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Abstract

This paper contains a rigorous mathematical example of direct derivation of the system
of Euler hydrodynamic equations from Hamiltonian equations for N point particle system
as N — oo. Direct means that the following standard tools are not used in the proof:
stochastic dynamics, thermodynamics, Boltzmann kinetic equations, correlation functions
approach by N. N. Bogolyubov.
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1 Introduction

Classical mechanics, from mathematical point of view, is mostly developed in cases, where two
extremely idealized forms of material objects are assumed - point particles (ordinary differen-
tial equations) and continuum media (partial differential equations). However, big difference
exists in the ideology of these two theories: for point particles the model is defined by the
choice of the interaction potential between particles, which is supposed to be known, but in the
continuum mechanics the interaction is defined by the pressure, which is one of the unknown
functions in the equations. Many papers - both mission proposals [1| 2] and concrete results
for concrete models [3, 14, [5, [6] - discussed the connections between these two fields. We do not
give here review of these papers as we do not use neither their results nor methods. Moreover,
our approach is direct that is we do not use any of the following approaches: stochastic dy-
namics, thermodynamics, Boltzmann kinetic equations, correlation functions approach by N.
N. Bogolyubov.

Now we make the above claims more precise. Hamiltonian finite particle system is defined
by the system of equations for the particle trajectories z;(t) € R%,i=1,...,N

dzl'i OH

mi——- — —
dt2 03:,

with the Hamiltonian H.

We define the continuum (d-dimensional) media as a bounded open subset A C RY, the
dynamics of this media is given by the system of such domains Ay, t € [0,7),0 < T < oo,
together with the system of diffeomorphisms S* : A = Ay — A4, t € [0,7T), smooth also in t. The
trajectory of the point (particle) z € Aq of the continuum media is the function y(¢, z) = S'a.
The main unknown variable in the Euler equations is the velocity u(t, y) of the particle, which
at time ¢ is at point y. This definition of u has sense iff such particle is unique, that is iff for
any t and any x; # xo

y(t, 1) # y(t, z2)

that is iff the trajectories (particles) y (¢, x) do not collide.

This property obviously should be related to the similar property for N particle system, if
we want to obtain continuum media trajectories in the limit N — oo (one could call this the
ultralocal limit).

We say that the N-particle system has no collisions, if for all 1 < 7 < &k < N and all
t € 10,00)

75(t) # (),

and has strong property of absence of collisions if

inf int|(2,(t) — (0)] > 0 (1)
It is evident that there will not be any collisions if the repulsion between particles is sufficiently
strong. However, for general Hamiltonian systems the following question is completely non
trivial: for which initial conditions x(0), #x(0),k = 1,..., N, the system enjoys the absence of
collisions property. In this paper the property (Il) plays the central role. It is surprising that
we did not find papers where this property is discussed in the derivation of continuum media
equations. However, it was widely discussed in Celestial Mechanics (gravitation potential), see
for example [§]. B
We consider the particle system on the real line with a particular Lennard-Jones type po-
tential and prove that the particle trajectories of the N-particle system, for N — 0o, converge,



in the sense defined below, to the trajectories of the continuum particle system. Moreover, we
get the system of 3 equations of the Euler type (which is considered in [7]) for the functions:
u(t, x) - the velocity, p(t,x) - the pressure and p(t, z) - the density

pr A ups + pup = 0, (2)

Uy + uuy, = —&, (3)
P

p=p(p), (4)

In continuum mechanics these equations correspond to the conservation laws of mass, momen-
tum and to the thermodynamic equation of state. In physics the first two equations are quite
general. But the third one depends on the matter type and thermodynamic situation and
should be given separately. In our derivation, all these equations and functions obtain simple
and intuitive mechanical meaning (without probability theory and thermodynamics) for the
N-particle system. In particular, the pressure can be considered as an analog of interaction
potential in Hamiltonian mechanics.

2 Main Results

The model We consider Hamiltonian system of N particles (of unit mass) with coordinates
x1, ...,y on R and the Hamiltonian

The potential energy U of the particle system with the coordinates xy, zo, , ..., xy is defined by
the interaction potential

2
w
U= Y. L (lex = wl). I € X(a, a1)

1<k<I<N

where I(a,a1),0 < a; < a, is the class of functions I(z) on R, with the following two properties
1) I(z) = (x — a)? for a — a; < x < a + a; with some constant 0 < a; < a.

2) I(x) = const for x > a+ ay

3) I(x) is arbitrary for 0 < x < a —ay

Scaling Our system contains three parameters: w,a and a;. We could add also mass but the
scaling of mass and/or time could be reduced to the scaling of w.

If N is large and all particles are situated on some finite interval then a should be of order
N=L. We put a = % Then the system will be in equilibrium (zero force on each particle) iff
forall k 1 —xp = % Correspondingly, we put a; = + for some 0 < r < 1 not depending on

N. The remaining parameter we choose as
w=wN (5)

for some w’ > 0, not depending on N,



Initial conditions We always assume the following initial conditions
21(0) =0, @1(0) = v, (6)

1 k

21 (0) — 24(0) = %X (%) >0, da(0) — 1(0) = TV (N) k=1, . N—-1 (1)

for some v € R, and for some functions X,V € C*([0, 1]), where X > 0. Thus, the functions X
and V define smooth profile of the initial conditions. Then the kinetic and potential energies
of the system will be of the order O(N).

It is convenient to assume also that

X(0)=X(1) =1, V(0) = V(1) =0, (8)

The second condition () means that two leftmost (two rightmost) particles initially have almost
(up to O(N~?)) equal velocities, and the first condition (8) means that both boundary particles
are subjected to almost zero force.

Let Qx = Qun(7) be the domain of RY = {(z1,...,xy)}, defined for some 0 < v < 1 by the
estimates

170 o — < 20
N X Tk+1 T X N

uniformly in £ = 1, ..., N. We want to prove that if initially our system is in this region, then
under certain conditions it will stay in €2y forever. The obvious corollary is that there will
never be collisions between particles. It might seem that under such conditions there will not

be interesting dynamics, but this is wrong, see pictures at the end of the paper.

N

Absence of collisions for N-particle case The condition below allows to estimate distances
between particles at any time moment. Denote

1 1
o= / X"(y)] dy, B = / V()] dy.

Further on we will use the concrete value of v, defined in terms of the main parameters of the

system
N
yzv(a,ﬁ,w’):2a+%:2a+§ (9)

Further on the condition v = vy(a, 3,w’) < min(r, %) is always assumed.

Theorem 1 Assume that initially our system is in Q. Then it stays in Qy forever. That is
foranyt >0 and any k =1,2,..., N — 1 the following inequalities hold:
1—7v < 1+~

7 St - ap(t) < (10)

It follows that the particles never collide in the strong sense ().

Note that the scaling of w is crucial to create the repulsion necessary for the particles did
not collide.

To understand the importance of the choice of a, note that X(y) — 1 characterizes the
deviation of the chain from the equilibrium, X’(y) characterizes the speed of change of this
equilibrium, and « can be considered as the full variation. Thus the following simple statement
is useful to estimate such deviation at initial time moment.

Lemma 1 For any y € [0,1]
l—-a< X(y)<1l+a



Strategy of the proof If we could prove Theorem [I] for some potential in the class I(a, a;),
then the ~-bounds () indicate that it will also hold for any potential I € I(a,a;). In the
following proofs we will use the simplest of such potential - the quadratic potential

I(@41 — 2x) = (Ths1 — 7% — a)”

Even more, we assume the nearest neighbour interaction for this potential . Then the following
system of linear differential equations holds

I = Wz(@ — 1 —a), (11)
iy = W (Tpgr — o5 —a) — W (xp — 281 —a), k=2,3,...,N — 1, (12)
L'L.’N: —w2(xN—:cN_1—a), (13)

In this case we will also prove y-bounds (I0).
Now from these fy—bounds we want to show how from this the Theorem [ follows for any

class of potentials I(+ N 7). 1t is sufficient to show that for any ¢ and & the following inequalities
hold ) |+
—r r
N < Tpp1(t) — zp(t) < N (14)
1+7r
Tpro(t) — zx(t) > (15)

N
Then (I4)) obviously holds if v < r. From the v-bounds (I0) we have the estimate
1—v

l’k+2(t) — Zlﬁ'k(t) 2 QT,

. . . . . 1_
This estimate implies (I5]) if v < 5.

Convergence to continuous chain dynamics Denote ¢(t,x) the solution of the wave
equation

qit = (W/)2qgvx7
(here and below the lower indices define the derivatives in the corresponding variables) with

fixed boundary conditions
q(t,0) = q(t,1) =0, (16)

and with the initial conditions:
q(0,2) = X(z) = 1, ¢(0,z) =V (x). (17)

Let a:k ( ) be the solution of the main system (II])-(I3]) for given N. For any fixed ¢t we
want to define two functions (algorithms) which map the set of points A; of the continuous

media to the set of particles {1,2,..., N}, that is to the set of particle coordinates {a:]gN) (1)}
of the N-particle approximation. To do this, we Wlll use two coordinate systems on the real
intervals: z and z, where z(x), for z € (0, L), L fo y)dy, is uniquely defined from

the equation:
z(x)
X (2')da' = x. (18)
0
In the first algorithm to any z € (0, 1] correspond the particle with number [zN] (the integer
part of zN € R). Note that for any 0 < z < 1 there exists N(z) such that N > N(z) we have

1< [zN] < N.



In the second algorithm to any point z € [0, L] corresponds the particle with number

k(x, N) = k(z, N,0) so that
oo (0) < 2 < 2 31 (0) (19)

Due to positivity of X (y) such number is uniquely defined. Then it is natural to call the
function a:]g](\;) ) (t) the N-particle approximation of the trajectory of the particle z € [0, L] of
the continuum media. By definition we put :L’g\J,VJZI = 00.
Theorem 2 Let the conditions of the theorem [ hold, and assume also (3). Then:
1) for any 0 < T < oo uniformly int € [0,T] and in z € (0,1]
t
Jm a0 = 66,0 = ot + @ [ (0= auls,0) ds. (20
—00 0

lim 2(1) = G(t,2) = G(1.0) + 2 + / J(t.2) di’, (21)
0
2) Let 0 < 21 < z0 < 1. Then for anyt >0
(L =7)(22 — 21) < G(t,22) — G(t,21) < (L+7)(22 — 21),

where v is defined in (9). Otherwise speaking, the continuum media particles do not collide;
3) for any T > 0 uniformly in x € [0, L] and in t € [0, 7]

lim ) v, () = y(t,7) = G(t, 2(x)), (22)

4) the function G(t, z) satisfies the wave equation

d*G(t, 2) o d2G(t, 2)
ER R =
with boundary conditions G,(t,0) = G,(t,1) = 1 and initial conditions

G(0, 2) / X(2)de',  Gy(0,2) :v—l—/ V(a')da'.
0

An obvious corollary is that for any 7" > 0, uniformly in ¢ € [0,7], we have the following
asymptotic limit for the length Ly (t) = xy(t) — x1(¢) of the chain

(23)

1
lim Ly(t)=L(t) =1 +/ q(t, z")dx'
N—o0 0

Continuity equation (mass conservation law) Further on, the function y(t,z) will be
called the trajectory of the particle z € [0, L]. Then the particles do not collide and one can
unambiguously define the function u(¢,y) as the speed of the (unique) particle situated at time

t at the point y , that is
dy(t, x)
ult,y(t,2) = . (24

Also we will need the notation:

Yo(t) = y(t,0), Yi(t) =y(t, L).

For given N we define the distribution function at time ¢:
1
POt y) = Sk e {12 Ny 57 (0) <y}l y € R

where | - | is the number of particle in the set.



Lemma 2 Denote x(t,y) € [0, L] the (unique) particle, which reached the point y at time t,
that is

y(t,z(ty) =y (25)
Then uniformly in y € [Yo(t),Yr(t)] and in t € [0,T), for any T < oo, we have

lim F™M(t,y) = 2(a(t,y)) = F(t,y),
N—o0
where the (smooth) function z(x) is the same as the one introduced in (I8).

In connection with Lemma [2] define the density by the formula

_dF(ty) _ dz(a(ty))
dy dy

Theorem 3 For anyt >0, y € [Yo(t), YL(¢)]
a
dy

p(t,y)

dp(t,y)
ot

(u(t,y)p(t,y)) = 0. (27)

Euler equation (momentum conservation) and equation of state
Theorem 4 For anyt >0, y € [Yo(t), YL(t)] we have:
du(t, y) u(t,y) 1L d 1 1 dp(t,y)

g T T =W e S Gty - g dy

if we put

Constant C' can be chosen as
C — ( w/)27
so that at equilibrium (when p = 1) the pressure were zero.
Right side of the Euler equation as the limit of interaction forces

For given y and t define the number k(y, N, t) so that

N N
xl(f(y),Nvt) (t) <y < xl(f(y),N,t)—l—l(t) (30)

Consider the point y € [Yy(t), Y.(t)] and the force acting on the particle with number k(y, N, t):

N _ o (V) 1 2 (. (V) (V) 1
RM(t,y) = w (xk(y,N,t)—i—l Ty Ng) T N) —w (%(y,N,t) ~ Thy,Nt)-1 N)

Theorem 5 Let the conditions of the theorem[2 hold. Then for any 0 < T < oo, uniformly in
y € [Yo(t),YL(t)] and int € [0,T] the following equality holds:

lim RN (t,y) = R(t,y) = — ,
W by = B Y) p(t:y) dy

where the functions p, p are the same as in theorem [4

Thus, the pressure can be considered as a continuous interaction potential for continuum
media, an analog of interaction potentials in Hamiltonian particle mechanics.



Limit of the energy Define the potential and kinetic energy of the particle with number
k(y, N,t) at time t for N-particle approximation correspondingly as:

1 1\* 1 1)\?
N _ 12 (N) (N) (N) (N)
U )(t’ y) —ZW (%(%N,t)ﬂ ~ TpyNg) — N) + ZW (xk(y Nt~ Ty, N)—-1 — N) ’

1 2
N _ 1.
TM(t,y) = B (%(y,N,t>> :

Theorem 6 For any t,y (uniformly as in the previous theorem) the following limits hold:

Utt) = Jim U0 = 5 (i —1) = gt

N—o00 Pt y)
. 1
T(t,y) = lim T™(ty) = Su’(t,y)

3 Proofs

As we explained previously, we shall always use the system (IT])-(I3]).

3.1 Proof of Theorem [l
Proof of Lemma Il Put f(y) = X(y) — 1 and use the following Lemma [3]

Lemma 3 Assume that f € C?*([0,1]) and f(0) = f(1) = 0. Then the following inequality
holds:

sup /() /U”I@

yel[0,1]
In fact, ,
fo) = [ 7@ dn
It follows that
w 7)< [ 1)

y€[0,1]
As f(0) = f(1) = 0, then there exists point z* € (0,1) such that
f'@@) =0.
Thus we have:
1
/ |f'(z)| dx = "(u)du| dxr < sup / 1" (u)du / |f" (u)| du.
0 z€[0,1]

This proves the Lemma.

Remark 1 The set of functions X, satisfying the conditions of Lemma [3 is a linear space.

Moreover,
1
— [ 1w dy.



defines a norm on this space. Lemmal3 states that the uniform norm does not exceed the norm
a(+). However, we want to note that these two norms are not equivalent. In fact, assume the
contrary, i. e. that there exists constant a > 0 such that for any function f € ¥

a(f) <a sup [f(y)l-

y€[0,1]

Then put fx(y) = sinwky. Then a(fy) — o0 as k — oo, but sup ey |fe(y)| = 1. This is a
contradiction.

Deviation variables Define the deviation variables g (t) = xp41(t)—2x(t)—a, k=1,...,N—
1, and put by definition ¢y = qy = 0, Then the functions g, satisfy the equations:

Gk = w0 (qe1 — @) — W gk — Goe1) = W (@1 — 2qk + @), k=1,2,...,N—1 (31)

with initial conditions which follow from (7))

1 k 1 . 1 k
q,(0) = X (N) -y (0) = ~V (N)  k=0,1,....N
In fact, from equations (III)-(I3) we have
ip = (qr — qu-1), k=1,...,N,

ik = :i'k-i-l _Qkak = 1)"'7N_ 1a

Then for k=1,...,N —1
2 .2
w(qr+1 — qr) — Gx = W (e — Qr—1)-
The last equality is equivalent to (BII).

Remark 2 The inverse transformation is given by

and for x1(t), by definition of 1, we have the equation:
i = wq.

It follows

z1(t) = 11(0) + 71 (0)t + w? /Ot ds /08 q(s") ds' = x1(0) + &1 (0)t + w? /Ot(t —s)qi(s) ds (33)
The last equality follows from comparison of derivatives of both sides.
One can rewrite the system (31]) in the matrix form:
q§=-Wgq,

where the matrix W is a three diagonal non negative definite (n x n)-matrix with n = N — 1,
and ¢ = (q1(t),...,q,(t))T is a column vector.



Spectrum of the matrix W  We will show that W is positive definite, and will find the basis

v1, ..., v, of eigenvectors of W, with corresponding eigenvalues Ay,..., \,: Wv; = \jv;, j =
1,...,n.

Let e; be the standard unit coordinate vectors in R™. For j = 1,..., N — 1 define vectors
Uj by

yi(k) = (v, ex) = \/%si ”]{f k=1,2,...,N—1. (34)
and the numbers \; by
2 )
2N’
Let us prove that v; are eigenvectors of W with eigenvalues A;. Note that if we define y;(k)
from (34)) also at the points £ = 0 and k = N, then we get y;(0) = y;(/N) = 0. Then for all
k=1,...,N—1

(Vvj, e) = —w (y](k +1) —y;(k) + w?(y; (k) — y;(k — 1)) =

o2 /2 B T (2k+1) . ﬂ wj(2k — 1)
= 2w ( sm oN + sin 9N CoS N
/2 sm— 7rj(2k+ 1) o mj(2k —1)\

2N 2N n

5 4
= 4w? ”N smﬁ sm%k sm% = A\y;(k).

where (,) is the standard scalar product in R". As all \; positive and different, then W is
positive definite.

Aj = 4w sin

Dynamics of deviations

Lemma 4 Let for anyj =1,...,N—-1

/2 /2 mJ
7 7 AT = 2 SANT
E qi( sm E qi( sm w sin oN
sinw;t\ . mjk
g Qj cosw;t + P; sin ——,
w; N

Proof. Using the expansion of q(t in the basis

Then

n

= ZQj(t)Uj, Qj(t) = (Q(t)>vj)>

we will get equations for @);(1):

Qj = =@,
This gives '
Q5(t) = Qs(0) coswst + Qs(0) T2y = /Ay
Then ’
@) = (a(t), ) = D QO (wy, ) = Y (@-(0) cos it + Q5(0) S“jjf’jt) (v en),
Jj=1 j=1 J

and the Lemma is proved.



Estimate of the coefficients ();, P; We have

0 -2y Zqz Jsin T = (g(0),05) = 5-(a(0), Vo) = 3~ (Va(0), ;) =

J J

_ —_\/72 ((gi+1(0) = ¢i(0)) — (¢:(0) — ¢i-1(0))) Sm%

Then let us estimate the sum

S = 3 ((@1(0) = (0)) = (0(0) = g1(0))) sin 2

i=1

where

We have

w0 a0 = 5 (¥ (5) % (5)) = 3200,

for some point §; € (%, 5+). This gives

N— .. 1
1 , . Y 1 , 1 ,

1
Q< e\ 2 a—/|X” ) dy.

S N

and thus

Taking into account the inequality w; = wsin 53 > wﬁ, we get

1 /2 «
NPy iy
‘QJ‘ 4 N]2
1

PI<iws o= [ Vol

Similar estimates holds for P;:

This gives the final estimate

N—
12 Q@ < BN
B a L y=2a+
() 4N; 2 2wj Sy YTt

3.2 Proof of Theorem

We will denote now ¢ (t) = q,gN) (t), emphasizing the dependence on N.

Lemma 5 Assume the conditions of Theorem[2. Then for any T > 0

1 k cln N
<

N)
t) — —q(t, —)| < ——,
trel%(g)izr{} ’f:{?%%—l q (1) q( ,N) N

for some constant ¢ > 0 not depending on N.



Proof. Consider the difference
AN () =g (t) - Salt, ), k=0,...,N

For any k =1,..., N — 1 we have

A (Y N N N N 1
AP0 =g —a) — @ =g = @) g,

k
P ua(t, )

Note that forall k=1,... N -1

k—+1 k k k—1 1 k (N)
t,—) —q(t,—)) — t, =) —qt,——)) = —=quz(t, = t),
and moreover the remainder term can be estimated as

4
" 1 d*q(t, )
Bl < il
[y ()] 12N* iefo.1) 2c0] | dat

&1
= _N4 .

Then we have the equations
X (N N N N N N
APV (1) = (A1 - A7) =AY = AN + Y ()W) N

with initial conditions

Introduce the vectors
N N N N
AN (@) =AM @), AR @) v M) =), m)T
Then we have the equation
AW = — W AW LN (#)(W)2N,

where the matrix W was introduced in the proof of Theorem [Il It is easy to see that the
solution of this equation is

AN () = ()N / t(W)—l sin VIV (¢t — s)r®™(s) ds,

where v W is the positive definite square root of the matrix W. Thus
— (vj,e) [*
A() = (A1), ) = ()N Y / sinw;(t — 5)(r™(s),v;) ds.
j=1 J 0

For all s € [0,t], 7 =1,..., N — 1 we have the inequality:

2 C1

N N3

The consequence is that for all t € [0,7], k= 1,..., N — 1 the following estimate holds:

(™ (5), v5)] <

N-1 N-1

2 ¢ 1 Tec 1 coln N
A(N)t < 1 < (W)2N— 1 _g 2
AM()] < NN?,ZQNW S @OV R

Jj=1 j=1

for some constant ¢, > 0, not depending on N. The Lemma is proved.



Proof of the assertion 1) of Theorem Note that for any ¢ € [0, 7]

OSSR PRINONEACY

where |r(t)| < ¢ for some constant ¢ > 0, not depending on N. That is why from the equality
[B3) and Lemma [ we get that uniformly in ¢ € [0, T] the following limiting equality holds

t
lim 2™ (t) = ot + (w')2/ (t — 8)qu(s,0) ds.
N—o0 0

Using the equality (32) and Lemma [0 we get:

[zN]-1

N
Tom® =m®+ 2+ 5 > alt ) +r V),
k=1

and moreover, there exists constant C' > 0 such that [r™(¢,z)| < £ for all z € [0,1], ¢ € [0,7].
Taking the limit in this equality we get the assertion of the Theorem.

Proof of assertion 2) From evident equality

[z2N]—-1
Tam)(t) = 2 () = Y (@ () — 24(t)
k=[z1N]
and from Theorem [Il we get the estimate:
S 1+

Y ([2N] = [21N]).

([22N] = [21N]) < 2pn(t) — (2 v () <

N

Taking the limit here we get the assertion.

N

Proof of assertion 3) Firstly, let us prove that for some constant ¢ > 0, not depending on
N, for all z € [0, L]
N
e ) < 5 (35)

= /OZX(SL’/)dSL’/

Then we have f(z(z)) = z. On the other side, the integral can be calculated as follows

Denote

]{}( k(w N)
f( N Z ) + 78 (2) = Ti(a,n)4+1(0) + (),

where the remainder term enjoys the following estimate:

1 C1
<< X'(y)] ==
rv(@)] < § max [X(y)] =

By definition of k(x, N) we have:

k(x, N)
N

k(x, N)
N

&1

x_ﬁ\f(

1
)<:c+ﬁX( c2 = ¢ + max X (y).

Co
x‘ [
N N’ 20 11



The following inequality follows:

This gives
‘k:(a:, N) 1 0 _ ¢
—z(x)| < — = =—_.
N mingey X(y) N N
From the proved inequality (35 it follows that
|k(z, N) — [z(x)N]| < ¢, d =c+1 (36)

Then by Theorem [I]

I+~
2@ () = Tre (1) < e

Taking the limit in the last inequality we get the assertion.

Proof of Lemma 2 We will use the particle numbers k(y, N,t), introduced in (B30). By
definition we take xéN)(t) = Yo(t), atg\],\czl(t) =Y, (T). It is clear that

k(y, N,t)

N
Further on for given N we consider particle trajectories for the initial points :L’,g(\;) Ni)(O) and
:L',g(\g(uy% N)(O). We want to prove that at time ¢ the distance between them does not exceed ¢/N.

Using theorem [, we will show that k(y, N,t) differs from k(z(¢,y), N) not more than on some
constant. Lemma will follow from this. Now we give the formal proof. We use the inequalities:

(N) (V) (V) (N)
|xk(x(t,y),N) (t) - Li(y,N.t) ()] < ‘xk(x(t7y)7N) (t) =yt z(t,y)| + |xk(y7N,t) (t) =yl

By assertions 1), 2), 3) of Theorem 2, and its proof, we can conclude, that the following
inequality holds:

FM(t,y) =

(N) C1
|xk(x(t7y)7N) (t) —y(t, z(t,9))| < N’
for some constant ¢; > 0 not depending on N and y. Then by definition of k(y, N,t) and
Theorem [I we have the estimate for 0 < k(y, N,t) < N:
() (N) (N) €2
|Ik(y7N7t) (t) —yl < |$k(y,N7t)(t) - xk(y7N7t)+1(t)| < N
for some constant ¢, > 0 not depending on N,y, . In cases k(y, N,t) = N and k(y, N,t) =0
the latter inequality follows from Theorem 2l Then
(V) () ¢ _
et ) — T (DI < 5y c=ate
From this inequality and Theorem [Il we have
|k($(t,y>,N>—]€(y,N’t)‘ <C/7 (37)
for some constant ¢ > 0, not depending on N,y. We can conclude that

i F@ N Rt y), N)

Aim —= Aim ———= = z(x(t,9)),

where the latter equality follows from the proof of Theorem [2] assertion 3. The Lemma is thus
proved.



Proof of assertion 4) The simple calculation gives with (I6]),(21])

d*G(t, 2)

P q-(t, 2).

d2G(t,Z) de(t,O) z ’ / : / !
e /0 Gu(t, 2 )d2' = ()20 (1,0) + ()? /0 g::(t,#)d' =

= (W)*(g:(t,2) = :(£,0)) + (w)?:(t,0) = () ’q:(t, 2)

The boundary and initial conditions can be easily found from the corresponding conditions on
the function q(¢, x)

3.3 Proof of Theorem 3

By definition (26]) we have
p<t7 y) = Z/<:1:(t7 y))xy@v y)

On the other side, differentiation in y of the equality (23] gives:

1
zy(ty) = ————— 38
) = e w) %)
Hence,
2 (x(t,
et (e, y)) = AL (30)
p(t,y)
By definition
Op(ty) _ ddz(a(ty) d :
Differentiating in ¢ the equality (25) we get:
ot y) = — Qe u(ty)  ulty)e(ty)
’ yw(tvx(tvy» ym(t,ﬂf(t,y)) Z/(l’(t,y))
The theorem is thus proved.
3.4 Proof of Theorem 4
We need the following Lemma.
Lemma 6 Forallt >0, z €0, L]
Qu(t, y(t,x)) Au(t, y(t,x))
_— t,y(t —_— =
T +u(t,y(t, z)) o
= ()Ges(t, 2(x)) = () o (40)

2" ()]

Proof of the Lemma. The left hand side of the formula (40) is the complete derivative of

u(t,y(t,x)) in ¢, that is W. On the other side, we have by definition:

du(t,y(t,x)) _ d*y(t, ) _ d*G(t, z(z)) 2d2G(t,z(:)s))‘

/
14 749 749 - ( ) 7.9




Moreover, the following formulas hold:

_ dy(t,x) dG(t,z(z)) ,, JdG(t, z(x))

) = L2 CEEAD) ) CEAD) ), 1, 2(0)), (1)
uult 1) = & Z(;f) — [Z’(:L')]QW + z"(x)w — [ (@) Cuult, 2(z)) + 2(2) Gt 2(2)).
Then

and the Lemma is proved.
Let us prove now theorem [l Putting z = z(t,y) in the equation (40) gives the following
equation:

du(t,y)
ot

where we introduced the function:

du(t,y)

oy R(t,y),

+u(t, y)

Yoot (1Y) — Sy, (¢, (t,y))

) = Falt.)P 2
Differentiating the equality (89) in y and using (38)), we get:
1 dZalty)  Helty) d X lhy)
Yeells 205, )) = 2y (ty)dy  plt,y) p(t,y) dy plty)
_ 2zt y)) (Z”(x(t,y))xy(t,y) Azt y)py(ty ))
p(t,y) p(t,y) p*(t,y)
Halty) (alty) ety 1 (L [t y)Pey(ty)
p(t,y) (Z’(x(t, y)) P*(t,y) )—p(t,y)< (= (t:v) p*(t.y) )

That is why the function R(t,y) can be written in terms of the density

[/ (= (t,9))]2 Py (t,y) 1
1 Z(x(t,y)) — DALY — 2 (x(t,y))
R(t,y) = (w/)2 P2 (ty)

p(t,y) [/ (z(t, v))]?
— _(w/)2 1 py(tvy> _ (w/)2 1 i 1
B p(t,y) p2(ty) 7 plty) dy p(t,y)

Thus all assertions of the theorem are proved.

3.5 Proof of the theorem on the force and energy

Proof of the Theorem Write down the force R (¢, ) in terms of ¢ variables, introduced
in the proof of Theorem [II

R(N)(t> ?/) = w2(qlc(y,N,t) - Qk(y,N,t)—l)-

By Lemma [ we have:

R™M(t,y) = N(o')” (q (t, 7]{@’]{[\]’ t)) —q (t, My, N.1) 1 N]\’]t) - 1)) + O(%) =



= (W/)2Qx (t, W) + O(%)

Using inequalities (37)) and (B6]) we have the following estimate:

‘ k(y, N, t)

J —z(az(t,y») <&

N

for some constant ¢, not depending on N. Then we can conclude that

lim RO0(1,) = A(ty) = ()P 2(o(0,0) = (@ EA20HED)

N—oo dZ2

Using formula (42)), we get the proof.

Proof of Theorem Let us check the first equality. Rewrite the potential energy U™ (¢, y)
in terms of the ¢ variables, which were introduced in the proof of Theorem [II

1

UM(t,y) = 1% @iy )+ B )1

The same arguments as in the proof of Theorem [5] give

Ult.y) = Jim U™ (t,y) = (V{1 2(a(t, 1)) = (&) (dG(t’ Azt y) _ 1) |

N-—oo dz

Using formulas (1)) and (39), we get:

U(t,y>=§<w’>2(M—l)zzéw( 1 —1)2

The formula for the kinetic energy is obvious.

4 The density dynamics

On the three-dimensional (¢,z,z) € R? graph the surface z = p(t,x) — 1 is presented, as the
result of computer modelling with N = 200,w’ = 1. Initial data were chosen as:

100

ko
X(z) =14+€Sy(x), Su(zr)= = sin(mkz), V(x) =0

k=4
with random numbers s € [0,1] . € is chosen so that there were no particle collisions, namely
as

1 1
€<5o s:/o |50 (x)|dz.
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