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1. Introduction

We consider here continuous time quantum walks on the integer lattice Z% C
R, Tt is well known that for Hamiltonians invariant w.r.t. some translation
group there cannot be discrete spectrum. The convenient and at the same
time absolutely rigorous language (among other approaches) which allows to
formulate exactly what means bound state in this case of N particle problem is
the language of 1-, 2-, ... particle subspaces.

Here we consider two particle random walk in any dimension with ultralocal
interaction. Main results are Theorems 4.1 and 4.2.

2. One particle quantum walk

In this section we will work in the complex Hilbert space l2(Z¢). Elements
of this space will be denoted as f = (f(z),z € Z%), the scalar product is

(f.f) = 3 Fi@)f3 (@),
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The standard orthonormal basis consists of the vectors d,, y € Z% such that
0y(z) = 05, where 0, , =1 if x = y and zero otherwise.
Define the following linear bounded operators

H = Hy+ Hy : 15(Z%) — 15(Z%), (2.1)
d

(Hof)(@) = =AY _(fx+ex) = 2f(x) + f(z — ex)), (2.2)
k=1

(Hif)(z) = a0 f (), (2.3)

where e, = (0,...,0,1,0,...,0) € Z%is the unit vector in the kth direction, that
is with all zero coordinates except the kth coordinate, A, u are real parameters.
Moreover, we assume that A > 0 as it is standardly accepted, although it is not
really a restriction. It is clear that all these Hamiltonians are selfadjoint.

Put

Y(p) = cospy + ... + cospq

where ¢ = (¢1, ..., @q) belongs to d-dimensional torus
T = (—m, 7] X -+ X (—m, 7).
Below the following integrals are important

1 dy
“““‘@mg[vw>+d>o

1 dy
= s | 5er=a <°

Td

where dp = dy; ... dpg.
Note that ¢(d) = —c1(d). In fact,

_ dp dy _
(2m) d/v(w)+d_(2w) d/v(<ﬁ+7r)+d_

Td Td
= (27T)_d/d—d7;0(<p) = —c1(d)
Td

where o + 7= (o1 +7,...,04 + 7).
These integrals coincide with the classical Watson integral [1]
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Namely,

w(d) = —c1(d) = ¢(d).
Note that for d = 1,2 the integral ¢(d) = 400, and for d > 3 it is convergent. In
the paper [1] integral ¢(3) was calculated explicitly. For d — oo the asymptotic
series is known, see [2]:

1 1 3
dy~=-4+—+-—+...
A~ G+ ae T am*
Let 0ess(H), 0,(H) be essential and point spectra of H [3].

The following theorem gives complete description of the spectrum.
Theorem 2.1. Let A > 0.
e For all p and all dimensions d we have o.ss(H) = [0,4Ad];

e For p=00,(H)=0;

e Ford=1,2 and p # 0 the point spectrum o,(H) consists of exactly one
eigenvalue v = v(p, A), moreover v ¢ o.ss(H);

e Ford=3,4
if |%\ < ¢(d), then the point spectrum o, (H) consists of exactly one
eigenvalue v = v(p, A), moreover v ¢ o.ss(H);
if|%| > ¢(d), then o,(H) = 0.

e Ford>5

if|%\ < ¢(d), then the point spectrum o,(H) consists of exactly one
eigenvalue v = v(u, \), moreover v & o.ss(H);

if % = c(d), then the point spectrum o,(H) consists of exactly one
eigenvalue v = 4\d, moreover v € o.ss(H);

if % = —c(d), then the point spectrum consists of exactly one eigen-
value v = 0, moreover v € o.ss(H);

if|%| > ¢(d), then o,(H) = 0.

e In all cases, if u > 0, then the eigenvalue v > 4\d; if up < 0, then v < 0;

equality in these inequalities is achieved only in the case when d > 5 and
12 = c(d).
n

Thus, in dimension d > 5 and if |%| = ¢(d), one of the boundary points
of the essential spectrum belongs to the point spectrum. In all other cases the
(unique) eigenvalue belongs to the discrete spectrum (that is, does not belong
to the essential spectrum).

Theorem 2.1 is not new — similar result was proved in [4] for g > 0 and
A =1, but this not a restriction for their method. We included this theorem for
our paper were self-contained.
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3. Direct integral

The following definitions are from [3] and [5].

Let Xy be a separable Hilbert space, and (€, 7) measurable space with
o—finite measure 7. Vector function f(w) : © — Xy is called measurable,
if for any & € X the function (¢, f(w))x, is measurable. Consider the Hilbert
space X = Lo(Q,d7; Xo) of measurable square integrate functions with values
in Xy. The scalar product

UMMX:/%WLMWMMﬂ.HEEX

Q

is finite as

/wwww<m
Q

Then we will call X the direct integral with the layers isomorphic to Xg, and

will write
)
X = / Xodr.
Q

Let £(Xy) be the space of linear bounded operators in X,. Operator function
Alw) : Q — L(Xp) is called measurable, if the functions (x, A(w)x’) are mea-
surable for all x,x’ € Xo. Let Loo(Q,d7; £L(Xg)) be the space of measurable
functions from € to £(Xp) such that ess sup [|A(w)|| < 0.

Consider the class of decomposable operators in X = Lo(Q,dr; Xp). We
shall say that linear bounded operator A : X — X is decomposed in the direct
integral if there exists measurable operator function A(w) € Loo(Q, d7; L(Xy))
such that for any F' € X, (AF)(w) = A(w)F (w). It is commonly written as

53]
A= /A(w) dr(w).
Q

For any w the operator A(w) will be called the restriction of the operator A on
the corresponding layer.

4. One particle subspaces for two particle Hamiltonian

Free one particle quantum walk is defined by the Hamiltonian

d
(hif)(@) ==X > (fx+er) —2f(@)+ fz—er)), 2 € 2%\ €R,i=1,2
k=1
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in the Hilbert space l(Z?). Then the Hamiltonian for two non-interacting
particles is defined as

Hy=h1®1+1®@hy=

d
=M ) (flan +ex w2) + fz1 — ex, x2) — 2f (21, 72)) —
k=1
d
— X2 Y (f(z1, 22+ ex) + f(z1, 72 — ex) — 2f (1, 22))
k=1

in the space L = l5(Z%) ®12(Z?) = 15(Z>%) of functions f(z1,x2), (x1,22) € Z24.
We put for concreteness A1, Ay > 0.

We will consider Hamiltonian H = Hy + H; for two particles with the J-
interaction term (Hif)(z1,22) = Wy z,f(21,22) where p € R, and 0y 4,
is the Kronecker symbol. Let U,, y € Z9, be the translation group in L,
Uy f)(z1,22) = f(z1 +y,xz2 +y). Note that H commutes with U,,.

The change of variables 1 = x1, * = x5 — x; defines one-to-one trans-
formation Z2? = {(x1,22)} — Z?¢ = (z1,7)} and unitary transformation
Wi:L={f(z1,22)} = L={g(x1,2) = f(x1,21 + x)}.

The translation group now acts only on the first argument: (U,g)(x1,z) =
g(xl +, 3})

In these coordinates H (in fact Wi HW; ') can be written as follows

d
(Ho)(a1.2) = = M Y (glar +exw — ex) +g(w1 — e,z + ex) — 2g(21,7))
k=1
d
e Y (gler e — i) + glor,a + ex)) — 2g(21, 7))
k=1

+ p10z,09(x1, @)
Consider the Hilbert space
L = Ly(TY) ® 15(2%)

of square integrable functions F' = F (¢, ), where ¢ € T? 2 € Z?. The scalar
product is defined as

(FLF) =) /Fl(cp,x)Fz(so,x)d%

ICEZde

It is known [3], that the Hilbert space L = Ly(T%) ® I5(Z%) is isomorphic to
the space of square integrable functions lo(Z%)-valued functions

LQ(Tda d(p7 12(22))7
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where dy is the Lebesgue measure on T .
Thus, according to the above definition, the space L can be represented as

the direct integral
52
L= / Mdyp
Td

with identical layers M = I5(Z9).

The elements of L can also be considered either as complex functions of
two variables ¢,z (then we can denote them as F(¢,z)) or as functions of
one variable ¢ with values in the Hilbert space lo(Z?) (in this case we can use
notation F(¢p)).

Define the linear transformation F : L — L = Ly(T%) ® l5(Z%)

(Fg)(p,x) = F(p,z) = (27r1)d/2 Z gz, z)e®19) (4.1)

Ilezd

where ¢ = (©1,...,94) € T?. Note that F is a unitary operator. In fact, for
any = € Z?, by Parseval equality,

> lgtoro) = [ 1) P,
Td

x1€Z4

whence

S Y =Y / F(p,2)dg.

r€Zd x1€Z erde

The adjoint operator F* is inverse to F and acts as

(F P)p.2) = o(or,0) = s [ Flowe @ 9do. @2)

(2m)
Td

Consider the operator H = FHF*: L — L which is unitarily equivalent to H:

(HF)(@7J:) =
d
=_ Z (Are™* + Xo)F (o, — ex) + (M€ + Xo)F(p,z +ey)) +
k=1
+2d(M + A2) F(p, @) + pdg,0F (@, ) (4.3)

where F'(p,z) € L.
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Define the operator function ¢ — H(y), ¢ € T¢, where H(p) : l3(Z%) —
I5(Z%), such that

d
(ﬁ(ap)u)(x) = Z (()\le_iwc + >\2)U($ — ek) + ()\leiWk + )\g)u(m + ek))
- (4.4)

+2d(A + Ao)u(z) + pdgou(z)

for the vector u = {u(z), z € Zd} € 15(Z%). Then H(y) is measurable in the
sense that the scalar product (uy, H(¢)us) is measurable for any uy, us € lo(Z%).

By (4.3) and (4.4) the operator H can be represented as

(HF)(p) = H(p)F(p) (4.5)

where F(¢) € L. )
It follows from this representation that H can be decomposed in the direct
integral

@
fI:/ﬁ(go)dgo.

Consider now the spectrum of the operator H(y) : lo(Z9) — I15(Z%) for any
fixed ¢ € T
Let A1, A2 > 0. Consider the following nonnegative function of « € (—, 7]

_ VA A+ 20 cosa =0

r(a) SN

Note that the upper bound in the inequality
A1 = A2)? < A2+ A2+ 20 0cosa < (A + A2)?

is attained for o = 0, and the lower bound for o = 7.
Then |A1 — A2l/(M1 4+ X)) <7(a) <land r(a) =0 <= A = o &a=m;
r(a) =1 <= a = 0. Denote

| i
c(d, ) =
(@:¢) (QW)dT[ ZZ:1 (o) (1 — cos )

(4.6)

where dy) = dipy ... dpgand ¢ = (@1, ...,04) € T LI =7 = (m,m,...,7) (7
is d-dimensional vector) and A; = Ag, then the denominator under the integral
equals zero and thus ¢(d, ?) = o0.

Let » = minj=1,_q{r(¢1) : r(e;) # 0} > 0. Denote I(p) = {i1,...,is},
where 1 <i; < -+ < i, <d is an array of indices such that r(¢;) # 0 <1
I(p). Here s = s(p) = #{r(w1),l =1,...,d : r(¢1) # 0}.
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Then
d s s
r(er)(1—costy) = > r(pi)(1 = costhy,) >y (1 - costy,)
k=1 k=1 k=1
and
1 &, ... di,
d, o) = 5 <
A0 Gy T/ Shet () (1= cos )
1 di, . ..dy;, _
RECOEF B e R
Similarly
c(d, ) > 1 diy - dipi, ()

@ ] T —costy,)

as 0 <r(p) <1.
Then

e for d=1,2 ¢(d, @) is divergent for all ¢ € T
e for d > 3 the integral c(d, ¢) diverges iff s(p) < 2.

The following theorem is a generalization of Theorem 2.1. Put

d

i) =2 0+ ) (= ) + ).
k=1
d
Balie) =2 0+ ) () + )
k=1

Note that 0 < 81 (¢) < Ba2(p) <4 (A1 + A2)d and
Bi(p) =Balp) =2(M + do)d == s(p) =0 = M\ = k=7
Bilp) =0 <= =T
Bale) =4 (M + Ao)d <= 9= 10

— . ..
where 0 € T is the vector consisting of zeros.

Theorem 4.1. Let Ay, A2 > 0. For all p € R, for all dimensions d and for all
¢ € T we have aess(H(p)) = [B1(), Ba(p)]-

For pi = 0 we have a,(H(p)) = 0 for all p € T

Let pu # 0.

For d = 1,2 and for all ¢ € T? the point spectrum o,(H(p)) consists of
exactly one eigenvalue v = v(p, 1, A1, A2), where v ¢ 055 (H(9));

Ford = 3,4
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e if condition {))1 = X & s(¢) < 2} holds, then for all p € T¢ the point
spectrum o,(H (p)) consists of exactly one eigenvalue v = v(p, i, A1, A2),
where v ¢ o5 (H(p));

e if condition {\1 # X2 V s(¢) > 3} holds, then

‘M < ¢(d, ) implies that o,(H (p)) consists of exactly one

o

eigenvalue v = v(p, i1, A1, A2), where v ¢ 0,55 (H(9));

‘2(A1+A2)
I

> ¢(d, ) implies that o,(H(p)) = 0.

Ford>5
e if condition {\ = A2 & s(¢) < 2} holds, then for all ¢ € T the point

spectrum o,(H(p)) consists of exactly one eigenvalue v = v(p, i1, A1, A2),
where v & g.ss(H(p));

o if condition {\; = Ay & s(p) = 3,4} holds, then

w < ¢(d, ) implies that o,(H(p)) consists of exactly one

eigenvalue v = v(p, 1, A1, A2), where v ¢ 0,55 (H(9));

w > ¢(d, ) implies that o,(H(¢)) = 0.

e if condition {\1 # Ao V s(¢) > 5} holds, then

2()\1+>\2)
M A

trum o, (H ()) consists of exactly one eigenvalue v = v(p, i1, A1, A2),

where v ¢ 0oss(H(p)):

w = ¢(d,y) implies that o,(H(p)) consists of exactly one

eigenvalue v = B2(p);

< ¢(d, ) implies that for all ¢ € T? the point spec-

—w = ¢(d, ) implies that the point spectrum consists of ex-

actly one eigenvalue v = [31(p);
‘2(A1+A2)
o

> ¢(d, ) implies that o,(H(p)) = 0.

In all cases the eigenvalue v > Ba(p), if u > 0 and v < B1(p), if p > 0.

Remark 4.1. The eigenvalue v = v(p, u, A1, A2) is the unique solution of the
equation

200 + X)) dyp

: / S
= ! -
I (271')de Zk:l (k) coshr, — d + 0 +Aa)

;o (A7)

where dip = dipq ... dg.
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Remark 4.2. If ¢ = 0 then the Hamiltonian H(0), defined in (4.4), coincides
with the Hamiltonian H, defined in (2.1)—(2.3) if A = A1 + Ay. Thus, theorem
2.1 follows from theorem 4.1.

Since
d d
Z )(1 —cosyhy) < Z 1 —cosy),
k=1 k=1
we have
dy
c(d, p) =

>
(27r)de Zizl r(pp)(1 —cosy)

1
(27T)d1[ ZZ=1(1 — cos ) =d)

and c(d, p) = c(d) iff p = . R
Thus for any ¢ € T? the operator H(p) has the only eigenvalue v =
v(p, i1, A1, A2) iff one of the following conditions holds:

e d=1,2and u#0

. d:3,4,u#0and‘w < c(d)

o d25,,u7é0and’w < c(d).

From implicit function theorem it follows that v = v(p, u, A1, A2) is a continuous
function of ¢ € TY.

Now we give the following fundamental definition. A linear subspace L1 C L
is called one-particle subspace if

e [ is invariant with respect to the translation group U, and with respect
to dynamics e,

e there exists vector go € L such that L; is generated by the vectors
{U,go,s € Z%}.

Theorem 4.2. Let u # 0. Then:

For d = 1,2 there always exists unique one-particle subspace.
2(A1422)
m

For d = 3,4 one-particle space exists iff ’ < ¢(d). Then it is unique.

2()\1+X2) <
w

For d > 5 one-particle subspace exists iff ’ ¢(d). Then it is unique.

Let 1 = (z1,...,2) € Z¢, . = (21,...,2%) € Z.



One particle subspaces for two particle quantum walks 239

Remark 4.3. One-particle subspace is generated by the vectors {U,go, s € Z4},
where

dp dyp

© 1 d 1 d
1 / 3003y COSTIPL - - - COST{Pg COS T Y1 ...cosx%Yy

go(z1,2) = y : ’
(2m) T2a Zkzl r(ox) coshy, — d + %

belongs to l3(Z2%), and the function v(y) is defined as the unique solution of

the equation (4.7).

5. Proofs

5.1. Proof of Theorem 2.1

Consider the unitary transformation U : ly(Z%) — Lo(T?) defined by the
one-to-one correspondence between elements of the orthonormal basis 6., = =

(z1,...,74) € Z4 in I3(Z?) and the elements of the orthonormal basis
1 . A
1171 1PaTq d
(271-)d/26 ...e , (1, xq) € 29,

in Ly(T?%). That is Uf = F where

f=Y f@)b, €la(Z%,F =Y f(x)

TEZ4 zEZ?

1 ) )
T (iPaTi ¢ Ly(TY).
(2m)3

In these terms H = UHU ™! : Ly(T?) — Ly(T?) can be written as follows

) | | , , 1
HE = =N e 4. 4 o9 +e7% = 2)F + uf (0) g

If for some p there exists eigenvalue v, then the corresponding eigenfunction F'
satisfies the equation

—Met e e e — 2d)F + pf(0)—— = vF,
(2m)2
whence
P 35./(0) _
d/2 ¢iv1 Le—i® i “ip B
(2m)d/2 eorgemion |y dderd gy v
1 3x/(0)

RO R ol

For p = 0 from (5.1) it follows that F' = 0. It means that for 4 = 0 there are
no eigenvalues.
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Note that if v ¢ [0,4Ad], then the denominator in (5.1) is not zero, and
the function F belongs to Ly(T%). As it is shown in Lemma A.1 (see section
A below), for d < 4 F ¢ Ly(T) if v € [0,4)d]; and for d > 5 F ¢ Ly(T?) if
v e (0,4Xd).

It follows that in dimension d < 4 there are no eigenvalues on the segment
[0,4\d]. Similarly, in dimension d > 5 there are no eigenvalues on the interval
(0,4Xd).

Let p # 0 and v ¢ (0,4Xd). If we expand both sides of the equality (5.1) in
the basis (27)~ %2 exp{igini} ... exp{igng}, then all coefficients of both parts
should coincide. In particular,

1 3x/(0)
1(0) = / 2 —dep.
= | o) -d+ 5
Note that as F is not identically zero, then f(0) # 0. We get then the equation

on v: 2A 1 d
¥
= = . 5.2
T <2w>dT[v<so>d+2a 2

Consider the case d = 1,2. Put

1 dy
P = o | ST E

Td

and ¢ € T%. For v > 4\d the integrand

1

————1 = >0
Y(p) —d+ 35

is strictly decreasing (if v increases) and tends to 0 as v — +oco. It follows that
the function p (v) is also strictly decreasing and p (v) — 0 as v — +o00. As it
was mentioned above, for v = 4\d

1 do B
pird) = (27r)dql W) +d -

Thus, the function p (v) strictly decreases from 400 to 0 for v > 4Ad. Then for
i > 0 the equation (5.2) has a unique solution if v > 4\d.

If v = 0 then p (0) = —co. Similarly, we can get that, if v < 0, p (v) strictly
increases from —oo to zero (as v decreases to —oo). That is why for p < 0 the
equation (5.2) has unique solution for any v < 0.

It follows that the function p (v) takes all values except zero, moreover ex-
actly once. Then for any u there exists exactly one v, such that the equation
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(5.2) holds and there exists unique (up to multiplicative constant) eigenfunction
F € Ly(T?), defined by (5.1), and such that HF = vF.

Thus, there exists unique eigenvalue v such that v ¢ [0,4\d]. Moreover,
v <0 for p <0, and v > 4Ad for p > 0.

Let now d > 3. In this case for v = 4\d and for v = 0 the integrals

p(47d) = o(d) =(271T)d/7((j)‘/’+d >0

Td

1 d
pO)= ~elt) =5 [ 503 <0
Td

are finite.

Similarly to above, we come to the conclusion that for v > 4\d the function
p(v) is strongly decreasing and p(v) — 0 as ¥ — 400, and for v < 0, if v
decreases, the function p (v) strongly increases and p(v) — 0 as v — —oo.
Thus, the function p (v) takes all values except 0 in the segment [—c(d), c(d)],

moreover each value only once. It follows that for any p such that ‘%‘ < ¢(d)

%’ > ¢(d) the

there is exactly one v such that the equation (5.2) holds. For
equation (5.2) does not have solutions.
If p satisfies the condition ‘%‘ < ¢(d), then the solution v of the equation

(5.2) satisfies condition v ¢ [0,4Ad], and the function F' in the formula (5.1)
always belongs to Lo (Td). Thus, for such p there exists unique eigenvalue v.

If ‘2/7/\‘ = ¢(d), then the solution of the equation (5.2) will be the following:
v =0 for 2 = —¢(d) and v = 4\d for % = c(d).

As it follows from lemma A.1, for v = 0,4Ad the function F in the formula
(5.1) belongs to Ly(T?) only in dimension d > 5. Whence, for y satisfying the

condition % = ¢(d) in dimension d > 5 there is unique eigenvalue.

5.2. Proof of Theorem 4.1.

Fix some ¢ € T and let v(¢) be an eigenvalue of the operator H(y). Then

H(p)Fo(p) = v(p)Fo(p)

holds where Fy(¢) = {Fo(p, x)), 2 € Z%} € I5(Z%) is an eigenvector correspond-

ing to v(p).
By (4.3) and (4.5) we get

d
- Z (Ae™" % + X)) Fo(o, @ — ex) + (A€ + Xo) Fo(p,z +e)) +  (5.3)
k=1
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+2d(M + Ao) Folp, @) + bz 0 Fo(p, 2) = v(p) Fo(p,z), x € Z°.

For any ¢ € T consider the unitary operator G : ly(Z%) — Ly(T?) such
that

g: F((pa )—>G(<P1/J d/2 ZF% Z(x,w)v@[]:(d]lw“awd)errd'
The inverse operator coincides with the adjoint and looks as

1 .
G*: Glp, ) — Flp,x) = W/Gw’w)e—z(l,w)dw
Td

where di = di; ... dyg. In particular, for z =0

Fg.0) = Gy | Gl

T
For any ¢ € T the operator GHG* acts in Ly(T?) as follows:

(GHG*G) (p, ) =
d

=— <Z ((/\1€_i¢’° + )\Q)ewk + (A + )\Q)e_w’“ —2(M\ + /\2)))G(<p, )+
k=1

d
<Z (A1 cos(hr — i) + Agcos b, — Ay — )) G(p, )+

k=1
u

Then the system of equations (5.3) in Ly(T?) can be reduced to one equation

d
- 2(; A1 cos(k— k) + Ao cOS g — Ay —)\2) Golp,0) + # / Gole, ) di
— J

= v(p)Golp, )

where

(SD w d/2 Z FO Qov 7,(1,1/}).
TEZ
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Then
m de Go(p,¥)dy

Go(p, ) = )
o) S (g cos(¥r — k) + Mg cos oy — Ay — Ag) + /2

(5.4)
As

Arcos(vr — ) + Az costhy =
= A1(cos g, cos Yy + sin g sin Yy ) + Ag cos vy, =
= (A1 €08 g + A2) cos Py + A1 sin @y, sin iy,
we have
A1 cos(¥r — ¢r) + Az cos ¥ = 7' (or) cos(Vr — n(er))

where

(o) = V(A cos @r, 4+ Xa)2 4 (A sin )2 = \/)\% + A2 + 2X1 A3 cos py,
A1 cos i + /\2>

n(er) = arccos( oon)

From (5.4) we get

ﬁ .G (%Wd?ﬂ
Golip, ) = —— 2OaTNIE) Jra Go —, (5.5)
> k=1 T(r) cos(¥r — n(er)) — d+ 55755

where on)
_ ¥k
T(Sok) - )\1 4 )\2
For u = 0 from (5.5) it follows that Go(p,1) = 0. It follows that for u = 0
there are no eigenvalues.
Using the evident inequality

d d
= r(er) <D rlepr) cos(vhr — nler)) <
k=1

k=1

> 0.

M=

7(¢k),

=~
Il
_

the denominator in (5.5) is never zero for v ¢ [81(¢), B2(p)], and the function
Golp, ) evidently belongs to Ly(T?). As it is shown in Lemma A.1 (see section
A below), Go(p,¢) ¢ Lo(T?) for d < 4 and v € [81(), Ba(9)]; and Go(p, 6) ¢
Ly(T%) when d > 5 and v € (B1(¢), Ba(p)).

Thus, in dimension d < 4 there are no eigenvalues v € 81 (¢ ) B2()], and in
dimension d > 5 there are no eigenvalues such that v € (81(¢), B2(p)).

Let now v ¢ [51(p), B2(p)]. Integrate both parts of the equality (5.5) in the
vector variable :
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/%@@W=/%@@Wx
Td Td

oo W
(2m)? ‘ d —
L > k=1 (o) cos(Vr — n(er)) — d+ 557557

Note that [.. Go(p,v)dip # 0, otherwise, by (5.5), we had Go(p, 1) = 0.
After cancellation we get the following equation for v:

_ / Tevenw KU
(zﬂ)de Yok 7(0r) cos(¥r — n(pr)) — d + FlevEs e

From periodicity of the integrand in each variable vy, it follows:

(2m)¢ / / 2(>\1+/\2) dipr ... dya _
S r(n) cos(vr — n(pr)) — DTevEmw

d+ 2(A1+A2)

m—n(p1) T—n(pa)
72()\1lj_)\2)d¢1 o dipg

d v
—m—n(p1) —m—n(paq) Ek:l T(ka) Ccos ’L/)k —d+ 2(A1+A2)

/ / 2(A1+)\2)dw dwn (56)
Y Tk ) cos b — d + 557550y

That is why v(y) satisfies the equation

1 (2m)d Zk 17(pr) cos Y —d + 5 )\1+>\2)

Let us study this equation. Denote

,d/ dy
d v
T > k=17 (k) costy — d+ 231+ A2)

Q(V’ 90) =

For any fixed ¢ the function ¢(v, ¢) is defined for v ¢ (81(p); B2(¢)), and at the
end points of this interval it takes the values

q(B2(p), ) = c(d, @), q(Bi(p), ») = —c(d, @).

In fact, for v = B2(p) we get
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d
q9(B2(¢), #) :T/d ST r(@k;(pcoswk T
- / il
S i r(en) (= cos(x 1) +1)
[ s
S S r(en) (— cos iy +1)

= C(d, 90)

Similarly, for v = B1(p)

dip
1 s = = —C d, .
qwmw'l31Wme4) (¢)

For fixed ¢ € T¢ the function q(v, @) is strictly decreasing in v, when v ¢
[B1(); B2(9)] . For v > Ba(p) the function g(v, ¢) is positive and tends to 0 as
v — 4o0. For v < B1(p) the function g(v, ) is negative and tends to 0 when
v — —00.

Thus, if ¢(d, ¢) = +00, then the function g(v, ¢) takes all real values, except
0, and moreover only once, due to strict monotonicity of the function ¢(v, ¢) in
v for any fixed ¢ € T?. That is why the equation (5.7) has a unique solution
v(p).

If ¢(d, ) is finite, then the function ¢(v, ¢) takes all values, except 0, from
the finite interval [—c(d, ), c¢(d, ¢)].

It follows that there exists exactly one eigenvalue v(p) for any ¢ € T
iff the left hand part of the equation (5.7) belongs to this interval, that is if
200+ A)u | < e(d, ).

Also it is true that for g > 0 the eigenvalue v(p) > B2(p), and for p < 0 we
have v(p) < B1(p).

It remains to check that the eigenfunction, corresponding to v(p), belongs
to Lo(T?). If the strict inequality |2(\; + A2)u~!| < ¢(d, @) holds, then v(yp) ¢
[B1(¢); B2(p)] and the eigenfunction Gy, defined in (5.5), belongs to Lo(T%),
as the denominator in (5.5) cannot vanish. If [2(A; + Xo)u~ Y| = ¢(d, p) < oo,
then v(¢) = B1(¢), B2(p) and the eigenfunction Gy belongs to Ly(T?) only in
dimension d > 5.

The theorem is proved.

5.3. Proof of Theorem 4.2

Existence of one particle subspace Consider the function ¢ — Fg(@) =
{Fo(p, ), z € Z} € Iy(Z), where Fy(p) is the eigenvector of the operator
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H(yp), corresponding to the eigenvalue v(y¢). By (5.5),

soaaeyamaz Fo(#, 0)
d |14
Zkzl 7"((,0]@) COS(We - n(@k)) —d+ 30 tra)

Go (90’ 7/}) -

as

1

F 0)=—+= [ G di.

0(0.0) = o [ ol )
Td

Let us find the components Fy(p,x),r € Z¢, of the eigenvector Fo(go), by ap-

plying the operator G~ to the function Go(¢p,):

—i(z,v)
k 17 k) k Pk 2(A14+A2)
- mFO(‘p’O)e%(W i (5.9)
(271-)de 22:1 r(pg) cost, — d + FevEs .
Rl o,
(27r)de ZZ:l r(pr) cos by, — d + PovEn ey
where 2¥ are the coordinates of the vector x = (z1,...,2%) € Z?. The equality

(5.9) can be deduced similarly to (5.6). The equality (5.10) holds as

k
/ _ sin x¥y, . dip = 0
T Zk:l T‘((pk) COS 1/)k —d+ 20 +r2)
because the integrand is odd in the variable .

Denote

© el < ed
1 50 ) COS T Y1 . ..cosx%Yy

d d v
m) Ta > k=1 T(spr) cos oy, —d + 200 +X2)

K((p,x) = (2 dyp

K(p) ={K(p,z), z € Z%} € L. (5.11)
Then by (5.10) we have
FO(QDv .’ﬂ) = FO(QO’ O)K(QD; (E) — FO(CP) = FO(@? O)K(@) (512)

Introduce the linear subspace ﬁl of the space L of functions of two variables
= {F(p)K(p,z), F(¢) € Ly(T?} C L. This subspace is isomorphic to
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Ly(T?) and is invariant with respect to the Hamiltonian H, where H acts in L,
as the multiplication on the function v(y):

H: F(p)K(p,2) — v(9)F(9)K(p, ).

Putgo=F'KeLL = F*Ly. Then Ly is one-particle subspace, according to
the definition above, and L; is generated by the vectors {gs = Usgo, s € Zd}.
In fact

F* i F(p)K(p,2) — > f(s)go(zr — 5,2) = Y f(s)Usgolw1,7) € lo(Z>)

s€Za s€Zd
where )
f(s) = W /F(%ﬁ’)@_z(s’@) dep.
Td
By (4.2) and (5.11) we have
golw1,2) = (F*K)(w1,2) = = [ K(p,a)e @) dp =
(2r)d/2
Td
B 1 me’i(“’“’) coszly ... coszdy o
- (2m)3/2 S r(or)costn —dt gt v
g2d k=1"\¥k) COS Pk 20 FX2)

As the integrand is periodic and odd with respect to each variable 1y

sin 2¥ ¢y,
2()\1+)\ ) ” dp=0
Zk 17” Pk cos Py — d+m
Then
go(r1,7) =
1 / m cos x%gol ...COS x‘fﬁpd cosxy ... cosx¥hg do i
= SO A
3d/2 d v
(2m)3/ > k=1 T(pr) coshy —d + 30u+ra)

T2d

Unicity of the one particle subspace Assume the contrary: that there
exists another one-particle subspace L} = {g. = Usgh, s € Z¢}. Put L} = FL}.
This subspace is generated by the vectors F{ = Fg, = FUsgy = ') Fal,
where s € Z?. Tt follows that L} looks like L} = {F(p)K'(p,x),F(p) €
Ly(T%)}, where K’ = Fgj, and the function K’ cannot be presented as

K'(p,z) =V (0)K(p,2)
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for some function v’ € Lo (T%), where K is defined in (5.11). Due to invariance
of L} with respect to the Hamiltonian H we get that for some function v1(p) €
L(T?) the following holds:

(HK")(p,2) = v1() K' (¢, ).
By (4.5) this equality is equivalent to
H(p)K'(¢) = () K (¢)

where K'(¢) = {K'(p,z),z € Z?}. Remind that v(y) is the unique eigenvalue
of the operator H(y), as it was shown above. It follows that 11 (p) = v(y).
And then by (5.11), (5.12) for some function v’ € Ly we will have K'(p,z) =
V' (p)K (@, ). This means that subspaces Ly and L/ coincide, what contradicts
to our initial assumption.

A. Appendix

Put
d

Yol(p) = Z Uk COS QO

k=1
where 0 < v, < 1. Consider the integral

2
bly) = /(Zi_l Uk ios Or — y) dp

Td

where y € [-D, D] and D = Zi:l vg. If y € [—D, D], then the denominator
of the integrand can be 0 and the question appears whether the integral b(y) is
finite or not.

Let m be the number of nonzero coefficients vi. Denote I = {iy,...,im},
where 1 < i1 < -+ < iy, < d is the array of indices such that v; #0 <=1 € I.
Without loss of generality we can assume that I = {1,...,m}, where m < d. If
m < d, then the integrand depends only on the variables ¢1, ..., ¢, and

oY) = /(zi_l o (1:08 o — y)de -

Td
2
1
= (2m)%—™ doy ...do,.
(2m) /(Z?ﬂkcowk—z) o

Tm

Thus it is sufficient to consider the integral

1 2
doy .. don,
/ <ZL”_1 Uk, COS pf, — y) L

Tm
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where all v, > 0.
Lemma A.1. 1. If m <4, then b(£D) = +oco. If m > 5, then b(D) < 0.
2. The integral b(y) for y € (—D, D) is divergent in any dimension.

Proof of assertion 1

Let y = D and
1 2
sz/() dpy ... dom. Al
Td
The integrand has singularity only at ¢1 = - -+ = ¢, = 0. Consider the integral
2
1
I, = / <> dy
T(p) =D
Us
where Us C R™ is a neighborhood of the point 1 = ... = ¢, = 0 of small
radius 4.
From the Taylor expansion cosp — 1 = —p?/2 + O(¢p?) it follows that for
sufficiently small neighborhood Uy of the point @1 = ... = ¢, = 0 we have
2
1
o= [ () -
’YU(QP) -D
Us

= SD‘
J V32 4+ ..+ 02,02, + O(p + ...+ 1)
)

First of all we do the change of variables ¢y, := vi i, keeping the same notation
for the new variable, and then use spherical coordinates (see, for example, [9],
pp.- 313)

@1 =T COS (1
(P2 =7 Sin i cos Qg
(3 =7 sin o sin ag cos az
Pm—1 =Tsinqy Sin @y . .. SN Qyp—2 COS Apy—1

©m =Tsinag sinas .. .sin Qy,—9 Sin a1

where a1,...,@m_2 € [0, 7] am_1 € [0, 27]. The Jacobian of this transformation
J=r"" (g, .. apq) = 7 sin™ 2 oy sin™ P g L sin gy,
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Then

5
m—1
ImZC'v/dr / r \I/(al,...,ozm_l)do;l...dam_1
s 2+ O()

where S™~1 is the (m — 1)-dimensional sphere of radius 1 and C; ! = vy ... vp,.

Then
5

rmff)
1, = /mdr / \Il(al,...,ozm_l)dozl codog,—1.
0 Sm—1

Thus for m > 5 the integral diverges; but for m < 4 it is finite.
If y=—D, then

=P :T[ (W)Qd*":

) 2
:/< ) dp =
v1co8(m + 1) + ...+ vk cos(m + pq) + D

T

TZ (—%(;) T D)2 o =8(D)

Proof of assertion 2
Let now y € (=D, D). We shall prove the divergence of the integral b(y). We
shall find point @ € T™ and its neighborhood V' (a) C T™ so that the integral

[ (i) »

V(a)

diverges. All the following is not more than a technical exercise but it is useful

to do it accurately.
Ford=1
) = [ (o)
V1COSP — Y

Take point a such that cosa = y/vi, —v1 < y < vy. Then sina # 0 and in
sufficiently small neighborhood V' (a) we have cosp —y/v; = (—sina) (¢ — a) +
(0] ((go — a)2) . At the point a the integrand (v cos ¢ — y)~2 has singularity of
the type (¢ — a)~2. That is why the integral

2
1
[ (mwem)
V1COSP — Y

V(a)
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diverges.
Let m > 1. Consider the hypersurface I

V1 CoS Y1+ + VU COS Yy =y, —D <y < D.

Choose the point a = (a1, ..., an) € I' such that all a; € (0,7). Then Vv,(a) #
07 where ’71)(90) =01COSP] + -+ Uy COS P, P = ((1017 s a(pm)

Below we shall use the following notation. Vector ¢ = (¢1,...,%.,) € T will
denote the corresponding point on the surface, vector ¢ = (p1,...,9m,) € T™
will denote an arbitrary point of the torus T™ = (—m, 7| x -+ X (—m, 7|, vector
&= (¥1,...,%m-1) — coordinates on the surface I'. Then 1, is a function of &
so that (§,¢¥m(€)) €T

Let ¢’ = (a1,...,am-1) € R™ ™. Without loss of generality we can assume
that v, = 1. In sufficiently small neighborhood U(a’) € T™ ! of a’ the surface
I" can be defined by the following equations

Y = VY (§) = arccos(y — v1 €os Py — -+ — Uy COSPpy—_1)

where £ = (¢1,...,¥m—1) € U(d).

We shall prove that in some neighborhood V (a) of a the integrand is asymp-
totically behaves as c(¢)/p? (), where p(y) is the distance of point ¢ € V(a) to
I and ¢(yp) is some smooth function in V(a). The divergence follows from this.

Let n(&) = (n1(§), ..., n,(€)) be the unit normal to the surface at the point

= (&Ym), £ € U(a’) where
v; SinY;

ni(€) = (C(€) ™ :
V1= (4= 01051 — - — V1 COS Y1)

(A.2)

where i = 1,...,m — 1, n, (&) = (C(€)) " and

m—1 .
O(ﬁ) — \/ Zi:l Ui2 Sln2 '(/)z +1
1—(y

2
—V1COSY1 — = Vpy1 COS Y1)

Let ¥(¢) € T be the point such that ¢ belongs to the normal at the point ().

Define Vi(a) = {¢: p(¢) < 8, ¥(p) € S(a)}, where S(a) = (¢ = (£, ¥m(£)) :
€eU(a)) CcT. Then S(a) =V(a)NT.

In the integral
1 2
——— ) de

V(a)

we do the following change of variables

i€, r) =i +mn(€), i=1,...,m—1,
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©m(&,r) = arccos(y — v1 COSY1 — ++ — V1 COSYin—1) + 1N (§)

where £ = (¢1,...,%m_1) € U(a’) and r € I5, interval of length 26. Then
o(&,r) =1 +rn(E)
where @(&,7) = (1(&,7), -, om(&7)), ¥ = (§,¥m(§)) €T, and
U = ArCCOS(y — V1 COS Py — + -+ — Upy 1 COS Ppn_1).

Denote by J = J(&,r) the Jacobian of the transformation

b= (p1(&,7), ..., om(& ) Uld) x Is — Va).

We have
cos (i + ;) = cos; — (siney;) rn; + O(r?).

For y = Y ", v; cost; and sufficiently small r

m m
y— Y vicosp; = Y v;(costp; — cos (¥ +rn;)) =
=1

i=1

=r Z ving sin; + O(r?).

i=1

From formula (A.2) we have

Y vmising; = | Y o2 sin® ¢y = [V, ()| = V(& dm(©)]] -
=1 =1

Thus the integrand in V(a) can be represented as

L 1 06
U =7(@)” 2V m (@)l

/ IIV%(&wm(ﬁ)ﬂ_QJ(&?“)d&)dr
(a’)

—.

r2 (
U

where dé = dy ... dYy, 1.
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As [V, (a)|| > 0, we have in this neighborhood of a,

HV’YU(&QZ)m(g))” >e>0.

Also

)
/ ( / 190 (€, (€)) 2 J<a,r>d§> ar <
s

U(a’)

and we obtain the desired divergence.
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