Russian Math. Surveys 56:5 917-972 ©2001 RAS(DoM) and LMS

Uspekhi Mat. Nauk 56:5 117-172 DOI 10.1070/RM2001v056n05ABEH000402

Gibbs and quantum discrete spaces

V. A. Malyshev

Abstract. The Gibbs field is one of the central objects of modern probability the-
ory, mathematical statistical physics, and Euclidean field theory. In this paper we
introduce and study a natural generalization of this field to the case in which the
background space (a lattice, a graph) on which the random field is defined is itself a
random object. Moreover, this randomness is given neither a priori nor independent
of the configuration; on the contrary, the space and the configuration on it depend
on each other, and both objects are given by a Gibbs construction. We refer to
the resulting distribution as a Gibbs family because it parametrizes Gibbs fields on
different graphs belonging to the support of the distribution. We also study the
quantum analogue of Gibbs families and discuss relationships with modern string
theory and quantum gravity.
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§ 1. Introduction

We list various motivations for writing this paper.

The Gibbs field [1], [2] is one of the central objects of modern probability theory,
mathematical statistical physics, and Euclidean field theory [3]. We introduce here a
natural generalization of this field to the case in which the background space (which
can be a lattice or a graph) on which the random field is defined is itself a random
object. Moreover, this randomness is given neither a priori nor independent of the
configuration, but the space and the configuration on it depend on each other, and
both objects are given by a Gibbs construction. One obtains a non-trivial object
even if the graph is endowed with no configuration, and we refer to this object as a
Glibbs graph. In the general case the resulting object is called a Gibbs family because
it parametrizes a set of pairs (G, 1) belonging to the support of the corresponding
distribution (this set can be finite or of the cardinality of the continuum), where G
is a graph and p is a Gibbs measure on G.

The quantum analogue of Gibbs families is a generalization of quantum spin
systems [4] to the case of a ‘quantum’ lattice. The resulting object, the so-called
quantum discrete space, is of interest from many points of view even if there is no
spin.

We present here the mathematical foundations of this theory, which has diverse
aspects, from the general notion of locality to the combinatorics of graphs.

Another motivation for this paper involves questions arising in the study of more
modern physical theories, including string theory, M-theory, and other approaches
to quantum gravity. The first question arises in connection with diverse aspects
of locality. In physical theories it is customary that the space is given a priori as
the scene for all further actions. For a long time, only three-dimensional Euclidean
space was treated in physics. In the 20th century, the dimension became variable,
and problems for a globally Euclidean space were replaced by those for manifolds.
Moreover, the global structure of a manifold is determined by matter according to
the general relativity equations, restrictions arising from string theory, and so on.
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Nevertheless, the postulate of local smoothness was preserved, and it is preserved
in some form also now. However, this postulate has been seriously compromised by
divergences in quantum field theory, by quantum properties of the metric, and so
on. This state of things leads to natural questions on possible modifications of the
property of being locally Euclidean. At present many experts think that one must
seek the answer in the notion of discrete space, but it turns out that for discrete
spaces the very notion of locality has diverse interpretations discussed below.

On the other hand, the space becomes equal in status with fields. In other
words, the space itself must be random or quantum. We note that the concept of
a quantum discrete space is often mentioned in connection with non-commutative
geometry [5]-[8]. We do not study this connection here, but we stress the aspect
of quantum spaces connected with locality. In physics the local property is mainly
associated with the Gibbs property. The space is constructed from discrete elements
(quanta) via a special (Gibbs) procedure. If we assume that a neighbourhood of a
point can contain arbitrarily many quanta, then to obtain the known spaces in this
general treatment of locality one needs renormalization procedures similar to those
in quantum field theory, whereas if one understands locality in the metric sense,
that is, if a quantum corresponds to an entire neighbourhood, then one needs no
renormalizations. The latter understanding is not quite satisfactory because the
metric need not be fixed.

The structure of the paper is as follows. In §2.1 we introduce two definitions
of finite Gibbs discrete spaces (finite Gibbs families), namely, a local space (for
which the energy is equal to the sum of the energies of the subgraphs) and a
superlocal space (for which the energy is equal to the sum of the energies of all
neighbourhoods of a given radius). This corresponds to a different understanding of
the local property if there is no fixed space. It is shown that these two definitions can
be reduced to each other only by a procedure similar to renormalization in quantum
field theory. In §2.2 we consider limit Gibbs families and find an analogue of the
Dobrushin-Lanford-Ruelle condition and the compactness condition. It is shown
that, for a given Gibbs family, the conditional measure on the configurations (under
the condition that the graph is fixed) is a Gibbs measure (in the ordinary sense)
with the same potential. In §2.3 we suggest an analogue of probability measures
on the set of countable graphs without enumeration of the vertices and without
a distinguished vertex for which the Kolmogorov approach of finite-dimensional
distributions does not work. We refer to this analogue as an empirical distribution,
and we present examples of such distributions arising from discrete quantum gravity.

In §3 we obtain the logarithmic asymptotics for 7 Fj »(g), where F} ,(g) is the
number of charts with p+ 1 vertices and b+ p edges on a closed compact surface of
genus g. We note that a triangulation is a special case of a chart, and attempts to
compute the number of charts on a surface of fixed genus show that the character
of the asymptotic behaviour is the same and does not depend on the class of charts
under consideration.

In §4.2 we study in detail the simplest model of discrete planar gravity (with
boundary) which can be completely controlled, that is, one can prove the existence
of the thermodynamic limit, find the explicit form of the free energy, and give the
complete phase diagram with three different phases, including the critical point.
We also prove the effect of the influence of an observer on the fluctuations of the



920 V. A. Malyshev

length of the boundary at a critical point. The corresponding model with two
boundaries is studied in the ‘high temperature’ domain only. In §4.3 we give an
example of a topological phase transition in a locally homogeneous graph such that
the 1-neighbourhoods of all vertices are the same. In § 4.4 we prove the uniqueness
of the limit Gibbs family for a model with factorial-type growth of the partition
function. This also enables us to give a local Gibbs characterization of trees and
of free non-commutative groups. In §4.5 we discuss how substantially different
topologies can appear on different scales. The notion of scale generalizes that of
thermodynamic limit.

In §5.1 we introduce quantum analogues of classical Gibbs graphs with local
structure, the so-called quantum grammars on graphs. We prove basic results on
self-adjointness of the corresponding Hamiltonian and the existence of the auto-
morphism group of the corresponding C*-algebra. Quantum spin systems form a
spectal case of these constructions. For linear graphs and for high temperatures
we prove the existence and analyticity of KMS states. In §5.2 we give diverse
examples of C*-algebras and Hamiltonians in quantum grammars, including linear
grammars and Toeplitz operators, quantum expansion and contraction of the space,
the two-dimensional Lorentzian model, and so on.

§ 2. Gibbs Families

2.1. Finite Gibbs families.

Spin graphs. We consider graphs G (finite or countable) with vertex set V = V(G)
and edge set L = L(G). It is always assumed that there is at most one edge between
any two vertices and that each vertex has finite degree (the number of incident
edges). The graphs are assumed to be connected unless otherwise stated.

It is assumed that these graphs are also loop-free unless otherwise stated. How-
ever, the general results can readily be extended to graphs with loops and with
multiple edges. For these more general graphs, each loop adds the number 2 to the
degree of the vertex.

A subgraph of a graph G is defined by a set of vertices Vi C V together with
some edges that are inherited from L and connect some vertices in V3. A subgraph
G(W,) of a graph G with vertex set V; is said to be regular if it contains each edge
in L(G) between vertices in V.

The set V of vertices forms a metric space in which the distance d(z, y) between
any vertices x,y € V is defined as the minimum length of the paths joining these
vertices. The length of an edge is assumed to be equal to 1.

A spin graph @ = (G,s) is defined as a graph G together with a function
5: V. — S, where S is some set (of spin values). The graphs and spin graphs are
always regarded up to isomorphism, that is, no enumeration of vertices is assumed.
A graph isomorphism is a one-to-one correspondence between the vertex sets that
respects the edges and spins. Let Gn (An) be the set of equivalence classes (with
respect to isomorphism) of connected graphs (spin graphs) with N vertices. The
countable graphs correspond to N = oco.

Below we use a simplified terminology if this leads to no confusion. For instance,
we speak of a graph or spin graph instead of the corresponding equivalence class,
of a subgraph instead of spin subgraph, and so on.
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Rooted spin graphs. We also consider graphs with a distinguished vertex (so-
called rooted graphs), where the vertex is referred to as the origin or root. If this is
the case, then we consider only isomorphisms preserving the origin. To stress that
the graphs under consideration have a distinguished vertex, say v, we write G(*),
gl .

Let us define an annular neighbourhood y(a, v; a, b) of the vertex v as the regular
subgraph of the spin graph a with vertex set V(vy(a, v;a,b)) ={v' : a<d(v,v") <b}.
The set Oq(v) = v(a, v;0,d) is called the d-neighbourhood of v, and we write O(v) =
O1(v). The number Ry(G) = max,cy () d(0,v) is referred to as the radius of
G with respect to the vertex 0. In particular, R,(O(v)) = 1. In this case we
mean by the diameter of the graph G the number d(G) = max, , ¢y (g) d(v,v') =
maxXyev(G) R, (G).

We denote by 953) (AS\?) ) the set of equivalence classes of connected graphs (spin
graphs) of radius N with respect to 0 that are rooted at 0. We also denote by

A0 = UN;‘égo AS\?) the set of all finite spin graphs rooted at 0.

Graphs with local structure. A simple generalization of a spin graph is given
by the notion of graph with local structure, which suflices to describe arbitrary
multidimensional objects.

Definition 1. Let s(y) (¢(y)) be a function on Ago) (on the set A(d) of spin graphs
of diameter d, respectively) with range in some set S. A superlocal structure (of
radius d) on G is given by the set of values s(O4(v)), v € V(G). A local structure
(of diameter d) on G is given by the set of values ¢(v) for all regular subgraphs ~y
of diameter d.

Examples.

e The spin graphs correspond to local (or superlocal) structures with d = 0.
Many definitions and results mentioned below for spin graphs can be gener-
alized to the case d > 0 by appropriate modifications.

o Gauge fields on ‘graphs: to any vertex and any edge we assign a value in a
group U; in this case one can set d = 1.

o A simplicial complex is completely determined by its one-dimensional skeleton
if we assign the value 1 to every complete regular subgraph ~ of diameter 1
of the one-dimensional skeleton whenever this subgraph defines a simplex of
the corresponding dimension, and the value 0 otherwise. Here one can also
take d = 1.

e Penrose quantum networks [9], [10]: in a finite graph each of whose vertices
is of degree 3, we assign to every edge [ an integer p; = 2s;, where the
half-integers s; are interpreted as degrees of irreducible representations of the
group SU(2). Moreover, the following condition must be satisfied at any
vertex: the sum of the three numbers p; is even, and any number p; does
not exceed the sum of the other two. In this case there is a unique invariant
element (up to a factor) for the tensor product of the three representations,
and we assign this element to the vertex.

e However, there are structures on graphs that cannot be characterized as
graphs with local structure (for example, trees, Cayley graphs of groups,



922 V. A. Malyshev

and so on). Still, we shall see that a Gibbs characterization of these graphs
is possible (which is also local in a sense).

o-algebra and a free measure. Let A be an arbitrary set of finite spin graphs
o = (G, s). Let G = G(A) be the set of all graphs G for which there is a function s
with a = (G, s) € A. It is always assumed that if @ = (G, s) € A, then (G, s') also
belongs to A for any s'.

Then A is a topological space that is a discrete (finite or countable) union of the
topological spaces Tg = SV(%) G € G(A). The Borel 5-algebra on A is generated by
the cylindrical subsets A(G, B,,v € V(G)), G € G, where the B, are Borel subsets
of S. Moreover, A(G, B,,v € V(G)) is the set of all &« = (G, s) such that the graph
G is the same for any a and the functions (configurations) s(v): V(G) — S satisfy
the condition s(v) € B, for any v € V(G).

Let a non-negative (not necessary probability) measure ¢ be given on S. The
corresponding free measure is defined to be the non-negative measure A4, on A
given by

AM(AG, Byv e V(@) = [ Xo(By). (1)

vEV(G)

Potentials. By a (local) potential we mean a function ®: Uncoo An — RU{+0oc}
(that is, a function on the set of finite spin graphs) which is invariant with respect
to isomorphisms. If ® can take the value oo, then we say that ® has a hard core.
We say that & has a finite diameter if ®(a) = 0 for any a whose diameter is
greater than some constant d. The minimum value d with this property is called
the diameter of &.

For a potential @, the energy of the subgraph « is defined as

H(e)=> o(7), a=(Gs), 2)

yCa

where the sum is taken over all regular connected subgraphs 7y of the spin graph o.

A chemical potential, which is a special case of a potential, is given by a function
& that is equal to some constant uo at any vertex v (which does not depend on the
spin at v), to some constant u; for each edge, and to O otherwise. In other words,
for a chemical potential we have

Hy(a) = poV(a) + mL(e), (3)

where V(a) and L(a) are the numbers of vertices and edges of a.

Finite Gibbs families. Let A be a set of finite spin graphs. By a Gibbs A-
family with potential ® we mean a probability measure p4 on A determined by the
following density with respect to the corresponding free measure:

dpia
dAa
where 3 > 0 is the inverse temperature. Here it is assumed that Z # 0, that is,

H(a) < oo for at least one value o € A. Below we give examples with Z = 0. We
also assume that if A is infinite, then the following stability condition holds:

(@) = Z7  exp(—BH (), a €A, (4)

Z=7Z(A) = /Aexp(—ﬂH(a)) dhg < o0. (5)
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If S is trivial (a singleton), then we obtain a probability distribution on the
graphs, which is referred to as a Gibbs graph.

Stability. A potential @ is said to be stable on Ag\?) if the partition function Zy
is finite for any N. The potential ® = 0 is obviously not stable, nor is the chemical
potential with ug = 0.

Lemma 1. For any finite po and py the chemical potential is not stable on .Agg)

Proof. Let g(n, k) be the number of graphs of radius 1 for which the degree of the
vertex 0 is equal to n and the number of edges joining the other vertices is equal
to k. It suffices to prove that the quantity

N

Gn= Zg(nvk) exp(—p1(k +n) — po(n + 1))
k=0

increases as n increases, where N = n(n — 1)/2 is the number of distinct pairs
formed by n enumerated vertices.
Indeed, the number of graphs with n enumerated vertices and k edges is equal to
( k) At the same time, the number of enumerations of n vertices does not exceed
= 2nlog2 n+0(n) et us prove that for any p there is a sufficiently small § > 0
such that G, - oo as n —= oo for k = §N. We have

9(n, k) exp(—pi(k +n) — po(n + 1))
~ 2—N(z§log2 d+(1—0)logy(1—-6))+O(nlog, n) eXp(—m (k + ’Il) _ ,Uo(n + 1))

> exp(—uldN)QN(‘61°g2 §+6)+0O(nlog, n) 500

if 4 is sufficiently small.

Instability phenomena can occur because of large degrees of vertices. For this
reason, a regularization is needed. One of the possibilities is to introduce regular-
izing potentials.

An example of a regularizing potential is as follows. Let ¥2 (v3) be the graph
consisting of three vertices 1,2, 3 and two edges 12, 13 (three edges 12, 13, 23, respec-
tively). The potential ®; = 5 P(a), where P(a) is the number of regular subgraphs
of a isomorphic to either v, or to s, ensures the stability of the potential ® + &,
for many potentials ®. For example, the following assertion holds (we omit the
proof).

Proposition 1. If uy > log2, then the potential ® = &g + &, + ®, is stable for
any jio, p1 2 0.

However, the most interesting potentials are equal to oo on graphs of a special
kind. For example, a potential can be infinite on all graphs of diameter greater
than or equal to 1 or 2 such that at least one of the vertices is of degree r + 1.
Consideration of this potential is equivalent to restriction of our treatment to graphs
whose vertices are all of degree not exceeding r.

Another possibility is to understand locality in some other way.

Locality and superlocality. In many papers on discrete quantum gravity it
is assumed in advance that an action occurs on a smooth or a piecewise-linear
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manifold of a given dimension. In this case, the space remains locally classical. A
more consistent program might be to abandon this assumption. However, in this
case the central question arises: what is locality if there is no space?

It is immediately clear that if the background space is absent, then locality can
be understood in many ways. Firstly, an object can be said to be local if it is defined
in terms of ‘small’ connected subgraphs. A substantially stronger notion of locality
(superlocality) holds if we know that the subgraph exhausts a neighbourhood of a
given vertex. In this connection, we mean by a superlocal potential of radius r a
function ®: AYY - RU {+00} (that is, a function on the set of finite rooted spin
graphs of radius » with respect to 0) such that ¢ is invariant under isomorphisms.

The energy of a superlocal potential is defined as

H(a)= Y, 9(0:(v)),
veV(a)
where the sum is taken over all vertices of the spin graph «. In this case we shall
speak of superlocal Gibbs families, and the previously introduced Gibbs families
are said to be local.

A superlocal potential can be reduced to a local one; however, this needs an
additional limit procedure described below. Omne can say that, if one wants to
describe the world locally (but without @ priori restrictions on the local structure
of the graph), then one must use renormalizations.

To construct examples, the following class of graphs is useful. Let us consider a
set of ‘small’ graphs G, . . ., G, with root 0 and of radius r with respect to 0. We say
that a graph G is generated by G, . . ., Gy, if any vertex of G has a neighbourhood (of
radius r) isomorphic to one of the graphs G1,...,Gi. We denote by §(G1,...,Gy)
the set of all such graphs and introduce a superlocal potential ® = ®¢, ., of
radius r by setting ®(T") = 0 if the rooted subgraph I' is isomorphic to one of the
graphs G; and ®(I') = oo otherwise. It is obvious that any Gibbs family with
potential ® is supported by G(G1,...,Gg).

Example with Zy = 0. A finite Gibbs family with potential ® = ®¢, .. g, need
not even exist. For the simplest example we consider the case with k = land r =1
in which G is a finite complete graph g, of radius 1 with m+ 1 vertices 0,1,...,m
and root 0. Then it is ‘self-generating’, and G(G1) consists of a single element, the
graph g, itself.

Let us give another example. We introduce the graph g,, 0 with m + 1 vertices

0,1,...,m and m edges 01,02,...,0m and the graph g, » with m + 1 vertices
0,1,...,m and 2m edges 01,02,...,0m,12,23,...,ml. One can see that the pen-
tagon G; = g5 5 cannot generate a countable graph.
Renormalization. A superlocal potential can be expressed via local ones as fol-
lows (we shall explain this for k = 1). Let the radius of G; be equal to r. We con-
struct a finite Gibbs family supported by §(G1) without using superlocal potentials.
Let F(G1) be the set of all graphs isomorphic to some proper regular subgraph -
of G such that the radius of v with respect to some vertex v € V(v) is equal to r,
and let F(T',v) be the set of all proper regular subgraphs of I" isomorphic to 7.

We introduce the truncated local potential ® g by setting

e ®p(v) = oo for the graphs - which are of radius r with respect to some vertex

of v and satisfy the conditions v # G, and v ¢ F(G1);
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e ®g(v) = 0 for the graphs that are not of radius r with respect to any vertex

of v;
e ®p(y) = R, where R > 0, for any graph v € F(G,);
® CI’R(GI) =0.

The limit of the Gibbs family p4(R) with potential &z as R — oo need not
exist; however, the following theorem holds.

Theorem 1. Suppose that G(G1)NAN # @. In this case one can find a number k

and local potentials ¢%), J=12,...,k, such that the limit as R — oo of the Gibbs
family on Ay with the renormalized potential

k
P =dp+ Yy o
j=1

exists and is supported by G(G1) N An.

Proof. Let us define the potentials (counterterms) ¢g) that vanish everywhere
except for the following cases:

o if I is isomorphic to Gy, then

oM = 3 WL, e m=-R Y 1
)

YEF (G IeF (G ,7)

e for any j > 2,if I is the union of j pairwise distinct subgraphs I';,i = 1,..., 7,
where every graph I'; is isomorphic to Gy, then

Dmy= Y e M, (M) = (-1YR 3 1.

YEF(G1) FeF(Ty,y)N-NF(T;,7)

It follows from the definition that one has (;5%) = 0 starting from some j. Let us
consider a vertex v of the graph. If the neighbourhood O, (v) does not belong to
F(G)), then the potential ® g is equal to oo, which is impossible. If the neighbour-
hood O, (v) is not isomorphic to G; and belongs to F(G,), then the potential ® 5 is
equal to R on this neighbourhood and the counterterms vanish, and hence ‘1>gen) is
also equal to R. Let us now consider a subgraph v € F(G;) that belongs to exactly
m subgraphs I'; isomorphic to G;. Then it follows from the inclusion-exclusion
formula that

r(7)+ > W (9) =0
j=1

for any . Therefore, the energy of the graphs in G(G{) NAy is equal to zero, and
for the remaining graphs it is not less than R, which gives the result.

We note that the summands ¢(I{) (T") are similar to the counterterms of the ordi-
nary renormalization theory. For & > 1 we face a more complicated combinatorics.
For some models with continuous spin there may be relationships between these
counterterms and those of the standard renormalization theory.
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2.2. 'Limit Gibbs families. Let us introduce a topology on the set ALY of
countable spin graphs rooted at 0 by defining a basis of open sets. Let Cy be an
arbitrary open subset of the set Aﬁg) of all spin graphs with radius N with respect
to the origin. Then the open sets of the basis consist of all spin graphs in which
the N-neighbourhood of the origin belongs to C'x for some N and Cy. For the
o-algebra in Aég) we take the Borel g-algebra generated by these open sets.

For any spin graph a with root 0 the set y(a, 0; N, N+d) is called an N-annulus of
width d and the sets v(«, 0;0, N) and y(«, 0; N, 00) are referred to as the N-internal
and N-external parts of the graph, respectively. We note that an N-annulus and
an N-external part can be disconnected. For given N and d and for some finite
graph v (not necessarily connected) we denote by Ag\?l_d(v, d) C ASSlLd the set of
all finite connected spin graphs « with root 0 and radius N + d with respect to the
origin for which v is the N-annulus of width d.

Let a local potential ® of diameter d + 1 be given.

Definition 2. A measure p on .A(Og) is called a Gibbs family with local potential ® if

for any N, 7, and T the conditional distribution on the set of spin graphs a € Aég)
for which T is the N-external part and + is the N-annulus of width d (this set can

be naturally identified with Aﬁ\% 4(7,d)) coincides almost surely with the (finite)
Gibbs family with potential & on .ASSLd(% d).

In particular, this conditional distribution depends only on -y rather than on the
entire N-external part I'.

Boundary conditions. As in the usual theory, the notion of a finite Gibbs family
with given boundary conditions is useful for finding pure phases. The boundary
conditions (d-boundary conditions) are given by a sequence vy q4(7y) of probability
measures on the set of finite (not necessarily connected) spin graphs v (intuitively,
on the N-annuli of width d). A Gibbs family on Ag\?) with the boundary conditions

vn+1.4(7) is defined as (a € Ag\?))

i@ =2 Nower) 3 [e(=BHE) dra(nd). (O

&EAfm?lrdH('y,d;a)

2= [ (O)[ S [ en(-BHE) dmalnd)| dhyo.

ceAW), 4 (rdia)

where AE\%HI(% d; o) is the set of all spin graphs in A§3)+d+1 with (N + 1)-annulus

v of width d and with N-internal part a. We note that Ag\?idﬂ(%d; a) is finite
for any a and +.

Compactness. Gibbs families on the set A(@g) of connected countable spin graphs
with root 0 can be obtained as weak limits of Gibbs families on A$3)~ In princi-
ple, there can be three reasons for a limit Gibbs family to be non-existent: finite
Gibbs families with this potential can be absent (see examples above), S can be
non-compact, and the distribution of finite Gibbs families can be concentrated on
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graphs that have vertices of large degree. The assumptions of the next proposition
correspond to this list; however, compactness can certainly hold under more general
conditions.

Let AY (r) C A be the set of all countable spin graphs with vertices of degree
not greater than r.

Proposition 2. Let S be compact. Let ® have finite diameter, and let ®(y) = oo
if at least one vertex of v is of degree r + 1. Let a Gibbs family with potential ® on
AES) exist for any N. Then there is a Gibbs family with potential ® supported by

AQ ).

Proof. Let us consider the Gibbs families px on .A(NO) (in fact, on Ag\?) (r)). Let
fin be an arbitrary probability measure on A'Y (r) such that its quotient measure
on .A?S) (r) coincides with pn. Then the sequence of measures finy on AL (r) is
compact, as can be proved by the standard diagonal procedure of enumeration of

all N-neighbourhoods. It is clear that any limit point of the sequence iy is a Gibbs
family with potential ®.

Gibbs families and Gibbs fields. The next simple result explains why we use
the term “Gibbs family”. Let u be a Gibbs family with potential . We assume
that the conditions of the previous proposition hold. Let us consider the following
measurable partition of the set A, any element S¢ of this partition is defined by
a fixed graph G (without spins) and consists of all configurations s¢; on G.

Proposition 3. For a given graph G the conditional measure on the set Sg = {s¢}
of configurations is almost surely a Gibbs measure on G with the same potential .

We note that the expression “the same” has here the following obvious meaning:
if Ay is the N-neighbourhood of zero in G and s, is a configuration on A, then
H(spy) = > ®(v), where the sum is taken over all subgraphs of the spin graph
(An,8ay). Thus, any Gibbs family is a convex combination (of a very special
kind) of Gibbs measures (fields) with the same potential on some fixed graphs.
This convex combination is defined by a measure v = v(p) on the quotient space
G = 4 /{Sc}, and v is induced by the measure p corresponding to the Gibbs
family itself.

The following lemma (having a well-known and useful analogue for ordinary
Gibbs fields) reduces the proof of the assertion to the corresponding result for Gibbs
families on finite graphs, whereas the proof for finite graphs is a direct calculation,
and we omit it.

Lemma 2. Let p be a Gibbs family on AL with potential ®. Let vy 4(7) be a
measure on the N-annuli of width d, and let this measure be induced by . Then p is

a weak limit of the Gibbs families on ASS) with potential ® and boundary conditions
{1/N+1,d(’7’)}-

2.3. Empirical distributions. One can construct probability measures on .Agg)
in the standard way by using the Kolmogorov approach with consistent distribu-
tions on cylindrical subsets. However, this approach does not work if we intend to
construct probability measures on the set A, of equivalence classes of countable
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connected spin graphs. The problem is that there is no natural enumeration of the
countable sets of vertices, and thus it is not clear how to introduce finite-dimensional
distributions. One can say that the problem is that there is no coordinate system,
and no reference point. This is why the Kolmogorov approach does not work. How-
ever, there is an analogue of finite-dimensional distributions. A system of numbers
thus obtained is called an empirical distribution on A.

Let S be finite or countable, and consider the system of numbers

7 ={pI), T € A®},  0<pI) <1, (7)

(that is, T ranges over the finite spin graphs with root 0). We introduce the consis-
tency property for these numbers for any £ = 0,1,2,... and any fixed spin graph
T';. of radius k (with respect to 0) as follows:

Zp(rk+1) =p(['x), k=0,1,2,..., (8)

| AP}

where the sum is taken over all spin graphs Ty, of radius k& + 1 such that the
neighbourhood O (0) in T4 is isomorphic to I'y. We recall that in the last formula
it is assumed that the sum is taken over all equivalence classes of spin graphs.

We also assume the normalization condition

> p(To) =1, 9)
where Ty is the vertex 0 with an arbitrary spin on it.

Definition 3. Any system 7 of the above form is called an empirical distribution.

One can rewrite the consistency condition in terms of conditional probabilities
as follows:
S pra ITe) =1,  k=0,1,..., (10)
| AP
where the summation is as above and

(Tr+1)
p(rk+1| Fk) p(rk) - (11)
Thus, we regard A©) a5 a tree whose vertices are spin graphs, and Iy and T'y
are joined by an edge if and only if Ty is isomorphic to the k-neighbourhood of 0
in Pk+1.
1t is clear that the system 7 defines a probability measure on Aég). The examples
below show that it is natural to interpret this system as a ‘measure’ on A..
Examples of empirical distributions can be obtained via the following limit pro-
cedure, which we call the empirical limit. Let un be a probability measure on Ay.

For any N,k and any spin graphs I" € .ASCO) and a € Ay we set
nN(a,T
o= () (12)
KN

where n (a, T') is the number of vertices in « whose k-neighbourhoods are isomor-
phic to the spin graph T. We write 7y = {p™(I')}. For the measures uny one can
take some Gibbs families on Ay with a fixed potential. The system m is not itself
an empirical distribution. However, the following assertion holds.
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Lemma 3. Let S be finite and let

ﬂN( min D(a) < D) =0 (13)
aCAn

for any D as N — oo, where D(«) is the diameter of a. Then any weak limit point
of the system wn is an empirical distribution.

Proof. The probability uny that R,(a) > D for any vertex v of a random graph
tends to 1 as N — oo. Therefore, for any positive integer ny and any number § > 0
there is an Ng = Ng(ng,d) such that for any N > Ny the numbers pn(I') satisfy
the consistency conditions with accuracy é for all subgraphs I'y with k& < ng. Since
S is finite, it is compact, that is, there is at least one limit empirical family.

Remark 1. The question arises of how to characterize the empirical distributions
which can be obtained in this way, and, in particular, the empirical distributions
which can be obtained from themselves, that is, as limits of numbers of the form

(nN (FN7 F))#N
(VICN D ey

where V(') is the number of vertices in I'y and wn is the restriction of the

pN({T) =

measure 7 to .A(NO).

Remark 2. We note that an empirical measure is automatically ‘homogeneous’ in
an obvious sense, that is, it is the same for ‘any vertex. The reason is that the
vertices are not enumerated, or the graph is not embedded in any space. However,
one can readily introduce an ‘inhomogeneity’ on AS,?)) , namely, it suffices to take ®
depending on the distance from 0.

Remark 3. There is another possible approach to empirical distributions, based on
locality rather than superlocality, and then we ‘do not know’ any entire neighbour-
hood of a vertex. For instance, let two graphs v C I’ be given such that I' has no
other subgraph isomorphic to 7. Then one can study the limits of the ratios (the
conditional empirical distributions)

<nN (o, T) >

N, y) /[,y

2.3.1. Empirical Gibbs families. We show that limit Gibbs families on Af)g) can
sometimes be obtained by passing to the limit with respect to the number of vertices
rather than with respect to the radius. Let Bg\??p be the set of spin graphs rooted

at 0 with NV vertices such that the degree of any vertex is at most p, and consider
a finite Gibbs family pn on B(]Vo?p with some local potential ®.

Lemma 4. Any weak limit point of the sequence pn is a limit Gibbs family on
.A(o(c)) with the potential ®.

Proof. Let us fix n, d and some « € .A;OJ)FHLP

Then for any sufficiently large N there is a 3 € B%?’)p such that Optq41(3,0) is

with n-annulus v of width d + 1.
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isomorphic to a. For any such 3 the conditional distribution on Op(a,0) (under
the condition v) is a Gibbs distribution with the potential .

An empirical distribution 7 on A, is said to be a Gibbs distribution if it can
be obtained as an empirical limit of finite Gibbs families mn on Ay with some
potential .

To justify this definition, let us show that under certain conditions an empirical
distribution 7 on A, is a Gibbs family as a measure on Aé?}. We assume that
the empirical distribution 7 on A is a Gibbs distribution with potential ® which
takes the infinite value if the degree of at least one vertex is greater than p; we also
suppose that the probability 7n of the event that the automorphism group of the
graph o € Ay is trivial tends to 1 as N — oo. In this case 7 is a Gibbs family as
a measure on Aég). Indeed, if the automorphism group of a graph is trivial, then
one can position the root at any vertex, which results in different rooted graphs.
Then we have Gibbs families on 'BES?W and by the previous lemma we obtain a limit

Gibbs family on A,

2.3.2. Empirical distributions in planar gravity. It should be stressed that the exis-
tence problem for limit correlation functions (which is usually ignored in physics)
is far from being trivial. This problem not only is mathematically natural but
also has aspects that are also of interest for physics. The point is that, under the
definition of a distribution by means of the grand canonical ensemble (as is custom-
ary in discrete quantum gravity), the thermodynamic passage to the limit makes
sense only at some critical point, which determines the boundary of the domain of
convergence of the corresponding series. Moreover, this point depends heavily on
geometric details even if the topology of the manifold is fixed. On summation over
the topologies, the corresponding series diverges for all values of the parameters
already in dimension two because the entropy has factorial asymptotic behaviour.
We do not face these difficulties if we use the canonical ensemble related to our
definition of Gibbs distributions.

Let us look at common examples of empirical Gibbs distributions. In physics, the
two-dimensional planar quantum gravity (or a string in dimension 0) is determined
by the grand partition function

P(T)=Z ‘exp(~pF(T)),  Z=Y exp(—pF(T)) =Y C(N)exp(-uN),
TeA N

where the first sum is taken over all triangulations T of the sphere that belong
to some class A and have N triangles. The exact specification of the class A
is not essential (see [11]), but different classes A do lead to different empirical
distributions. The number C(N) = C4(N) is called the entropy and is equal to
the number of these triangulations. As is known,

C(N) ~aN 2N,

One can regard N (if needed) as the number of vertices of the dual graph, which
is a 3-regular graph embedded in the two-dimensional sphere. The grand ensemble
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is normally studied as p — per = —loge. In the canonical ensemble one need not
introduce the parameter p.

Let us consider triangulations with a distinguished vertex 0 and a fixed neigh-
bourhood O4(0) = I'y of radius d. Let p"¥(T'4) be the probability of this neighbour-
hood in our canonical ensemble.

Theorem 2. The limit limp™ (T'y) = n(Tq) exists and defines an empirical distri-
bution.

We present a proof using explicit formulae. Let 'y have u triangles and & bound-
ary edges (that is, edges for which both vertices belong to the d-annulus). Let
7(d, k,u) be the number of such neighbourhoods. The external part is a triangula-
tion of a disc with N — u triangles and k boundary edges. As follows from Tutte’s
results in [11], the number D(N — u, k) of such triangulations has the following
asymptotic behaviour as N — oo:

D(N —u, k) ~ ¢(k)N~2cN—x, (14)
Therefore, the probability of I'y (at the vertex 0) is equal to

G(k)N—EcN—w _ $(k)c
Zu.k ’I“(d, k’ u)gb(k)N* %CN‘U a Zu.k T(d, k’ u)¢(k)c—“ '

PN(Ty) ~ (15)

Explicit expressions for the functions ¢ and r and for the constant ¢ are known, but
we do not need them. Since almost every graph has trivial automorphism group, it
follows that the empirical limit is the same.

We note that if we consider a surface of genus p instead of the sphere, then we
obtain another empirical distribution depending on p and A.

Is it true that this (planar!) empirical distribution is a Gibbs empirical family?
One can single out two-dimensional triangulations by means of a potential ® such
that ®(01(v)) = oo for O1(v) # gkk,k = 2. However, in this way we simulta-
neously obtain triangulations of any two-dimensional surface. Therefore, only two
approaches are possible. The first is to obtain triangulations of the sphere as a
pure phase of some Gibbs family. A corresponding example is constructed below.
The second is to consider non-local potentials (of infinite radius). The latter char-
acterization is well-known in graph theory. Let ®(K5) = ®(K33) = oo, where Ky
is a (non-regular) subgraph homeomorphic to the complete graph with 5 vertices
and K33 is a (non-regular) subgraph homeomorphic to the graph with 6 vertices
1,2,3,4,5,6 and edges of the form (i,j) with ¢ = 1,2,3 and j = 4,5,6 (by the
Pontryagin-Kuratowski theorem, this condition distinguishes planar graphs). Set
® = 0 otherwise. Thus, planarity must be regarded as an a priori condition of
global nature. However, without restrictions on the genus of the surface we obvi-
ously have an empirical Gibbs distribution.

§ 3. Entropy

The famous van Hove theorem in statistical physics claims that the partition
function increases exponentially as the volume increases. In quantum gravity, this
result on the number of triangulations (the entropy) has been the subject of many
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investigations; see [12]. The only case treated has been the case in which the
topology is either fixed or subjected to strong restrictions (see [13]). However,
one can readily see that the partition function grows faster than any exponential
function even in the two-dimensional case if the genus is not fixed. Therefore, the
grand canonical ensemble, in the form customary in physical papers, does not exist
at all if the canonical partition function has superexponential growth. The double
scaling limit is a (non-rigorous) attempt to overcome this difficulty.

On the other hand, the problem of the limits within which the entropy can vary
is of interest. Below we shall see an interesting example of power-law growth of
the entropy for a case in which a phase transition occurs. At the same time, the
number p-regular graphs with N vertices has growth of order N . We note that
the additional consideration of spin for a Gibbs graph can have an effect only on the
typical topologies (which differ from the maximal entropy only by an exponential
factor). Therefore, we must know a rough (for instance, logarithmic) asymptotic
estimate for the entropy.

3.1. Arbitrary genus in dimension two. We recall that the asymptotic behav-
iour of the number of triangulations of a surface of fixed genus g is given by

C(N,g) ~ f(g)N¥*eN, a= (16)

where ¢ does not depend on g. The author does not know a rigorous formal proof
of this result, but it is similar to those in [14] obtained for other classes of charts
by the direct (but cumbersome) development of Tutte’s method. We note that the
reduction of the problem to a matrix model leads to the same result but gives no
rigorous proof. The case in which the genus is not fixed is much more complicated.
We present here some early results in this direction; see also [15].

Here are the necessary definitions (see [16]). A chart is a triple (S, G, ¢), where
S is a closed oriented connected two-dimensional manifold, G is a connected graph,
and ¢ is a homeomorphic embedding of G in S such that the complement to ¢G is
a union of connected open sets homeomorphic to an open disc. A rooted chart is a
chart with distinguished sprout (that is, an end of one of the edges) of some vertex
of G. Two rooted charts are (combinatorially) equivalent if there is an orientation-
preserving homeomorphism of S that also preserves the set of vertices, the set of
edges, and the root. There is an equivalent purely combinatorial definition of chart
as an ordered fat graph. A graph is said to be fat if the set of sprouts from any
vertex is endowed with a cyclic order. This definition is based on the following
theorem.

Theorem 3. For any connected oriented graph there is a chart for which the order
of sprouts corresponds to a clockwise motion, and this chart is unique up to equiv-
alence.

Let E be the set of edges. In this case the set 2E = E x {~1,1} can be identified
with the set of sprouts, and the vertices are defined by a partition of the set 2E. The
partition, together with the cyclic order inside each of its elements, is defined by a
permutation P on 2E. Another permutation, which we denote by (—), transposes
the sprouts of the same edge, that is, defines the partition of the set 2F into edges.
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A face (disc) is defined by a sequence of sprouts e, (—~)e, P(—)e, (—)P(—)e, ... that
corresponds to a circuit of the boundary of the disc. Thus, the number of faces is
equal to the number of cycles of the permutation P(—). This explanation enables
us to give the following definition.

Definition 4. A combinatorial chart is a triple (2F, P,(—)) consisting of a set
2F with an even number of elements and two permutations of it such that the
group generated by these permutations is transitive on 2E (this corresponds to the
condition that the graph is connected). It is also assumed that the permutation
(—) consists of disjoint cycles of length 2. The root is a distinguished element of
2F.

Let Fy p(g) be the number of rooted charts with p 4+ 1 vertices and b + p edges
on a surface of genus g. We set Fp, = >, Fyp(9)-

Theorem 4. Let p(b) be a non-decreasing sequence of integers such that E%Q =«
for some constant 0 < o < 0o. Then

F
b !log bé)p'(b) = ¢ = cla), 0 < c(a) < oco.

In [16] the following recursion equations are obtained for the numbers Fy
b
Fyp= Z ZFk,ij—k,p—j——l + 26+ p) = DFp-1,p, b,p>0, (17)
7=0 k=0
except for the case b = p = 0. Moreover,

Igo =1, Fo,=F_,=0.

One should separately verify the cases b = Q or p = 0. The case b = p = 0
corresponds to an embedding of a single vertex in the sphere. The cases in which

p > 1 and b = 0 correspond to a tree embedded in the sphere, and Fp , = B—%
The numbers Fy 0, b 2 1, are equal to (2b—1)(2b—3)--- = %, that is, to the
number of partitions of the set {1,2,...,2b} into pairs.
Lemma 5. The following estimates hold:

cll’*p<Gb7p:F <& 0<e << oo

b!

Proof. Tt follows from (17) that

p—1
k! b k
Gop =D, )GkJGb kp—j-1 0 (2(0+p)—1)Gy_1p, bp>1. (18)
j=0 k=0

<.
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A lower bound can be obtained from the following minorizing recursion relation:

_ __ (2
Eyp>2Ey 1, b21, p>x1, Eop==Gop= m
To find an upper bound, we need a certain technique, the so-called tree expansion,
which corresponds to iteration of the following majorizing relation:

p—

k' (b—-k)! 2
Gb,p = Z (——le’ij_k,pﬁj_l + (2 + —p>Gbl’p (19)

1
!
-t b! b

with the same boundary conditions Goo = 1 and with Gpp = 0 if either p = —1
or b = —1. We consider pairs (T, ¢), where T is a finite rooted tree and ¢ is a
map of the set V(T') of vertices into the positive quadrant of the plane, and we
write ¢(v) = (b = b(v),p = p(v)) for v € V(T'). Let ®(b,p) be the set of all pairs
(T, ¢) for which the root corresponds to the point (b, p). Corresponding to any tree
of this kind is an iteration of the relation (19) up to some stopping point. The
construction of a new vertex (new vertices are assumed to be below the old one)
corresponds to an iteration step as follows: we either choose one of the terms of
the right-hand side of (19) or stop for a given vertex. Any vertex v = (b, p) of the
tree (except for the root) can have two outgoing edges, and if this is the case, then

the vertex is said to be binary, and the other two vertices of these edges are at the
kD — k)!

points (k, j) and (b—k,p—j —1). We assign the number f(v) = % to this

vertex. If a vertex has only one outgoing edge, then this vertex is said to be unary,

and the other vertex of the edge is at the point (b—1,p). To the vertex v = (b, p) we

then assign the number f(v) =2+ 2p/b. A vertex v = (b, p) that has no outgoing

edges is said to be final, or terminal, and we assign the number f(v) = Gy, to this

vertex. The contribution of the tree T is defined as the product

=11 fw.

veV(T)

A tree is said to be full if the point (0,0) corresponds to each final vertex of it.

Lemma 6. The following expansion holds:
Gop = _f(T),
T

where the sum is taken over all full trees.

The proof is obtained by the complete iteration of the recursion relation (19), whose
application is terminated only if there are no final vertices distinct from (0,0).

We note that the number of binary vertices of an arbitrary tree with root at (b, p)
is not greater than p. Indeed, let us write p(T) = 3" p(v), where the sum is taken
over all final vertices v of the tree T. If a tree T’ is obtained from T by joining two
edges to some final vertex of T, then p(T") = p(T) — 1. If T' is obtained from T
by joining one edge to some final vertex of T, then p(T”) = p(T"). This implies the
desired result.
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Lemma 7. The number Ky, of pairs (T, ¢), where T is a complete tree with root
at (b,p), does not exceed C**P for some constant C.

Proof. We have the following recursion relation:
p—1 b
Koy =3 Y KijKorpjo1 + Ko 1.

=0 k=0

The equation for the generating function

K =K(z,y) =) Kppz'y?

is of the form
K =zK?*+yK +1,

y—1 y-1 4z
K =- V17—
2x * 2x (y —1)2

The result follows because K is analytic at the point z =y = 0.

and hence

By the previous lemma, it suffices to prove that the contribution of any pair (T, ¢)
does not. exceed C®*P for some constant C independent of the pair. Estimation of
the product of 2p/b over the unary pairs presents some difficulties. Let us prove by
induction that the number of unary vertices does not exceed b. We begin with the
root vertex (b, p). Suppose that there are exactly by unary vertices between the root
and the next binary vertex. The binary vertex (b — by, p) creates two other vertices
(0',p') and (b"”,p") with b’ + " = b~ b, and p' + p" = p— 1. By the induction
hypothesis, there are at most b’ + b” unary vertices below these two new vertices.
Therefore, the total number of binary vertices does not exceed ' + 0" + by = b.

There is a set V' of vertices with the following properties: 1) no vertex of V” is
below another vertex of V', 2) any vertex (b”,p") that is not below a vertex in V'
satisfies the condition b" > 2p”, 3) b' < 2p' for any vertex (¢',p') in V'.

The contribution of the unary vertices of type 2) can be estimated as 1. Let us
choose some vertex of V' with ¥ < p'/logp'. The total number of unary vertices
below the chosen vertex does not exceed b', and thus their joint contribution does
not exceed (2p')P'/ 187 < ¢,

Let p/logp < b < 2p for some vertex (b, p). We write g(T') = bl f(T) if (b, p) is the
root of T. If the root is a unary vertex with contribution 2p/b, then g(T') < 2pg(T"),
because (b— 1, p) is a vertex below this unary vertex. If the root is a binary vertex

T
w, then g(T') = g(T1)g(T>), where 71 and T, are trees
with roots (k,7) and (b — k,p — j — 1), respectively, for some j. It follows that
g(T) < (2p)®, and thus

with contribution

AT) < (2%,){) < e

We note that 3~ .y p(v') < p, and this proves the result.
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Let us now complete the proof of the theorem. We consider the function of one
complex variable

f2) =3 200G, .

b=0

By the previous lemma, this series has finite radius of convergence, say R. Then
(R71 - E)b < Gb,p(b) < (R_l + E)b

for any € > 0 and any sufficiently large b = b(¢). This proves the theorem.

Let us present the result in a more invariant form. Let p(M) be the minimal
genus in which the chart M can be embedded and let (b, p) be the set of charts
with given parameters b and p. We set p(b,p) = maxprems,p) P(M). The theorem

|2(b, p)|
(2p(b, p))!

In other words, the factorial multiple is of order (—xmin)!, where ymin is the
minimum of the Euler characteristics of the manifolds thus obtained.

This statement can be seen from the formula

claims that has exponential growth.

—X=2p-2=-V4+L-F=b-1-F=—2(P,—)+b—-1,

where z(P, —) is the number of orbits of the group generated by the two permuta-
tions. One can readily see that, if the orbits of P are given, then one can always
choose the permutation (—) in such a way that the orbits of (P, ~) are as long as
desired, that is, the contribution of z(P, ~) is much less than b.

This result enables us to propose the following reasonable canonical distribution
on the set A(b) of all charts M with fixed characteristic b = —Ymin:

Py(M) = Z; " exp(—pp(M) — Ap(M)) = Z;* exp(—,up(M) + %F(M))

3.2. Dimension three and higher. In quantum gravity, for a fixed triangulable
d-dimensional manifold A (a simplicial complex) the potential is assumed to be
linear in the number N;(T) of i-dimensional simplices of the triangulation T for

¢t =0,...,d, that is, the partition function is formally equal to
zZ=3" exp(— > kiNi(T)> =) exp (_ > kiNi) C{NY),
T i {N:} i

where C({N;}) is the number of triangulations with given numbers {N;}. It follows
from the Dehn-Sommerfeld relations (see [12]) that all the numbers N;(T') can
be expressed linearly in terms of two of them. Therefore, the distribution can be
rewritten as follows:

Z exp(—=A¢Na(T) + Ag—2Nq_>(T)),
T
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where the sum is taken over all triangulations T' of the given manifold. Moreover,
the last formula corresponds to the Hilbert-Einstein action

1

where I is the scalar curvature, A is the cosmological constant, and G is the Newton
constant. To prove convergence of the previous series in some domain of parameters,
one needs exponential estimates for the numbers C({NV;}). For a discussion of
the necessary exponential estimates, see [12]. Boulatov [13] presents the following
result. Let C'(N,M) be the number of three-dimensional triangulations with N
simplices of a three-dimensional manifold M. Then

Z C(N,M) < Cexp(yN),

where the sum taken is over all manifolds M with a fixed homology group H;(M, Z),
and v = y(H1(M, Z)).

In the general case (in which the topology is arbitrary), the entropy is not expo-
nential, and, as far as the author knows, the only way to introduce a probability
distribution is given by Gibbs families.

Corresponding to any d-dimensional simplicial complex is a dual graph whose
vertices are in one-to-one correspondence with d-simplices. Each vertex of this
graph has d sprouts (legs) that correspond to d faces of this graph of dimension
(d—1). Corresponding to the pairing of sprouts is the gluing together of the appro-
priate faces by means of a linear map. In dimension two this gluing always gives a
manifold. In higher dimensions, the gluing together of faces of d-dimensional cells
gives a pseudomanifold with probability tending to 1. Moreover, in the thermody-
namic limit, the pseudomanifold thus obtained has no vertex with a neighbourhood
isomorphic to a ball. This follows from the results in §4.4.

The condition singling out manifolds among pseudomanifolds is local, and it can
be given by a superlocal potential (with hard core). However, the restrictions on
the topology are not local in general. Below we consider the simplest examples in
which the condition on the topology follows from the Gibbs property.

§ 4. Phase transitions

A Gibbs family (on AS}B) or on A.,) with potential ® is said to be pure if it is
not a convex combination of other Gibbs families with the same potential. Thus,
the non-uniqueness of Gibbs families means that there are at least two pure Gibbs
families with the same potential ®. A pure Gibbs family can be of two types: it
can be supported either by a fixed graph or by several graphs (or even by a family
of pairwise distinct graphs that has the cardinality of the continuum). Thus, in the
first case the Gibbs family reduces to an ordinary Gibbs field.

In this connection, the non-uniqueness of Gibbs families can be of a different
nature. First, on each graph in the support of a Gibbs family, the pure phases can
differ by the structure of typical configurations (this is a phase transition inherited
from ordinary Gibbs fields on a fixed graph). Second, pure phases can differ by the
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typical structure of the graph in itself (this is a metric or topological phase transi-
tion). Roughly speaking, a topological phase transition occurs if there are at least
two Gibbs families with disjoint supports that have graphs (with local structure
defining a topological space) with essentially distinct topological properties.

The problem of describing the phases is rather complicated. It is simpler to
single out some pure phases, as is done below for some examples. To this end, the
following remark can be useful: if a pure Gibbs field is a Gibbs family, then it is a
pure Gibbs family.

4.1. Mean-field model. In discrete quantum gravity, there is a simple model
[17] in which one can analytically explain the appearance of different phases in
simplicial gravity with spin under numerical simulation. This is an urn model with
M = AN balls in N urns. It can be interpreted as a random graph if the urns are
referred to as vertices and the balls as sprouts, with the sprouts randomly paired.
Thus, there are N enumerated vertices ¢ = 1,..., N with ¢; > 1 sprouts at any
vertex ¢. The canonical ensemble is given by the partition function

Zv= % exp(—ﬁ;ﬂwqi)).

{e:h: 2 =M

We note that, in our terminology, this is a model with local potential (which is
unstable, as was shown above) and non-local restriction Y ¢; = M = AN of the
mean-field type. This restriction eliminates the instability of these local potentials.
We note that the factorial multiple A(M), which is responsible for the random
pairing of sprouts in the asymptotic expression for the partition function, can be
regarded as a common multiple, after which the asymptotic expression for the
partition function becomes

Zn = cN%exp(yN).

For a sufficiently broad class of potentials, including the potential ®(q) = logq,
there are two phases with phase transition with respect to A for a fixed 5. One
phase (which is called elongated or fluid) corresponds to small densities for which the
balls are uniformly distributed with respect to the urns, and the other (crumpled,
or Bose-Einstein) to the case in which the number of balls at some single vertex is
of order M. A modification of the model can lead to a mixed phase (which is also
said to be condensed or crinkled), where there is a vertex with ¢M balls, where
¢ < 1, and the other urns are filled with balls uniformly.

The numerical simulation in [18] shows the appearance of similar phases in two-
dimensional simplicial gravity for the case in which spins are added. Therefore,
diverse explanations and analogues of these phases are of interest. As noted above,
this is a smoothed transition between the stability and instability of the potential,
where the smoothing is realized by a restriction of mean-field type.

In statistical physics an analogue is given.by the Bose-Einstein condensation.
In computer science the choice ® = cq gives a stationary distribution in Jackson
networks in the mean-field model [19], where quite similar phase transitions are
observed. The classical theory of random graphs deals in fact with the chemical
potential under the same restriction of mean-field type (see [20]).
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4.2. Phase transitions in the model with boundaries. We consider the
two-dimensional triangulations T which are called quasi-triangulations in [21] and
triangulations in [11]. In other words, we consider embeddings of a graph in a
two-dimensional surface, where edges are disjoint smooth arcs, and the complement
consists of disjoint open domains homeomorphic to a disc, with each of the domains
bounded by exactly three arcs.

Let T'(p, N,k;my,...,my) be the set of all (equivalence classes of) such trian-
gulations of a sphere with p handles, k holes, N triangles, and m; edges on the
boundary of the ith hole. We assume that m; > 2. Let C(p, N;my,...,my) be
the number of triangulations of this kind. For fixed p and k and for a given N we
define a distribution p, 4 (the canonical ensemble) on the set

T(pﬂ‘]vak): U T(vaak;mh"'vmk)
M1, Mg
of triangulations by the following four equivalent rules.
¢ If the interaction is proportional to the total number of edges, then

o i(T) = Z5' exp(— L(T)).

¢ If the interaction is proportional to the sum of the degrees of the vertices,
then we use the relation

exp(—n (1) = exp (1 Y dogo).

where L(T) stands for the number of edges of T, including the boundary
edges. Therefore,

In=Zn(pk)= 3 3 exp(—% 3 degv).

(my,...omp) TET(p,Nimy,...,my) veV(T)

Using the discrete analogue of the Gauss—Bonnet theorem, one can show
that this is a discrete analogue of the Einstein-Hilbert action. We also
note that this is a special case (with the parameters ¢, = t) of the inter-
action treated in [22]:

H t(l]l(q.T)7

g>2
where n(q,T) is the number of vertices of degree gq.
¢ If the interaction is proportional to the number of boundary edges, then for

any p and k we define the correlation functions of the vectors (m,...,my)
by the rule

Py pw(my, ... omy) = > o Nk (T)
TET(p,Nima,....m)

Zle m;

= 05 (k) exp - 255

)C(p,N;ml, coe,myg),
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where we have used the formula

L(T):M+Zmi:ﬁ+zmi

2 2 2
which implies that
et m;
On(p, k) = Z exp(—/an l>C(p,N;m1,-.-,mk)~
MY,enny me=2

e Let us introduce at the vertices v of the triangulation fictitious spins o, that
take values in an arbitrary compact set and are such that the corresponding
potential of the Gibbs family is

f(O'v, 0’1,/) =1

for any two neighbouring vertices v and v'.

We first consider the case k = 1, p = 0. Moreover, we assume that a vertex on
the boundary and an edge incident to this vertex are singled out, thus defining the
origin and the orientation. Denote the class of all triangulations of this kind by
To(N,m) and the number of these triangulations by Co (N, m). Here the probability
of the triangulations is equal to

Pyn(T) = Z(;,le exp <—% Z degv).
veV(T)

Let us prove the existence of a phase transition with respect to pi;. We set puy o, =
log12. Let 0 < 8o = Bo(u1) < 1 be determined by the equation
1+ g
(723050)2 exp(—p1 +log12) = 1.
(1 + FEE)

Theorem 5. The free energy limy %log Zon = F s equal to —%,ul + ¢ with
c= 3\/§ for g1 > per, and to

1+L

3(1-0)
19 43 (20)
(1+ 252

3 Bo
g tet Bo(—p1 + log 12) +/ log
0
for < 1 cr-
We note that g1 — p1cr as Go — 0.

Let m(N) be the random length of the boundary for a fixed V. The distribution
of m(N) is of the following form (we use the relation |L(T)] = 3N /2 + m/2):

Py n{m(N)=m) = @a’}v exp(—m%)Co(N,m),

m
O N = ;exp (—M15>60(N, m).
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Theorem 6. There are three phases, for which the distribution of m(N) has quite
different asymptotic behaviour:

o the subcritical domain 12 exp(—p1) < 1, in which case m(N) = O(1), or, more
precisely, the distribution of m(N) has e limit imy Pv(m(N) = m) = pm,
for any fixed m as N — oc;

o the supercritical domain (the elongated phase) 12exp(—p1) > 1, in which
case the length of the boundary is of order O(N), or, more precisely, there is
an € > 0 such that lim Py y(mny /N >¢) =1,

e at the critical point, that is, for 12exp(—u1) = 1, the length of the boundary
is of order /N, or, more precisely, the distribution of mN/\/JV converges in
probability.

Proof. We use the formula (for N = m + 2j)

2042(2m + 35 — 1) (2m — 3)!

Co(N,m) = (G + DIEm + 2)! ((m — 2)1)?

(see [21]). The direct calculation, in which we use the fact that the change of
variables of the form N — N and m — m + 2 corresponds to the change of indices
j—ji—1and m — m+ 2, gives

Pon(m+2) _ Co(N,m + 2) exp(—5-(m + 2))
Pyn(m) F(N,m) = Co(N,m)exp(—£tm)

1+ 725 (L + say) (1- =)

4m?

I+ 75+ 750+ P+ vmm) (=) (21)

= exp(—p1 + log12)

In the subcritical case we obtain

P N(m+2) 1 1
SONNITT A _ {1+ = el
Po () exp(—p1 + log 2)( + — +O(m2>>

for a fixed m as N — oo, and thus we see that as m — oo, for instance, for even m,

lim Py n(2m) ~ Cmexp(m(—p1 +log12)).

At the same time, the second factor in (21) does not exceed 1. Therefore, it follows
from

3N 3N m
Zo,N = €xp (_Nl 7) Oo.n = exp (—m 7) D exp (—m 5) Co(N,m)

m

3
that F' = _g’“ + ¢, where ¢ = 3\/;, because for a fixed m we have

Co(N,m) ~ ¢(m)N*%cN.
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The formula (21) implies (20) in the supercritical case as well if we set m = OGN
and 0 < § < 1. The two expressions coincide at the critical point; however, the
free energy is not differentiable at this point.

To prove the second assertion of the theorem, we set 12exp(—p;) = 1+ r and
estimate separately the three factors in (21). Then we see that there exist § and &
with 0 < § €« ¢ < 1 such that

R < (+3)
for any m and N with m < dN. This implies the desired result.
In the critical case we have similarly
m/2

Py.n(m +2) 1 4k 1 m?

=1

Hence, for any a and 3 with 0 < a < 3 < o we obtain

lim( Py n(m(N) < eVN) N Pon(m(N) > e 1y/N) ) .
Pon(BVN <m(N) < 8YN) " Rn(BVN < m(N) < 6VN)
as ¢ — 0. '

Let us now consider the case in which there is no distinguished vertex on the
boundary; in other words, we extend the automorphism group. Both the free energy
and the behaviour away from the critical point are unchanged.

Theorem 7. At the critical point, without any coordinate system on the boundary,
the length of the boundary is of order N® for 0 < a < 1/2. More precisely, the
logmy
log VN
a logmy S

that is, Py v | = < < 7 ) = B—a forany a and B such that 0<a < A< 1.
o (5 < mx < 5) for any o and 3

Lemma 8. C(N,m) ~m 1Cy(N,m) as N,m — cc.

distribution of converges to the‘uniform distribution on the unit interval,

Proof of the lemma. Let us enumerate the edges of the boundary 1,2,...,m in
cyclic order, starting from the root edge. An automorphism ¢ of the disc is uniquely
determined if one knows the edge j = ¢(1) to which the edge with index 1 is taken.
Indeed, in this case the triangles abutting on the edge 1 are mapped to the triangles
abutting on j, and so on by connectedness.

We consider the strip of width 1 abutting on the boundary, that is, the set of
triangles of three types depending on the set common with the boundary, where this
set can contain one edge (type 1), two edges (type 2), or a point only (type 0). Thus,
the strip can be represented as a word @ = «; ...z, n > m, where #; = 0,1,2. Let
us consider the set W (m, ng, nq1,n2) of words with a given m and given numbers n;
of each of the letters . An automorphism of the disc gives a cyclic automorphism
of the word a. Moreover, the sets W(m, ng,ny,n) arc invariant. We note that

m = ny + 2no,
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and the length of the other boundary of the strip is equal to m’ = ng. Therefore, if
there is no cyclic antomorphism of the word «, then there are no automorphisms of
the disc. One can readily see that the set of words in Un, mp WM, m9, 11, m2) that
have non-trivial cyclic automorphisms is small compared with the total number
|Unlﬂ2 W(m, no,nl,ng)f for a given ng as m — oo.

This gives the factor 1 -1/m in f(N,m) instead of 1+ 1/m in the previous case.
Similar calculations prove that, asymptotically, the distribution coincides with the
family v of distributions on the set {1,...,v/N } with VN elements,

VN
(i) =Zyxi ', Zy=3 ik
i=1

It can readily be seen that

« log 3 ’ . .
=< <L) =un(Ne/2 < < NP2 -
yh(Q\log\/N 2> v <i < )= 8-«

for0<a <3<l

4.2.1. Relationship with topological field theory. The introduction of a system of
coordinates on the boundary recalls the passage from topological field theory to
conformal field theory. It is customary to introduce topological field theory (TFT)
axiomatically in the framework of category theory [23], either heuristically (with the
help of path integrals) or algebraically (as a Frobenius algebra). For a path integral
to become meaningful, it seems to be natural to use the idea of discretization {see,
for example, [24]-[26]). In the last chapter of [27] a topological field theory is
constructed that satisfies all axioms already on finite triangulations. However, it
is possible in principle that such a theory satisfies these axioms only after passing
to the limit as N — oco. The study of this limit is of interest in itself. We solve
this problem here for the case of two boundaries only (that is, for £ = 2), for zero
genus, and for large p; in the previous model. It is of interest that a non-trivial
joint distribution of the lengths of the boundaries appears.

Theorem 8. For k = 2 there are correlation functions Ppa(mi,ma) =
limy Pngo(my,me) for sufficiently large uy and for fired m1 and m..

The proof below is complete. Apparently, a similar method works for any k and p.
We first obtain the following recursion relations for the numbers Co (N, m, m») with
m=1m;:

Co(N,m,m2) = Co(N —1L,m+1,ma) + Co(N —L,m+ms + 1)
+ Z Z Co(N1, k1,m2)Co(Na, k).

Ni+No=N—-1 ki+ko=m+1

These relations can be proved by deleting a root edge as in Tutte’s method [28];
see Figure 1.

Three cases are now possible, corresponding to the three terms on the right-hand
side: the graph can become disconnected, two holes can coalesce into one hole,
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Figure 1

and two holes can be preserved in such a way that the boundary of the first hole is
elongated and the number of its triangles is reduced. The boundary conditions are
as follows. For a given number N there are only finitely many non-zero numbers
Co(N,m,my), and it is convenient to assume that these numbers Co(N,m,ms)
are known for N < Ny (we are not interested in their explicit form). Moreover,
Co(N,m,mz) = 0 if either m < 2 or my < 2.

Lemma 9. The asymptotic behaviour of the numbers Co(N,m,ms) is given by
Co(N,m,mz) ~ ¢(m,mz) N~*/2+1cN (22)

for fizted m and my, as N — oo, where ¢p(m,3) = ¢(m).

Proof. As is well known,
Co(N,m) ~ ¢(m)N 52N, (23)

Let us find the numbers Co(N,m,2), Co(N,m,3), Co(N,2,ms), and Co(N, 3, m>).
We first assume that ms = 3. To obtain a triangulation in T'(0, N;m, 3), we take
a triangulation in 7°(0, N + 1;m) and choose one of the N triangles in such a way
that it is not tangent to the boundary, which can be done in N — O(m) ways.
Hence, Co(N,m,3) ~ Co(N + 1,m)N, and thus ¢(m,3) = ep(m). Removing the
root on the boundary of length m and placing it on the boundary of length 3, we
see that ¢(3,m) = 22¢(m) because the automorphism group is trivial for almost
all graphs. To obtain a triangulation in 7°(0, N;m,2), we take a triangulation in
T (0, N;m), choose one of the N triangles not tangent to the boundary, choose a
side of this triangle, and double this side. Then ¢(m,2) = 2¢(m), and we can
obtain ¢(2,m) = 2 ¢(m) similarly.
Let us rewrite the recursion relations:

C()(N — l,m + 1,m2) = Co(N,m,TfLQ)

- Z Z Co(N1, k1, m2)Co(Na, ko)
Ni+No=N—=1 ky+kgmm-+1

—Co(N —1,m+ma+1).

Since Co(N,m,2), Co(N,m,3), Co(N,2,mz), and Co(N,3,ms) are known, the
assertion can be obtained by induction on m for a fixed ms, and conversely. Indeed,
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multiply the above relation by ¢=V*1(N — 1)3/2-1. By the induction hypothesis,
the right-hand side tends to

cp(m, my) — 2 Z oKy, mo) Z Co(n, ko)™

ki+ko=m+1 n=1

in this case. Therefore, the limit of the left-hand side ¢V (N — 1)3/2-1Cy(N -1,
m + 1,m5) is finite; we denote this limit by ¢(m + 1, ms).

Let us proceed to the proof of the theorem. Substituting (23) into the recursion
formula for Co(N, m), we obtain the following recursion formula for ¢(m):

dp(m+1) = cop(m) — 2 Z d(ky) Z Co(n,ka)e™ .

ki+ko=m+1

In particular,

6(3) = cd(2), (1) = c4(3) —2¢(2) Y _ Co(n,2)c ™,
Let us now find the asymptotic behaviour for ¢(m,m») by using the relations

glm +1,ma) = cd(m,ma) =2 Y G(ki,ma) D Co(No, ko).

k1+ko=m+1 No=1

Hence, ¢(m,m2) < ¢(2,mz)c™. However, (2,m2) = ;=d(my,2) < ¢(2,2)c™=.
This proves the theorem.

4.3. Non-uniqueness in the model with low entropy. Let U; be a graph
isomorphic to the 2-neighbourhood of the origin in the lattice Z2. Then among
the graphs belonging to G(U,) we have the lattice Z? itself and its factor groups
Z(k1,0) and Z(ky, k2) with respect to the subgroups {(nk,0)} and {(nik1,n2k2)},
respectively (n,n;,ns € Z), that is, cylinders and tori, where k; > 4. We note that
there are other cylinders, for instance, twisted ones, which can be obtained from
the strip Z x {0,1,2,...,k} C Z? by identifying the points (n,0) and (n + j, k) for
any n. If there is no spin, then the growth of the entropy is subexponential.

Let us consider a Gibbs family with S = {—1,1} and with potential ® equal to
the sum of ®y,, and the Ising potential of nearest-neighbour interaction, ®j; =

g O
Theorem 9. For any § there are infinitely many pure Gibbs families with poten-
tial ® that are Gibbs fields on the above graphs (cylinders).

Proof. We construct a finite Gibbs family with boundary conditions determined by
a graph yn defined as follows (for any sufficiently large N). Consider the subgraph
o, of Z? that is the strip consisting of the points (i,j), i € Z, j = —n,...,n,
n 2 2, with the root (0,0), and with the points (i, ~n) and (i,n) identified. The
distance from a point (i,n) to (0,0) is defined as |i| + |n|. We set yy =
Y(an, (0,0;N + 1,N +3). If n « N, then yx consists of two isomorphic
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connected components. Here we use Lemma 2 to assume that vy is the unit
measure on the spin graph vy and that all spins on v are equal to 1. We claim
that the (finite) Gibbs family on 9(,8) is a Gibbs (Ising) measure on the graph
v(en, (0,0);0,N).

For the proof, we first assume that S is trivial and use only the part oy, , of
the potential. Let us prove that the desired finite Gibbs family with the above
boundary conditions is the unit measure on y(ay, (0,0);0,N), that is, a random
graph G is the graph v(ay,, (0,0); 0, N) with probability 1. We introduce the method
of ‘analytic’ continuation, which is an inductive proof that the annuli y(N) =
(G, 0: N, N),v(N = 1), ... of a random graph G coincide with the corresponding
annuli of the graph a,,. Let us first construct the annulus v(N) and prove that it
is unique and coincides with the corresponding annulus v(a,, (0,0); N, N) of ay,.

Consider the point (N + 2,0) of vy together with its 2-neighbourhood in yx.
This neighbourhood is lacking an edge ly from the point (N + 1,0) to a new vertex
vg, which we denote by (IV,0) and which must be at the distance N from the origin
because all the points at the distances N +1, N + 2, and N + 3 are already given.

We now consider the point (N +1,1). It follows from the shape of its neighbour-
hood in v(e,, (0,0); N + 1, N + 3) that two new edges, say {1 and l», must issue
from (N,1) € yv(an; N + 1, N + 3) to the annulus N. One of these edges must be
joined with the vertex vy.

We next construct the entire annulus v(N) (and only this annulus) by induction,
beginning with the points with positive first coordinate and then proceeding to the
symmetric points. In this way all points of the annulus (N + 2) obtain the desired
neighbourhoods, and thus can be excluded from our considerations below.

Next, we construct y(N — 1), v(N — 2), ... by induction on the annuli, using
the neighbourhoods of the annuli N +1,—-N — 1, N,—N,... constructed above.
These induction steps can be repeated until two connected components combine
into a single component. We prove that this event occurs on the line y = £n of the
annulus n. Let us show that the following cases are impossible: 1) the combination
first occurs on another line, 2) this combination occurs on the line 4 = £n but on an
annulus whose index differs from n. The second case is excluded by the following
argument. After combination occurs on the line y = +n, the strip thus formed
can be filled in exactly n steps of the induction. Therefore, the combination must
happen exactly on the annulus n. The first case is eliminated as follows. Suppose
that the combination first occurs on a line y = k. In this case the line y = k + 1
must have an obstacle to being filled at the same step of induction.

Thus, independently of the spins on v, the Gibbs family is supported by a
single graph, and hence the Gibbs family is a Gibbs field. This proves the theorem,
because the number n can be chosen arbitrarily.

4.4. Gibbs characterization of structures.

4.4.1. Uniqueness in the model with high entropy. The set of countable trees cannot
be locally characterized, that is, this set cannot be distinguished in the class of all
graphs by a restriction on the subgraphs with diameter less than some constant.
However, it is of interest that a local characterization of countable trees can be given
by means of Gibbs families with a local potential. More precisely, we can introduce
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Gibbs families with potential of diameter 2 such that the support of these families

belongs to the set of countable trees. We consider the case of p-regular trees only.
This construction also gives an example in which the partition function has

factorial growth and nevertheless the corresponding Gibbs family is unique.

We consider the set Ay, of all p-regular graphs with N vertices, that is, the
graphs with all vertices of degree p > 3, and we introduce a finite Gibbs family
on Ay with the following superpotential ®: ® = 0 on the graphs of radius 1 if 0
is of degree p, and ® = oo for the other graphs of radius 1. In other words, we
consider a finite Gibbs family pnx on Ay, with potential ¢ = 0.

Theorem 10. limp™(Ty) = p(Ty) = 1 if Ty, is an arbitrary p-regular tree in which
any path from 0 to a final vertex is of length k, and the limit vanishes for the
other T';,.

Proof. We note that all graphs in Ay, are equiprobable with respect to the mea-
sure g, which reduces the problem to the classical theory of random graphs:
see [20]. The combinatorial proof of this theorem consists of several steps.

1. A graph is said to be enumerated if its vertices are enumerated. Let Ly (p) be
the number of enumerated p-regular graphs with N vertices. This number is equal
to
(pN —1)(pN - 3)---

(PH~
(see Theorem I1.16 in [20]), where C'(p) is a constant whose explicit form is known,
but we do not need it. Similarly, for given values p,k,d;,...,d; we denote by
Ln(p;dy,...,d;) the number of enumerated graphs that have N — k vertices of
degree p and N — k other vertices of degrees dy,...,d. This number is equal to

2m—-1)(2m —3)---
(H~

(see Theorem I1.16 in [20] again), where C'(p, k;dy,...,dy) is a constant and 2m =
p(N—k)+dy +---+dg.

2. Let us consider the probability that the neighbourhood O;(v) of some ver-
tex (for instance, of the vertex 0) has no cycles and prove that this probability
tends to zero as N — oc. The number of graphs for which O;(v) has no cycles
is equal to Ly_1(p;di,...,dp}(N —1)--- (N —p), wheredy = --- =d, =p— 1.
At the same time, the number of graphs for which O;(v) contains exactly one
cycle, that is, a single additional edge, say between the edges 1 and 2, is equal to
Ly i(pier,...,ep)(N —=1)---(N —p), whered; =ds =p—-2andds =--- =d, =
p — 1. It can readily be seen that

Ln(p) ~ C(p)

LN(p;dla"wdk) NC(pkvdlvadk)

LN—I(p;el7"'7ep)

— 0
Lyva(pidi, .. dy)

as N — oo.

3. This implies that the mean number of vertices v for which the neighbourhoods
01 (v) have no cycles is of order o(N). Since almost all p-regular graphs have no
automorphisms (by Theorem IX.7 in {20]), the same result holds for non-enumerated
graphs as well.

4. The neighbourhoods of greater radius can be treated similarly.
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The following remark is of importance: for a given N the probability of the event
that a graph in Ay, is a tree need not be close to 1. Moreover, the probability that
a given graph in Ay, is a tree tends to zero as N — oo. A non-trivial topology
(with cycles) occurs at a larger scale, and the typical length of a cycle tends to oo
as N — oo; see below.

Remark 4. If the above set S is finite, if there is a non-trivial spin, and if the
interaction is trivial, then the limit is an independent field on a p-regular tree.
There is a question: what can happen if there is an additional interaction potential,
for example, a two-particle nearest-neighbour potential?

4.4.2. Gibbs varieties of groups. The Gibbs approach can distinguish not only
trees but also other mathematical objects that admit no local characterization. We
consider cases in which the passage to the limit gives an algebraic object, namely,
a group, with probability 1.

Let us consider the class Hy »p of 2p-regular graphs with local structure and
assume that all sprouts of any vertex are enumerated by the symbols a, ..., ap,
al_l, cee a;l. Moreover, if the symbol corresponding to one end of an edge is,
say, a;, then a;l corresponds to the other end, and conversely. This class can be
singled out in the class Ax by the local potential ® on the edges that is equal to 0
if the sprouts of the edge are endowed with symbols of the form a; and a;l and
equal to oo otherwise, and also by the superlocal potential ®; on neighbourhoods
of radius 1 such that ®; vanishes only if the vertex is of degree 2p and its sprouts
are enumerated by different symbols.

In particular, the Cayley diagrams of countable groups (see [29]) belong to this
class of graphs with local structure. The graph of a group with finitely many
generators a1, ..., ap and finitely many defining relations a; = -+ = o, = 1, where
ai,...,a, are some words, is distinguished by the following non-local condition:
any cycle in the graph is generated by ai,...,ay,, and conversely (we recall that
to any path on the graph one can assign a word, that is, an element of the group).
A free non-commutative group corresponds to the case in which n = 0, that is,
there are no defining relations.

Theorem 11. The limit Gibbs measure on Aé?) with potential ® + ®; is concen-
trated on the tree corresponding to the free group with n generators.

We do not present the proof; however, we note that it differs from the above
argument for p-regular graphs in that the set of sprouts is partitioned into 2p
subsets A(a;), A(a; '), and the only restriction on the joining of the sprouts is that
any sprout in A(a;) can be joined only with sprouts in A(a;!).

Apparently, this result admits the following sweeping generalization. Let us
consider the set Hpy ap(aa,...,an) of graphs corresponding to the groups in the
variety determined by the relations oy = --- = @, = 1 (and possibly some other
relations). Then the limit Gibbs measure is concentrated on the free group relative
to this variety (that is, the group in which only the relations a; = --- = a, =1 are
satisfied), because the formation of additional short cycles is a rare event. Results
of this kind can play some role in physics in explaining how non-local objects can
appear with high probability on the basis of local conditions.
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4.5. Scales. Let us briefly discuss an important generalization that enables us to
go beyond the framework of thermodynamic limit leading to limit Gibbs families.

Let Gibbs families pun on the sets By of finite graphs with local structure be
given, where NV is a parameter which can be the number of vertices, the radius, and
so on. These families induce measures v on the corresponding sets Gy of finite
graphs. We also assume that a non-decreasing function f: Z, — R, is given. Let
us define the macrodimension of a random finite graph (with respect to vx) on the
scale f(N). Let Of(n)(v) be the neighbourhood of a vertex v of radius f(N). We

set
- 1 log Of(ny(v)
DN(f)_<|V(G)| Z W)/N.

vEV(G)

If the limit limy_,00 DN (f) exists, then the value D(f) of this limit is called the
macrodimension on the scale f.

For a countable Gibbs family one can define corresponding invariants obtained
by passing to the limit as N — oo. See, for instance, the definition of the macro-
dimension of a countable complex in [30]. However, this definition of macrodimension
corresponds to a minimal scale f, for which the growth of f(V) is as slow as desired
(as N increases).

We can define other topological characteristics on diverse scales similarly. Let
By = Ap, that is, V(G) = N. For instance, let h(O4(v)) be the number of
independent cycles in the d-neighbourhood of a vertex v. The exponent for the
number of independent cycles on the scale f is defined as follows:

mOsn) () >
b(f) = lim —
(f) NE)nooN<Z [Of(N) U)|

if the limit exists.

Proposition 4. Under the assumptions of Theorem 10 one has b(f) = 0 for any
scale f(N) < (1 —¢)log, | N, where ¢ > 0 is arbitrary, and b(f) = p/2 -1 for
any scale f(N) > (1 +¢)log, | N.

Proof. Let us consider the neighbourhood O, ) log, ~{v) of some vertex v. This

neighbourhood can have at most (p — 1)1 ~9198:-1 ¥V = N1-¢ yertices. Each of the
edges issuing from these vertices is incident to another vertex of this neighbourhood
with probability not exceeding N~°. Therefore, the number of these edges is at
most N ¢ pN'=¢ = pN'=2¢. Any such edge involves the creation of at most one
new cycle. This implies the first assertion.

To prove the other assertion, we denote by D(N) the diameter of the random
graph. As is known [20],

D(N
PN(1—5<#<1+5> -0 as N - o0
log, | N

for any £ > 0. The number of independent cycles in the entire graph is equal to
(p/2 —1)N — 1, which follows from the Euler formula V' — L + M = 1, where M is
the number of linearly independent cycles. Therefore, M = L -V = (pN/2) —
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4.6. On the discrete quantum gravity. In conclusion it is appropriate to
discuss the present state of development of quantum gravity. The answer to the
question “What is quantum gravity?” cannot be exactly formulated. There are
many approaches to the formulation and solution of this problem (the unrestrained
optimism of some physics papers has always been quickly replaced by more temper-
ate views). As we shall see now, many approaches can be kept within the scheme
developed in the present paper. The main difficulty, aside from the need for funda-
mental ideas, is in the specification of the model on the basis of numerous physical
requirements which also remain unclear.

It is assumed in physics that the so-called standard model of quantum field the-
ory meets practical needs and describes all interactions in nature except for gravity
(that is, the electromagnetic, weak, and strong interactions). Although the stan-
dard model in four-dimensional space-time has not yet been given in the framework
of constructive quantum field theory (that is, there is no mathematically rigorous
construction in the ordinary sense), this model at least admits clearly formulated
definitions and assertions-conjectures. The latter can be formulated both in the
framework of the Wightman axioms and in the form of the scaling limit of lattice
approximations. However, even the exact definitions disappear under any attempt
to create a unified theory including the gravitational interaction. All we have now
are pieces of a ‘future theory’ which are based on various physical, methodolog-
ical, and even philosophical principles. I shall try to make some classification of
these pieces while remaining in the framework of mathematics, that is, using exact
definitions and formulations.

Let us note first that there are no apparent ways to directly generalize the
Wightman axioms nor, in the Euclidean version, the Osterwalder—Schrader axioms
(although the axioms of S-matrix type, in which space-time plays a small role, can
be generalized in various ways, for instance, as axioms of topological field theory
or diagrams of string theory). The main notions are based on the classical and
fixed space-time. For instance, locality uses the Minkowski metric, and unitarity is
based on the very existence of classical time. If, in the framework of the Wightman
axioms, we add the metric (regarded as a new field) to the field of matter, then
(as proved by the experience of constructive field theory) this metric need not be
a continuous function, which can modify the topology of space-time in the small
and make the notion of locality unclear in itself. In this case one says that the
quantization of the metric leads to a ‘quantization’ of space-time.

A lattice approximation is a much more convenient object for generalizations.
Indeed, the existing theories admit discrete reformulations. For example, the ordi-
nary Euclidean quantum field theory (for simplicity, we restrict ourselves to boson
fields) deals with the lattice Z? with step e, with the volume A = [-N,N]* ¢ R¢,
with fields ¢(x) € R, x € Z%, and with the partition function

Zy. = LGHZ? | st exp( z #(0(a), oa')ie)).

where z and z’ is an arbitrary pair of nearest neighbours in AN Z% and & is a real
function on R™ xR™ that also depends on the parameter €. The main mathematical
problem is the existence of limits of diverse quantities as ¢ — 0.
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In the framework of the present paper we can only briefly list some approaches to
the construction of discrete models. We claim that these models are Gibbs families,
and we shall explicitly indicate the corresponding class of graphs with local
structure and the potential. For physical surveys of diverse directions in quantum
gravity, see [31]-[33].

It is of importance that almost all the theories listed below involve quantization of
the metric rather than the topology because the class of graphs under consideration
is related to a unique (and fixed) manifold or to a class of manifolds whose topology
satisfies rather strong conditions. For this reason, and also because a part of the
theory seems to be the same for all models, it seems that a general theory of Gibbs
families is needed.

Regge theory. Chronologically, the Regge theory is the earliest discrete version
of classical general relativity (see [34]). In contrast to the model of dynamical
triangulations in which the lengths of all edges are assumed to be equal, these
lengths are arbitrary in the Regge theory. Let us choose a triangulation T of a
smooth manifold M of dimension d, and let Si(T), k = 0,....d, be the set of
k-dimensional simplices of T'. Let I; be the length of the edge i € S;(T) and let
L(T) = {l;;i € Si(T)} be the family of sets of lengths from which a positive-
definite Euclidean metric can be recovered on any simplex. Then the partition
function becomes

Zv= Y exp(=S(M)dAT), S(M)=x Y wBeB@+u 3 o),

T:|T|=N BESy_2(T) AeSq(T)

where dA(T) is the restriction of the measure [[;.g () dli to L(T), v(-) stands for
the volume, and ¢(B) is the defect angle of the (d — 2)-dimensional face B, which
we do not define here (see [34]). These quantities can be expressed via the values I;.
Thus, in the quantum Euclidean approach the quantities ; are random variables
satisfying the corresponding inequalities, which complicate the introduction of a
free measure.

Dynamical triangulations. Apparently, the so-called model of ‘dynamical trian-
gulations’, which arose in string theory, is the most rich in results.

We note that, among all directions in quantum gravity, only string theory
includes the standard model and tries to develop the theory ‘to numbers’. Although
string theory follows the formal apparatus of quantum field theory, any axioms are
out of the question. String theory develops the theory of the scattering matrix
rather than our fundamental concepts concerning space-time.

In the Euclidean approach, a discrete string is a Gibbs family on some subsets
Apn of the set Up’k An(p, k) of triangulations T of a surface of genus p with & holes.

The spin o; with values in R? is defined on every triangle . For Ay one usually
takes Ay = An(0,0) or J, An{p,0). In this case the canonical partition function
is of the form

In = Z/ exp(—)\p(T) - %(oi - aj)2> gdm—.

However, other approaches to string theory are more popular. For instance, the
spectrum of a free boson string can be found explicitly in the Hamiltonian approach,
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while this has not been done (and is seemingly hard to do) in the approach of
dynamical triangulations. This enigmatic circumstance shows that relationships
between different approaches to the same physical object can be quite subtle.

Matrix theories. The matrix models are used to enumerate charts (and more
complicated objects) on surfaces. By a smooth chart we mean a triple (S, G, ¢),
where S is a smooth compact orientable surface, G is a connected graph (one-
dimensional complex), and ¢: G — S is an embedding for which the images of the
edges of the graph G are smooth arcs, and the complement consists of domains
homeomorphic to a disc. A chart (or a combinatorial chart) is an equivalence class
of smooth charts, where two smooth charts (S, G, ¢1) and (S, G, ¢2) are said to be
equivalent if there is a homeomorphism f: S — S that takes the vertices and the
arcs of ¢1(G) to the vertices and the arcs of ¢»(G), respectively.

A model of random matrices is a probability distribution g on the set of self-
adjoint n x n-matrices ¢ = (¢;;) with a density of the form

d,u_ —1 _ d)_z _ 7
d—V—Z exp( tr<2h> tr(L)),

where V = Y az¢* is a polynomial in ¢ that is bounded below and v stands
for the Lebesgue measure on the real n?-dimensional space of vectors of the form
(¢ii, Rei;, Im ;5,4 < j). If V =0, then p = o is a Gaussian measure with the
covariations {¢i;, ¢%,) = (bij, dik) = hdixd;. Then the density of p with respect to
the Gaussian measure yg is equal to

dp

Ao = 7§ exp(—tr(V)).

For the existence of a measure y it is necessary that the leading coefficient a, of the
polynomial V' be positive and that p be even. In this case there is a well-developed
theory of such models; see [35]. :

The fundamental relationship (due to 't Hooft) between the matrix models and
the calculation of the number of combinatorial charts on surfaces is given by the
following formal series in the semi-invariants or in the diagrams (see [36]):

oC

o k
log Z Z (tr Z kl') ZI Dy),

k=1 k=1 ’ Dy,

where > Dy is the sum over all connected diagrams D with k vertices and L =
L(Dy,) edges. For instance, let V = a¢?. Then every diagram has enumerated
vertices 1,...,k and L = 2k edges, and each vertex has enumerated sprouts
1,2,3,4 corresponding to the factors of the product ¢;;¢;1dri¢;. For instance,
the sprout corresponding to ¢;; can be represented as a two-sided strip (thus defin-
ing a ‘ribbon’ (or a ‘fat’) graph) whose sides have the matrix indices ¢ and j,
respectively. Moreover, in a neighbourhood of a vertex, the strips are arranged on
the plane according to our figure. Let us agree that the sprouts-strips are paired
in such a way that paired sides have equal indices.
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Figure 2. A vertex of a ribbon graph

Since any index occurs an even number of times at every vertex, it follows that
for a given edge [ with index i there is a unique connected path in the diagram
along the edges with index ¢ that passes through . All these paths are closed; we
refer to them as index loops. Summing over the indices, we obtain the factor n",
where N = N(Dy) is the number of index loops. This results in the formal series

Nk
Z —( ka') Z Rk pN(Pe) — Z(—4ah2)k ZnN(Ek) = Z(——4ah2)an]W(k, N),
k " Dy Ey

k kN

where the sum over Ej, is taken over all graphs with unordered vertex set such that

the set of sprouts of any vertex is cyclically ordered. In the passage from D to E
14k

4
we introduce the factor 4—(5, where A(FE) is the cardinality of the automorphism

group of . We omit A(F), assuming that A(E) = 1 for ‘almost all’ graphs (as
k — 00).

In the last sum, M (k, N) stands for the number of charts with k vertices and N
cells. Indeed, one can readily see that for any graph E there is an embedding f(F)
of this graph in a compact orientable surface S, of some genus p such that any
index loop bounds an open domain of S, that is homeomorphic to a disc, and this
embedding is unique (up to combinatorial equivalence). This chart has & vertices,
2k edges, and N faces. Using the Euler formula & = N + 2p — 2, we obtain the
following expansion by setting & =1 and a = b/n:

logZ = Z(~4b)N+2P*2n*2p+2Mp(N),
N,p

where M ,(N) stands for the number of charts of genus p with N cells. This implies,
for instance, that for p = 0 the terms M,(N) are formally singled out as follows:

lim 1og22 = 3 (—4b)N M (N).

n—oo 1
N

Generally, it should be noted that the application of the matrix method to combina-
torial problems is rigorous only for the calculation of the number of triangulations
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of a surface with a single cell (see [37]) or with finitely many cells (see [38], [39]).
For mathematicians a quite clear introduction to the matrix method for charts can
be found in [40], and complete (but less mathematical) expositions can be found in
many physics papers; see [41]. The case of a fixed genus p (which corresponds to the
calculation of the number of diagrams in string theory by using the perturbation
theory) is well developed only for the dimension d = 0 of the enveloping space, or,
at the physical level of rigor, for the next generalization, which is a model with @
matrices M, and with action of the form

Q Q-1
Tr (Z V(M) + > MquH>,

g=1 g=1

and also for its continuous analogue; see the survey [42].

It should be noted that the case of large p (that is, if p increases together with N),
which corresponds in the physical language to the investigation of the space-time
‘foam’ in the sense of Hawking, has hardly been studied at all even without spin,
that is, for d = 0.

Spin foam. By a spin foam we mean a graph I" together with a local structure of
a two-dimensional complex (such that any vertex and any edge belong to at least one
two-dimensional cell) and with functions a(f) (on the set T'?) of two-dimensional
cells f) and b(l) (on the set of edges T'V)). Tt is assumed that the function a(f)
determines an irreducible representation of a (Lie or quantum) group G; let H,(y)
be the Hilbert space of this representation. If an edge ! is incident to the cells
fi,--, fr, then we set Hy = Hypy® - & Hyg, ). Let H} be an invariant subspace
of H;. Once and for all, let us choose orthonormal bases in the invariant subspaces
of the tensor product of arbitrary irreducible representations. It is assumed that
the function b{l} determines one of the elements of this basis.

On some class A of finite spin graphs of this kind (for instance, on those with
N vertices) endowed with a structure of a two-dimensional complex we define the
partition function

Za=3Y_ 2(0), zm= Y ][ dimap) J] @0:)),

FeA {a(-),b( )} fer® veI(0)

where & is a function of the neighbourhood (of the vertex v) of radius 1. If @ is
positive, then this defines a Gibbs family.

As far as 1 know, partition functions of this kind have been regarded until now
only as formally algebraic objects. Generally, there are many partition functions
in physics that are not positive, and the problem of attaching some meaning to
quantities is quite open in this case. The quantum discrete spaces introduced
below in § 5 can be more useful here than Gibbs spaces.

Let us present some examples; for details, see [43]. For a vertex v we write
H,=H; ® --®@H,, , wherel;,... 1, are the 1-cells incident to v. Since every 2-cell
fi is incident to exactly two edges issuing from v, it follows that the corresponding
space H, s,y occurs in H, also twice. Therefore, the space H, can be represented
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naturally as a tensor square, and the trace Tr is well defined for any element of H,,.
In this case the Turaev—-Qoguri-Crane-Yetter model is determined by the function

®=Tr(b(ly) ® - ® b(l)).

This partition function is finite if for the group we take the quantum group SU(2),.
The main result is that Z(I') does not depend on T if T' ranges over the two-
dimensional skeleton of a triangulation of a given four-dimensional manifold. The
three-dimensional version of this model is the Turaev—-Viro model, and the three-
dimensional version with the group SU(2) is the Ponzano-Regge model (see [44]),
which develops the Regge model and assumes that the lengths of the edges vary
discretely, namely, | = dj, where j = 0,1,1,%,... . Corresponding to any j is a
representation of the group SU(2) of spin j.

Models of spin foam enable one to use the Gibbs approach to the so-called loop
quantum gravity, which was studied earlier in the framework of the Hamiltonian
approach. This model was based on new variables introduced by Ashtekar in general
relativity, and it used the Penrose networks as a convenient basis in the function
space on the set of all connections in the space at a fixed instant.

Topological quantum field theory. The axioms of topological quantum field
theory in [23] resemble S-matrix axioms rather than give models of the structure of
space-time. Gibbs families are closer to the physical representation of topological
field theory in terms of functional integrals. The known models of this theory
deal with finite-dimensional Hilbert spaces related to boundary manifolds. For the
classification of such cases in dimension two, see the last chapter of [27]. Here we
can only mention the corresponding problems from the viewpoint of Gibbs families.
Let us consider triangulations of a two-dimensional compact orientable sur-
face of genus p with k holes, and let S be a spin space. We consider the set
J(N,my,...,myg) of triangulations with a given number N of triangles and with
given numbers my, ..., my of edges on the k boundaries. For a given potential one
can consider the conditional partition function Z,,, ., (Sboundary) for given values
Sboundary Of the spin on the boundary, which yields a positive (non-normalized)
measure p(my, ..., mg) on the configurations $™1 x --- x §™ and a measure on

D)= [J §™ x-oxsm™

M, Mg

for a given k, or even a measure on |J, D(k). In particular, there are the following
questions: in which cases are these measures finite, and for what scalings does the
weak limit of these measures exist? This can give examples in which the Hilbert
spaces are infinite-dimensional.

Causal sets. By a causal set V' (see the brief survey [45]) one means a partially
ordered set with a relation < that is transitive, reflexive, and antisymmetric (which
means that if # <y and y < z, then z = y). A given (finite or countable) causal
set determines an oriented graph G (the Hasse diagram of V) in such a way that
V' becomes the set of vertices of G, and there is a directed edge from z to y if
T <Y, x # Yy, and there is no other z such that z < 2z < y. Conversely, any oriented
cycle-free graph defines a causal set V. Therefore, causal sets reduce to graphs with
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local structure. Causal sets are of interest because discrete analogues of the light
cone and other notions used in general relativity can be defined for these sets.

Non-commutative lattices. Corresponding to a non-commutative C*-algebra is
its dual object which can be interpreted as a discrete non-commutative space. This
topic belongs to the next (quantum) section of the paper, and here we say only a
few words.

A topological space X can be approximated by discrete sets in two ways: one
can either take an expanding sequence of dense subsets of X or use an embedded
sequence of coverings U" = {U?} (and consider the set of all closed points of the
projective limit of this sequence). An arbitrary covering of a compact space X
generates a finite partition of X, and the set of blocks of this partition is a Ty-space
in the quotient topology. Defining a Tp-topology on a finite or countable set is
equivalent to defining a relation of partial order on this set, namely, < y if and
only if y belongs to the closure of {z}. As we saw above, to a partially ordered set
we can assign a natural oriented graph, namely, the Hasse diagram of this graph.

Every finite partially ordered set V' is the set A of irreducible representations of
some C*-algebra A (which is not unique in general); see [46]. In this case, if A is sep-
arable, then the set Ais homeomorphic to the space prim A of primitive ideals of A,
which is called a non-commutative lattice. For an application of non-commutative
lattices in a simple problem of quantum mechanics, see the last chapter in [46].

§5. Quantum discrete spaces

5.1. Quantum graphs. We first assume that S is at most countable. We denote
by H = [5(A?) the Hilbert space with an orthonormal basis e, enumerated by
finite spin graphs a € A that is, (eq,€3) = dag, where e4(8) = dag. Every
vector ¢ in J{ is a function on the set A© and can be represented in the form

6= dla)ea €H, 6> = lo(a)f*.

The states of the system are wave functions, that is, vectors ¢ with unit norm
18I = X lp(a)f> = 1.

The definition of quantum ‘Gibbs’ states differs from the classical Gibbs states
in that in the quantum case one automatically obtains a dynamics, or the corre-
sponding Hamiltonian. On quantum discrete spaces, the dynamics is related to
substitutions. Roughly speaking, a substitution is the replacement of a regular
subgraph v by another subgraph ¢, but the exact definition is more complicated
because one must be careful about the rule for joining the subgraph ¢ to the com-
plement of ~.

A vertex v € V() C V(G) of a regular subgraph v of G is said to be interior if
any edge incident to this vertex joins it to another vertex -, and it is said to be a
boundary vertex otherwise. The set of all boundary vertices is called the boundary
07 of the regular subgraph ~.

Definition 5. The substitution rule (the production) Sub = (T, TV, V4, Vy, ) is
determined by two ‘small’ spin graphs I' and I", by subsets 1, C V = V(I') and
Vy C V! = V(I'"), and by a one-to-one map @: Vo — Vg preserving the spins. Sup-
pose that there is an isomorphism ¢ : I' — v onto a regular spin subgraph v of a spin
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graph a such that ¥(Vp) D 07. The transformation (substitution) T' = T(Sub,v)
of a corresponding to a given substitution rule Sub and to an isomorphism 1 is
defined as follows: delete all edges of the subgraph v = ¥(I") and all vertices in
V(v) \ ¥(V); in the disjoint union of @ and I" identify any Y(v), where v € Vj,
with the vertex (v) € V. We denote by T'(Sub, 1)a the resulting spin graph. The
function s is inherited from a on V() \ V(v), and from T” on V (¥).

Examples of substitutions: deleting an edge, adding an edge with another new
vertex at a given vertex, joining two vertices by an edge, modifying the value of
the spin at a single vertex. The mere possibility of such a substitution depends on
some neighbourhood of the place of substitution.

For arbitrary N and p we denote by Hy , C H the finite-dimensional subspace

spanned by all e, with a € Uﬁ:’:o AiffL. Let Py be the orthogonal projection
onto Hy . For a given p there are natural embeddings Hy , C H N+1,p- In what
follows we fix some p and omit this subscript, bearing in mind that the degrees of
the vertices do not exceed p. We write Hy = Hy p-

Definition 6. A grammar (to be more exact, a grammar on graphs) is defined to
be a finite set of substitutions Sub; = ([';,T'}, V; 0, Vio, i), where i = 1,...,|Sub|.
A grammar is said to be local if the graph I'; corresponding to Sub; is connected
for any ¢. A grammar is said to be locally bounded if the set Un .Agg’)p is invariant
with respect to all substitutions of this grammar for sufficiently large p.

Let us define the main operators a;(j). The index 4 corresponds to a substitution
of the grammar. For a given i we consider all possible pairs (v, £), where ¢ € A9
and ¢ is a map from I'; onto a regular subgraph of the spin graph £. In this case a
pair (¥, §) is said to be minimal if )(T';) does not belong to a neighbourhood of 0
of radius less than the radius R(§) = Ro(¢) of the graph ¢ itself. For a given i we
enumerate all regular pairs by indices j = 1,2,...:

(i, &1)s (Wizs &), -, (Wi, &ij)y o -

If ¢ contains two regular subgraphs isomorphic to I'; that are taken to each other
under a non-trivial automorphism of the graph ¢, then corresponding to these
subgraphs are distinct indices 7 in our enumeration.
We set
ai(jleq = ey, B = T(Sub;, pv;)a,

for any a such that there is an isomorphism p of the spin graph &;; onto the
neighbourhood Og)(0) of the origin in the graph a. We also set a;(j)eq = 0
otherwise. It is clear that this definition does not depend on the choice of p. We
also note that ||a; ()|} = L.

Let us introduce the linear operator H = H({Sub;, i = 1,...,k}) corresponding
to the grammar Sub; = (F';, T}, Vio, Vo, i), ¢ = 1,...,k, as the formal sum

k
H = Z: Z Aia;(J)
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for some complex constants ;. The operator H is defined on the linear space H°
of finite linear combinations of the e,. It should be noted that this operator does
not depend on the enumeration 1; ; because of the following equivalent definition:

k
He, = Z Z €T (Sub;, )

i=1

for any «, where for a given i the sum is taken over all embeddings ¢: T'; — a.
The adjoint substitution Sub® = (I'*, T, Vi, V5*, »*) to a substitution Sub is
determined by the following properties: I'* = F’, M =T Vyf =V, V=W, and

©* = 1. If substitutions i and i; are adjoint, then for any j there is a j; such

that (a;(j))" = ai, (j1).

The Hamiltonian is formally symmetric, H = H*, if for any i there is a j such
that Suby; is adjoint to Sub; and A; = A;.
One-dimensional grammars. If p = 2, then the graph is linear, and it can be
cyclic or non-cyclic. Equivalently, one can speak of a word o« = x1 ...x,, where
z; € S. In this case, the substitution rule is a pair v — 4, and the substitution is
the transformation

avyB — add

for any a and [, where the concatenation of the words o = x1 ...z, and 8 =
Y1 ... Ym is defined as
al=x1...TpY1 ... Ym-

The operator a;(j) permits one to make the substitution ¢ in the word a only for
a subword +; starting with the symbol with index j. The substitution adjoint to
v —=disd = .

Self-adjointness. Let H be symmetric on the linear space H° of finite linear
combinations of the elements e,. All these vectors are C'°° elements for H (see [47]),
that is, He, € H°. We note that H is unbounded in general.

Theorem 12. Let a grammar be locally bounded and let H be symmetric. Then
H is essentially self-adjoint on HO.

The proof follows from the next theorem and from the Nelson criterion; see [47)].
This defines the group exp(itH). The lemma does not assume that the Hamiltonian
is symmetric.

Lemma 10. For any grammar an arbitrary vector ¢ € H® is analytic for the
corresponding Hamiltonian, that is,

S !H’“¢I|
>

for some t > 0.

It suffices to take ¢ = e, for some «. In this case the number of pairs (i, )
with a;(j)eq # 0 does not exceed CV, V = V(a), for some constant C. Indeed,
the number of regular subgraphs 1somorphlc to a given ‘small’ subgraph depends
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on the number of vertices and on p. Let us represent the expansion of H in the
form
S
a

where V, is equal to some A;a;(j). Then
H'eo= Y Vo, -Viea=3 Coes (24)

‘The maximal number of vertices of the graphs /3 in the expansion Va, -+ Va, e does
not exceed V(a)+ Cn, because every factor adds a number of vertices that cannot
exceed some constant C;. Therefore, for any given e, a,...,a,, the number of
operators 1, ., that have a non-zero contribution to Vanii Van - Vo, €a does not
exceed C(V(a) 4+ Cn) for some constant C. Thus, the number of non-zero terms

Va. -+ Va,eq does not exceed the expression

cr TV ()l + Cuj) = (CcCr) 11 (ILC(L)’ +j>

j=1 j=1 1

V(@)

n ‘//
< <ccl>"n!j[[1<1+ C—) < (OO ainE

1J

and the norm of any term is bounded by (max A;)”. This proves the convergence
of the series for |t| < to, where ¢y does not depend on «, and with it the lemma.

5.1.1. C"-algebras. There are some useful C*-algebras related to grammars on
graphs: two universal C*-algebras B and C and a grammar-dependent C*-algebra
A(Gr). Let us introduce these objects.

Let Cn be the algebra of all operators in the finite-dimensional space Hn =
Hnp. The operator C' € Cn can be assumed to act on H if we set Ce, = 0 for
eq ¢ Hnp. Then Cy C Cnyq, and we set C = Un Cn. The algebra C consists
of compact operators. It was used in [48].

Let Ay = Apn(Subs, i = 1,...,k) be the C*-algebra of operators on H
generated by all operators a;(j) such that R(;) < N. Then the natural
embeddings ¢n: Ay — Any; are defined. The inductive limit Uy Any = A°
of the C*-algebras An is called the local algebra, and its norm closure
A = A(Sub;, i =1,...,k) is called the quasi-local algebra. The structure of the C*-
algebra A = A(Sub;,i = 1,...,k) depends on the grammar and on the
chosen class of graphs. We present below a number of examples of Hamiltonians
and C*-algebras.

The universal C*-algebra B is generated by the operators a;(j) for all possible
substitutions, and B differs from the algebra of all bounded operators. For instance,
many operators diagonal in the basis e, do not belong to B.

5.1.2. Automorphisms. In what follows we always assume that the grammar is
locally bounded and that some p is fixed in such a way that the set UN‘Ag\??p
is invariant with respect to all substitutions of this grammar.



960 V. A. Malyshev

A formal Hamiltonian defines a derivation of the local algebra A°. Let us con-
sider the operator

HN - Z Z )\,(ll(])
=1 j: R(€i;)<N

We define a group of automorphisms of A as follows. We take a local element
A € A° find a number N such that 4 € Ay, and set

af™ (A) = exp(iHnt) A exp(—i Hnt).

Theorem 13. There is a tg > 0 such that for any local element A and any number
t with |t| < to the limit
lim ol (4)

N—oo

exists with respect to the operator norm. This defines a unique automorphism of
the quasi-local algebra.

Proof. Let us consider the Dyson-Schwinger series

A;N):A+Z(zn)' [Hn,...,[Hn,[Hn,A4]] ... ]
n=1 ’

We can restrict ourselves to local elements A = a;(k) for some ¢ and k.

)
Lemma 11. The norm of the operator (Zn)' [Hy,...,[Hn,[Hn,A]]...] is bounded
above by (Ct)"™ independently of N. .

We note that the commutator belongs to A and is equal to a sum of commutators
of the form

[ain (Jn)ﬂ R [ai2(j2)v [ail(jl)aA]] . ]

multiplied by A;, - - A;, . Each of the commutators is equal to a sum of 2™ terms of
the form

tag, (Pn) - ag, (p2)ag, (p1)-

We prove that, after collecting like terms, the number of terms of this kind in the
sum under consideration is at most H;’lzl Cj = C™"n! (independently of N). To
this end, we must use the other definition of the Hamiltonian. Let us introduce the
following notation: if a;(j)es = er(sub,s), then we write a;(j)ea = a{T'(Sub, ¥))eq.
Then for any a, any two substitution rules i1 and 45, and any two maps 41 : I';; = m
and 1s: I';, — ~» onto disjoint regular subgraphs 71 and v of the graph « the
corresponding transformations in terms of operators a;(j) give terms that cancel,

a(T(T(Suby, ¥ )a, Subs, 12))a(T (a, Suby, ¥1))eq
— a(T(T(Subs, ¥2)a, Suby, ¢1))a(T (a, Subs, ¥2))eq = 0,

and so on by induction.
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One can prove similarly that AgN) converges termwise as N — oo (for any n) to
the series

A4 =4+3 (ign[H,...,[H,[H,A]]...].

Each term of the last series is defined, and it follows from the above estimate that
the series is norm convergent for any sufficiently small ¢. The existence of the group

of automorphisms for every ¢ can now be proved as in the Robinson theorem for
quantum spin systems, see [4].

5.1.3. KMS-states on A. We consider here the KMS-states on A, which are a
natural generalization of KMS-states on a lattice. However, sometimes it is useful
to consider KMS-states on the algebra C (see [48]), where the situation is different.

We restrict ourselves to the case p = 2, that is, to the one-dimensional linear case,
and assume that 2 < |S| < cc. Generally (if the length of a word is changed under
substitutions), the algebra Ay is not finite-dimensional, in contrast to quantum
spin systems. We can introduce the finite-dimensional algebras Fy generated by

all the operators aEN)(j) = Pna;(j) Py and assume that these operators act on H .

Let us define states on Fn by setting

(An)n = Zy' Ten [An exp(—BPnHPN)],
Zn = Tryexp(—3PnHPy),

for any Ay € Fy, where Try is the trace on Hy. Any limit point of this sequence
defines a state on A such that

<A> = lim <PNAPN>N
N—ooo

if A is local.

Theorem 14. If 8 is sufficiently small, then log Zn ~ fN for some constant
f>0.

Proof. We first note that the assertion is obvious for H = 0, because Try 1 =
dim j‘(N = 2N+1.
We can write

Zv= Y za),  2a)=(ea exp(—BPvHPy)ea),
a: Rp(a)<N

or, which is the same,

ZIn = Z (=5)" z(a, (Ix, Jr)), (25)

k=0 I, Je a'|a|<N
where

z(a, (Ix, Jx)) = Xiy -+~ Nig (€ay Prai, () Py - - - Pyai, (j1) Prea)
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for ordered sets I, = (i1, ..., i) and Jp = (ji1, ..., jx), that is, z(a, (I, Ji)) is equal
to either A;, --- A;, or 0. Our objective is to obtain a cluster representation for

AN = > 2
o:|la|=N
of the form
2AN) =D ey, e, (26)

whose precise definition is given below, after which we can apply the general theory
of cluster expansions (see [36]). To derive the expansion (26), we use a resummation
of the expansion (25) and a recursive construction.

In (26) the sum is taken over the tuples (Uy,...,U,) of disjoint subsets. Let
Up ={1,...,N}\ U, Ui. We first define Uy and then the ‘clusters’ U; and the
numbers cy,. We do this separately for each term

(=B)*
k!

2o, (I, Ji))

corresponding to a word a of length N and to some (I, J;), and then we sum the
results.

Definition of Up = Up(a, (I, JJx)). We say that a substitution T = T(Sub, )
preserves a symbol at a position v of a word « if the image of ¥ does not contain v.
It is convenient to denote by T, the substitution corresponding to the operator
b(p) = ai,(jp), p = 1,...,k. A symbol v of a word « is said to be preserved
for a given (Ii,J;) if any substitution T,, p = 1,...,k, preserves this symbol.
Similarly, a symbol v of a word b(s)...b(1)e, is said to be preserved for a given
(Ix, Jy) if every T; with s < [ < k preserves v. For a given pair (a, (I, J;)) the set
Uo = Uo(a, (I, Ji)) is defined as the set of all symbols of the word a that belong
to all the words b(s)...b(1)e, and are preserved for any s.

Definition of the clusters Uj(a, (I, Jk)). We write ag = a and a, = Ty - -- T} a,
where s > 1. Let us introduce a system of partitions g, r,s = 0,...,k, of the
set of symbols of the word «a; into subsets. The partition gy = go is defined as
the partition of « into separate symbols, that is, the partition of the set {1,..., N}
into N blocks.

For a given substitution T transforming the word « into a word 3 and for a given
partition g = g(a) of the set V() of symbols of the word o we define a partition
g(B) of the word 3 as follows. Let V;i(a,T) be the set of symbols of o preserved
by the substitution 7". Suppose that, in the new word 3, the substitution T deletes
the set of symbols V(a) \ Vi(a) and adds a new set of symbols V. Thus, V(3) =
Vi(a) U V. We say that a partition g(3) = g(3, g(«),T) of the word 3 is induced
by the partition g = g(«) and the substitution 7' if the following conditions hold:

1) if a block I of the partition g(a) belongs to Vi (a), then this block is also a
block of the partition g(3);

2) the vertices of 15 form a single block together with all vertices (not
belonging to Vi (a)) of the other blocks I of the partition g(a) that intersect

Vi) \ Vi(a).
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Let us now define the partitions g; = gs0 = gs(«s) of the word a, by induction.
If g, is already defined, then g, is the partition of s induced by the substitution
Ts+1 and the partition g, of the word «;. We next use induction on r. If a partition
gs+1,r of as11 is defined, then we define g .41 as the partition of a, induced by
the adjoint substitution T.

Let us consider the partition gox. The blocks of this partition either are single
preserved symbols or contain more than one symbol. Let us denote the latter
blocks by U; = Ui(a, (Ix, Jx)) and call them clusters with respect to the given
pair «, (I, Ji). We note that the number L = L{a, (I, Ji)) of clusters does not
exceed k. Moreover, the set {1,...,k} is uniquely partitioned into subsets M; =
My(a, Iy, ), ... My = Mp(a, (I, Ji)) of substitutions relating to one of the
clusters 1,..., L, respectively. Let (I, Jm,), where I,,, = I,,, (I, Ji) and J,,, =
Jm; (g, Jr), be an order-preserving subset of (I, Jx) corresponding to M;.
Definition of expansion: expansion into connected groups. Let us consider
aset BC {1,...,N}. If there is a cluster corresponding to this set, then the set is
an interval.

Let My,..., My be subsets of {1,...,k} such that UleMi ={1,...,k}. We
denote by m; the cardinality of the set M;. To obtain the multiplicative expan-

_ 3k
( kﬁ') z(a, (I, Ji)), where the sets (I, J;)

differ from (Ix, Ji) only by the order of the'terms, and the order inside each of the
sets M, is preserved. This sum is equal to

sion (26), we take the sum of all terms

Gl W AR 7™ Lo, ((Lis J)) s Toms (s
(e s k) [[ 2 (U (s T T (T i)
L
(-8
:H mjl H/\
i=1 JEM;

To define the expansion (26), we use a resummation. For given subsets Uy, Uy, ...,
U, we consider z(«, (Ix, Jx)) such that U;(2(a, (I, Jx))) = U;, i = 0,1,...,n, and

we set A
cv=) (_]j) z(ev, (I, Ji))

for a given connected set U, where the sum is taken over all words a with the set
of symbols V(a) = U and over all sets (I, Ji) for which U is a single connected
cluster. We have the cluster estimate

cv < e (CA)WVI.

Therefore, the standard technique of cluster expansions gives log z2(N) ~ fN with
some constant f > 0. Hence,

log Zn ~ log {Z(N)(1+%]\2;-—)U+"')] ~ cN.
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Theorem 15. There is a By > 0, such that the limit

<A> = lim (PNAPN>N

N—oo

exists for any local element A, and this limit is analytic with respect to 8 for B < B.

Proof. For instance, let A = P; 5 be the projection onto the subspace generated by
the words that contain the word 4 at the jth position. We have

S vk
k=0 ’
o) _ﬁ k . .
=2 ( k!) > Tew(ai, () - - ai (1) A),
k=0 I, J
where the sum is taken over all Iy = (i1,...,4¢) and Jy = (j1,...,jk). The rest

of the proof is quite similar and reduces to an application of the general cluster
expansion technique.

Remark 5. The case of spin graphs with p > 3 must be similar to the theory
developed in §4.3.

5.2. Examples and structure of Hamiltonians. Let us pass from the general
theory to the simplest examples in the one-dimensional case. However, we first
indicate the relationship with the 't Hooft quantization.

5.2.1. ’t Hooft’s quantization. The idea that the physical laws on the Planck scale
can become transformations of a finite set with discrete time gioes back to Feyn-
man [49]. In the series of papers [50] and [51] 't Hooft discusses the quantization
of discrete single-valued (deterministic) maps.

If f: S — S is a single-valued map of a finite set S into itself, then there is a
subset Sp which is invariant with respect to f such that the map f: Sy — Sp is
one-to-one. Corresponding to this map is a permutation matrix U defined in 5(Sy)
by

Ue)(s) = o(f's).

By definition, the transformation U of the Hilbert space [2(S) is the ('t Hooft)
quantization of the deterministic map f. Moreover, U is equivalent to a direct sum
of cyclic shifts on discrete circles. In fact, examples of physical systems admitting
the above representation are based on unitary equivalence of the Hamiltonian to a
multiplication operator or to a shift operator (via the Fourier transform).

It should be noted that this is a kind of quantization of a ‘first-order system’, in
which case there is a matrix H such that

Uy = exp(itH), U =U.
At non-integral moments of time Uy does not define a deterministic map of S into

itself. Moreover, H is defined only up to multiplication of every eigenvalue by a
root of unity of a certain degree (which is equal to the length of the cycle).
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The simplest physical example is a particle with spin in a magnetic field. Namely,
in a finite-dimensional linear space with basis e,,,, m = -1, ... [, let the diagonal-
ization of a Hamiltonian be of the form He,, = ume,,. However, in another basis
given by

1 27
fn = ﬁzexp<_ W;\:nn>em7 n:0717"'7N_17 N:2l+1a

we have the deterministic dynamics of the form exp <Z¥H> : fn = fosek (mod N)
7

. . . ™ .
on discrete time intervals t — ¢ = N In the papers mentioned above, 't Hooft

presents less banal examples as well. However, the most general examples of this
kind can be constructed with the help of quantum grammars.

Quantum grammars on graphs were originally introduced independently, but
they can also be treated in the framework of the above ideas of 't Hooft with the
following new elements: the substitution operation is not single-valued on many
graphs (in the terminology of computer science, this operation is non-deterministic),
and the set S can be countable (the growth can be unlimited). Although there
are many ways to deal with non-deterministic maps, the choice of quantization
becomes unique up to a technical realization (sequential realization of any such
map, synchronous parallelism, or asynchronous parallelism) due to homogeneity
(independence of the location in the graph). We choose asynchronous parallelism.
If there are several deterministic maps, then one can assign coefficients (weights)
to these maps.

5.2.2. Quantum spin systems on a fized graph. If a Hamiltonian changes only the
configurations rather than the graph itself, then we obtain a quantum spin system
on this (fixed) graph. Conversely, any quantum spin system can be represented
as a grammar on a graph; this can be attained by an appropriate choice of
the constants A;. In this case the embedding ¢n: Ay — Apny1 is given by
A— A®1®---® 1. Algebras of this kind have been intensively studied (see [4]).

5.2.3. Linear grammars and Toeplitz operators. In some cases one obtains inter-
esting examples of C*-algebras which arose earlier from other considerations. For
instance, the C*-algebra Ay generated by the substitution @ — aa is isomorphic
to the C*-algebra of Toeplitz operators on l3(Z.), which is generated by shifts.
The investigation of the structure of a C*-algebra is often a simpler problem than
the study of the spectrum of the Hamiltonian; however, the solution of the former
problem can already give information on the spectral decomposition.

Let us consider the case in which S = {a,w} consists of two letters and the
substitutions are aw — w and w — aw. We set AMaw — w) = Aw = aw) = A.
In computer science this grammar is called a right linear grammar. The subspaces
H(Ly), where Ly is the set of words with exactly k symbols w (for instance, L; =
{a™w = aa...aw, m = 0,1,2,...}), are invariant. We refer to J(Ly) as the
k-particle space. Let H; be the restriction of H to H(Ly,).

Theorem 16 (one-particle spectrum). The operator Hi on H(Ly) is unitarily
equivalent to the operator of multiplication by A(z+271) in Lo(S',dv), where dv is
Lebesgue measure on the unit circle S' in the complezx plane C.
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The space 3(L;) is isomorphic to I5(Z) by means of the map aa...aw — m.
Under this isomorphism H becomes a Toeplitz operator on 19(Z ) given by

Ab+ Ab*,
where b is the left shift in I5(Z,), that is,
(bf)(m) = f(m-1), m=12,..., (bf)(0)=0.

Moreover, the C*-algebra A is taken to the C*-algebra Wy of Toeplitz operators,
that is, to the C*-algebra of operators on 2(Z,) that is generated by 6. We note
that the commutator [b, b*] is finite-dimensional. More generally, we have the exact
sequence of algebras
0K =W, 5™W >0,

where K is the closed two-sided ideal in W; formed by all compact operators on
I5(Zy), j is the natural embedding, and 7 is the natural projection of W; onto
Wi /K ~ W. Indeed, the commutator of any two elements of W1 is compact. This
assertion can readily be verified for the monomials of the form b;b, . . . by, with each
b; either b or b*. Passing to the limit, we prove this for any elements. Therefore,
W1 /K is commutative. We set

*

y = wb, y* =y ! =nab".
One can prove that all the elements

k
Z iy’
i=—k
are distinct and that the norm of such an element is equal to 3~ |¢;| (it suffices to
consider the action of these elements on the functions of the form f(m) that are
equal to 1 for some sufficiently large mn and vanish otherwise). Hence, W; /K ~W,
Thus, the continuous part of the spectrum coincides with the spectrum of the
multiplication operator.
To prove that the discrete spectrum is empty, we rewrite the equation Af—-Af=¢
as the well-studied difference equation
¢n:—)‘fn+fn—1+fn+la nzl,
$o = —=Afo + f1.
This equation has no solutions in {5 for ¢,, = 0.
Let us now consider the operator H on the entire Hilbert space, and let us restrict
ourselves to the words ending with w. Every word of this kind can be represented
in the form

2w ... a™rw, my,Ma,...,mp=0,1,2,....

a=a"wa

Accordingly, every basis vector in 3{(Ly) can be written as the tensor product

a = €q(1) @ €q(2) ® - ® €n(p)s a(t) = a™w.
In other words, H(Ly) is isomorphic to the kth tensor power of H(L;), and the
evolution is

exp(itH,) ® - - - ® exp(itHy),

or

H=-Hlg  --2l+--+1®1%.---® H;.

We have proved the following result.
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Theorem 17 (many-particle spectrum). The Hilbert space has the following de-
composition into invarient subspaces:

HE) =P HLr),  H(Lx) =H(L1) ® - @ H(Ly).

The Hamiltonian Hy, on H(Ly) is unitarily equivalent to multiplication by the func-

tion
k
Z Alzj + 25
j=1

in the space Lo(S*,dv) of functions f(z1,...,2x).

5.2.4. Expansion and contraction of the space. Let the alphabet consist of the
symbol a alone. We consider two substitutions a = aa and aa = a, A1 = A2 = A,
and the Hamiltonian

H = /\i +a2 ))

with real A\. In this case, the Hilbert space H is isomorphic to [5(Z,) because
a...a can be identified with its length minus one. The Hamiltonian is unitarily
equivalent to the Jacobi matrix

(Hf(n) =A(n—1)f(n 1)+ Anf(n+1).

We refer to this operator as a one-particle operator, keeping in mind that a
‘particle’ is associated with a quantum of the space. Here the evolution of the
space consists of (quantum) expansion and contraction which takes place at each
point independently.

The generalized eigenfunctions are found from the equation

(Hl - )‘)f = ¢a
or
On = nfnJrl + (n - l)fnfl - )\fn

Introducing the generating functions

0 o0
F(z)=Y fa2", @)= ¢az",
n=1 n=1
we obtain the following equation for F(z):
AT e @
1+ 22 1+22°

The homogeneous equation has the solution

1 Ly
A+ 2 AR 2t
exp 1+Zde =z T .

This implies, for instance, that there is no discrete spectrum. This model is studied
in more detail in [52].
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5.2.5. Lorentzian models and grammars. The Lorentzian model (see [53], [54]) can
be introduced as follows. Let us first construct a graph. On each of the lines
(fibres) t = 0,..., N on the cylinder R x S* = {(z,t)} we have {(¢) points z1(t),
., Typ)(t) that are ordered clockwise. Each pair of neighbours is joined by an
edge on the line ¢ = const. Every point z;(¢) is joined by edges to k(i) =1,2,...
consecutive points of the fibre ¢ + 1; we denote by K(i,t + 1) the set of these
points. It is assumed that K(i,t + 1) N K(i + 1,¢ + 1) consists of exactly one
point that is simultaneously the rightmost point for K (i,¢ + 1) and the leftmost for
K(i+1,¢t+1). The enumeration of points plays no role, and the graph is regarded
up to a fibre-preserving isomorphism. To any graph G we assign the ‘amplitude’

2(G) = exp </\ > ki, t)) .

it

We note that the sum ), k(i,t) is equal to the number of triangles between the
fibres t and t + 1. At the same time, > i k(i) =237, 1(t). Here the numbers k;
are positive (and arbitrary), and it is unclear whether or not this transformation
is unitary. If k; < const, then we can really construct the unitary and Euclidean
analogues of this transformation.

The unitary analogue coincides with the above quantum grammar for the expan-
sion and contraction of the space. Indeed, let us consider a triangulation of the disc
with m edges on the boundary at the instant 0 and identify the sequence of edges
on the boundary with the word aa...a of length m. The action of the operator
related to the substitution a — aa consists of attaching a triangle (with two edges
outside the disc) to the corresponding edge of the boundary, and the action of the
operator related to the substitution aa — a consists of attaching a triangle (with
an edge outside the disc) to two consecutive edges of the boundary.

A random analogue of this quantum grammar was studied in [11]. It was shown
that this leads to another universal class. To obtain the class corresponding to
dynamical triangulations with exponent g, one must study non-Markovian dynam-
ics with quadratic transformation of measures.

Lorentzian models regarded as Gibbs families were studied in detail in [52]. The
relationship of these models with causal sets is of importance for physics (see the
surveys [45] and [53]).

5.2.6. A particle on a one-dimensional quantum space. Let us consider the gram-
mar with S = {a,w} and with the substitutions

a—»aa, au-—a, aW-—wa, Wa— aw.

The subspace H; spanned by all the words a*wa!, k,1 = 0,1,2,..., containing
exactly one symbol w is invariant. The Hamiltonian is a mixture of the above
operator H and the discrete Laplacian H; for a free Schrodinger particle in I on a
finite set,.

5.2.7. Two types of quanta of the space. Let S = {a,b}, and let us consider the
four substitutions

1) a— aa, 2) aa - a, 3) b— bb, 4) bbb
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Here we have two invariant one-particle spaces, H, and H,. For instance, H, is
spanned by the words a, a®> = aa, ..., a”, ... . There are two invariant two-particle
spaces Hyp = H,y @ Hp and Hpy = Hp ® H,. For instance, H,p is spanned by the
words a*b, k,1 > 0. In the general case there are two invariant 2n-particle spaces for
any n: the space H,p), spanned by the words a¥1bh .. a*» b, My = H,@H,®
- ®H,@Hy, and the space Hyy,), defined similarly. In the same way, there are two
invariant (2n+ 1)-particle spaces for any n: Hy(apy» = Hp@Ho@Hp®- - @H, @ H,
and the space H(q4)»o defined similarly. Due to the decomposition

H= 9{0 S H, D Hp @ :}{ab D j-(ba S D g{(ab)n @ :}((ba)n B g-cb(ab)" & f}C(ab)"a T

the spectrum of the Hamiltonian reduces here to the spectrum of two one-particle
Hamiltonians discussed above. For example, the evolution on H,, is given by
the Hamiltonian H, ® 1 + 1 ® H,.

5.2.8. Symmetries and quantum grammars. We note here that to a given quantum
grammar one can assign certain representations of the Lie algebra D of diffeomor-
phisms of a circle. We denote by D,, and D_,, the Hamiltonians corresponding to
the substitutions @ = a"*! and a”*t! — a, n > 0, respectively. Then in the basis
Vi = egr we have Dy, = kvg,, for n 2 0. However, for n < 0 we have the relation
D,vy = (k+n+ 1)vgey, only. For large &k and for fixed m and n we can prove that

(D Dy ~ D.Dp)vp =(m—-n+ 0(1))Dn+mllk.

In this case we say that an asymptotic representation of the algebra D is given. We
can obtain more for cyclic words (for periodic boundary conditions), for which the
relation D,vy, = kvgy, holds for any |n| < k, and hence the relation

(DmDn - Dan)Vk = (m - n)DrH—ka

holds for any |n|,|m| < k. In other words, the last relation holds for any m and n
except for a finite-dimensional subspace H(m,n). We note that the spectrum of
Dy coincides with Z 4 in both cases.

To obtain a faithful representation of the algebra D, we must consider the cyclic
words in two symbols a and a~! with the relations aa™! = a~'a = e, where e is the
empty word, along with the substitutions D,, given by a = o™ and a™' - a"*!
for any n € Z. We note that we are referring to the representation —V5 ¢ in the
notation of [55].

Let us consider linear cyclic graphs (that is, words with periodic boundary con-
ditions) and the grammars on these graphs with the substitutions

a — aa, aa — a, aw — wa, wa — aw.

We single out the words with exactly one symbol w. We remark that all cyclic
words of the same length and with a single symbol w are equivalent. Let 3}, be the
Hilbert space spanned by these words; this space is isomorphic to I2(Z ). We note
that an asymptotic representation of the Virasoro algebra acts on H;.

If we pass from the equivalence classes of cyclic words to the enumerated words,
that is, to the basis ex ® j, j € Zy, then the map e, ® j — e, ® (j + n) defines an
action of the spin group Z for any n € Z, where j + n is regarded modulo k. Thus,
the symmetry (which was trivial above) shows itself in the added enumeration. The
action of Z can be represented with the help of fermion variables in accordance with
the 't Hooft quantization discussed above (see [50], [51]).
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