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A 2-dimensional complex is a union of a finite number of quarter planes Z2 having some
boundaries in common. The most interesting example is the union of all 2-dimensional faces
of Z%. We consider maximally homogeneous random walks on such complexes and obtain
necessary and sufficient conditions for ergodicity, null recurrence and transience up to some
“non-zero” assumptions which are of measure 1 in the parameter space.

The problem we address in this paper is of theoretical range. However, the results can be
applied to performance evaluation of some telecommunication systems (e.g. local area
networks) viewed as interacting queues. To enforce this assertion, a detailed example of
coupled queues in different regimes is presented.
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1. Introduction and preliminary results

The problem we address in this paper is of theoretical range. However, the
results can be applied to performance evaluation of some telecommunication
systems (e.g. local area networks) viewed as interacting queues. Consider for
example N queues, with lengths k;, k,,..., k,, served by a single server (bus,
circuit, etc.) visiting them according to the following polling strategy: only one
pair of queues, say (i, j), can be active at a time. As soon as one of the two
active queues becomes empty, for instance i, the server, using some specified
protocol, chooses a queue k and the new pair (j, k) becomes active.

A 2-dimensional complex is a union of a finite number of quarter planes 72
having some boundaries in common. An example can be the union of all
2-dimensional faces of Z%. We consider maximally homogeneous random walks
on such complexes and obtain necessary and sufficient conditions for ergodicity,
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null recurrence and transience up to some “non zero” assumptions which are of
measure 1 in the parameter space.

The main reason for studying this problem is that it is a step in advance
comparatively to the paper Malyshev and Menshikov [1], towards obtaining
classification of maximally homogeneous random walks in Z’I. In [1] the vector
field was constructed in terms of which a complete classification was obtained
for N =2, 3 and sufficient conditions for ergodicity and transience were derived
for N> 3. One of the main features of the vector field in question was that it
was deterministic. Our advancement, here, is that certain vector fields appear,
which are deterministic inside 2-dimensional faces, but give rise to random
scattering on 1-dimensional faces. We shall see that the calculation of the exit
boundary of some countable Markov chain (one-dimensional) is necessary
because of this phenomenon. This is a new phenomenon, which is common also
for Z¥. The second new phenomenon is that null recurrence exists for a set of
parameters which has a positive measure in parameter space.

We give an explicit solution to our problem: in fact it reduces to finding
stationary probabilities for finite Markov chains with » states, where n is the
number of 2-dimensional faces in the simplex considered, and to calculation of
the maximal eigenvalue of some (n X n) matrix with positive entries.

The paper is organized as follows:

After the main definitions and preliminary results in sections 1 and 2, we
formulate the main theorems 3 in section 3. The proof of the ergodicity
conditions, using a method of pasting local Lyapounov functions as in [1], is
given in section 5. Transience is proved in section 6, by using a simpler method
to construct more global Lyapounov functions. Proofs of recurrence and non-
ergodicity are presented in sections 7 and 8. An example of interacting queues,
submitted to different regimes, is worked out In detail in section 9. Possible
generalizations are briefly described in section 10.

We give now the main definitions and quote some preliminary results. We call
a 2-dimensional complex T any union of finite number of copies of R3:

(R2),={(xy, x);: x;20}, i=1,...,n.

We assume that all origins are identified, i.e. (0, 0) = 0 for all i. Some pairs
(AD A‘l)) of its one dimensional faces

(1)~{(x1, 0);: x1>0} (1) {(0 X,);t x2>0}

can be identified as well. This means that the points of A and A} lying at the
same distance from the origin are identified. We shall consider discrete time
homogeneous Markov chains .Z=_#7 with state space T, the integer points of
T, i.e. the union of all

(Z3); = {(x:, x3);: x;> 0 integers}  (R3),



G. Fayolle et al. / Random walks in two-dimensional complexes 271

taking into consideration the above identifications between them. We denote
the inner part of a generic 2-dimensional face by A®, e.g.

AD = {(x,, x5);: x,%,> 0},

Introduce also /?(1), AP _ the closures of AD A® and AD, AD _ the sets of
integer points of AV and A® respectively.

Examples

(1 T (or T) is called planar if any 1-dimensional face is identified with at
most one other 1-dimensional face. This means that 7 can be topologically
imbedded into R2. Examples are:

(a) 72,

(b) the union of 4 quadrants of 72,

(c) the union of three 2-dimensional faces of Z3.

No new ideas are necessary here and in fact these cases were studied 20 years
ago.

(2) The union of all N(N —1)/2 2-dimensional faces of Z¥, N> 4, is an
example of a non-planar complex. The simplest example to have in mind is the
union of five 2-dimensional faces of Z X 72, i.e. the union of two Z3 with one
two-dimensional face in common. B

(3)_T is called strongly connected if it is not the union of two complexes T
and T, which have only 0 as a common point.

Let us note that in T any line has a length. Whence, T is the metric space
endowed with the distance p(a, B) between «, B € T, equal to the minimal
length of a line between them. We assume that one-step transition probabilities
Papla — B) satisfy the following conditions:

Al. BOUNDEDNESS OF JUMPS _

(a) p,s=0if @, B do not belong to the same AP;

() pog=0if pla, B) >d for some fixed d < ;

(©) p.p=0if at least one component of the vector B —« is less than —1.

A2. SIMPLEST SPACE HOMOGENEITY
Let a, a’ belong to the same (open) face A which can be 1 or 2-dimensional.
If ACA® (ie. A=A® or A is a one-dimensional face of A®) and, moreover,

B -a'=p-a,
then

def A
paB =palﬁr ""pﬁ_a.

Thus, our Markov chain is uniquely specified by a finite number of parameters
p?, with y € A® such that A cA®. We also shall make some assumptions
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0;,...,0s, which we call “non-zero assumptions” and which exclude from our
consideration some hypersurfaces in the parameter space (in particular they are
of measure zero in the parameter space). Some of these assumptions are made
just for economy of space—time but others are very essential. They will appear
thereafter.

ASSUMPTION 0,
The Markov chain £ is supposed to be irreducible and aperiodic.

Then, e.g., this chain is ergodic iff any of its strongly connected components is
ergodic. Therefore, we shall consider only strongly connected complexes T. For
any 2-dimensional face A and any a € A, we define the vectors M(a), the
one-step mean jumps from «. They are all equal to

My= ) (B—a)pf ,=M(a), VacA.
geA
If « € A = A then we define M, = M(a) to be the collection of vectors M, ,
and M, 4o, for all A> A, where

AT Z (B _a)pﬁ—a,
BeA
MA,A(2)= Z (B.—a)p[g‘—a'
BeA?P

If one can imbed T into RY for some N, so that all A®) are orthogonal, then
M(a) for @ € AV can be defined as the usual vector of mean jumps.

THEOREM 1.1
If at least for one A = A® the vector M '+ has both components positive then
27 Is transient.

ASSUMPTION 0,
For any A the vector M, can have no zero component.

DEFINITION 1

Let A® be a 1-dimensional face and let S(A™) be the set of all 2-dimensional
faces A® such that AP c AD; §_ (AD) c S(AD) be the set of all A? such that
M, looks onto A®, ie. its component perpendicular to A is negative.
Accordingly, S_(A®) = S(AD) — S (AD). We call AP € §,(AD) (resp.
S_(AM)) an ongoing (resp. outgoing) face for AV, If S, (AD) = S5(AD), then
AW js called ergodic.

DEFINITION 2
Let us consider a 1-dimensional face A and a pomt a € AV, For any
2-dimensional A € S(AM), let us consider the half-line C#4, which belongs to A
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and is perpendicular to A at the point a. We call the following 1-dimensional
complex

HA(x) = U Cf(l)
AES(AD)

a hedgehog. For various a € AY, these hedgehogs are congruent in the obvious
sense. Let us consider the Markov chain .Z;u, with set of states H,a, (we call it
the induced Markov chain for A’) and one-step transition probabilities which
are the following projections

(1)
q;‘ﬁ = Zpaﬂ’7 a, B EHA(1)7
BI

where the summation is over all 8’, such that B’ belongs to the same face as
and (if this face is A = A®) the straight line connecting 8 and B’ is perpendicu-
lar to C#4». From the homogeneity conditions, it follows that the induced chain
for AV does not depend on the choice of a € AD,

ASSUMPTION 0,
For any AD, the induced chain £, is irreducible and aperiodic.

Then £ is ergodic iff A is ergodic. This explains the word. Let (k) be
the stationary probabilities of £, h € H,w, in the ergodic case. Let us define,
for any ergodic AY, a number v, — the “second vector field” on 1-dimensional
ergodic faces

Vo= Z ’TI'A(l)(h)PrA(I)M(h),
heHym

where Pr,» means “orthogonal projection of M(h) onto AV, If h € AY this
means

PrAmM(h) = MA(I)’A(I) + ZPrA(”MA(‘),Am'
AP

THEOREM 1.2
If v,0 > 0 for at least one ergodic AY, then .#. is transient.

ASSUMPTION 0,
Uy # 0 for all AD,

Now we want to show that the sign of v, is easy to calculate.
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LEMMA 1.3
SgNU 40y = SgN MA(I),A(I) + Z Prw MA(‘),A(Z)
AP AD AP
¢2]
Q//:(I)MA(I)’A(Z)
+MA(2) @) P
A
QA(I)MA(Z)

where Qi denotes the projection of a vector in A? onto the axis of A® other
than A®,

2. Random walks on hedgehogs

For a given hedgehog H,w, we call CA; its bristle. A bristle C 45 is called
ingoing if A® is ingoing, i.e. if the following number (representing the mean
jump along the bristle)

muo= Y. (h' —h)gf, (2.1)
Iy
which does not depend on the position of h € C,’,%(lz)), is negative.

When A" is not ergodic, we shall define a “scattering” probability
P, (AD, AP), for A2 S_(AD), which is the probability that the random walk
will go to infinity along C ,f((xz)). Under our simplest homogeneity assumptions, this
definition does not depend on the initial position, provided that this latter is
either at the origin of the hedgehog or on some ingoing bristle. Thus, we can
assume that it is at the origin 0 € H,w.

COMPUTATION OF THE SCATTERING PROBABILITIES
. 1 .
Let us fix AV, A® and put g,, =g, It is clear that

Zhecﬁ%hl)(h)
Zo#; eHAquhp(h) ’
where p(h) =p,a(h) is the probability that, starting from #, the particle on the
hedgehog will never return to 0. Formula (2.2) follows from the fact that

P(AD, A(z)) = const Z qonp(h),

(2)

hECAI)

psc(A(l)> A(Z)) = (22)

where const does not depend on the outgoing A®. We shall show now that

p(h)=1-(1-y)", (2.3)
where y = p(1) is the unique root inside the unit disc of the equation

(1-7)"= Zaw(1-7)", (24)
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with h € C,ﬁ(lz))/{O} (e.g. we can take h=1), and h'eC /’1‘((12)). The proof is easily
obtained from the recursive relationship

p(h+1)=p(1) +[1-p(1)] p(h)
and standard generating function method.

Proof of lemma 1.3
Iz,et H,» be a hedgehog such that all m,» are negative, for all its bristles
Cf((l)). Let
Tp» = Z 7TA(1)(h).

heCinA®

We claim that
A®
T @ Q A(I)M AD A®
To QM
To prove this, we note first that, for computing the above quantity, it suffices

to consider a modified random walk on the bristle C ,(‘((12)), i.e. on Z}, after slightly
“updating” the transition probabilities. More exactly, we define G, =gy, for
all h, W eC ,’,‘((n), except for gy, which is taken equal to

doo=1- Z Gon -

(2}

0#h'eCHy
Then /7, does not depend on this modification and its value in the case of
7! is a well-known result, yielding in particular exact ergodicity conditions for
random walks in Z2. (The point is that, due to the homogeneity, it is not
necessary to compute the exact values of the w,w(h)’s: only the drifts are
needed.) O

Remark
We have solved an exit boundary problem, using Martin’s theory terminology.
See Feller [4], for instance.

3. Formulation of the main result

DEFINITION 3

For given T and £, we define the following associated Markov chain .#
having a finite number of states n = | T |, equal to the number of 2-dimensional
faces of 7. (It is thus natural to denote these states by A®.) The one-step
transition probabilities p(AP, AP) of .# are equal to

P (A®, AD), if AP €S, (AV), AP €S _(AD),
p( AD, A(jz)) -1 if A =AP e S, (AV) for some ergodic

A(l)’ .
0, otherwise.
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We do not exclude that the associated chain be reducible or periodic. Let
&, ..., &, be irreducible classes of essential states. Let us consider some class
& with | .97 | > 2. We define the following function f on &7: If A® € &/, and
¢ 4 1s the angle between M, and the negative axis from which M ,» goes away
(see fig. 1), then we put

f(A(Z)) =log tg ¢ 0.

Heuristically, if we are, e.g., on the x-axis of A at a point (x, 0) and we
move along the constant vector field M, to a point (0, y) of the y-axis, then
exp f(A®) represents the dilatation coefficient o =y /x.

- If &7 is aperiodic and 7,(A®) denotes its stationary probabilities, we define

Mo )= Y w(AP)f(4P). CRY)

APe g

- If &/ is periodic, 7,(A®) is then taken to be the stationary probability in the
aperiodic subclass containing A®.
The vector M(%7) is defined by the same formula (3.1). Perhaps it will be
more convenient to normalize it, multiplying by N(2/)~! where N(&) is the
number of aperiodic subclasses in &7,.

ASSUMPTION 04
For all i, M(7) # 0.

Our main result is the following

THEOREM 3.1
Under the assumptions 0, ...,0 and if the assumptions of theorems 1 and 2
are not fulfilled, then 7 is recurrent iff, for any &/ with | &7 | > 2,
M(Z, ) <0. (3.2)

It appears that (3.2) is not sufficient for the chain to be ergodic and we find
both ergodicity and null recurrence regions. For this we have to define a number
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L(&7) connected with . Let us denote AP, ..., AP, ... the random states of
4 with AD € o,

LEMMA 3.2
The following limit exists

1 t
lim —t—log(Entg ¢A,_) =L(% ) (3.3)
- i=1
and does not depend on A € &7. Moreover

L(%7 ) =log A ), (3-4)

where A, is the maximal eigenvalue of the n;Xn -matrix, n,= |7 |, with
matrix elements

A(AD, AP) =p(AP, AP) & B & B, AD, AP € . (3.5)

Proof of lemma 3.2
Let us note first that for any two vectors [, /, with positive components

1

and then we notice that (3.3) can be represented in such a way. O

ASSUMPTION 0,
Forall i, | &7 | =2,

L(&Z ) #0. (3-6)
In the following theorem we assume also that all states of .# are essential. In

general, the limit (3.3) can depend on the initial nonessential state. All the
proofs, however, are completely the same.

THEOREM 3.3
Under the assumptions 0,,...,0, and if the assumptions of theorems 1 and 2
are not fulfilled then £, is ergodic iff, for any &7 with | &/ | >2

M(at,) <0
and
L(Z, ) <0. (3.7)
This implies that, if for all ; we have (3.2), but at least for one i we have
L(s4)>0,

then - is null recurrent.
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Remark 1
Due to the inequality

log MéE > M log ¢
for positive r.v. £, we have always

M(s4, ) <L(), (3.8)
and so in particular if

L(s4;) <0,
then

M(«7 ) <0.

The practical computation of ergodicity conditions can be achieved according to

the following sequence:

(1) Calculate the vectors of mean jumps;

(2) calculate sgnu o for all ergodic A?, using lemma 1;

(3) calculate the scattering probabilities, using formulas (2.2)-(2.4);

(4) calculate the stationary probabilities of the associated chain, which in the
general case give rise to a system of |7 | linear equations;

(5) calculate L(%) using (3.4);

(6) use theorems 1 to 3.

So we get a complete classification up to the assumptions 0,,...,04.

4. Quasideterministic process

Here we introduce an auxiliary process 7, on T with te R.. Consider a
particle moving along the constant vector field M., (with velomty M,») on any
face A® cT. When it reaches a 1-dimensional face A®, it chooses with
probability p(AD, AP) a face AP € S_(AD) and continues its way along A(,ZZ
and so on. So 7, is deterministic outside 1-dimensional faces. Let ny=x€T
and let

Tx) <T(x) < -+

be all times when 7, is on a 1-dimensional face of T. Let us define discrete time
process (imbedded)

Xn =Xn(x) = nr,,(x)’

We shall find the conditions of ergodicity, null recurrence and transience for
the process n, which will appear to be the same for the corresponding random
walk.
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LEMMA 4.1
Under the assumptions of theorem 3.1 the following conditions are equiva-
lent:
(i) (3.2) holds;
(ii) for any x, y,(x) reaches a.s. any neighbourhood of 0;
(iii) for any x, the time for n,(x) to reach any neighbourhood of 0 is a.s. finite.

Proof
If (3.2) holds then log y, = — a.s. by the strong law of large numbers. So
(1) - (i) < (iii). Vice versa, if we have
M(s, ) >0,
then log x, — = a.s. and so 7, cannot reach any neighbourhood with probability
1. O

LEMMA 4.2
Under the assumptions of theorem 3.2 the following conditions are equiva-
lent:
(1) (3.7) holds;
(ii) E7, is uniformly bounded, i.e. £7_, E(7; ~7,_;) <o, 7, =0;
(iii) m,(x) reaches zero with a finite mean time.
(iv) m,(x) reaches any neighbourhood of 0 with a finite mean time.

Proof
Obviously we have

(if) < (iii) = (iv)
Let us prove (i) = (ii). In fact if (3.5) holds then Ey, exponentially converges
to zero:

Ex,<Ce™
for some C >0, @ > 0 and all n. But also
El|7,—7,_,1 <CEx,.
So we proved that (i) implies (ii). Let us now prove that (iv) = (i), i.e. if
L(s£)>0,
then the mean time of reaching a neighbourhood of 0 by 7,(x) is infinite. Let
T(4 )= U A
Aes

For any x € f’(.&a/i) and any € > 0, let 7¢(x) be the first reaching time of the set
{y € T(Z): 1l y || <€} by the quasideterministic process 7,(x) (we take 7<(x) =0
if |X1 <e).
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PROPOSITION 1
Let x € T(27) and for any € > 0

E7¢(x) <oo.
Then vfor any r > 0 and for any € > 0
1
—E7™(x) =E7¢(x).
’

This is the obvious scaling property of the process 7,.

PROPOSITION 2 _
If there exists x € T(%7) such that for any € > 0

E7¢(x) <o,

then this property holds for any x.

Proof

(4.1)

Let us fix such x. Then for any y € T~(.M,.) there exist t€R, and reR,

such that
n(x)=ry

with positive probability. It follows that for any € > 0
Er¢(ry) <e

and so by pronposition 1
E7r¢(y) <

for any e > 0. 0O

PROPOSITION 3 .
If there exists x € T(.27) such that for any € > 0

E7¢(x) <o,
then for any x € T(%7)
Er%(x) <o,

where 7%x) is the first time of reaching 0 by 7,(x).

Proof

(4.2)

By proposition 2 (4.2) holds for all x and € > 0. As the number of 1-dimen-

sional faces is finite then due to proposition 1 for any € > €’ > 0 we have

sup  Er¢(x) <.
xeT(a):]x]l =€
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Let us consider the sequence €,=1/2", n=0,1, 2, .... Let

sup Ere(x)=C, <oo.
xeT():l xli =g

Then for any n

sup Er<+i(x) =C(2) (4.3)

x:lxll=e,
by proposition 1. Let now x € f(.sa(,.), Il x|l =1, and let us put

tx) =7(x), .., 5 (x) = £ (x) F 7ot (e (X)) .
But we have first

t*(x)17%x) as.fork—-w (4.4)
(in fact 7%x) is defined in this way) and second by (4.3)

k k
Etk(x)< ) sup Er<i(y)<Cy ), (%)k
i=1yeT(of):lyll =¢; j=1
It follows that
Er%(x) <

for all x (as in proposition 1). Proposition 3 is proved. O

But at the same time we see as above that if L(.27) > 0 then E, (x) increases
exponentially fast and so 7%(x) = . We came to a contradiction which proves
(iv—»@. O

5. Proof of ergodicity in theorem 3

Let us first consider the case when there is a single essential class &7 with at
least two essential states. So, all 1-dimensional faces are not ergodic. The
process 7, is called ergodic if the mean time f, of reaching O starting from a
point x € T is finite (for all x).

We should like (as in [1]) to use f, as a Lyapounov function for £ in the
following criterion for ergodicity [1]: .£% is ergodic iff there exists a positive
integer valued function m(a) and € > 0 such that

L PG g —fou < —em(a), (5-1)
p

for « € T— T, and some finite set 7, C T. Let 5} be the transition probabili-
ties in ¢ steps of the process 1, for a, B € T. For « and ¢ given, they differ from
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zero only for a finite number of points B. Let us suppose L(&7) <0. Then 7, is
ergodic and so, for « not very close to the origin,

fa = 1 + Zi)‘c(xlﬂ)fﬁ’
B
or

LGRS —fa=—1. (5.2)
8

Let us note that f, has the following properties:

(1) It is continuous everywhere except on the 1-dimensional faces where scatter-
ing occurs;

2 C,lxl <f,<C,| x|, for some C,, C,>0;

(3) for any 2-dimensional face A®, the function f, has a linear decrease along
any line parallel to M, in the direction of M ;

(4) due to the space homogeneity, f, satisfies (4.1) with m(a) =1 everywhere,
except for neighbourhoods of 1-dimensional faces. More exactly, let us take
some nonergodic 1-dimensional face AV and put for any A®

.@A(l),A(Z)(p) = {a: a&E F, p(a, /‘{(1)) =p}.
Then, if AP €S _(AD), a € Dy 4o(1), (5.1) can not be satisfied. For this
reason, we modify our Lyapounov functions as follows. Define
f‘.'= fa’ aeé_@(po),
* (Cy+Dlal, ac ID(p,y),

where

D(po) = U U Lj -@A(”,A(Z)(p)

AD APeg (AD) p=0
and p, is a constant to be specified below.
LEMMA 5.1

_ There exist p,, m, 8 > 0 such that (5.1) holds for the new Lyapounov function
f. with

m, a € D(py+1),
m(a) = 8 l a l; a e U AD U A(z)eS+(A‘1))-@A(1),A(Z)(1)a
1, in other cases.

Proof

We choose 6 > 0 sufficiently small; then we take p, sufficiently large and then
m = m(p,) sufficiently large. When m(a) = 1, it is easy to verify (5.1), due to the
linearity property 4.
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Let us now take a point @ € 9(p, + 1). One can prove that starting from «
after m steps, we shall be outside 2(p,) with probability 1 —€,, where ¢, =
€,(m) = 0 when m — o, uniformly in a, with |a| > a,, for some a, sufficiently
large. This follows just from the transience of the corresponding hedgehog.

It follows that (5.1) holds since, for large m, we can take e, arbitrarily small
with

f(B)=f(B) <Cy(la|+md),

where B & 9(p,) is the final point after m steps.

Let now a € Dy 4ofl), AP €S (AD) and £(a) be the position of the
random walk starting from «.

Let A, €S5_(A'). Let us denote n,(a, A,) the point of R3 = A, which is the
unique point of A;, where process 7, is to be found at time ¢, after having
started from «.

LEMMA 5.2
Let t =8| a|. Then, for any €,, €; > 0 sufficiently small, there exists a,> 0
such that, for any |a| > a, and for any A; € §_(AD),

)

| Probl¢,(a) € A;, 1€(a) —n(a, A)] <elal}—p(A, A)l < ;o

(5.3)

where 1 = |S_(AD)].

Proof
From the point a € 9, ,(1), we make first e;]a | /(2(d + 1)) jumps. Then, for
| | large enough, with the probability p; such that
€
307

we shall be in some point «; € A; satisfying
p(a;, n(a, A;)) < 36l al.

After starting from «;, we perform the remaining (8 — €,/(2(d + 1))) | a | jumps.
This will be in fact a translation invariant random walk in Z? and, using
Kolmogorov’s inequality, we prove that, for |a| large, it will never go out of A,
with probability 1 —e€,/3l. But, moreover, by the Law of Large Numbers, its
final point £ (a;, a) will satisfy the inequality

|pi _p(Aa A,)l <

lal| < ze;lal,

(o~ zax)

2(d+1)
with probability 1 —e,/3/. Putting together all these estimates, we get (5.3),
concluding the proof of lemma 5.2. O

AT a)— |« +MAI
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We can finish now the proof of lemma 5.1. From (5.2), we have
Z p(r) —f, = —t. (5.4)
Companng (5.1) and (5.4) yields
Y pRf—Ff.= ZP(’) —fu+4,

where
A<e(Cy+Dlal(l+dd)+e;lal. (5.5)

So for €,, €5 small we get

Y p 1 —38lal,
concluding the proof of lemma 5.1 and the ergodicity. O

If there are several essential classes, we use the same Lyapounov function as
before inside 2-dimensional faces and in a vicinity of nonergodic 1-dimensional
faces. We define it in a neighbourhood of ergodic faces, exactly as it was done in
[1] for Z3.

6. Proof of the transience

Assume that, for the class &7,
M(&; )>0. (6.1)

We shall prove then that .7 is transient.

Let £(a) be the position of the random walk corresponding to .#, corre-
sponding to the initial condition «, i.e. £i(a) =a. Choosing «a # 0 belonging to
some AV, we define the following sequence of random times 0 =7, <7, < - - -
<7, < -+ by induction: if £ (@)= 0 then 7, is the first after 7, _; hitting
time of 0 or some 1-dimensional face A® = A® different from the face AD | to
which £, (a) belongs. Of course, if £, (a) =0 for some 7, then 7,,, =17, +1.
Let us consider the new Markov chain { (@) =¢, (a), {O(a) «, the state space
of which is the union of all 1-dimensional faces |J A® and 0. The probability of
sometimes hitting 0 are equal for £,(a) and ¢, (a). So it is sufficient to prove the
non-recurrence of ¢ ().

LEMMA 6.1
Let us consider two 1-dimensional faces A®, A{, and the corresponding
2-dimensional ones

AP €S, (AD), AP eS_(AV) NS, (AD).
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Then, for any € > 0, one can find D, > 0 such that, for any g € AD,

D
IP{{I(B) AP, | 14(B) | —tg ‘I’A(f)l < 6’ﬁ|> "P(A(f)a A(z))l < I_BEI—

Proof

Let us note first that, for any A9 €S, (AD), we have p(AP, A®)=
p(AD, A®). As the jumps are bounded, we have 7, >[|B|/d] as. It follows
(see lemma 1.1 [1]) that there exist 8,, 8,, D, > 0, such that, for any 8 € A® and
any teZ,, t<[|Bl/d],

P{p(£,(B), AV) < 8,t} <D, e,

We also have

|P{p(§“,(;3), AD) > 5,t, £4(B) eA<2>} —p(AP, A@)){ <Cye % (6.3)

for any ¢ < | B|/d, where C; is a positive constant.
For any €,, 0 <€, <1, and ¢, =[¢,| B| /d],

|£.(B) —B| <& 1Bl (6.4)
To prove (6.2), it is sufficient by (6.3), (6.4) to prove that, for ‘fv,l( B) such that

P(fv;l(B)a A(l)) > 8ty

and for any €, > 0, there exists a constant C, = C(€,, €,) > 0 (not depending on
B) such that

P{fvﬂ(B) EA(ll)’ P(fvn(ﬁ) + (71 - t1)MA<2)) > € I8 I/P('fvt,(BL A(l)) > 51t1}
G (6.5

< —. .
3 )

To prove (6.5), we consider A® imbedded into Z? and the space homogeneous
r.w. £, t €7, on this Z2, with initial value

£0=£.(B)
and one step transition probabilities

p'(a,B)=p(a+a’,p+a’)=p(a, B),
forall a, B A®, o' € 7°.
Let 7' be the first hitting time A by &,. We choose T€ Z, and e, > 0, so
that

1B

P(f()’ A(l)) >06,t=10, “ g > €51 Bl
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and
p(g(,), A(ll)) + TPrA(t)MA(2)+E3|B| <Blﬁ l(l +61) + TPrA(l)MA(2)+€3Iﬁ| < 0
Let us note that, if

max |&/ —£)— Myot| <eslBl,
t<l0,T]

then 7' <T and ¢ € A® for all ¢t <7'. From this remark and Kolmogorov’s
inequality, we get

P,(B) € AP, p(£,(B), By + Myn(r,—1,)) <e3| Bl /£,(B))
>P{ max ]yfv,(ﬁ) —fv,l(B) —(t—t)) Mo

telt,m

NV AG)

=P< max]|§,’—§0—tMA<z>| <€3|B|>

tef0,7’

\Y%

P max [/~ £~ tMy0| <e;1 81}
te[0,T)

s
318l
for some constant Cs5 > 0.

The last step to derive (6.5) is now achieved by choosing 7 such that
T <const|B|. Lemma 6.1 is proved. O

It follows from lemma 6.1 that, for any sequence A,..., A, € &7 of 2-di-
mensional faces, for any a €A;NA; and any € >0, n € Z, there exist C, =
Cy(e, n) not depending on @ € A, N A, such that

|P{6(@) €A N Ky 10(@)] > (t8 b4, — €)1 L i(@)], k=1,...,m)

Cs
—p(Ag, A)P(Ay, Ay)...p(A,_y, A)| < Tal (6.6)
Let us choose € >0, 6 >0 and n € Z, so that, for any A, € &7,
Y 2 pW(Aq, AP) log(tg dam—€) >8> 0. (6.7)
k=1 A®

Due to (6.1), it is always possible to satisfy (6.7) since
1 n
— Z p(k)(Ao, A(z)) —>7T(A(2)), as n - o,
n k=1

for any A,, A®, whenever A, is an essential state in the associated Markov
chain.
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To prove the transience of {,(a), k€ Z,, it is sufficient to prove the
transience of the chain 1, = {,,(a), k € Z,. We shall use Foster’s criterion [5]
recalled thereafter: if for a Markov chain with state space X and transition
probabilities p;;, i, j € X, there exists a positive function f defined on the state
space X and a set A C X, such that

jeX

and

inf f;> sup f,
ied jex—A

then the Markov chain is transient.
We define f on the state space of 7.

1

fla)={log3lal’
1 in the other cases.

if @ #0 and a € A®, for some A? € o7,

Let us prove that, if |n,| is sufficiently large, then

E(f(”h)) <f(no)- (6-8)
In fact, if f(n,) =1, then (6.8) evidently holds. Let

and 7m, €AY,

f(n0)= log3|n0|

for some 1-dimensional face A®. Then, by (6.6),
E(f(m)) < Y p(Ags Ay)...p(A,_4, A)
Ay A

freers n

1 C,
X + ,
log[31mo ITT7_(te ¢4, —€)] [0l

where Ay, €S_(AD), A, € &. But, for |n,| sufficiently large,

(10gl3lnolj=fl[1(tg ¢>A,.—6)])_1

(6.9)

1 1 n !
= 1+ log(tg ,—e)
log3|n0|[ log3|n0|(jz=:1 (te ¢, )]

1 ¥, log(tg ¢, —¢) +0( 1

Slog3ingl 2 2
og 3ol (log 3| ) (log 31m,1)

. (6.10)
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From (6.9), (6.10), (6.7), we get

1 8 1
U1 < tog3TmeT ™ o 3mly ((10g3l'no|)2

Transience is proved. 0O

Theorems 1.1 and 1.2 are in fact implicitly contained in the results of [1]. We
shall briefly explain how they could be proved.
The proof of theorem 1.1 is based on the following criterion of transience:

LEMMA 6.2
Assume that, for the irreducible Markov chain with state space S, there exists
a function f:§ — R, such that
(i) for some d>0, | f, —fz | >d=p,p=0a, BES;
(i) Xgpopfs—fo>¢€ forsome e>0andall a €A, ={a:f, > C} #@, for some
C>0.
Then the chain is transient.

Proof
See [1]. O

Let A® be a two-dimensional face, with M, having both components
positive. Then we can construct a Lyapounov function f, taking it equal to 0
outside A® and e-linear on A®, as in [2]. To prove theorem 1.2, we could use
condition B’ and theorem 2.1 of [1].

7. Proof of recurrence

Here for simplicity we also assume that the associated chain has a single
essential class with at least two essential states. Let

M=M(2) <0. (1.1)
We shall show that _#7. is recurrent. As in the proof of transience for any
1-dimensional chain A’ and any @ € A, a # 0, we consider Markov process
{(a), n€Z,. See the definition of this process in section 6. To prove recur-
rence of .7 it is sufficient to prove recurrence of {,(a).
Let us choose €>0, §>0, i€Z, so that for any state AP €./ the
following inequality holds

Y Y p®(AR, AP) log(tg aye +E) < —5. (72)
k=1 AQec o
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By (7.1) this is always possible as for any states AP, A® € o7 we have

n
! Y. p®(AD, AD) - 7 (A®).
=1

To prove recurrence for the chain ¢, (a) it is sufficient to prove recurrence of
the chain 7,(a) = {;, ().

To prove recurrence of 17,(a) we use the well known recurrence criteria [6]: a
Markov chain with the state space Z, and transition probabilities p,;, i, j€ Z ,,
is recurrent if there exists a nonnegative function f on Z, and a finite set
AcZ, such thatforanyieZ, —A4

Z pijfj _fi <0
Jjez,
and f; >« as j — ». We define the function on the state space of 7, putting
for any a # 0
f(a)=log3lal and f(0)=0.

Let us show that there exists 2 > 0 such that for any « belonging to the state
space of m, and such that |a| > 2, the following inequality holds

Ef({a(@)) <f(a). (7.3)

After this the proof of recurrence of 7, and so {, will be finished.

LEMMA 7.1

Let A® be some 1-dimensional non-ergodic face and let B € AV N T. Let
7,(B) be the first time the process £,(B) hits 0 or a 1-dimensional face different
from A®. Then one can find constants g, >0, C,>0, «, >0 which do not
depend on B and are such that for any ¢ > ¢, | B

P{r(B) >t} <C e™".

Proof
It easily follows from lemma 1.2 of [1] that for any t, € Z,
P{ry(B)> 1, JteZ,, t,<t<7,(B), p(&(B), AV) <8't;} <c’ e ™,
(7.4)

where 8’ >0, ¢’ >0, k' > 0 do not depend on B € AD and on ¢, € Z,. More-
over, due to boundedness of jumps for £,(B) we have for any t, €7,

1£,(B)] < |Bl+dt;. (7.5)

Let us note that for any 2-dimensional chain A® the vector M, has at least
one negative component and therefore by lemma 1.2, [1], for any A®, any
acsA®NT andany t,€Z,

Ple(a) €A@, t=1,...,1,} <c” ehlel=n, (7.6)
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where the constants ¢’ > 0, «” > 0, £ > 0 do not depend on A®, @ € A® and on
t,€Z,. Let now some t € Z,_ be given. Let

ty=[yt], t,=t-1,.
Then it easily follows from (7.4)—(7.6) that
P{ry(B) >t} <c’ eI +.¢” explh| B+ + hdyt — k"t(1—y)).

Lemma 7.1 will follow from this if we take y > 0 sufficiently small. O

LEMMA 7.2
Let us choose AP, A and
AP eS_(AD), APes_(AP)Nn S, (AD).

Then there exist constants g, > 0, k, > 0, ¢, > 0 such that for any B AP N T
and any r>gq,

P{L(B) € 4D, 12,(B)| > | BI(tg dap+7)) <c, e 181,

Proof

Let Be AP NT. Let 7(B) be the first time the process £,(B) hits some
1-dimensional face different from A{ (we recall that {dB) =€, s(B)). By
lemma 7.1 for any ¢t >q,|B|, teZ,,

P{ry(B) >t} <, ea. (1.7)
On the other hand, by the boundedness of jumps for £,(8)
P{¢, 5 (B) €4, 1£,,6(B)| —1B] tg ¢,p> 2d7,(B)) =0. (7.8)

From (7.7), (7.8) for any ¢ > q, | B| we get
P&, (B) €4, 1£, 5(B) > | Bl te dup +2dt) <c; e™.

Lemma 7.2 follows from this. O

Now we shall prove the inequality (7.3). Let us choose some AV, a e AV N T
and AP e.of, ADeS (AV). Let ieZ,, €>0, 5 >0 be the constant of (7.2).
It follows from lemma 6.1 that there exists a constant ¢ > 0 such that for any
sequence of 2-dimensional faces A, ..., A; € &, where @ € A, N A,, the follow-
ing inequality holds

P{;k(a) €A NApiy, k=1,...,7, | {(e)] < el l—Il(tg ¢Aj+g)}
=

¢
—p(Ag, Ay)...p(A; 1, AZ)| < Tal (7.9)
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Moreover, from lemma 7.2 it follows that there exist constants ¢ > 0, « > 0,
g > 0 such that for any sequence of 2-dimensional faces A,,...,A; € & such
that « e Ay N Ay, and for any k> ¢

P{(k(a)ezknxkﬂ’ k=1,....0, [{{a) | > |a] n(tg ¢A;+k)
j=1

<c e<klel (7.10)
From (7.9) and (7.10) it follows that

Ef({s(e)) <f(a) + . ) MP(AO’ Ay).- - p(Asys Ag)

xlog]] (tg ¢A_+€) +0(a),
j=1 !

where 68(a) = 0 when |a| — «. From the latter inequality using (7.2) one gets
(7.3). Recurrence is proved. O

8. Proof of nonergodicity

Let there exist an irreducible class of essential states &7 for which
L(,)>0. (8.1)
As in the proof of transience we consider (for any 1-dimensional face A? and

any @ € AV N T) random walk £,(a), £(@) = a, corresponding to -#7. Define
the sequence of stopping times

1o(a) =0, 7a@),...,7 (@),

where, for £ (a) #0, 7,,,(a) is defined as the next (after 7,(a)) time the
process £(a) hits either 0 or some 1-dimensional face different from that of
¢, (). If £, (a) =0 we put 7,+1(a) =7,(a), etc. Let

gn(a) = g‘r,,(a)(a)’ ne Z+a
v(a)=inf{n€Z,: £, ,,=0}.
From the definition of 7,(a), n € Z,, evidently follows that 7,,(a) is the

first time when &(a) hits zero, so 7, 4(@) =7, a), n€Z,. So to prove
nonergodicity of £(a) it is sufficient to show that

Er (a) > ®, n—o,

LEMMA 8.1
For any 1-dimensional face AV, any e €AV and any n€ 7,

’T"+1(a) —Tn(a) = Ig.‘-"(a)l a.s.
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To prove this lemma it is sufficient to note that for each 1-dimensional face
A® and any a € AD,
(a) = lal as,,

and to use that
Tui(@) =7,(a) +7,(£, (a)) as. O

Now let us denote the set of all 1-dimensional faces A® for which S_(A®) N
&+ by @(7). We define a function f on the set of states of (&) = & i)
_JIBl; if BeADNT with AP €6( ),
f(B)= .
0, otherwise.

LEMMA 8.2
There exist constants 7€ Z,, ¥ > 1, ¢ > 0 such that for any 1-dimensional
face AV and any a € AN T

Ef({i(@)) > 7f(a) —¢. (8.2)

Proof
For any AV € (/) and any x € AP N T the inequality (8.2) evidently holds
forall y>1,¢>0, i€ Z,. Now let us consider the case A® € @(7). Let us
choose A€ Z,, é>0 and ¥ > 1 so that for any AP € &7,
A
Y p(AD, AD)... (AL, AD) T (te duw—€) > 7. (8.3)
4D, ADeo i=1 '
This is always possible by (8.1) and lemma 3.2. Let us consider some
AV e 0(), AP €5, (AD), « € AV N T. From lemma 6.1 easily follows that

Ef(ia(a)) > lal ¥ p(AD, AD)...p(42 ,, AD)
AP.. . APey,

X fll(tg d)A(jz)“g)—E, (84)
j=

where ¢ = c(n, €) is a positive constant which does not depend on A® and on
a € AD. Then (8.3) follows from (8.4), (8.5). Lemma 8.2 is thus proved.

Let us prove now (8.2). From lemma 8.1 it follows that for any 1-dimensional
face AV, any BeAPNT andany nez,

E(7,,1(B) — 7,(B)) = Ef(£.(B)). (8.5)
From lemma 8.2 it follows that for any AV, any B€e AV NT and ke Z,

Ef(Lis(B)) >’7k(f(3) - ‘7_2_1)’ (8.6)
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where i€ Z,, 7 > 1, € > 0 are the constants from lemma 8.2. Let AD € 0,(27),
BeAYNT and f(B)=1B|>¢/(y —1)+ 1. Then by (8.6) and (8.7) for any
keZ,

k
Et:(B)> X E(Tjﬁ+1(3) - Tjﬁ(B))

k
> L Ef(4u(B) > L 75, (8.7)

j=0 j=0
and so
Er (B)—» if n— o,

So nonergodicity is proved. O

9. Queueing applications
First we shall describe two models which in some sense are dual.

MODEL 1

A single service station has two infinite buffers 1 and 2; £(¢), i =1, 2, being
the number of customers in buffer i at time ¢. There are two independent
Poisson arrival streams with intensities A;, i=1,2, to the buffers i=1,2
respectively.

The station can serve the buffers according to several regimes numbered from
1 to N. For a given regime j, the station serves the buffers, according to
independent exponential service times with rates w;; and u,; respectively,
provided that both buffers are non-empty, i.e. £,(t) # 0, £,(¢) #0. When one of
the buffers is empty, the service rate is taken to be equal to p. One can imagine
changing algorithms, prophylaxis or commuting context, etc.

Let r(¢t) denote the regime of the station at time f. Let us assume that
r(t) =k, £(t) =0, £,(t) # 0 and let 7 > ¢ be the first arrival of a customer to the
buffer i. Our assumption is that, at time 7, the regime suddenly changes to
r(7) =1, with probability pi,, N, pi, = 1. Similarly, we define the probabilities

2
ki

If £(t)=£,(t)=0, then we do not specify the protocol, since it has no
influence on the ergodicity of the system.

MODEL 2

Let us consider a customer (computer, bus etc.) which has access to N data
bases, but can use at time ¢ at most two of them, r(¢) and r,(z), where
r{t)e{l,...,N}, i=1,2. This user has two buffers 1, 2 accumulating data
coming from the data bases r,(¢) and r,(¢), respectively. Let A; be the intensity
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of arrivals from the data basis i, i =1, 2. Let £(¢) be the number of units in
buffer i at time ¢ (necessarily issuing from the data basis r,(t)).

Under the conditions £,(¢) > 0, £,(¢) > 0 and r(t) =k;,, i = 1, 2, the customer
“serves” the buffers with the following intensities:

- ,uf'ki, when serving one unit from buffer i;
— Mk, When, simultaneously one unit from buffer 1 and one unit from buffer 2
are served.

When, e.g., £(1) =0, £,(t) #0, the user switches to another data basis. The
intensity of switching to data basis k is

Al(k; l’ fz(t)),

where [ is the latter data basis used by buffer 1. In a similar way, we introduce

Az(k§ £4(¢), l)'

It is also assumed that the above switching is accompanied with the arrival of
one unit from the data basis K to the corresponding buffer.

In model 1, a regime corresponds to a quarter-plane. In model 2, a single data
basis corresponds to a one-dimensional complex and a pair of data bases
corresponds to a quarter-plane. Both models can be treated with similar
methods, since they induce random walks in 2-dimensional complexes. They do
not completely fit our main theorems, as the probabilities of jumps from
1-dimensional faces depend on the last visited quarter-plane. We could solve
this case also, by applying similar methods. Instead of this, we shall discuss in
more detail a particular case of model 1.

ANALYSIS OF MODEL 1

Let us consider the set P of all 2N pairs (i, k), i=1,2 and k=1,..., N.
Thus (1, k) and (2, k) can be considered as the 1-dimensional faces of the kth
quarter plane. We assume that P is subdivided into M < 2N equivalence classes
a, so that (i, k) and (j, I) belong to different classes if i # j. This is equivalent to
a gluing of the corresponding 1-dimensional faces. Let «(i, k) be the class to
which (i, k) belongs.

So, we assume that p;, =0, if (i, k) and (i, I) belong to different classes and
that p;, depends only on a = a(t k). We shall write ad libitum p,, instead of
Py if (i, k) € a. Our process is a triple (£,(t), £,(), r(¢)) and forms a countable
Markov chain.

CORRESPONDENCE WITH THE RANDOM WALK

Let us consider the N quarter-planes (Z2),, i=1,..., N, glued together and
r(t)=1,..., N. The one-dimensional faces correspond to the equivalence classes
which have been introduced in the above gluing. This defines in fact a complex
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T. It will be convenient to consider an imbedded discrete-time Markov chain
instead of the original chain which is in continuous time. To that end, let us
choose ¢ > 0 sufficiently large (ergodicity conditions do not depend on the

choice of this constant) and we define the following transition probabilities on
T:

For k, 1> 1, (k, 1), € (Z2),, we can write

Ak =k+1, 1 =1;
Ay k' =k, U =1+1;
pos k' =k—1,0'=1;
pon k' =k, I =1—1.

cp((k, 1), (K5 1)) =

On the boundaries
ALl =1+1;
. 1) = 2> 3
cp((0, 1):, (0, I'):) {#,l’=l—l;
cp((0, I),, (1, 1)) = A P U =1

A, k' =k +1;
Cp((k, 0)1'7 (k,; 0)!) = {Ml k'=k—1:

ep((k, 0),, (k', 1);) =A,p,), k' =k.

We write (0, 1), =(0, 1), if (i, ) € « and similarly, (k, 0), = (k, 0); if (j, k) €a.
The probabilities p((k, 1);, (k, I);) are defined by the normalization condition.

MEAN JUMPS

Up to the multiplicative constant C™!, we have the following possibilities:
— If AQ corresponds to the regime i, then

def
Mi = MA(‘z) = (/\1 — My A2 _/1'21')'

— If AD corresponds to the equivalence class a, then

def
Maa = PrA(;)[MA(;),A(g)] = Aaz M,

where A, = A, (resp. A,), if £,(¢) =0 (resp. £,(2) =0);

def (0, A,p,;), if @ corresponds to &,(t) =0;
Ma 1 = MA(I) A(IZ) = .
’ a (A1Pa» 0), if a corresponds to £,(¢) =0.
(Recall that £,¢) is the content of buffer i, i =1, 2 at time ¢.)

TRANSIENCE AND ERGODICITY
Would there exist only one regime, e.g. j, then necessary and sufficient
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conditions for the system to be ergodic for all x > 0 sufficiently large, should be
Ai<py, i=1,2. (9.1)

In fact, for several regimes, sufficient ergodicity conditions are: inequalities
(9.1) hold for all j=1,...,N and p sufficiently large. In this case, the system is
ergodic, independently of the p},’s. As to be expected, these conditions are not
necessary and we get below the exact necessary and sufficient conditions, which
connect the parameters pj,, A,, ;; together. In particular, we show that if, for
some I, j, we have

Ai>l“l‘ij;

then, for some p};,, the system can be ergodic. However, theorem 1.1 yields the
following

COROLLARY 9.1
If there exists j such that

Ay> gy, Ap> ), (9.2)

then the system is transient. 0O

Let us note that a 1-dimensional face A (for simply the equivalence class )
such that (1, k) €« is ergodic if and only if A, < u,,. In this case, we have (see
section 1)

A2pak
Ay — Mo

sgn¥yw =sgn(A2 —ut+ ) [()‘1 —Hag)
ki(l,k)ELI

One could write similar formulas for ergodic faces A®, such that (2, j) € a. This
can be summarized in the following. Let us assume that for all ergodic «

A —u;
Ag—p+ Y LR xo.
kit jyea i Mk

Then the following proposition holds.

COROLLARY 9.2
For the Markov chain _#7. to be ergodic, it is necessary that, for all ergodic
a’

/\i_/J'i
Ae—w+ Y ——Fxp.,<o. (9.3)
ki ea AT Mk

Theorem 3.1 gives the necessary and sufficient conditions for ergodicity in the
cases which are not covered by corollaries (9.1) and (9.2). To show even more
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explicit computations let us consider a system admitting only two classes, a, and
a,. In the usual language of queueing theory, this means that the quantities

P =pPi, Pu=pi, (9-4)
do not depend on k. Let us classify the regimes in the latter case. The regime j
is said to be I-outgoing if

Ay > o (9.5)
We have seen in this case that, for the system to be ergodic, it is necessary to
have

Ay <y
The set of all I-outgoing regimes will be denoted by A,. Similarly, we define
2-outgoing regimes A,, when

Ay <phgj, Ap> oy (9.6)
Clearly, for all other regimes (belonging to {1,...,n}\ (A4, UA,)), we have

Ay <mijs Ay <Ky
Let us note that the stationary probabilities of the associated Markov chain

(irreducible and aperiodic) are given by
def
m = m(AP) = 1p, (AD, AD), 9.7)
where A is a, for I-outgoing A® and a, for 2-outgoing A®P. Using (2.2) we
have, e.g. for 2-outgoing A®,

A
401 Ya@

AD >
Z dn Ya@
A®

psc(A(l)’ A(Z)) =

where y =y, is defined from eq. (2.4), which reduces to
A(l—y) +pu(l - 7)_1 —(Ai+pyu) =0,
whence

—1- -2,
Y Y

1

Let us define the following real number

Ay — po; Boj
o ozt | )
_ jeA, AL — g Az
1T [y
jed, Az
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In a similar way, we can define M,. Our final result, for the example under
consideration, is contained in the next

THEOREM 9.3
Assume in model 1 that (9.4) holds and both A, and A, are not void. Then
the system is recurrent if

M, +M,<0
and transient if
M, +M,>0.
Let us consider a system with only two classes «; and a, and assume that
there is only one 1-outgoing regime j =1
Ay> oy Ay <ty
there are only two 2-outgoing regimes j =2, 3
Ay<ig, Ay>pg
and
Ay<igz, Ay>pgs.
For the other regimes j=4,..., N, we have
Ay <u,y; and  A; <py;.

Let us note that the matrix (3.5) in our case is given by
Ay =Ap=Ay=Ay=A45,=0,

Ay = y tg d’A(}) tg ¢A(12) )
Ay =y\tg dpp tg "7,
A= i B & By 2
Ap= W -p3.

One can show that the maximal eigenvalue of this matrix is given by
N =p} tg b tg dap +D3 t8 dup t8 Do

And so we have

and

THEOREM 9.4
Assume in model 1 that (9.4) holds and A, ={1}, 4,={2, 3}. Then the

system is ergodic if

L = Jlog[ p? tg dap 18 dap+D3 18 dap tg dae] <O
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and non-ergodic if
L>0.

Let us note that under the conditions of theorem 9.4 it is not necessary to
calculate the maximal eigenvalue of the matrix (3.5). It is sufficient to note that
for any n € Z, in (3.3) we have

2n
E|ITte ¢AJ|A0=A‘E>) = |E(te ¢4, ta ¢4,1 40=42)]".

j=1

10. Remarks and problems

Remark 1
In our case, we could have defined an associated Markov chain with a
different set of states: { AV} instead of {A®} with transition probabilities

p(A(l), A(ll)) =p(A(2), A(12)),

for any AP €S, (AD) and the unique AP €S, (AP)NS_(AD), if such AP
exists and 0 otherwise. In the more general case when condition (1a) of
boundedness of jumps does not take place, the situation becomes more compli-
cated: the scattering probabilities depend on the ingoing bristle of the hedgehog.
Thus, the probabilities p(A®, AP) and p(AD, AP) can be different for differ-
ent AP, AP S, (AD). But this case can be treated as well by the same
methods.

Remark 2

It is of interest to generalize our results to the case when the simplexes of our
complex are not Z2, but angles in R2 or in Z2. Of special interest is the
situation when these angles in Z% are not commensurable with 7r.

Remark 3

Our methods allow to get the classification of random walks in Z% under the
same ‘“non-zero” and homogeneity assumptions, when all vectors of mean jumps
inside all faces A with dimA >3 have their coordinates negative. Then M,,
with dimA =1 or 2, will become vectors derived from the corresponding
induced chains.

Remark 4

We want to show now that all our assumptions have Lebesgue measure 1 in
the parameter space. 0, 0, are fulfilled when all the p,,’s are positive. 0, is
satisfied except for a finite number of hyperplanes. 0,, 05 are not fulfilled only
when v, in lemma 1.3 is equal to zero.
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