k = M +m

which were calculated in the section 2.3. With these differences we will construct a fixed
configuration X = (x1, ..., xN ) on the circle. Define by clockwise induction, for some b > 0,

xN = L− b, x1 = −b+∆1, x2 = x1+∆2, ..., xN
2
+1 = xN

2
+∆N

2
+1 = −b+

N
2
+1∑

k=1

∆k = −b+M +m

and similarly by counter-clockwise induction

xN = L+ x1 −∆1, xN−1 = xN −∆2, ..., xN−k = xN−k+1 −∆k+1, ..., xN
2
= xN

2
+1 −∆N

2
+1

We see that these definitions are compatible and it follows from them

xN
2
+1 − x1 = xN − xN

2
= M +m−∆1

For the constructed configuration to be a configuration on the circle of length L, it is necessary
the additional condition 2(M +m)−∆1 −∆N

2
+1 = L (as two intervals of length M +m cover

the circle, but the intervals ∆1,∆N
2
+1 are taken into account twice) or

2m = ∆1 +∆N
2
+1 (16)
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This gives the equation for m

2m =
M +m
N
2
+ 1

(1 + δ1) +
M +m
N
2
+ 1

(1 + δN
2
+1) =

M

N
+ h(m,N)

where the function h is analytic in m and by following the expansions (14,15)

h(m,N) = o(
|m|

N
+

1

N2
)

That is why this equation has a unique solution m = O( 1
N
).

From the definitions above it follows that ∆k = ∆k(m) depends on m and xk = xk(m, b)
depends on m and b, and moreover, as we know fron section 2.3, for all k ∆k(m) > ∆k+1(m).
In particular, for given m, ∆1(m) is the maximal of the intervals ∆k(m). Besides that,

∆k(m
′) > ∆k(m), m′ > m

xk(m, b+ c) = xk(m, b) + c

To get a fixed point on the circle from this glueing (that is to satisfy equilibrium conditions),
one should demand that the points x1, ..., xN

2
belonged to the interval (0,M ], and the rest

belonged to the interval (M,L]. Necessary and sufficient conditions for this will be the inequalities

x1 > 0 (17)

xN
2
= −b+M +m−∆N

2
+1 < M (18)

xN
2
+1 = −b+M +m > M (19)

The first one can be reduced to
0 < b < ∆1(m) (20)

The second and the third ones can be reduced to

b < m < ∆N
2
+1(m) + b (21)

Put

b(m) =
∆1(m)

2

It is easy to see that all inequalities (20,21) are fullfilled.
Assume that xk(m, b(m)) is the point of the fixed configuration, with the parameters

m, b(m), which is the nearest to x . Let for example xk < x. Then

x− xk ≤
∆k−1(m)

2

Choosing now b = b(m) + x− xk, we get the point x as the k-th point of the new configuration

x = xk(m, b)

Nonexistence for odd N follows from the third assertion of lemma 2.

Remark 1 For given x and k, the fixed configuration with x = xk is unique, which follows
from the monotonicity of the function xk(b) in b. The question whether there can be, for given
x, two fixed configurations such that for one of them x = xk, and for the other one x = xk+1,
acquires more exact calculations and is not considered here.
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Asymmetric case Let us prove theorem 3. Let for some p there exist a fixed configuration,
further on we omit the index p. Then it looks like

0 < x1 < x2 < ... < xN1 ≤ M < xN1+1 < ... < xN ≤ L

that is the points x1, ..., xN1+1 belong to the interval where the force F1 > 0 is applied, and the
points xN1+1, ..., xN belong to the interval where the force F2 < 0 is applied. This configuration
defines two auxiliary fixed configurations on the intervals [0,Mi + mi], i = 1, 2, with Ni + 2
points

0 = yi1 < ... < yiN1+2 = Mi +mi

and the forces Fi correspondingly, which are defined by their differences

ui,k = yik+1 − yik =
Mi +mi

Ni + 1
(1 + δi,k)

Moreover, u1,k are defined by the coordinates xN , x1, ..., xN1+1

x1 = L− xN + u1,1, x2 = x1 + u1,2, ..., xN1+1 = xN1 + u1,N1+1

and u2,k is defined by the coordinates x1, xN , xN−1, ..., xN1 (in reverse order)

xN = x1 + L− u2,1, xN−1 = xN − u2,2, ..., xN1 = xN1+1 − u2,N2+1

For compatibility the following two conditions should be fullfilled

u1,1 = u2,1, u1,N1+1 = u2,N2+1 (22)

and the length L will be defined by

L = M1 +m1 +M2 +m2 − u1,1 − u1,N1+1 (23)

that is simalarly to (16) as the circle of length L is covered by two segments, where u1,1 and
uN1+1 in the union of two segments are counted twice. Also it should be F2N2 + F1N1 = 0. It
is convenient to denote M̂i = Mi +mi.

As (by lemma 2 or by theorem 1)

M̂1

N1 + 1
∼

M̂2

N2 + 1
(24)

then one can write
M̂1 +m

N1 + 1
=

M̂2

N2 + 1
, m = o(1) (25)

and find m from equation (22), that will give two equations for m

M̂1

N1 + 1
(1 + δ1,1) =

M̂1 +m

N1 + 1
(1 + δ2,1)

M̂1

N1 + 1
(1 + δ1,N1+1) =

M̂1 +m

N1 + 1
(1 + δ2,N2+1)

Rewrite the latter equations as

m = M̂1(δ1,1 − δ2,1)(1 + δ2,1)
−1 (26)
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m = M̂1(δ1,N1+1 − δ2,N2+1)(1 + δ2,N2+1)
−1 (27)

We obtained two equations with one unknown m. Let us show that they are incompatible for
small m. To do this let us first compare the main terms of the two series: for δ1,1 − δ2,1 and
δ1,N1+1−δ2,N2+1. More exactly, using the expansion (14), calculate the difference of the two first
terms in the series for δ1,1 and δ2,1. Note that, doing this, we will use |F2|N2 = F1N1, and in the
formulae for δ2,1 we should take |F2|, as y2k corresponds to the inverse order of the coordinates
xi. Direct calculation gives

δ1,1 − δ2,1 = R1 +R2

where

R1 =
1

2
a−1F1N1(

M̂1

N1 + 1
)a[1− (1 +

m

M̂1

)a] =
1

2
a−1F1N1(

M̂1

N1 + 1
)a[−a

m

M̂1

+O(m2)]

R2 =
a−1(a−1 + 1)

12
F1N1(

M̂1

N1 + 1
)2a[N1 − (1 +

m

M̂1

)2a(N2 − 1)] =

=
a−1(a−1 + 1)

12
F1N1(

M̂1

N1 + 1
)2a[(N1 −N2)− (2a

m

M̂1

+O(m2))(N2 − 1)]

Thus the equation (26) will take the form

m = [c1N
−a+1
1 m+ c2N

−2a+2
1 + c3N

−2a+1
1 m+O(m2)N−a+1

1 ](1 + c4N
−a+1
1 + o(N−a+1

1 )) (28)

where ci = ci(N) tend, as N → ∞, to nonzero constants di, from which we will need only

c1 = −
F1

2

N1

N1 + 1
(

M̂1

N1 + 1
)a−1 → d1 = −

F1

2
Ma−1

1

c4 = −
a−1F1

2
N1(

M̂1

N1 + 1
)a → d4 = −

a−1F1

2
Ma

1

as M̂1 → M1 (note that c1, c4 are obtained only from the first terms of the expansion). It is
evident that the equation (28) has the unique solution m = o(1), which is asymptotically equal
to

m ∼ d2N
−2a+2
1 (29)

At the same time, as it can be seen from the comparison of the expansions (14) and (15),
δ1,N1+1 − δ2,N2+1 look similarly, but have minus sign in front of c1 and of c4. Subtracting the
second equation from the first we get

0 = 2c1N
−a+1
1 m+ 2c4c2N

−3a+3
1 + 2c4c3N

−3a+2
1 m+O(m2)N−a+1

1

from where

m ∼ −
2c4c2
c1

N−2a+2
1 ∼ −

2d4d2
d1

N−2a+2
1 (30)

Comparing (29) and (30) we get the necessary compatibility condition of the two equations

−
2d4
d1

= 2a−1M1 = 1

10



But as M1 and M2 are completely symmetric, we could perform the same calculations for M2.
At the end of these calculations we get the similar condition

2a−1M2 = 1

However, these conditions cannot hold simultaneously as γ 6= 1 and thus M1 6= M2. Remind
that the case M1 = M2 was considered separately above. This proves the first assertion of
theorem 3.

The proof of the last assertion fo theorem 3 is sufficiently simple. Let us construct two fixed
configurations on the intervals [0,M ] and [M,L], as the section 2.3. To get a fixed configuration
on the circle, the particles at the points 0 и M should be in equilibrium. For this to happen it
is sufficient to adjust the value of the external force at these points so that it compensated the
difference of the forces from the neighbor particles.

3 Remarks

Earlier the ground states (fixed configurations) of classical particles were studied in connection
with the problem of existence and the structure of the lattice for the condensed matter state
(see [1], [2],[3]-[6]). There are also other continuum one-dimensional models, most known are
the Toda chains and the Frenkel-Kontorova model. In all these models it is assumed that
the potential V has a minimum. Thus in the Frenkel-Kontorova model mainly the quadratic
hamiltonian is considered [8], but there are papers where the latter model is understood in a
wider sense, see for example [10, 9]. However the ground states are considered on the whole
real line. In our paper we pursue completely different goals and study different phenomena in
a finite volume, related to the appearance of a finer scale, that is in fact related to the second
term of the asymptotics of distances between particles. We use direct approach, which is rather
straightforward ideologically, but demands cumbersome calculations.
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