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Random Boundary of a Planar Map
Maxim Krikun, Vadim Malyshev

ABSTRACT: We consider the probability distribution Py on the class of near-
triangulations T' of the disk with N triangles, where each T is assumed to have
the weight y™, m = my = my(T) is the number of boundary edges of T. We find
the limiting distribution of the random variable my(T) as N — oo: in the critical

. 1 . _1 .
point y = yer = 672 the random variables N~2my converge to a non-gaussian

distribution, for y > y., for some constant ¢ the random variables N~ % (mn —cN)
converge to a gaussian distribution.

1 Introduction

Enumeration of maps is an important part of the art of combinatorics. It started
in sixties with the papers by W. Tutte. He invented powerful "deleting a rooted
edge” and analytic "quadratic” methods, that have been exploited and developped
in hundreds of subsequent papers, until nowadays. Unfortunately since then, no es-
sentially new analytic methods for enumeration of maps appeared in combinatorics
itself. This lack of essentially new ideas was compensated by two breakthroughs
in other fields of mathematics and physics, where maps played an important role.
One breakthrough occured in theoretical physics in eighties. Maps provided a
discrete approximation to the string theory and two-dimensional quantum grav-
ity. To deal with maps new powerful matrix methods were invented. Second one
was initiated by A. Grothendieck in his program devoted to algebraic geometry
and Galois theory. Some connections between these two breakthroughs were un-
derstood in nineties as having essential physical interpretation. We do not give
references here, see a detailed introduction and references in [5]. For several rea-
sons enumerative combinatorics of maps has been developping all this period in a
stand alone way.

We study here some probabilistic problems for maps. Enumeration of maps deals
in fact with the uniform distribution on some finite class .4 of maps. If this class
has |.A| elements then the probability of each map T is P(T) = |.A|~". In physics
one is interested in the probability when maps T' € A have non-negative weights
w(T), the weights have a special Gibbs form, derived from physics. We use one
below. Then the probabilities are P(T) = Z~'w(T), where Z = Y., w(T)
is called a partition function. We hope that rigorous probability approach can
establish interconnections between differents applications of maps clearer.

As a particular case of probability for maps, we consider classes 7o( N, m) of rooted
maps of a disk, called rooted near-triangulations in [2], with N triangles and
m edges on the boundary. Enumeration problem for the number Co(N,m) =
|70(N,m)| was completely solved by Tutte [1], see also [2]. We remind that this
class of maps is defined by the following restrictions: the boundary of each cell
consists exactly of three edges, moreover the map is assumed to be nonseparable,
thus multiple edges are allowed but no loops.

In this paper we consider the probability distribution Py on a class To(N) =
Ups=270(N, m) of maps with fixed N but variable boundary length, given by the
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formula
Py(T) = Zx'y™").

Here y is a positive parameter, that corresponds to y = e~#/2 according to [4], and
m(T) = mp(T) is the number of the boundary edges of the triangulation 7. We
will be interested with asymptotic propeties of the random variable my = my (T).
Its distribution is given by

Py(my =m) = Z;,lymCO(N, m),m > 2

where we use the normalization factor (canonical partition function)

Zn) = Y ew(-5m(T) =Y y"Co(N.m)

T:F(T)=N m=2

Note that N and m are always of one parity, because m + 3N equals twice the
number of edges, consequently Py(my =m) =0if N +m is odd.

In [4] relations with quantum gravity are explained, and several equivalent defi-
nitions of the distribution Py are given, showing its naturalness, also in [4] the
phase transition phenomena for my is described.

Here we essentially strengthen the results of section 4.2 of [4] and get explicit
expressions for the limiting distributions for all three phases. Moreover, complex
analytic methods we use here are quite different from [4], where the explicit com-
binatorial formula for Cy(N, m) by Tutte was used. The method used here seems
to be more adequate also in more general situations.

In the subcritical region a finite limit of my exists. In the critical point and the
supercritical region by choosing an appropriate scaling we get a limiting distribu-
tion, which is non-gaussian or gaussian correspondingly. This is summarized in
the following three theorems.

Here and further the critical parameter value is y.. = %.
Theorem 1.1 (subcritical). If y < y.. then for any z,|z| < 1, the generating
function of (my —2),

oo

fn(z) =Y (m—2)Py(my =m)z"2,

m=2

for even N tends as N — oo to

(1 = VByz)=%2 + (1 4+ VByz)~3/2
(1= VBy)=2/2 + (1 4+ Voy)=3/2

feven(z) -

and for odd N to
(1 — VByz) %% — (1 + Voyz) %2
(1—VBy)=3/2 — (14 Voy)=3/2

Theorem 1.2 (critical). If y = y., then {n = M\/ﬁ tends in probability to the
random variable & with the density

fodd(z) =

2 12
pe(z) = 53\/557, z > 0.
2




Random Planar Map 85

Theorem 1.3 (supercritical). If y > y., then

1 -E .
Emy = aN(1+0(5)), T% £, N (0,02),

where
24y3 + 8y — (1242 + 1)\ /4y2 + 2
VAy? +2(1 4 42 — 2y /4% + 2)’
o2 — 4 32y* + 16y% + 1 — (16y° + 4y)\/4y? + 2

y :
(292 + 1)v/4y% + 2(1 + 4y? — 2y /4y? + 2)?

2 The generating function

It is known [1, 2] that the generating function

Uo(f,y) = Z Z CO(Na m)xNym—Q (1)

N=0m=2
is analytic in (0, 0) and satisfies the following equation (in a neighborhood of (0, 0))

Uo(l',y) = .'Ey_l(Uo(CL‘,y) - UO(‘T’O)) + CEyUg(.’E,y) + 1a (2)
which also can be rewritten as
(2zy*Us(z,y) + = —y)* = (z — ) — 42y® + 42745 (2), (3)

where S(z) = Up(x,0). We will need some analytic techniques which slightly
differs from the original method by Tutte.

Denote by D(z,y) the righthand side of (3) and consider the analytic set D =
{(z,y) : D(z,y) = 0} in a small neighbourhood of (0,0). This set is not empty as
it contains the point (0, 0), and it defines the branch of the function y = y(z) such
that y(z) = +O(z?) in a neighbourhood of x = 0, we denote it further mostly by
h(z). In particular, it will be shown that h(x) and S(x) are algebraic functions.
Because D(z,y) is a square of an analytic function, we have two equations valid
at the points of D

_ oD(z,y)
or
42°y*S(x) + (x — y)? — dzy® =0, (4)

822yS(z) — 2(x —y) — 12zy% = 0.

One can exclude the function S{(z) by multiplying the second equation (4) on ¥
and subtracting it from the first equation, then

y=z+2y° (5)

or
T

V=TT (6)
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We have exposed the quadratic method belonging to Tutte. Now we have to get
more information about analytic properties of the solution.

By the theorem on implicit functions equation (6) gives the unique function h{z) =
y(z), analytic for small z with h(0) = 0. It is evident from (6) that the convergence
radius of h(z) is finite, and its series have nonnegative coefficients. Moreover, y(x)

is an algebraic function satisfying the equation y3 + py+q=0withp = —%, q=73.

The polynomial f(y) = y*+py+ q has multiple roots only when f=f, =0, which
gives x4 = + 217 These roots are double roots because fy # 0 at these points.
From f; =3y? — 2 =0 and f = 0 it follows that ylry) = ﬁ:%. From (6) it also
follows that z(—y) = —z(y) and thus y(z) is odd. It follows that y(z) has both
Ty =+ % as its singular points.
From (4) we know S(z) explicitely. The unique branch y(z) = h(z), defined by
equation (6), is related to the unique branch of S(z) by the equation

1 - 3h%(z)

(I’) = m = $ﬁ2h2(1 — 3h2) (7)

that is obtained by substituting z = h — 2h? to the first equation (4).
We know that S(z) has positive coefficients, that is why 2z, = 4/ —22—7 should be

among its first singularities. Then z_ = —\/% should also be a singularity of
both h(z) and S(z). We proved also that the generating functions are algebraic.
The principal part of the singularity at the root z is h(z) = Az — 2,)%+3 for
some integer d (as the sigularity is algebraic and the root is a double root). As
Y+ = h(z4) is finite then d > 0. At the same time h/(z) = 7_6—}11% that is oo
for z = z,. It follows that d = 0. For S(z) we have the same type of singularity
A(z—24)% 3 but here d = 1 as S(z4+) and §'(x, ) are finite but S”(z,.) is infinite.

As y = h(z) is a double root of the main equation, we have by substituting (7) to
(3)

D(z,y) = 4y°h*(1-3%R%) + (h(1 - 2h%) - y)? — 453h2(1 — 2?)
2 (T
= (1?5 - 4ay) (8)
Remember that D(z,y) = (2zy*Us(z,y) +z — y)2, so
_ -y +(h-y)Vd(z,y) _ 2’
Uo(z,y) = 22y o dz,y) = 55 —dwy. 9)

In the last equality we have chosen the sign appropriately, that is the sign + should
be chosen so that for 2 = y > 0 the value Uy(z,y) were positive.

Singularities of Uy(z,y) Let us prove that for any fixed y € (0, y.r) the minimal
singularities of Uy(z,y) (as a function of ) coincide with the minimal singularities

of h(z) that is with x4 = +4/%. Consider the right hand side of (9). All
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singularities of Uy (x, y) that do depend on y are described by the equation d(z,y) =

0, which is equivalent to @ = y~!. The series of the function %(_x_) has all
coefficients nonnegative, that’s why for |y| < yer
43 (z
max ( )1:\/6:y;1<|y‘1|.
jzi<z4 T

Thus for ¥ < y., the minimal singularities are at x1. Moreover, the equation

2

z
becomes, as = h — 2h3,

h — 2R3

S -4y =0,

Its solutions are

1
hig=-y+ 5\/43/2 +2, T19 =2y + 8y F 4y /4y + 2.

In particular this means that for every real y the solution of (10) is real too. As
we are interested only in y > 0, a minimal singularity is unique and is given by
choosing minus in the latter equation,

x1(y) = 2y + 8y° — 4y®/4y2 + 2. (11)

For each y > % this gives 21(y) < Zcr = 1/ %, equalities are achieved simultane-

ously. This can be easy checked by plotting a graph of (h —2h3)/h? and using the
fact that the function h(z) is strictly increasing, we omit this construction.

3 Subacritical region

The canonical partition function is the coefficient in the expansion

Uo(z,y) = Z Zn(y)zN.

N=0
Up(z,y) is algebraic, and we will prove that for any fixed ¥,0 < y < y.,, in the
vicinity of x4+
T |3
UO(:L'v y) = f:l:,O(xay) + f:l:,l(m1y)(1 - —x—i—)2

where for fixed y the functions fy o, f+ 1 are analytic near x4 correspondingly, the
values of fi ; at x4 are nonzero, namely

3

613 613
| f+,1($+ay):(1—_\'/—‘6?;§3ﬁ’ f_,1($—,y):mW'
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Expand h(z) near z, = Zint=z, —z

—~ 2t

Y/ 6

Substitute (12) together with ¢ = T+ — 1 to the expression (9) for Uy(z,y) and
expand in ¢!/2

4
hz)= - Lpp_1 _%éﬁ/uou?) . (12)

63/43

3/2 2y
TVt o)

Uo(z+ —t,y) = ay(y) + by (y)t +

Similary we find

63/43
Us(z— +t,9) =a_(y) +b_ t+ ———— 132 L O(12),
o ) =a—(y) +b_(y) 5 vog7 (%)
Then as N — oo
1 (—-1)N 3

Zn(y) ~ 63/43(

77Nl -0 1)

(1= VoyP2 (1 + voy)

This is known under different names (for example, as Darboux theorem in 13]).
3

However, it can be proved elementarily, using the following expansion for g = 5

t*=(zp—2)* = Z %&((gmgd\[ﬂv (14)
N=0

where [zV] F(z) stands for the N-th coefficient in the F(z) power series. Secondly,
subtracting this main term and proving that the rest is asymptotically negligible.

In fact, (13) should be read as two separate equations,

1 1 3
(l—w@ww2i(L+¢®Pﬂ)h”@4_xP’

with a plus sign standing for even values of N and a minus sign for odd.

Finally for given y the generating function for my —2 is obtained from the partition
function Zy(y) by normalization, that is

Zn(y) ~ 643 (

o) ) P Z
ule) = 3 Plmy = mpan=s < 00,

and after taking limits in NV (by even an odd values separately) we come to the
assertion of Theorem 1.1.

4 Critical point

In a critical point the expectation of my has no finite limit. To describe the
limiting distribution we shall calculate the asymptotics (as N — 00) of the factorial

.
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moments of my and find the appropriate scaling. That is we have to study the
singularities of all the partial derivatives (%—",LUO(m, y) at ¥ = Yo, as we have done
in the previous section for Uy(z,y) only.

From the previous analysis we know that for y = y., the singularity defined by
d(x,y) = 0 is among the minimal ones. According to (11) is equal to \/—% and

coinsides to x singularity of h(x), so there are two minimal singularities at points
z4 and z_.

: Lemma 4.1. Putt = x — x9. Then there exist functions o, ;(t) = ©ni(t,y),i =
i 0,1, 2, analytic in the vicinity of t = 0 such that

Us™ (@ 9er) = Pno(t) + ena () /472 4 5 (1) 1547772, 5 1(0) £ 0

Proof. Instead of calculatmg the y-derivatives of Up(x,y) we calculate them for
2¢y*Up(z,y), which is much simpler, but keeps all information on Cy(N,m). We
have

1/2
P’ Un(z,y) =y —z+(h—y)Viz(15 -v) , >0,

4h?

x 1/2
W—Fy) , x<0.

To get the derivatives put y = y., + © and consider the formal series in u:

a:yQUo(ac,y) =y—z+(h—y)V —4ac( -

2zy°Us(,y) = Yo —z)+u+ ((h — Yer) — u)
Y=Yertu
-,z 1/2-n
N 27 n
><v4xz %) (4h2_ycr> u, x>0,
{
2.Ty2U0(.'L‘, y) = (ycr - l‘) +tu+ ((h - yCT) - u)
Y=Yer+u
= T'(n - l) T 1/2—n
—4 —_— 27 cr - n’ <0.
X/ x;n!F(—%)( e ) (—w)", =z<
For n > 1, z > 0 the n-the coefficient (we denote it [4"]) is equal to
4 F(n — 2) z 3/2—-n
; n 2 — /4 2 = Yer
fu ](2“’ UO(m’y)’Fym) - )IT(=1) (4h2 y )
I'(n— l) T 1/2-n
4 —(h — Yer)v4 —_— 2= - cr
‘; (h=er) xn!I‘(—%)(ﬁlh? ver)
‘ T'(n—32) z 3/2—n
= Vo ——— 2 (5 — v
- D)I(=L) (4h2 ber)
3
n-3/z -1
| R
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and similarly for n > 1, 2 <0

(2o o@y)| )= \/——M%( )y
sV R (- e we)

- Vg F—(?)!_r(%z%) (-3 wr) 0

(L (= ) 2 ) ) (16)

Next we need the following auxiliary expansions

z -1 L 3 1/4,1/2
(b ‘ycr)(4h2 _ycr) emyt = ~3 + gﬁ 14V + O(t),
T 1
“1o  Yer = _63/4t1/2 Oft
(4h2 Y ) rz=z4—t 3 + (),

(h — ycr)( - 4%2 +ycr)_1

(g

(note that the second one has no constant term). Using these expansions we obtain
from (15) and (16) the behaviour of the Uy(z,y) derivatives near ., namely

3
=1+ 561/4:51/2 + O(t),

rz=x_-+1

1 1
= 5\/6+ 563/4151/2 +O(t).

z=x_+t

13

—Uo(l',y)

By = const t/472(1 + O(t1/?2)),

r=x4~t

13

—UO('Tay)

By = const + O(t'/2).

rz=x_+t

Lemma is proved.
The factorial moments of my are

a2 T(=3) 12 g L(=1)
My(N) ~2 23211(_;N ,  My(N)~2 434—F(T4)4—N,
M,(N) = ERIY 27273741 (2, — 1)(2n — 5)!!L_%)N"/2
[zN]Uo -9 ’

Consequently the moments of a random variable £ = limy_,oo my/V N are

INE (-3
EE = 3(3/4)1”((—4;)’ E¢ = 3(3/4)2ﬁ - g,
-T _3 INg 3 gn
E¢" = 2—2n3n+1(2n —1){2n - 5)”F(%(_4%)) _ (2{(};) '
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The moment generating function for £€2 is uniquely defined by this sequence (by
classical uniqueness criteria, see sections VIL.3 and VIIL6(b) of [6]), as they grow
slower than C™n! for some C) and is equal to

per(s) = ;)Eé"(_% = (1+9s)7%

Using the Laplace transform we get the density of ¢2

1
I(

perlt) =374 e b

NN

)

5 Supercritical region

We shall prove that Emy ~ cN and all the semiinvariants (coefficients in the
Taylor expansion of the logarithm of the generating function) of my are of order
N. Then it follows that the semiinvariants of order greater than two of a scaled

random variable (my — Emy /v N tend to zero as N — oo, which means the
imiting distribution is uniquely defined by its moments (see above), and moreover
it is gaussian (as the log of its generating function is a quadratic polynomial).

The semiinvariants of my are given by the formula

(V) = (0 oy (Naco, 21,
where
[zNUo(z, ye)
['I:N]UO(‘Z’ y)

ined thing is the characteristic function of my.

on(t) = BeX™ =

We saw that for fixed y > y., the minimal singularity of Uy(z,y) (as the function
of z) is unique and is given by (11). The expansion of Up(z,y) (as the function of
x) at the singular point z.-(y) is

Uo(z,y) = aly) + b(y)(zer (y) — m)1/2 + O(|zer (y) — )
for some constants a(y), b(y). Then

I'(N —

(2100 (@) ~ b)) = er () = b0) e

Inpn(t) = Infz)Us(z, ye*) — ln[zN]Uo(m, y) ~ N( —In xcr(yex) +1In xcr(y)>.

It follows that all semiinvariants of my are O(N).
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6 Some remarks

Equivalent presentations of the model The factor ym" = = exp(—§m) is quite
natural: it is derived from the Hilbert-Einstein action in two- dlmensmnal pure
quantum gravity, see introductory exposition in [5]. The case y = 1 that could be
natural for combinatorics seems to have no special interest for physics, where the
critical point is of most interest. We could assign weights to maps as exp(—uL(T),
where L(T) is the number of all edges of the map T. This would give the same

probability distribution because of the formula |L(T)| = 2& + @

Second kind phase transition The free energy for this model is defined as

) 1
Fp) = Aim = log Zo, v, Zo,n = Z exp{—pL(T)}
T

The next theorem gives an explicit formula for the free energy, it corrects a cal-
culational mistake in the corresponding result in [4]. It shows also that the phase
transtion is a second order phase transition, as in the critical point the free energy
is differentiable but not twice differentiable.

Theorem 6.1. The free energy is equal to -%M—Hn (, / 22—7) if y < yor and is equal
to ——u +1Inze (y) if y > yer.

Proof. It easily follows from the proofs in the preceding sections. We have

ZON—-Zexp{ —uL(T)} = ZeXp{——(?)N—i—m)}-exp{—_#N}[ NUp(z,e=/?),

1 -3 i N —p/2
NlogZo,N_— 2/,L+Nlog ([x 1U6(1, € ))

Put y = e~#/2, Following section 3, as y < yer:
[zVUo(1,e7#/%) = f(y)[zN](z0 — 2)*/2,

1 3 3 27
NlogZo,N — —§u+lnw0 = —§,u+ln< ?)

When y = y,:
[&MUo(1,e7#/%) = ()" ] (w0 — x)*/*
27

1 3
NlogZO,N e —§,u+ln( 7)

Following section 5, as y > y.,:

[mN]UO(l, ehu/Q) = b(y)[le(xcr(y) - $)1/27

Ter(y) = 2y + 8y — 4y?1/4y? + 2 being defined as in (11) we get

1 3
N log Zo v — ~§u + Inz.r(y)
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Further problems The similar problem for two holes in the sphere could be the
next solvable problem, that is consider a ring (or cylinder) with two boundaries of
lengths mq, ms. Joint distribution of these two random variables is to be found.
Not that if for one boundary there is the combinatorial formula for Co(N,m)

29%2(2m + 35 — 1)!(2m — 3)!
(7 + )1(2m + 25)!((m — 2)!)2

Co(N, m) =

by Tutte (used in [4]). Nothing similar is known for the number Cy(N,my,ms)
of rooted near triangulations of a ring with N triangles and the lengths m1, my of
the boundaries, where only analytic methods can be of use.
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