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Linear Hamiltonian Systems under Microscopic Random Influence

Lykov A. A. ∗ Malyshev V. A.∗ Muzychka S. A. ∗

Abstract

It is known that a linear hamiltonian system has too many invariant measures, thus the problem of

convergence to Gibbs measure has no sense. We consider linear hamiltonian systems of arbitrary finite

dimension and prove that, under the condition that one distinguished coordinate is subjected to dissipation

and white noise, then, for almost any hamiltonians and almost any initial conditions, there exists the

unique limiting distribution. Moreover, this distribution is Gibbsian with the temperature depending on the

dissipation and of the variance of the white noise.

1 Main Results

Consider the phase space

L = L2N = R
2N = {ψ = (q, p) : q = (q1, . . . , qN ), p = (p1, . . . , pN ) ∈ R

N}

with the scalar product

(ψ, ψ′)1 =

N
∑

i=1

(qiq
′

i + pip
′

i).

The space L is the direct sum L = l
(q)
N ⊕ l

(p)
N of orthogonal coordinate space and momentum space with the

induced scalar products (q, q′)1 and (p, p′)1 correspondingly. We are most interested in the case of large N , but
we do not use it in the present paper.

We shall study the following system of 2N stochastic differential equations (k = 1, . . . , N)

dqk = pk dt,

dpk =
∑N

l=1

(

(−V (k, l)ql −D(k, l)pl) dt+B(k, l) dwt,l

)

,
(1)

where V = (V (i, j)) is a positive definite (N ×N)-matrix, D = (D(i, j)) is the non-negative definite symmetric
(N × N)-matrix, B = (B(k, l)) is an arbitrary real matrix, wt,l, l = 1, . . . , N, are the standard brownian
processes, independent in l.

If D = B = 0, then the system is a linear hamiltonian system with the quadratic hamiltonian

H(ψ) = T + U, T =
1

2

N
∑

i=1

p2i , U =
1

2

N
∑

i,j=1

V (i, j)qiqj . (2)

We will consider systems where the matrices B and D are as follows (for some n = 1, . . . , N)

D = α∆n, B = σ∆n,

where ∆n = (δi,jδi,n) is the matrix with one diagonal element equal to 1 and other elements are all zero. Note
that in this case the system will be subjected to only one white noise dwt,n. We assume that the index n is
fixed, and write for shortness dwt = dwt,n. Further on, unless otherwise stated, we assume that α > 0, σ > 0.

System (1) can be rewritten in the matrix form

dψ = Aψ dt+ σgn dwt, (3)
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where

A =

(

0 E
−V −D

)

,

E is the unit (N × N)-matrix, gn = (0, en) ∈ l
(p)
N , and en = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

N is n-th standard basis
vector. The solution of the latter equation with arbitrary initial vector ψ(0) is uniquely defined and can be
written as (for example, see section 12.4 of [8])

ψ(t) = etA
(

σ

ˆ t

0

e−sAgn dws + ψ(0)

)

.

Introduce the set
L− = {ψ ∈ L : H(etAψ) → 0, t→ ∞} ⊂ L.

We will need the following results.

Lemma 1. The set L− is a linear subspace of the space L, and moreover L− = {(q, p) ∈ L : q ∈ lV , p ∈ lV }
where lV –is the subspace of R

N , generated by the vectors V ken, k = 0, 1, . . . , in particular gn ∈ L−. Moreover,
L− and its orthogonal complement, denoted further by L0, are invariant with respect to the operator A.

All assertions of this lemma have been proven in [4].
By this lemma any initial vector ψ(0) can be uniquely decomposed as

ψ(0) = ψ0 + ψ−, ψ0 ∈ L0, ψ− ∈ L−.

Then the solution ψ(t) of the stochastic equation (3) with initial vector ψ(0) for any t ≥ 0 can be decomposed
as

ψ(t) = ψ(0)(t) + ψ(−)(t), (4)

where ψ(0)(t), ψ(−)(t) satisfy the equations

ψ̇(0)(t) = Aψ(0)(t), dψ(−)(t) = Aψ(−) dt+ σgn dwt

with the initial conditions ψ(0)(0) = ψ0, ψ
(−)(0) = ψ− correspondingly. In fact, the sum of these equations give

the equation (3).
By Lemma 1, the function ψ(0)(t) ∈ L0, t ∈ [0,∞), is deterministic and can be written as

ψ(0)(t) = eAtψ(0)(0), (5)

and ψ(−)(t) is a gaussian random process with values in L− (as gn ∈ L−).

Theorem 1. For any ψ(0) the convergence in distribution

ψ(−)(t) −→
t→∞

ξ,

takes place, where ξ ∈ L−, and its distribution is absolutely continuous with respect to Lebesgue measure on L−

(defined by the euclidean structure), and has the following density with respect to this measure

pξ(ψ) =
1

Z
exp

(

− 2α

σ2
H(ψ)

)

, ψ ∈ L−. (6)

The limit of the mean energy is:

lim
t→+∞

EH(ψ(−)(t)) =
σ2

4α
dimL−.

Thus, the action of the random force and dissipation on one particle only garanties convergnce to the
invariant Gibbs measure with the temperature depending on α and σ.

The first assertion of the next theorem shows that convergence to Gibbs distribution is a typical property of
linear hamiltonian systems with dissipation and random force. The second assertion shows that the dissipative
term is necessary for this convergence.

For given N denote HN the smooth manifold of all possible hamiltonians H as in (2), that is the smooth
manifold of all positive definite (N × N)-matrices V . Let µ be an arbitrary absolutely continuous probability

measure on HN , and let H
(+)
N be the set of all hamiltonians of HN , for which the dimension of L0 is greater

than zero.
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Theorem 2. 1. The measure µ of the subset H
(+)
N is zero. 2. If α = 0, then for any initial condition ψ(0) we

have

EH(ψ(t)) =
σ2

2
t+O(1).

Note that for more restricted (physical) classes of hamiltonians the property dimL0 = 0 is not typical (see
[4] in this respect).

In this short note we restrict ourselves to the most interesting case of one distinguished particle, which
shows that even the minimal introducing of stochasticity to the system garanties the convergence to the physical
equilibrium. Note however, that most results can be generalized to arbitrary matricesD and B. Similar systems,
mainly one-dimensional (one of the goal was to justify the Fourier law of heat conduction) were considered in
the 1960-70 in the series of papers by J. Lebowitz and colleagues (see [1], [2] and references therein).

2 Proofs

Proof of theorem 1. Assume first that dimL0 = 0. In this case the spectrum of the matrix A belongs to the
left half-plane.

Let us prove the convergence first. By the latter assumption, we can consider only the process ψ(−)(t),
admitting the following decomposition

ψ(−)(t) = ψ(g)(t) + ψ(d)(t),

ψ(g)(t) = σetA
´ t

0 e
−sAgn dws, ψ(d)(t) = etAψ(−)(0).

By definition of L− the function ψ(d)(t) tends to zero if t → +∞. That is why it is sufficient to prove the

convergence of ψ(g)(t). Denote C(t) = (E {ψ(g)
i (t)ψ

(g)
j (t)}) the covariance matrix. Then

C(t) = E {ψ(g)(t)(ψ(g))T (t)} = σ2etA E

{
ˆ t

0

e−sAgn dws

ˆ t

0

gTn e
−sAT

dws

}

etA
T

,

where T denotes transposition. Using the Ito isometry [7], we get

C(t) = σ2etA
ˆ t

0

e−sAgng
T
n e

−sAT

ds etA
T

. (7)

Let us calculate the integral in the last formula by finding the matrix U , not depending on time and such that

ˆ t

0

e−sAgng
T
n e

−sAT

ds = e−tAUe−tAT − U. (8)

Differentiation (8) in t shows that the exponents cancel and we get

AU + UAT = −gngTn .

This equation with respect to U has the unique solution, as the spectrum of A lies in the left half-plane, see
section 4.4 of [5]. It is easy to check that the solution is the following matrix

U =
1

2α

(

V −1 0
0 E

)

. (9)

Thus, from (7) and (8) we get C(t) = σ2(U − etAUetA
T

). As the spectrum of A lies in the left half-plane,
then limt→+∞ C(t) = σ2U. That is why the following limit in distribution

ξ = lim
t→∞

ψ(g)(t) = lim
t→∞

ψ(−)(t),

exists and is the gaussian vector with zero mean and covariance matrix σ2U .
Now prove the last assertion of theorem 1. From (9) and from positive definiteness of V , it follows that

U is non-degenerate. Thus the distribution of ξ has the density pξ(ψ) with respect to the standard Lebesgue
measure dq1 · · · dpN on L. As the matrix (2αU)−1 defines the quadratic form H , then

pξ(ψ) =
1

Z
exp

(

− 2α

σ2
H(ψ)

)

.
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Remind that H(ψ) = (Qψ,ψ)1/2, where the (2N × 2N)-matrix Q = (qi,j) is defined by the equality of the
vectors Q(q, p) = (V q, p). Then for the mean energy we get

lim
t→+∞

EH(ψ(−)(t)) = EH(ξ) =
1

2

2N
∑

i,j=1

qi,jci,j =
σ2

2
tr (QU) =

σ2

4α
dimL.

Thus for the case L0 = {0} theorem 1 is proved.
Consider now the case L0 6= {0}. Let v1, . . . , vd be an arbitrary orthonormal basis of the subspace lV with

the only restriction that v1 = en. Using it, define the orthonormal basis in L− as follows

h
(q)
k = (vk, 0), h

(p)
k = (0, vk), k = 1, . . . , d.

The coordinates on L− in this basis we denote ψ′ = (ψ′

1, . . . , ψ
′

2d). In these coordinates our equation on L− can
be written as

dψ′ = A′ψ′ dt+ g′1 dwt,

where A′ =
(

0 E

−V ′
−D′

)

, E is the unit matrix of the order d, V ′, D′ and g′1 are the matrices of the operators

V , D and the distinguished vector, in the new coordinates, correspondingly.
The latter equation looks like the main equation (3). The operator A′ is the restriction of the operator A

onto the subspace L−; let L− = L′

0 ⊕L′

−
be the correponding decomposition of L− in A′. Then L′

0 = 0 and we
can apply the assertions proven for the case L0 = 0. Note that the quadratic form H ′ on L−, generated by V ′,
coincides with the restriction of the quadratic form H on the subspace L−. This proves Theorem 1 completely.

Proof of theorem 2. If α = 0, then the energy conservation law gives L− = 0. Decompose the solution ψ(t)
as

ψ(t) = ψh(t) + ψI(t),

where ψh(t)-is the solution of the homogeneous equation with initial condition ψ(0), and ψI(t) is the solution
of the inhomogeneous equation with zero initial conditions. As H(ψ(t)) has the norm properties, then

|H(ψ(t)) −H(ψI(t))| 6 H(ψh(t)) = H(ψ(0)).

The latter equality holds as α = 0, and thus the energy is conserved. Let us find EH(ψI(t)). Denote ψI(t) =
(q(I)(t), p(I)(t)). The solution with zero initial conditions is similar to the known (see for example [6]) formula
for ordinary differential equations

q(t) = σ (
√
V )−1

ˆ t

0

sin(
√
V (t− s))en dws,

p(t) = σ

ˆ t

0

cos(
√
V (t− s))en dws.

Using again the Ito isometry we get

ET =
σ2

2
E (p(t), p(t))1 =

σ2

2
E {pTp} =

σ2

2

ˆ t

0

eTn cos2
(
√
V (t− s)

)

en ds,

EU =
σ2

2
E (V q(t), q(t))1 =

σ2

2
E{qTV q} =

σ2

2

ˆ t

0

eTn sin2
(
√
V (t− s)

)

en ds,

EH(ψI(t)) = E {T + U} =
σ2

2

ˆ t

0

eTnen ds =
σ2

2
t.

We have thus proved the second assertion of theorem 2.
Note that HN is a smooth manifold. Define the matrix Σ(V ) so that its k-th column is equal to the vector

V ken. Then
H

(+)
N = {V : dim lV < N} =

{

V : det(Σ(V )) = 0
}

.

Note that det(Σ(V )) 6= 0 for matrices V ∈ HN with simple spectrum and eigenvalue basis v1, . . . , vN , with the
property that (vk, en)1 6= 0 for all k = 1, . . . , N , see [4]. That is why the function det(Σ(V )) is not identically

zero on the manifold HN . Thus, H
(+)
N is the set of zeros of the polynomial on HN . It follows that its dimension

is less than the dimension of all HN , and its measure µ equals zero.
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