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Abstract. Euler limits or fluid approximations have proved useful in obtain-
ing ergodicity conditions and more detailed information on random walks and
communication networks. Until now the similar question for controlled Markov
chains remained open. For a basic example we establish convergence of Markov
decision chains to their fluid approximation. This allows to explicitly obtain the
asymptotically optimal solution to our control problem.
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1. Introduction

Most papers on Markov decision chains essentially consider the case of a finite
state space in the following sense. They use typical restrictions like uniform
Lyapunov functions for all strategies, or conditions ensuring the existence of
such uniform Lyapunov function for a suitable subclass of strategies containing
the optimal one. From a practical point of view this means that the process
mainly moves in a finite or bounded part of the state space and so it is stationary
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or close to stationary. The transient period then is sufficiently small with respect
to the scale of time.

It is quite remarkable that some practical situations demand a completely
different time scale. We shall call this scale “state of emergency scale” or fluid
model scale. Roughly speaking, this means the following: assume that we are
far from equilibrium, which means that there is an emergency situation, a catas-
trophe or a temporary lack of supply. Then the problem is to find the optimal
path that could bring us somewhere sufficiently close to equilibrium. The strat-
egy to achieve this, can be quite different from the optimal strategy during calm
periods.

We should explain what we mean by saying that the initial state is far from
equilibrium. The only way to do this, is to scale the initial state in the “space”
metrics. Then the time scale for reaching equilibrium that we should consider,
should be related to the time to reach the vicinity of the most probable states,
starting from the thus chosen initial state.

This formulation already suggests the use of fluid approximations for the
Markov chains under consideration. This approach was recommended in [9].
But even earlier, there were papers for example by G. Weiss [14] on this topic.
In these papers, control problems for deterministic fluid approximations for
queueing networks were considered, as purely deterministic problems. However,
we do not know of any papers, where convergence to the controlled fluid ap-
proximation was proven. Here it is our objective to solve such kind of problem.

Note that there are two approaches to “fluid approximations”. One was
recommended in papers on networks, see for example [4], and, independently,
in some papers on deterministic queues. The second one had been developed
earlier in the framework of random walks (see references in [3, 8]). For Markov
decision chains the situation is far from obvious: there is no direct analogy with
the two above approaches to fluid approximations. We will now explain some
of our intuitions on which this paper is based.

Assume that we have two queues and so the state space is Z2
+. Let c(n, a), n ∈

Z2
+, be the immediate cost that is paid in state n when using action a. Assume

that at time 0 we are at the point [rN ] = ([xN ], [yN ]) ∈ Z2
+. We are looking for

an optimal policy a(n) minimising the total cost E
∑τ

t=0 c(a(ξt)), where τ is the
first hitting time of zero and c(a) a positive cost. Thus we assume stationarity
from the beginning.

Which assumptions on the transition probabilities pa(n, m) could we use?
One of the simplest assumptions (which is by the way a sufficiently difficult case
because of possible discontinuities of the mean jump vector field) is maximal
possible homogeneity, that is homogeneity inside the quarter plane and on each
of the two axes. This problem will be considered in a subsequent paper. As
a first step, we will illustrate our main ideas by considering the simpler prob-
lem of Markov decision chains on Z2 with homogeneous transition probabilities
pa(n, m) = pa(n − m). This approach is the essence of the ideology concerning
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random walks with boundaries: to first solve the necessary problems for the
induced chains.

We guess that the asymptotics for the optimal cost should be cN and we
will try to find the coefficient c. Let N(a) be the mean number of times that
we use action a till we reach zero from [rN ]. Then we would like to minimise
∑

a N(a)c(a) under the restriction that
∑

a N(a)va = −[rN ] where va is the
mean drift from a point under action a. It is quite plausible that N(a) ≡ b(a)N ,
and this is an assumption that should be proved, and which is reminiscent of
fluid approximations. This should give us an asymptotically optimal solution
up to terms of order o(N).

This idea amounts to solving a Linear Programming problem (LP), which
we will call the fluid-LP (FLP). Our main theorem shows that the optimal value
of the FLP as a function of the state x, CF (x) say, is asymptotically equal to
the value of the optimal control problem with starting state x, say C(x). More
precisely, limN→∞ C(Nx)(CF (Nx)) = 1, for all x ∈ Z2. Moreover, the control
constructed from the optimal solution of FLP, πLP , is asymptotically optimal
(see Theorem 2.1).

We will end this section by discussing other applications of LP techniques in
Markov decision problems and their connection with our approach. In MDPs
with a finite state space LPs have been used to obtain the optimal control for
all cost criteria. For the expected total cost criterion relevant results have been
obtained in [5]. In Section 5 we give the precise formulation of the LP in [5],
which we will call the control-LP (CLP), in order to distinguish it from the
FLP studied in this paper. Theorem 17 of [5] deals with the following three
cases: (i) the CLP is infeasible, then there is no policy with a finite expected
hitting time of state 0; (ii) the CLP has an unbounded solution, and then
there is no policy with finite expected cost until state 0 is reached; (iii) if there
is a finite extreme optimal solution of CLP, then an optimal policy for the
control problem is easily derived from this (see Section 5). These results can
be generalised to our MDP with state space Z2 corresponding to the control
problem of this paper. However, the resulting CLP is infinite in this case and
generally an optimal solution can not be computed. Also, in case an optimal
control could be determined, it is of little value in practice, since it is too
complicated to be implemented. Indeed, the optimal actions depend on the
state, mostly in a complex way, and any implementation needs an infinite list
of state-action-pairs. Whereas the coefficient matrix in the CLP consists of the
transition probabilities, the coefficient matrix in the FLP consists of the drifts.
This enormously simplifies the LP. Indeed, the dimension reduces from infinity
to dimension 2, the dimension of our state space. As a consequence, the FLP
is extremely easy to solve and the resulting asymptotically optimal policy has
a simple and easily implementable structure.
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1.1. Notations

We use here the standard terminology in countable Markov decision chains
(see e.g. [11,12]). We will consider Markov chains Lπ on a common state space
Z2. Each of these chains is defined by a (deterministic, stationary) policy π(x) ∈
A, x ∈ Z2, which is a function defined on the state space and taking values in
a finite set of actions A. Actions will be usually denoted by a, b, c.

The Markov chain Lπ has transition probabilities p(x, y) = pπ(x)(y − x) for
x 6= 0, and p(0, y) = 10(y). So 0 is an absorbing state under any policy π. By
c(a) we denote the immediate cost of using action a ∈ A, and pa(x, y) = pa(y−x)
are the transition probabilities, when using action a ∈ A. Further, we denote
by va =

∑

y(y−x)pa(y−x) the mean drift from the point x under action a ∈ A.
For this model we will study the expected total cost Cπ(x) of policy π, when

the system starts in state x, defined by

Cπ(x) = Ex

∞
∑

t=0

c(π(ξt))1(ξt 6= 0).

Finally, we will use the notation ‖x‖ =
√

x2
1 + x2

2, x = (x1, x2)
T ∈ R2,

dist(x, U) = inf
y∈U

‖y − x‖,

where x ∈ R2, U ⊂ R2, and cU = {cx : x ∈ U}, for U ⊂ R2, c ∈ R.

1.2. Assumptions

1. All possible Markov chains have uniformly bounded jumps i.e., there exists
d > 0 such that for all a ∈ A pa(y − x) = 0 if ‖y − x‖ > d.

2. For all a ∈ A and x, y ‖y − x‖ ≤ d pa(y − x) > 0.

3. The cone, {∑a −tava, ta ≥ 0} = R2.

4. The immediate cost of any action is positive, i.e. c(a) > 0 for all a.

Boundedness of jumps has been required in Assumptions 1 and 2 mainly for
reasons of convenience and clarity of the exposition. It clearly can be relaxed.
Assumption 3 has been introduced to ensure that for each point there is a policy,
for which the origin can be reached from this point. Assumption 4 is used to
avoid trivialities. For example, if c(a) = 0 for some a, then the policy that plays
this action a in each point of the plane has 0 associated cost, but the Markov
chain under this policy may be transient.
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2. Results

First note that by the results in [13] on negative dynamic programming,
there exists an optimal stationary, deterministic policy for our control problem,
such that the corresponding value function solves the dynamic programming
equations.

One of the possible approaches to this problem (realised in [7] for a particular
case) is therefore to directly write down these discrete dynamic programming
equations. This approach, besides being quite general, is nevertheless too formal
and the task of solving this system is still formidable. Here we use a completely
different and more intuitive approach.

Our main concern here will be to find a (stationary, deterministic) policy
π minimising Cπ(x) for given x. Intuitively, this means that we would like to
reach zero as quick and as cheap as possible. Theorem 2.1 below reduces this
stochastic control problem to a deterministic one (up to lower order terms in
the large N asymptotics) that can be explicitly solved.

2.1. The FLP

For any x ∈ R2 we consider the following LP.
FLP. Determine

Copt(x) = inf
∑

a∈A

c(a)ta,

subject to

∑

a∈A

vata = −x, (2.1)

ta ≥ 0, a ∈ A.

Let πopt be the optimal policy for the control problem. The next theorem
shows that the asymptotic cost of the stochastic problem for large initial states
equals the optimal value of FLP.

Theorem 2.1. Assume that Assumptions 1–4 hold. Then

lim
N→∞

Cπopt
(xN )

N
= Copt(x),

where xN = [xN ], and [x1, x2] is ([x1], [x2]), with [xi] the largest integer smaller

than or equal to xi, i = 1, 2.

The proof of the theorem consists of the following two steps.
Step 1. Construct a policy πLP such that

lim
N→∞

CπLP
(xN )

N
= Copt(x). (2.2)
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Step 2. Show that

lim inf
N→∞

Cπopt
(xN )

N
≥ Copt(x). (2.3)

These two facts together obviously immediately imply the theorem.

3. Proofs

3.1. Step 1

3.1.1. Useful facts for the FLP

Here we show how to solve the FLP.
From elementary Linear Programming it follows that under Assumptions 3

and 4 for any x ∈ R2 there exists a (in general not unique) solution ta(x) ≥
0, a ∈ A of FLP, such that

Copt(x) =
∑

a∈A

c(a)ta(x). (3.1)

We will denote by {ta(x)}a∈A an optimal solution of FLP.
Let {a0, . . . , an−1} ∈ A be the subset of actions such that for each ak there

exists x ∈ R2 with tak
(x) 6= 0. By elementary Linear Programming also the

following simple results hold.

1) If x = −tvak
, t ≥ 0 (0 ≤ k < n), then

ta(x) = t if a = ak,

ta(x) = 0 if a 6= ak

is an optimal solution. Hence, the direction −vak
is optimal in FLP.

2) Divide the plane R2 into n cones by the rays {−tvak
, t ≥ 0}n−1

k=0 , as has
been shown in Figure 1. Define the ray Rk = {−tvak

, t ≥ 0}. For two rays
Rk, Rl we define the cone [Rk, Rl) = {−t1vak

− t2val
, t1 > 0, t2 ≥ 0}. For

0 ≤ k, l < n define k ⊕ l = (k + l)mod n and k ⊖ l = (n + k − l)modn.

Let us draw the vectors va with starting point the origin. By renumbering
we can enumerate them in clockwise order: v1, . . . , vk, . . . Rays Rk are
numbered correspondingly (see Figure 1). Let Uk = [Rk, Rk⊕1). Then

n−1
⋃

k=0

Uk = R2\{0}

and, for any x ∈ Uk, we can choose an optimal solution ta(x) of the
following form: ta(x) = 0, if a /∈ {ak, ak⊕1)}, where tak

(x), tak⊕1
(x) is

defined by the equation

−x = tak
(x)vak

+ tak⊕1
(x)vak⊕1

. (3.2)
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Figure 1.

Thus, for any fixed x two actions are sufficient to construct an asymptot-
ically optimal path and this path consists of two linear parts.

3.1.2. Construction of the πLP policy and its ergodicity

Define the policy πLP for the optimal control problem by

πLP (x) = ak, if x ∈ [Rk, Rk⊕1). (3.3)

Then πLP is defined for all points x ∈ Z2.
Let us prove that (2.2) holds for this policy. First we will prove that the

Markov chain L = LπLP
is “ergodic” (more exactly, we reach zero with proba-

bility one in finite mean time) and that the following lemma holds.

Lemma 3.1. Let τ be the hitting-time of state 0 in the Markov chain L. Then

there exist constants C1, C2, T, δ > 0, such that for any x ∈ Z2

Exτ < C1‖x‖,

Px{τ > T ‖x‖} < C2e
−δ‖x‖.

Proof. To prove the theorem, we construct a positive function f(x), x ∈ R2,
such that

B1‖x‖ < f(x) < B2‖x‖, (3.4)

|f(x + y) − f(x)| ≤ B3‖y‖,
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for some constants B1, B2, B3 > 0, and there exists ǫ > 0 and r0 > 0, such that
for any x ∈ Z2, ‖x‖ > r0

E(f(ξt+1) − f(ξt) | ξt = x) ≤ −ǫ. (3.5)

Then one can easily get the first assertion of the theorem (see Theorem 2.1.1
in [3]). We explain the second in much more detail. To this end we need the
following theorem (see [3], Theorem 2.1.7). We have changed a little bit the
formulation of this theorem to make it simpler.

Theorem 3.1. (Exponential inequality for supermartingales). Let (Ω,F , P)
be a given probability space and {Ft, t ≥ 0} an increasing family of σ-algebras

F0 ⊂ F1 ⊂ · · · ⊂ Ft ⊂ · · · ⊂ F . Let {St, t ≥ 0} be a sequence of real random

variables, such that St is Ft-measurable, for all t ≥ 0. Moreover, S0 will be

taken constant. If there exist positive numbers ǫ, d such that for all k ≥ 0

|Sk+1 − Sk| ≤ d,

E(Sk+1 − Sk | Fk) ≤ −ǫ a.s.,

then, for any δ1 < ǫ, there also exist constants D = D(S0, ǫ, d) and δ2 > 0, such

that for any t ≥ 0
P{St > −δ1t} < De−δ2t.

Proof. See [3]. ✷

In order to use Theorem 3.1, we will introduce the random moment τ̃ =
min{t : f(ξt) ≤ r0} and the sequence of random variables {St, t ≥ 0} with

St = f(ξt) − f(ξ0), if t < τ̃ ,

St = St−1 − ǫ, if t ≥ τ̃ .

The conditions of Theorem 3.1 hold for St. Hence for ǫ̃ < ǫ there exist C > 0,
δ > 0 such that

Px{St > −ǫ̃t} < Ce−δt.

Remark that

Px{τ̃ > t} = Px{τ̃ > t, f(ξt) > r0}
≤ Px{St > r0 − f(x)}

≤ Px{St > −B2‖x‖}

< Ce−δt, for t ≥ B2‖x‖/ǫ̃.

In particular, for t = B2‖x‖/ǫ̃ we obtain

Px{τ̃ > B2‖x‖/ǫ̃} < Ce−δB2‖x‖/ǫ̃.



Fluid approximations of Markov decision chains 137

From this inequality it is easy to get the second assertion of the lemma. To this
end one can get exponential inequality for Px{τ − τ̃}, for x, f(x) ≤ r0. We leave
the proof for reader.

To construct the function f we use the following idea. Let Lr = {x ∈ R2 :
f(x) = r} be the set of points at the same level for function f . If f is not “too
bad”, then Lr would be a smooth curve. If in any point on Lr the vector of
mean drift (of random walk ξt) “looks inside” of curve Lr then we can hope to
get inequality (3.5). Following this idea, it is natural to define f(x) for

x = (x1, x2)
T = (r(x) cos α(x), r(x) sin α(x))T , r(x) = ‖x‖,

in polar coordinates (r, α) as,

f(x) =
r(x)

l(α(x))
,

where l(α) is a positive smooth function on the segment [0, 2π], i.e. l(α) ∈
C1([0, 2π]).

This uses the so-called ǫ-linearity construction (see [3]).
Define s(α) = (l(α) cos α, l(α) sin α), ṡ = ds/dα. So Lr = {rs(α), α ∈

[0, 2π]} and ṡ is tangent to curve L1.
Suppose that for any x ∈ L1

vx × ṡ(α(x)) < 0, (3.6)

where × denotes the vector product, and vx = vak
, if x ∈ Uk. In other words,

vx ”looks inside” L1 (see Figure 2). Remark that vx × ṡ(α(x)) can be extended
to a continuous function in each region Ūk. Therefore there is ǫ > 0 such that
for any x ∈ L1

vx × ṡ(α(x)) < −ǫ.

Now we can compute (3.5). Let x ∈ Uk, ‖x‖ = 1, p(y) = pak
(y). Then for

r > 0 such that rx ∈ Z2

E(f(ξt+1) − f(ξt) | ξt = rx) =
∑

‖y‖≤d

p(y)(f(rx + y) − f(rx)).

Taking into account the boundedness of jumps and using a Taylor expansion,
we get

f(rx + y) = rf(x +
y

r
) = r

(

f(x) +
d

dx
f(x) · y

r
+ O(1/r2)

)

,

where d
dxf(x) =

(

∂f
∂x1

, ∂f
∂x2

)

. Hence,

E(f(ξt+1) − f(ξt) | ξt = rx) =
d

dx
f(x)vx + O(1/r),
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Figure 2.

d

dx
f(x)vx =

(∂f

∂r
,
∂f

∂α

)

(

∂r/∂x1 ∂r/∂x2

∂α/∂x1 ∂α/∂x2

)

vx,

(

∂r/∂x1 ∂r/∂x2

∂α/∂x1 ∂α/∂x2

)

=
1

r

(

r cosα r sinα
− sin α cosα

)

.

One can easily check that,

d

dx
f(x)vx =

1

l2(α(x))
vx × ṡ(α(x)).

Hence, there is r0 such that for x : ‖x‖ > r0 (3.5) holds. So we have reduced
our problem to the construction of function l(α) such that (3.6) holds. This
can be done in the following way. To simplify the notation we write vk = vak

,
0 ≤ k < n. By Assumption 3 and step 1 we have that

vk × vk⊕1 > 0,

i.e. the angle between these vectors is smaller than π, otherwise the plane R2

could not be obtained by negative linear combinations of the vk.
Let V be the oriented polygon with vertices {Vk}n−1

k=0 , Vk = −vk and sides
{(Vk, Vk⊕1)}n−1

k=0 .
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Let wk be a vector corresponding to side (Vk⊖1, Vk) (see Figure 3), i.e.

wk = vk⊖1 − vk.

Then

vk × wk = vk × vk⊖1 < 0,

vk × wk⊕1 = −vk × vk⊕1 < 0.

For ǫ > 0 we define the oriented polygon V ǫ with vertexes {V ǫ
k }n−1

k=0 , V ǫ
k =

−vk + ǫwk and sides {(V ǫ
k , V ǫ

k⊕1)}n−1
k=0 . As above let wǫ

k be the vector corre-
sponding to side (V ǫ

k⊖1, V
ǫ
k )

wǫ
k = vk⊖1 − vk + ǫwk − ǫwk⊖1.

We can choose ǫ sufficiently small such that for all 0 ≤ k < n

V ǫ
k ∈ Uk

and
vk × wǫ

k < 0,

vk × wǫ
k⊕1 < 0.

(3.7)

The polygon V ǫ is a good basis for constructing the function l(α). Indeed,
from (3.7) it follows that vx “looks into” V ǫ (see (3.6)). We should only make
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from this polygon a smooth curve. This is easy. Let us take a circle in each
angle of the polygon V ǫ (see Figure 4). Denote the curve that we get by L1. Let
r = l(α) be equation of this curve in polar coordinates. Let us check (3.6). Put
x ∈ U1. If x is in the linear part of L1, then ṡ(α(x)) is equal to cwǫ

0 or to cwǫ
1

(c > 0) and (3.6) follows from (3.7). If x belongs to one of the circle segments,
then one can easily show that

ṡ(α(x)) = c0w
ǫ
0 + c1w

ǫ
1, c0, c1 > 0.

Hence by again using (3.7), we get (3.6). ✷

3.1.3. Asymptotics of the total cost for πLP

The proof of step 1 of Theorem 2.1 will be completed by the following lemma.

Lemma 3.2. Let πLP be defined by (3.3). Then (2.2) holds.

Proof. Define the following random variables

τa = #{t : πLP (ξt) = a}, a ∈ A.

From Lemma 3.1 we know that for some C > 0 and any a ∈ A

ExN
τa ≤ ExN

τ < NC.

For any t ≥ 0 we have

E(ξt+1 − ξt | ξt) = vπLP (ξt).

Hence from the ergodicity of LπLP
we get

−xN =
∞
∑

t=0

E(ξt+1 − ξt) =
∑

a∈A

vaExN
τa. (3.8)

Suppose that x ∈ U1. The proof for x an element of one of the other regions Uk

is similar. Assume for the moment, that for any a 6= a1, a2

lim
N→∞

ExN
τa/N = 0. (3.9)

From this fact and (3.8) we get that

−x = lim
N→∞

1

N
(va1

ExN
τa1

+ va2
ExN

τa2
).

Hence, (see (3.2))

lim
N→∞

1

N
ExN

τai
= tai

(x), i = 1, 2.
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Then (2.2) immediately follows from

CπLP
(xN ) =

∑

a∈A

caExN
τa.

So, it remains to prove that (3.9) holds.
Intuitively, it is clear that (3.9) is true. Indeed, the scaled trajectory ξtN/N

starting at the point xN tends to a deterministic path (see Figure 4). In other
words, the random walk ξt leaves the region U1 ∪ U2 only, when it is close to
0. But in this case ξt hits 0 after some finite time (see Lemma 3.1). Hence the
time period during which it could “use” action a, will be bounded. To prove
this, one can use results from [1], but we prefer to give a more simple proof.
Denote by (y1(x), y2(x)) the coordinates of the point x ∈ R2 with respect to
the basis (−va1

,−va2
), i.e.

x = −y1(x)va1
− y2(x)va2

.

Let ǫ > 0 be fixed. Consider the rectangle T (in the (y1, y2) coordinate system)
with vertices {(0, y2(x)−ǫ), (y1(x)+ǫ, y2(x)−ǫ), (y1(x)+ǫ, y2(x)+ǫ), (0, y2(x)+
ǫ)}, and the pentagon T̃ with vertices {(0, 0), R3 ∩ {y1 = −ǫ}, (−ǫ, y2(x) +
2ǫ), (ǫ, y2(x) + 2ǫ), (ǫ, 0)}. We also define the following sets

I1 = T ∩ U1,

I0 = T ∩ R2,

J1 = T̃ ∩ (U1 ∪ U2),

J0 = T̃ ∩ (R1 ∪ R3),

see Figure 4.
For any subset U ∈ R2, we define the random time τU as the first crossing

time of the set U , i.e.

τU = min{t : [ξt, ξt−1] ∩ U 6= ∅},
τU = ∞, if for all t ≥ 1 [ξt, ξt−1] ∩ U = ∅.

Next, define the event AN by

AN = {τNI0 < ∞, τNJ0
< ∞, τNI0 ≤ τNI1 , τNJ0

≤ τNJ1
}.

This event corresponds to the deviation of the trajectory of ξt from the “drift-
path” is not ”too large”. We will bound

ExN
τa = ExN

τa1(AN ) + ExN
τa1(ĀN ).

The first term can be bounded easily by using Lemma 3.1.

ExN
τa1(AN ) ≤

∑

z∈Z2,
dist(z,NJ0)≤d

PxN
{ξτNJ0

= z}Ezτa



142 A.S. Gajrat, A. Hordijk, V.A. Malyshev and F.M. Spieksma

✻

✲❩
❩

❩❩

✑
✑

✑✑

❆
❆
❆
❆

✛
✛

✛
✛

❄

❄

va1

va2

✛

❄

Y2

Y1

x

I1J1

U1

U2

Figure 4.

≤ P(AN ) max
z∈Z2,

dist(z,NJ0)≤d

Ezτ ≤ CP(AN ) max
z∈Z2,

dist(z,NJ0)≤d

‖z‖

≤ C̃ǫN, (3.10)

where the constant C̃ does not depend on ǫ. In the same way, we have for some
C > 0

ExN
τa1(ĀN ) ≤ CNPxN

(ĀN ).

By Lemma 3.1, there exist C1, C2, δ > 0 such that

PxN
{τ > C1N} < C2e

−δN .

Denote the event {τ ≤ C1N} by BN . Then

PxN
(ĀN ) = PxN

(ĀN ∩ B̄N ) + PxN
(ĀN ∩ BN )

≤ C2e
−δN + PxN

(ĀN ∩ BN ),

and

PxN
(ĀN ∩ BN ) ≤ PxN

{BN , τNI0 > τNI1}
+ PxN

{BN , τNI0 < ∞, τNI0 ≤ τNI1 , τNJ0
> τNJ1

}.
(3.11)

Obviously τ ≥ min(τNI0 , τNI1) and so

PxN
{BN , τNI0 > τNI1} ≤ PxN

{τNI0 > τNI1 , τNI1 ≤ C1N}.
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Let ξ̃t be the homogeneous random walk in Z2 with transition probabilities
pa1

(x, y). Define τ̃U for the process ξ̃t in the same way, as we defined τU for the
process ξt. It is clear that

PxN
{BN , τNI0 > τNI1}

≤ PxN
{τNI0 > τNI1 , τNI1 ≤ C1N}

≤ PxN
{τ̃NI1 ≤ C1N}

≤ 2PxN
{there exists t ≤ C1N : y2(ξ̃t) − y2(ξ̃0) > ǫN } (3.12)

+ PxN
{there exists t ≤ C1N : y1(ξ̃t) − y1(ξ̃0) > ǫN}. (3.13)

But St = y2(ξ̃t)−y2(ξ̃0) is a martingale with bounded jumps, S0 = 0. Therefore,
the probabilities in 3.12 are exponentially decreasing in N . Indeed, by virtue of
Theorem 3.1 there exist C, δ > 0, such that

P0

{

St >
ǫ

C1
t
}

< Ce−δt.

Hence

PxN
{there exists t ≤ C1N : y2(ξ̃t) − y2(ξ̃0) > ǫN}

= P0{there exists t ≤ C1N : St > ǫN}

≤
C1N
∑

t≥ǫN/d̃

P0

{

St >
ǫ

C1
t
}

≤ C1NCe−Nδ/d̃,

where d̃ is the maximum jumpsize of St. In the same way we can estimate
(3.13).

Let us consider the second term in (3.11). If τNI0 < ∞, then

τ ≥ min(τNJ0
, τNJ1

).

We obtain that

PxN
{BN , τNI0 < ∞, τNI0 ≤ τNI1 , τNJ0

> τNJ1
}

≤ PxN
{τNI0 < ∞, τNI0 ≤ τNI1 , τNJ0

> τNJ1
, τNJ1

≤ C1N}
≤ max

z∈Z2,
dist(z,NI0)≤d

Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N}.

A trajectory of ξt can cross NJ1 on the “left side”, on the “right side” and on
the “top”, i.e.

Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N}

= Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N, y1(ξτNJ1

) < −ǫN}

+ Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N, y1(ξτNJ1

) > ǫN}

+ Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N, y2(ξτNJ1

) > y2(xN ) + 2ǫN}.
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The second and the third terms can be estimated in the same way as in (3.12).
Let us consider the first term. This term should be also exponentially small in N ,
because in order to cross the “left side”, the trajectory should pass through a
region where the drift in the direction of the “left side” is zero. We will treat
this more accurately. To this end, note that the trajectory consists of a number
of parts contained in U2 or in U1 ∪ Y2. To obtain the exponential estimate, we
split up the trajectory into two pieces, where the second piece is the last part
of the trajectory that is completely contained in U2 (and starts close to the axis
Y2 = {z : y1(z) = 0}). This yields

Pz{τNJ0
> τNJ1

, τNJ1
≤ C1N, y1(ξτNJ1

) < −ǫN}

≤
∑

w∈Z2∩U2,
dist(w,Y2)≤d

[C1N ]
∑

k=0

Pz{ξt−k = w}Pw{ξs ∈ U2, for s ≤ τNJ1
, τNJ1

≤ k, τNJ0
> τNJ1

}

≤ C3N
2 max

w∈Z2∩U2,
dist(w,Y2)≤d

Pw{ξs ∈ U2, for s ≤ τNJ1
, τNJ1

≤ k, τNJ0
> τNJ1

}.

The latter probability is determined by the behaviour of a homogeneous random
walk. Hence, by Theorem 3.1 it can be estimated in the usual way (see the proof
of (3.12)).

Finally, we get the existence of C̃ > 0 (see (3.10)) such that for any ǫ > 0

lim sup
N→∞

1

N
ExN

τa ≤ C̃ǫ.

This proves (3.9) and so the proof of step 1 is complete. ✷

3.2. Step 2

This part is rather easy to show, due to the fact that the immediate costs
are non-negative. Let Lπopt

be the Markov chain induced by the optimal policy
πopt. As above, let τa be the number of times that ξt used action a ∈ A, i.e.

τa = #{t : πopt(ξt) = a}, a ∈ A.

Obviously,

Cπopt
(xN ) =

∑

a∈A

c(a)ExN
τa

and (3.8) holds as well.
By the definition of the optimal policy we have

Cπopt
(xN ) ≤ CπLP

(xN ).
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From step 1 we know that CπLP
(xN ) < CN for some C > 0 and all N . Hence,

for all a ∈ A
ExN

τa <
C

mina∈A c(a)
N.

So we can choose a subsequence Nk, such that for any a ∈ A the following limits
exist

lim
k→∞

ExN
k
τa

Nk
= t̃a(x)

and
∑

a∈A

c(a)t̃a(x) = lim
k→∞

Cπopt
(xNk

)

Nk
= lim inf

N→∞

Cπopt
(xN )

N
.

From (3.8) we get that {ta(x)}a∈A satisfy (3.1). So (2.3) follows immediately.
This completes the proof of Theorem 2.1. ✷

3.3. Other policies

Denote the optimal directions, i.e. the directions of the vectors vk, by Ok

(see Figure 5).
Let Rk be some ray between Ok⊖1 and Ok. In the same way as before, we

define the regions Uk through the rays Rk. Consider the partially homogeneous
random walk on Z2 induced by the policy π(R1, . . . , Rn) defined by

π(R1, . . . , RN )(x) = ak, x ∈ [Rk, Rk⊕1).

The “induced chain” perpendicular to the axis Rk (it can be defined in a stan-
dard way, see [3]) is ergodic and it is also clear that along Rk one is forced to
go linearly to 0.

Theorem 3.2. If the Uk are not degenerate, i.e. Uk 6= Ok, then

lim
N→∞

Cπ(R1,...,Rn)(xN)

N
= Copt(x).

In other words, the terms of order N in Cπ(R1,...,Rn)(xN ) do not depend on
{Rk}n

k=1. The case we considered before is a special version of this construction
with Rk = Ok. The general case can be proved in the same way. The reader
can repeat the with some small modifications.
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4. More Problems

Smooth Cost Functions. Assume that in our case we would like to delete
the homogeneity assumption on the cost function. The simplest case then is a
“smooth” one: for some smooth, bounded functions fa(x) : R2 → R we have
cost functions

cN (n, a) = fa

( n

N

)

.

The same smoothness we assume for transition probabilities but in fact we need
it only for mean jumps

vN (n, a) = va

( n

N

)

for some smooth bounded functions va(x) : R2 → R. Then the LLN takes place
for fixed strategy πa(x) ≡ a, i.e. we move along the dynamical system

ds(t)

dt
= va(s(t))

where

s(t) = lim
N→∞

ξN (t)

N
.
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We conjecture that the following special strategy that we will call piecewise

fluid strategy, will give an optimal solution: in the large N limit, the time
interval (starting from the initial point till 0 is hit) will be subdivided in a finite
number of subintervals and in each subinterval a fixed strategy πa should be
used. These asymptotically optimal solutions, which do not need to be unique,
should obey some kind of deterministic Hamilton – Jacobi – Bellman equation.

Discontinuous Problems. Assume now that we are in Z2
+ instead of Z2.

The transition probabilities are assumed to be maximally homogeneous for each
action a (i.e. homogeneous in the interior, and on each of the axes). That is,
we have a family of random walks in the quarter plane, see [3] for the theory
of such random walks. Also the cost functions are assumed to be maximally
homogeneous. As far as we know, such strong discontinuities were never con-
sidered in the literature. It seems plausible that the methods of [3] can be also
used in such type of Markov decision chains.

We present here some ideas how to do this. First, we conjecture that the
asymptotically optimal “fluid” path should again be piecewise linear.

• We should calculate asymptotically the optimal cost of reaching the bound-
ary for the first time in some fixed point, starting from some point [rN ],
with both coordinates of r being positive. For example, in the point xN
on the x-axis. This is can be done in the same way as in this paper.
Denote this optimal cost by D(x).

• Next we should determine the movement along the boundary to 0. Here we
consider strategies to reach 0 that are stationary in the x-direction. This
means that a = a(y) depends only on the y-coordinate of the current point.
We get an induced chain and everything is similar to the one-dimensional
case. Denote this optimal cost by D1(x).

• Then minimise D(x) + D1(x). This will give the still unknown point x.
It seems that the problem of finding the best x is essentially a two-stage
shortest path problem.

• There are of course many technical points; for example, to prove that we
cannot move from one axis to the other, etc.

Diffusion terms. For the case we discussed in this paper, now assume that
we would like to get more a exact approximation. What is the next term of
the asymptotic expansion? Is it of order

√
N? Is it related to the central limit

theorem along one of the asymptotically optimal paths?

Large deviations. If in our case Assumption 3 does not hold, then it can
appear that we can only reach 0 along some large deviation path with expo-
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nentially small probability. None did this for Markov decision chains, but there
exists some techniques which seems to be helpful in this problem: [1, 2, 6, 10].

5. Applications

Suppose that in a flexible manufacturing system two different types of prod-
ucts can be produced. With probability pa(i) there is a successful production
of i1 items of product 1 and i2 items of product 2 per time unit, by adjustment
or action a of the machine park. Here i = (i1, i2) and we assume that at most
one item of each product per unit time can be produced (i.e. ik = 0, 1). The
production cost under adjustment a is c(a) per time unit. The probability of a
demand of i1 items of product 1 and i2 items of product 2 per time unit is q(i),
and we again assume that the demand for each product per unit time can be
at most 1 (i.e. ik = 0, 1). Shortage of demands is back-logged; assuming that
the holding and shortage costs are small with respect to the production costs,
they can be neglected. The states of the flexible manufacturing system are then
given by i = (i1, i2), where ik is the number of items of product k in stock. A
negative stock corresponds to backlog of the corresponding product.

It is easily seen, that if we always use action a, the induced process is a
random walk with transition probabilities: pa(x, y) =

∑

x+i−l=y pa(i)q(l). We
are interested in stabilising the production system, especially for those cases
in which there is a large backlog or inventory of one or both of the products.
Hence, we are interested in the minimal total expected cost until the system
hits a certain bounded set, for example the set consisting of the empty state
only.

The optimal control problem for starting state i = (i1, i2), corresponding to
this flexible manufacturing model can be found via an extreme optimal solution
x∗ of the following CLP:

min

{

c(a)xia

∣

∣

∣

∣

∑

i,a

(

δij − pa(i, j)
)

xia = βj , for all j

xia ≥ 0, for all a, i

}

,

with βj equals 1 or 0 if j = i or j 6= i respectively. The variables xia of the CLP
denote the expected number of visits to the state-action pair (i, a), for all pairs
(i, a) in the state-action space. Hence the dimension of the LP is the number of
states times the number of actions, which in our model is infinite.

We get an optimal policy by taking in state i an action ai such that x∗
iai

> 0
(see [5] for more results and details on the CLP for a finite state space). This
approach determines the optimal policy in all states. In this sense it is the best
that we can get. However, since the LP has infinite dimension, it is only solvable
for very specific models. Moreover, the optimal policy is too complicated to
implement in practice.

Solving the simple FLP, as has been formulated in Section 2, we find a policy,
which we called πLP , having a very simple cone-shaped structure (see Figure 1).
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Theorem 2.1 also implies that the optimal cost C([xN ]) and the cost CπLP
(xN )

under the simple policy πLP both equal c∗N plus a small order term of N in
the large N limit, where c∗ is the optimal value of the LP-problem.

This implies, that the value function C(x) is asymptotically linear in x, and
moreover, that the difference between the optimal value and that of the simple
policy πLP is of small order of x, for x tending to ∞. This asymptotically
optimal policy is more useful in practice, because of its simple structure.

We computed the optimal control of the flexible manufacturing model for
several parameters and, remarkably, it turned out that the optimal policies have
this cone-shaped structure in the whole state space (note that since the state
space is a discrete lattice, we cannot have an “exact” cone-shaped structure).
This seems mainly due to our boundedness assumptions on the demand and
production, causing that under any action there is only “nearest neighbour
interaction” in the corresponding random walks.
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