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Probability related to quantum gravity. Planar gravity

V. A. Malyshev

Abstract. The stochastic dynamics preserving an equilibrium distribution of quan-
tum gravity is considered. This is the first detailed theoretical investigation of this
dynamics (earlier it was used for Monte-Carlo simulation). The main result is related
to the existence and certain properties of local correlation functions in the thermody-
namic limit. At the same time, the paper can serve as a mathematical introduction
to quantum gravity because we give a rigorous exposition of quantum gravity in
the case of planar pure gravity. We mainly use the combinatorial approach instead
of matrix models, which are more popular in physics, and the central point is the
famous exponent o = —%.
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§1. Introduction

On the history. A few words should be said about the history of quantum
gravity. The classical gravity deals with a smooth (not necessarily four-dimensional)
manifold M, a pseudo-metric tensor g;; on it, and the classical Einstein-Hilbert
action..

S = / (AR(z) + L{z) + p)y/det gdx
M

whose stationary points are studied. Here R(z) stands for the intrinsic curvature
at the point x, L is a functional of the matter fields ¢(x), and p is the cosmological
constant. In the case of pure gravity (without matter) we have L = 0, and we treat
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this case only. Quantum gravity takes into account not only stationary points but
also all other configurations, with some weights, that is, with a formal density

Z7  exp(—pS)

(which becomes positive under passage to the Euclidean metric) on some configu-
ration space {2 of matter fields and metric tensors. All earlier attempts to eliminate
the divergences led to the conclusion that £ must also include the smooth struc-
tures on M and even the manifold M itself, that is, both the space and its topology
must be random. Nowadays, the only reasonable way to pursue this program is
to start from the consideration of discrete objects only and then to perform some
scaling limits. In other words, the space becomes a finite complex, a smooth struc-
ture becomes a piecewise-linear structure, the metric and the curvature are coded
by the one- and two-dimensional skeletons of the complex, and the matter fields
pass into spins that live on cells of the complex. It turns out that such a quanti-
zation (discretization) is equally applicable to quite different physical systems such
as relativistic particles, strings, and so on, but with a different interpretation. For
instance, a string quantized in this way becomes a two-dimensional complex, and
the spin at a particular vertex is a vector in R? and thus provides a map of the
vertices of the complex into R? that approximates the classical string.

A discretization of classical gravity was considered first by Regge [1] who gave
rigorous definitions in the discrete case for finite space-time, its curvature, and the
Einstein-Hilbert action. His theory already appeared in the fundamental mono-
graph [2], but in the 1970s it was still regarded as a deviation from the mainstream
in physics, and few papers were devoted to it. However, among these papers was a
well-known paper by Hawking [3] in which discrete quantum gravity was discussed.

In the 1980s more than 100 papers concerning discrete quantum gravity appeared.

In the 1990s, the number of papers has exceeded 1000 and is still increasing. This
is due in particular to numerous relationships of discrete gravity both with other
contemporary mathematical theories and with physical theories, including string
theory, random matrices, and so on. Moreover, recent papers in theoretical physics
often contain maxims of the following type: “Two-dimensional random geometry
is now placed at the heart of many models of modern physics, from string theory
and two-dimensional quantum gravity in an attempt to describe fundamental inter-
actions, to membranes and interface fluctuations in various problems of condensed
matter physics” (see [4]).

For a probabilist, quantum gravity is a source of inspiration and also of new
mathematics and a new philosophy of probability. This paper can serve as a math-
ematical introduction to discrete quantum gravity for probabilists. However, it
should be noted that the subject of quantum gravity is much broader; for various
aspects of it, see the recent survey [5].

Dynamics contra equilibrium. We mainly use the combinatorial approach instead
of that based on random matrix models (RMM), which is more popular in physics.
However, the central point of our paper is the famous exponent a = —%. Another
objective of the paper is the study of the stochastic dynamics that preserves the
equilibrium distribution treated in quantum gravity. Here we start a theoretical
study of this dynamics (earlier it was used only for Monte-Carlo simulation;
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the study of this dynamics can be regarded as the third part of the author’s series
of papers [6] and [7], but knowledge of these papers is not needed to read the
text below). The point is that similar processes possess a universal character in
probability, cover most examples of Markov processes, and have many analogues in
computer science and biology.

By probability we mean here classical probability. The theory of quantum gravity
now amounts to a large number of papers that have filled well-known physical jour-
nals during the last ten years. Discrete quantum gravity is regarded as a promising
direction towards unifying the largest and smallest space-time scales in the present
picture of nature. We restrict ourselves to a part of this field which uses proba-
bilistic intuition, but in which it is difficult to find even rigorous formulations, not
to mention proofs that could be satisfactory for a mathematician: even when the
“probabilities” are (we hope) positive, they are not normalized. It seems that this
is so not because of the authors’ disdain for rigour but for more substantial reasons.

In the physical literature the techniques of algebraic geometry dominate the
subject. Therefore, it is worth discussing also the simplest probabilistic aspects of
quantum gravity: even the attempt gives rise to many natural questions.

Two approaches to discrete quantum gravity are known, namely, the quantum
Regge calculus (where the lengths of edges are random variables) and dynamic
triangulations (where the lengths of edges are constant). The term dynamic in the
second approach can lead to confusion because in fact it has no dynamics, and the
main apparatus uses the Gibbs equilibrium distributions on the set of large random
matrices. For this reason, such an approach is called here an equilibrium approach.

The dynamics in quantum gravity arose in Monte Carlo simulations. The new
point in this paper is in our analytic and probabilistic study of the relevant Markov
processes (no recent rigorous results in this direction are known to the author).
How can this study be useful? There are many reasons, and we present here an
incomplete list.

e A well-known difficulty in averaging over all topologies is that, in dimen-
sion four, this generates algorithmically insoluble problems. The dynamics
replaces such a problem by another one, namely, instead of averaging we
seek a process (with arbitrary initial state) that generates a class of topol-
ogies. This process must have some symmetry, but at the same time it
must be legitimate from the viewpoint of probability theory, and already
this remark leads to interesting observations.

e It is desirable to have a Markov process that preserves a Gibbs measure, as
is the case for stochastic quantization in ordinary quantum field theory and
for the Glauber dynamics in statistical mechanics. This dynamics is useful
(but not fundamental) in quantum field theory, which, however, has the
Whiteman axioms, and in statistical mechanics, where the original deter-
ministic Newton dynamics is regarded as a more fundamental source than
the Gibbs measure itself. In quantum gravity, where both these factors are
absent, one can unexpectedly take the viewpoint that the process itself is
more fundamental than the Gibbs measure.

¢ The dynamics enables one to consider the domain under the critical point,
in which the equilibrium distribution is meaningless. However, this domain
becomes no less natural from the probabilistic viewpoint, like the expanding
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universe (in “computer time”, a term which the author learned from a
paper by Migdal). Moreover, the dynamics gives meaning to quantities
at the critical point without performing scaling limits. A true physical
interpretation of this fact is not known to the author, but it is clear that
this phenomenon is natural from the probabilistic viewpoint.

¢ We have no physical arguments for (or against) dynamic models, and only
the probabilistic intuition can be a guiding thread. The main problems are
as follows. What is universality, and what is the generic situation? It was
recently suggested [8] that computer science can play a role in future phys-
ical theories. The dynamic approach enables one to interpret the evolution
of the universe as a random grammar describing a random evolution of the
corresponding language.

e Mathematical investigations of the thermodynamic passage in statistical
mechanics and quantum theory have enriched probability theory with many
new ideas. However, attempts to construct a similar theory for growing ran-
dom complexes have yeilded additional and unexpected phenomena (see [6]
and [7]), which we hope have physical meaning. One of these new effects is
that one cannot choose an origin in the infinite universe without using the
Zermelo axiom, and any constructive introduction of a local observer into
the system modifies the structure of space-time in a neighbourhood of the
observer.

e It is a difficult problem to find the critical exponents by means of Monte-
Carlo computer simulation because an exponential factor dominates the
asymptotic behaviour, and this factor is not universal and strongly depends
on details of the model. A Markov process modifying the number of cells
would be more useful in this situation than simulation of the uniform dis-
tribution on the set of triangulations. It turns out that for the desired
exponent a = —1 it is more natural to use a special transformation of mea-
sures, a so-called non-linear Markov process in terms of probability theory,
instead of an ordinary Markov process.

Contents of the paper. In §2, the one-dimensional case is treated, which is useful
as a bridge between classical probability theory, for instance, queuing theory, and
two-dimensional quantum gravity.

In §3 we give a minimal list of necessary definitions concerning complexes and
curvature in the two-dimensional case.

§4 contains the introductory definitions, the main problems, and some known
results. In §4.2 we give a brief exposition of the RMM approach to pure planar
gravity, and the sole object of this exposition is to stress some problems related to
the combinatorial approach which is basic in the present paper.

In § 5 we study a simple dynamic model in which cells are randomly appended to
the boundary of the disc. This model is explicitly soluble (via random walks), and
we calculate the main quantities. The exponent for this model is —2, and thus it
belongs to a universal class which differs from that accepted in physics. However,
the continuum limit in this model is well defined, and gives a space of constant
curvature.

§6 is central. Here we construct and study non-linear Markov processes that
preserve a Gibbs measure. Here changes can again occur on the boundary only.
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We use the Tutte method of functional equations to obtain the desired exponent
—%. On the other hand, we develop a new (combinatorial) approach to the study
of local correlation functions.

In §7 we consider Markov dynamics in which changes can occur at any cell of
the complex.

I thank L. Pastur for elucidating some points of the theory of random matrices
and also S. Shlosman and R. Minlos for reading the paper and for numerous useful
comments.

§2. One-dimensional gravity

For the physical interpretation and beautiful calculations in one-dimensional
gravity, see Chapter 2 of the Ambjern lectures [9]. Our aim here is the probabilistic
investigation of gravity and the discussion of unexpected relationships. There is no
topology in dimension one, and a one-dimensional cell complex is a linear graph.

—0o—© ©
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Figure 1. Linear spin graph

A chain of symbols drawn from some alphabet can be regarded as a function on
the set of vertices of such a graph (see Fig. 1).

2.1. Equilibrium distribution. Let us give the basic definition in a more
abstract form than that in [9], without preliminary embedding in Euclidean space,
which gives better agreement with Polyakov string quantization. Let us consider
probability distributions on the set of finite linear spin graphs (sometimes we use
the terminology of [6] and [7], but such deviations can mostly be skipped). That
is, we consider distributions on the set {2 of strings (or chains) o = s; ...sn, where
N =0,1,2,..., s; € S, and S is an alphabet (the spin space). For example, S can
be the unit sphere in Z¢ or in R?. The case N = 0 corresponds to the empty string,
which has no S-value. Let us define a non-negative measure on {2 by the relation

N-1
Qo) = exp(—#N ~ B8 (filserr) + fz(si,8i+1))) (1)

i==0

for some functions f; and fo. It is convenient to assume that some element sq is
chosen. The simplest example is obtained for s € Z4, f, = 0, and fi(s) = oo for all
s except for a finite set. This measure can be normalized if

Z=Y Q(N,0) < 0.

N,o

Intuitively, a sequence of values sg, Sg+51, .- -, So+81+---+Sn can be regarded as a
“random walk.” However, it differs from classical random walks. In what follows we
find a relationship of the above sequence with certain computer science problems,
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and then connect this formal object with Euclidean space; in physics, a similar
procedure is now common, namely, an abstract object (a random triangulation, an
intrinsic metric, and so on) is tied to physical space-time.

Simplest examples. In the first example we set § = Z4, fo =0, and fi(s) =1 for
Is| =1 and fi(s) = oo otherwise. Let so = 0. In other words, we consider the
non-normalized measures exp(—I(s)) on all possible finite paths r = (0, 81,81 + 82,

.+y81+ 824 -+ sn) in Z9 that start from 0, where N = I(r) is the length (the
number of steps) of the path r. These measures can be infinite. There is a number
Ber, 0 < per < 00, such that the series

Z = Z exp(—pl(r))

for the partition function is convergent for y > e, and divergent for p < per. In
our case, Uer = In 2d.

For the second example we take S = R4, e~ f1(5) = d(]s| — 1), and fa(s,s') =
#((s,5')) for some bounded function ¢ of the angle between two vectors. For the
third example we set S = R?, f =0, and fi(s) = s2 = (s1)2 + - - - + (s9)2.

These examples, which are highly simple and have nothing special from the
probabilistic viewpoint, correspond to one-dimensional analogues of rather famous
actions: that for a free relativistic point particle in d-dimensional space-time,

ﬂM=uLﬂ,

where [ stands for the Euclidean length and L = L(0, z) is a path from 0 to z; the

Hilbert—Einstein action
S(L):u/dl+/\/ PEA
L L

where k stands for the curvature of the curve embedded in Euclidean space; the
action for a boson string z(l),

s =5 [ Vama(swGE+n),

where g is a metric on the interval of variation of the parameter. One can regard
the above distribution as a quantization of the corresponding classical action, and
it does coincide with the discretization. The length of any link of the discrete path
is assumed to be 1, and thus the length of a path is the number of links.

We discuss the first example only; the other two can be treated in a similar
way [9]. For > pe we can define a probability distribution on the set of all finite
paths starting from the origin 0,

P(r) = Z7" exp(—pl(r)).

The Green functions are defined as measures on Z¢,

Gl@)= 3 exp(-pl(r)) = Y O(N;z) exp(—uN) = 3 Py (z)e~ther)V,
N N

s: 0>z
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where C'(N; z) stands for the number of paths from 0 to z of length N, and P}(g‘) (z)
are the probabilities of an NV-step transition from 0 to z for a classical simple random
walk in Z%. By the local limit theorem, the number of paths is

C(N;z) ~ (2m)~Y2(2d)NN—4/?

if £ = O(V' N ). The term “Green functions” originates not only from the functions
in physics but also from the Green functions for Markov processes. Indeed, for a

random walk we have
Grw(0,2) ZP(") > p(D),
L:0-»z

where L ranges over all paths from 0 to z.
The following observations are of importance.

e The number p. and the exponent —d/2 do not depend on the choice of z.

o The value p., is not universal; it depends on the dimension and on the
lattice. Other values of yicr can also be obtained when considering piecewise-
linear paths in R? with sides of chosen length [9].

e At the same time, the exponent —d/2 does not depend on the lattice, as
follows immediately from the local limit theorem.

e For y = p,, the series is convergent if and only if d > 2.

Let us study the scaling limit g — per +0. We write £ = 87 + - -+ + sn. In the
scaling limit, one studies the following exponents: the mass exponent v (the inverse
correlation length), the susceptibility exponent 7, the anomalous dimensionn,
and the Hausdorff dimension dy. They are determined by the leading terms in
the asymptotic behaviour for small p — p,,

m(p) & (1 — prer)”, ZG (1= prer) ™7,

G(z) ~ |z|79+2 ", ZNC’ N;z)exp(—puN) ~ z#

Let us give a detailed calculation. The susceptibility

x(p) = ZG(H:) = Ze(—w—uc,)N _ 1
z N

1 —exp(—p + pler)

does not depend on the dimension of the spin s and remains the same for more
general spins and interactions (however, not always). Thus, v = 1.

If (L — per)z < 1, then G(z) ~ Grw(z), where G gw () are the Green functions
for a simple random walk. Therefore, = 0.

Let Pg;g (z) be the transition probabilities for a simple random walk on Z¢ and

let f(p,2) = N30, Pl(g‘} (z)e* 2N, z € C, be their generating function. Then
1 o 1
Her — y’ u+”°r)N —_ i =
G(p) = f(p,e Z € (d Z COSP’) 1 — e #tueal S cosp;
N 1
H— Wer + %ZCOSpi ’
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which is the classical propagator for a free quantum relativistic particle with mass

V= fiez. Thus, v = 3.

We can readily prove that

dg =v71, y=v(2-n).

In the second example, different exponents can be obtained as A — oo and
B pier [9]-

2.2. Gravity as a queuing model. Let us start from the first example intro-
duced above. One can construct a reversible dynamics preserving the measure
Q(o). This is given by the following Markov chain with continuous time. In our
case, the set S consists of 2d unit vectors e;, —eq,...,eq, —eq in Z% The state

g —=81...8N

is interpreted as a queue, where N is the length of the queue, S is the set of
customer types, and 51 + -+ + sy € R? is the generalized length of the queue. This
is a LIFO-type queue (last in, first out), and the transitions consist in appending
and/or deleting the rightmost link (which is similar to the arriving and service of
customers in queuing theory). More exactly,

81...88N > 81...8N—1
for all o = 83 ...sn with rate (intensity) v, and
81...8N = 81...85NSN+1

with rate A, where all values of sy;; are equiprobable. The transitions § — s;
from the empty queue have the rate A with equiprobable values of s;.

Lemma 1. The process is ergodic if and only if v > X\ and the distribution (1) is
invariant with respect to this dynamics.

For the proof we note that the length N; = N(o(t)) (of the queue o(t) related to
the instant t) is also a Markov chain, a birth-and-death process, and its stationary
probabilities are

Z Yexp(—pN — NIn2), ,u:ln%.

We also note that a system of two queues corresponds to two interacting particles,

and so on, but we do not go into the details of this problem.

Supercritical case. Although there is no equilibrium distribution in the case v < A,
this case is not worse than that of ¥ > X from the viewpoint of dynamics, namely,
at any instant there is a distribution Q(t), and the behaviour of its local correlation
functions as t — oo can be studied. By N(o(t)) we again denote the length of o(t)
at the instant ¢.
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Theorem 1. If X > v, then N(o(t)) = oo almost surely. Moreover, there are
limiting local correlation functions (not very near the endpoints of the string) that
define a translation-invariant Gibbs measure on Z. For instance, a one-particle
correlation function is defined as follows:

lim lim P(sg(t) =1i) — p;, i€ S.
k—o0 t—00

In fact, in the first example, this Gibbs field is a Bernoulli measure in each of
the three regions v > A, v = X, and v < A, for details, see [10].

Critical case and the scaling limit. There are two ways to treat the critical case.
First, we can consider the dynamics for critical values of the parameters (in the
first example, this is the value % = 1). The critical exponents can be obtained
immediately from the dynamics. There are results for rather general transitions.
For instance, let v(s) and A(s, s’) be two positive functions, and let us define the
transition rates by the formulae

v(s1...sN = 81...8n-1) = V(sN), A(S1...58 = 81...8N4+1) = A(SN,SN41)-

Thus, the rates depend on the rightmost symbols. We assume that the functions
v(s) and A(s, s') are such that the Markov chain is null-recurrent; for the conditions
ensuring this property, see [11]. Let S be finite, S = {s1,...,55}. Let n(t) =
(n1(t),-..,nk(t)), where n;(t) is the number of symbols s; in the string o(¢). Then
the following assertion holds.

Theorem 2. The central limit theorem holds for the random vector n(t), that is,
the limit

n(t) S Jwl

— w|e

Vit
exists in probability as t — oo, where w has the standard Gaussian distribution and
c 1s a constant vector.

This gives the same canonical exponents as under the equilibrium approach. We
note that, in the reversible case, the proof reduces to the case of a reflected random
walk. The proof for irreversible dynamics is more involved: for finite S, see [11].
For compact S, there is no proof, but it seemingly must be similar. It would be
of interest to find examples for the non-compact case with non-Gaussian limiting
distribution.

The other approach corresponds to the scaling limit in the equilibrium case. The
scaling of the parameters of dynamics is performed simultaneously with the scaling
of time ¢ so that the difference v — A tends to zero and is scaled as t~%. In the
dynamics, this scaling limit corresponds to the diffusion approximation in queuing
theory. Moreover, under the scaling

t=7N, z’:r\/ﬁ, V—)\:N_%, N =3

(with some constant 7 and r) we obtain a Brownian motion with drift. The drift
defines the mass gap in the spectrum of the infinitesimal generator of the corre-
sponding diffusion process.
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Random grammars. We have considered a dynamics that is called a right-linear
grammar (not necessarily context-free, see [6]) in computer-science terminology.
Let us now consider a more general dynamics in which the transitions can occur at
any place of the string (not only at its right endpoint as above).

For the first example, one can construct the following reversible Markov chain
that preserves our measure; this chain is a context-free random grammar (for the
definition, see [6]). Each symbol of the string is deleted with rate v and, for any
1=0,1,...,n, we insert a new symbol between the symbols s; and s;,; (for i = 0,
we put it before s; and, for ¢ = n after s,,) in the string s;...s, with rate A.
The appended symbol takes one of the 2d values of the coordinate vector e with
probability 1/2d. To prove that the measure is invariant, we note that the path
lengths also form a Markov chain (on Z,). This is a birth-and-death process on
Z 4+ with jump rates gq; ;11 = M, ¢iy1,; = vi, and go,1 = A. Then its stationary
probabilities (for A < v) are

q0,191,2 " " Gk—1,k v
= ————————1 = (Cexp(~pk), =ln—.
1,0 Gkk—1 (=kk) # A
For the other two examples, the dynamics (which is not context-free) can also be
constructed, and we shall treat this in another paper in the general case.

§3. Spin complexes

3.1. Cell structures. Here we present a minimal list of basic definitions concern-
ing cell structures.

A complex is obtained by gluing together its elementary components, or cells,
like matter consisting of molecules. First of all, one must be very careful in defining
the rules of gluing and the probability distributions that arise. On the other hand, it
seems doubtful that some types of cellular structures have some a priori advantages
over the others, because there are no physical reasons to prefer one cell structure
or gluing rule to another. Thus, various possibilities must be considered to see
that some laws are universal. In this paper we encounter two universal classes,
one of which is popular in physics. Moreover, having flexibility in choosing a cell
structure, we can obtain models that are simpler and even soluble.

3.1.1. Abstract complexes. A (labelled) complex T is a set of elements, the so-
called cells, for which a function A + dim A4 on I is defined, the so-called dimension
of a cell A, that takes values in the set {0,1,2,...}. By definition, the dimension
of I'is dimI' = sup 4 dim A. Let I'y C I be the set of cells of dimension d. For each
cell A €Ty, d> 0, asubset 0A C Uf;oll“i is defined which is called the boundary
of A. A subcomplex IV of T is a subset of T such that, if A € I'', then 64 C .

An isomorphism of two complexes is a one-to-one map preserving the dimension
and the boundaries. The equivalence classes of complexes with respect to the
isomorphism are called the unlabelled complexes.

We note that a complex I' can be regarded as a special case of a spin graph (G, s);
see [7]. The correspondence can be constructed in different ways. For example, let
the vertices ¢ of a graph G correspond to cells of C' and let the function s(i) be the
dimension of the corresponding cell. The links (edges) are defined by the incidence



Probability related to quantum gravity. Planar gravity 695

matrix as follows: two vertices A and A’ of G are connected by a link if and only
if A’ € 9A.

A labelled spin complex is a pair (T, s), where T is a complex and s: C(I") —» S
is a function on the set C(I") of cells of I' with values in some spin space S. The
isomorphism of two spin complexes is an isomorphism of the complexes respecting
the spins. The equivalence classes are called (unlabelled) spin complexes. Unless
otherwise stated, we consider only functions s defined on the cells of maximal
dimension; sometimes, if a dual complex exists, we may assume that the function
s is defined on the vertices of the dual complex.

3.1.2. Topological complexes. There are many topological incarnations of
abstract complexes. In each of them, a cell is represented by an open disk. A
CW-complex is a topological space K that is a union of its d-skeletons Ky, which
are defined by induction as follows. Let Kg = I'g be a disjoint union of points
(vertices), which are the cells of dimension 0. In general, Ky is obtained from K4_;
by joining some cells A by the following rule. Each such cell A of dimension d is
identified with an open d-dimensional disc D4, and a continuous (pasting) map
¢a:0Ds — Ky is chosen. Then K is the quotient space of the union of K41
and Ug.dim a=aD 4 via identifications of the points x € 0D 4 and ¢ 4(x).

For example, K; is a graph whose vertices are the zero-dimensional cells and
whose links (edges) are the one-dimensional cells. A link A is called a loop if the
boundary of A is mapped to one vertex. Some restrictions are often imposed on
the attaching maps. Here we restrict ourselves to the case in which dimI" = 2
and, for all A with dim A = 2, the boundary 8D 4 is a union of some cells B with
dim B = 0,1 (in some books, this condition is included in the definition of a CW-
complex; cf. [12]). With a CW-complex of this type one can associate an abstract
complex with 04 = {B € KoUK : B C ¢4(D4)}.

We obtain a class of simplicial complexes (where the cells are called simplices)
if the boundary of any two-cell contains precisely three one-dimensional cells and,
for any cell A, the set 3A N Ky of vertices determines the cell A uniquely. In
particular, each graph without multiple edges and without loops is a simplicial
complex of dimension one.

3.1.3. Cell surfaces. In the paper we consider various classes of two-dimensional
complexes. A class can be defined either by some restrictions on the above (maxi-
mal) class of complexes or by a constructive procedure by which we can obtain all
complexes of this class. In other words, a class is defined as a language obtained
by means of a grammar on the set of graphs; see [6] and [7].

The following restrictions hold for all complexes in this paper: a complex is a
(closed compact) surface. A (closed) pseudosurface is a topological space isomor-
phic to a finite two-dimensional simplicial complex with the following additional
property: each link belongs to the boundary of exactly two two-dimensional cells.
A surface has an additional property that each vertex has a neighbourhood home-
omorphic to a disc.

Here is the list of all compact closed two-dimensional surfaces (without holes).
The orientable surfaces are the spheres with p handles, S,, p = 0,1,2,....
The non-orientable surfaces are Py (the projective plane), P» (the Klein bottle),



696 V. A. Malyshev

and the surfaces Py, k = 3, ..., where P, is the sphere in which & holes are cut out
and a Mobius band (a crosscap) is attached to each of them along its boundary.
If a complex is isomorphic to such a space, then K is a graph homeomorphically
embedded in the corresponding surface S. Such complexes are studied in topological
graph theory [13] and in combinatorics, where they are called charts (or maps). A
surface with holes is obtained from a closed surface by cutting out finitely many
discs with disjoint boundaries. The boundary of any surface with holes belongs to K .
An isomorphism of charts is an isomorphism of abstract complexes. In other
words, two charts are called isomorphic if there is a homeomorphism of S that maps
the vertices onto the vertices, the edges onto the edges, and the (two-dimensional)
cells onto the cells. We consider here only orientation-preserving maps of this kind.
A chart B is a subdivision of a chart A if the graph K;(A) of A is a subgraph
of the graph K,(B) of B. As is known, two two-dimensional (and even three-
dimensional) topological complexes are homeomorphic as topological spaces if they
have subdivisions that are isomorphic as abstract complexes.
The Euler characteristics of a complex (for a compact closed surface) is defined
by the formula

x=V-L+F,

where F is the number of faces, V' is the number of vertices, and L is the number of
links. It depends on the surface itself rather than on the complex; for the orientable
surfaces we have x = 2 — 2p, where p is the genus (the number of handles), and for
non-orientable surfaces we obtain x = 2 — n, where n is the number of crosscaps.

In what follows we are mainly interested in the following five classes of complexes
(charts).

Arbitrary charts. This is the class we have just defined. No further restrictions are
imposed. The simplest examples are a vertex inside the sphere (a vertex chart),
and an edge with two vertices inside the sphere (an edge chart).

Smooth cell surfaces. A smooth cell surface [14] is a compact connected smooth
two-dimensional manifold M with finitely many closed subsets (cells) F; such that

1) UF; = M,

2) for each i, there is a one-to-one smooth map f; of the cell F; onto a polygon
with n; edges, n; > 3,

3) for i # j either we have F; N F; = or f;(F; N F}) is an edge or a vertex of
the corresponding polygon.

Triangulations. These are smooth cell surfaces such that n; = 3 for all i.

A set V of vertices is said to be separating if there are two subgraphs G; and
G2 such that Gy UG = G and Gy NGy = V. For a triangulation, the absence of
separating sets is equivalent to the absence of loops in Kj.

A disc triangulation is defined as a smooth cell surface homeomorphic to a disc
and having no separating singletons. In this case, it can be regarded as a triangu-
lation of the sphere for which a face (corresponding to the exterior of the disc; this
face is said to be exterior) is singled out and the number of edges n; is equal to
three for all other faces.
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Simplicial complexes. These are triangulations without multiple edges; moreover,
every three edges define at most one cell. Note that a triangle (a cycle of length 3)
having at least one vertex inside and outside is not regarded as a cell.

Convex polyhedra. A convex polyhedron is a special case of a chart with p = 0.
There is a purely combinatorial characterization of charts corresponding to convex
polyhedra. If a triangulation has neither loops nor multiple edges, then for L > 4
it corresponds to a convex polyhedron (by the Steinitz—Rademacher theorem).

3.1.4. Local observer (root). A complex is said to be labelled if the set of
vertices is enumerated. An important point is that often one does not speak of
the enumeration, with the understanding that the set of vertices is defined in some
way. However, the labels are useful to choose a coordinate system in the space but
are superfluous for geometry and topology. At the same time, equivalence classes
of complexes are not useful for other reasons. There is another way of avoiding
superfluous coordinatization while keeping the group of automorphisms trivial. In
essence, this is the same coordinatization by means of which we can enumerate
all vertices of a given complex by means of some algorithm. A root (or a local
observer) in a labelled complex is a triple (f,{,v), where f is a two-dimensional
cell, [ is one of its edges, and v is a vertex of I. An isomorphism of two complexes
with roots is an isomorphism of complexes that respects the roots but does not
necessarily preserve the enumeration. A rooted chart (a rooted complex, a complex
with a local observer) of class A is an equivalence class of complexes with a root in
the class A. We always assume that a rooted edge is oriented and directed away
from the rooted vertex. For disc triangulations, we agree that the exterior face ¢ is
always rooted, and in this case it is possible that n; # 3.

Lemma 2. The automorphism group of any rooted chart is trivial.

This can readily be proved by induction on the number of cells by successively
extending an automorphism from the rooted face to its neighbours.

3.1.5. Moves. The grammars on graphs, or graph grammars, corresponding to
transformations of complexes are less studied. Here the corresponding substitutions
are called moves. In the next section, §4, we study Tutte moves (see Fig. 5),
which consist in appending an edge between two vertices of a cell or in joining two
complexes by identifying two of their vertices. However, partitions have always
played an important role in the topology. In [15] and [16] some moves are studied
in detail.

Let A be a commutative associative algebra over Z, (the algebra of simplicial
chains over Z,) generated by the symbols from some (countable) alphabet L with
the commutation relations s? = 0 and s;8; = s;8;. Thus, this is the linear span of
the strings (simplices) of the form a = s; ...sy, where all s;’s are different. Let us
define the boundary operator as a linear operator 8: A — A such that

3a=ZB,

where the sum is taken over all submonomials 8 = s;,..8:, ,, 1 <11 < -+ <
in—1 € n, of the monomial a. We treat here two-dimensional complexes only, that
is, n < 2.
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The other linear operators in this algebra are called Alezander moves and
denoted by S; j.z, %, 4,2 € L. They are defined by the formula
Sijize = (i + )P

for a =ij3; we set S, j.,a = 0 otherwise.

i@f N l@f
iAJ’ T z@;

Figure 2. Alexander moves

/\ A

———
GV-move 2

Figure 3. Gross—Varsted moves

The next example is given by the Gross-Varsted moves defined in Fig. 3. It is
proved in [16] that each of the Alexander moves can be represented as a composite
of Gross—Varsted moves, and conversely. A set R of moves is said to be irreducible in
a class A of complexes if, for each pair T}, T, of complexes in A, there is a sequence
of moves in R that lead to T starting from T; (in the physical literature, the term
ergodic is used in this case, but we use the standard probabilistic terminology).

Theorem 3. In the class A of simplicial complezes, both the set of Alezander
moves and the set of Gross—Varsted moves are irreducible.

For the proof, see [15] and [16].

3.1.6. Automorphism groups. Let A be one of the five classes of complexes
introduced above.

Theorem 4. For almost any complez with N two-dimensional cells that belongs
Anon—trivial(N)
A(N)

N — o0, where A(N) (Anon-triviat(N)) is the set of all complezes with N two-
dimensional cells that belong to A (the subset of A(N) formed by the complezes

with non-trivial automorphism groups, respectively).

to the class A, the automorphism group is trivial, that is, — 0 as

Tutte noticed earlier that this assertion is intuitively clear. Since then, many
rigorous results appeared, see [17], [18], [19]. For the proof in the case of disc-
triangulations, see [20].
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3.2. Metric and curvature. A metric structure is defined if it is given on each
of the closed cells so that the metrics on the boundaries of the cells coincide. There
are two basic approaches to the definition of a metric, namely, the dynamic trian-
gulations for which all edges are of unit length, and the quantum Regge calculus
in which these lengths are random. Let us use the first approach. In this case, all
cells with equal number of edges are identical, and the metric on them is standard.

We can use another approach. Let us consider first the graph K; embedded
in the plane as a system of smooth arcs. Let us first define the metric on K; so
that all edge lengths are equal to a constant and the area of any face (if this face
is a triangle) is equal to one. Inside a cell with n edges, we define a metric by a
smooth one-to-one map of an equilateral polygon @, with n edges onto this cell
and such that the smoothness holds in a neighbourhood of the edges. In this case,
the curvature is zero inside the cells. The same holds on the faces away from the
vertices, as is shown in the figure in the piecewise-linear case.

—;

Zero curvature positive curvature

Figure 4. Curvature

Let us define the curvature R, at a vertex v. As usual, the curvature is measured
by the parallel translation (with respect to the Levi-Civita connection) of a vector
(lying in the plane of a face in the piecewise-linear case) along a closed path as
follows: along the internal part of a triangle, this is done as on the Euclidean plane,
and when passing through an edge, by developing the two half-planes separated by
this edge. Thus, only paths around vertices can give non-zero curvature. Around
a vertex v, the angle between the initial and the translated vector is equal to
€y = 2™ = ). ; Pfy, Where py, is the angle of the simplex f at the vertex v. We

note that
S DL 3 DI 3) S
v v b I v
This, together with the Euler formula x = V — L + F, yields the Gauss—Bonnet

formula
Z €y = 2mx
v

for the triangulations, because L = 3F/2.

The classical examples are as follows: positive curvature corresponds to elliptic
geometry (sphere, projective plane), zero curvature to Euclidean geometry (plane,
torus, Klein bottle), and negative curvature to hyperbolic geometry (all other cases).
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We claim that the curvature R; at a vertex ¢ is defined by the number ¢; of edges
incident to ¢. The Einstein—Hilbert action on a smooth manifold is

/(clR + ¢2)\/g dz,

where R stands for the Gaussian curvature and g is the metric. By the Gauss-
Bonnet formula, / Rdo = / R\/gdz = 47 for smooth surfaces. The connection

of this formula with the discrete case for a partition of the unit sphere into polygons
with n; edges and areas A; (the area A of a triangle with angles oy, as, and a5 is
A=a; +ay+as — ) is given by

ZkiA,- = Z[Zaij—(ni—Z)TrJ = Zaij—ﬂZni+27rF: 21V - 2nE+27F,
i b

if

where the a;; are the angles of the cells. Thus, the discrete action must be A\p+ pN
(up to a constant), where p stands for the genus and N is the number of triangles.
Let us rewrite this action in terms of curvature by summing over the vertices instead
of summing over the triangles. All triangles are equilateral; we assume that they
have unit areas. Then each vertex obtains the area % from any incident triangle,
which gives the total ¢;/3. Therefore,

/Rda =Y LR,

and the formula a
“Ri=4

6 —_— s
holds only if we set R; = 2« . 4%
i

§4. Equilibrium planar pure gravity

There are two kinds of technique in use in two-dimensional quantum gravity.
Historically, the first of them is the combinatorial approach, which was initiated by
Tutte and continued (without any mention of physics) by many researchers, and
their papers are published in journals of combinatorics. The other is based on ran-
dom matrix models (RMM’s), which originated in physics itself. The calculations in
the RMM approach are very persuasive, but the arguments are not completely rig-
orous. As far as the author knows, no mathematically rigorous connections between
these approaches have been established. We use the first approach and give a short
survey of the other.

4.1. Definitions and the combinatorial approach. Let A be a class (for
example, defined in the previous section) of complexes T homeomorphic to the
sphere, let |T'| = F(T') be the number of two-dimensional cells in T', and let C(N) =
W{T' € A:|T|=N}. The main example is the class of all triangulations of the
sphere.
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The grand canonical ensemble is defined by the relations
P(T) = 2" exp(-pF(T)),
Z= Z exp(—pF(T)) = ZC’(N) exp(—uN). (2)
N

TeA

In particular for fixed N the conditional distribution of T € A is uniform. There is
a general and often useful method for the rough estimation of the number C(V).

Lemma 3 (exponential a priori bounds). ¢17f¥ < C(N) < cavY, where 1 < v <
Yo < 00 and ¢; > 0.

Proof. The idea for proving the lower bound is as follows: the sphere partitioned
into N triangles is represented as a stretched tube of length of order N and with
cross-section of order m, which is a constant (the metric is defined here by the
condition that the lengths of all edges are equal to unity). We take two non-
isomorphic complexes homeomorphic to an annulus in the plane, with the same
number of edges on both sides and with n cells. The first complex is made up
of alternating triangles standing on an edge and on a vertex, and the other of
alternating pairs of triangles (two on an edge and two on a vertex, and so on). Let
us glue these triangles in succession in an arbitrary order. We thus obtain the lower
bound 27V/7.

To prove the upper bound, we use the following approach that works even in a
somewhat more general situation. One can suggest an algorithm for constructing
all possible complexes with N cells of dimension two. Let us start with one cell.
We enumerate its edges by 1, 2, 3. At each step we add at most one cell to the
boundary and enumerate the new edges in the order of their appearance. Let us
describe this inductive construction. We take the edge with index 1 and make one
of the following four decisions: 1) to add no more triangles to this edge, 2) to add
to this edge a triangle with exactly two new edges, 3) to add a triangle to this edge
and to the next edge on the boundary (clockwise), 4) the same for the anticlockwise
direction. For each of the 4% decision sequences w, let f(k,w) be the number of
edges after k steps; we have f(k,w) < 3 + 2k because at most two edges are added
at each step. Moreover, if there are n triangles, then at most 3n decisions of type 1
are possible.

However, an exact asymptotic expression is needed. All known examples show
the following asymptotic behaviour:

C(N) ~ciN*cN. 3

The next assertion follows from (3).

Corollary. There is a number per, 0 < por < 00, such that the series (2) is
convergent for > e and divergent for p < pee. If pp = per, then Z < oo if and
only if a < —1.

Thus, for values p < i of the parameter the distribution does not exist. How-
ever, the dynamics introduced below enables us to interpret these values of y as
well.
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Neither of the constants ¢; > 0 and ¢ > 1 is universal but for all known examples
a is (it has the same value for all examples). This property of « is not intuitively
clear. For example, predictions based on physical (non-rigorous) arguments (see,
for instance, [21]) failed to give the correct numerical value a = —I even in the
planar case.

Theorem 5. The asymptotics (3) holds for all five classes defined in §3.1.3. More-

over, @ = —% in all these cases.

Proof. We prove this for triangulations only; for the other cases, see [17]-[20]
and [22]-{26]. We define a distribution on the class Ao of rooted complexes (that
is, triangulations with a distinguished “root”) in a similar way,

Po(T) = Zy " exp(=pF(T)),  Zo= ) exp(—uF(T)) =Y Co(N)exp(—uN),
TeAy N

where the zero subscript means that only the rooted complexes of class A are
considered.

Lemma 4. For triangulations,
C(N) ~ (3BN)™'Co(N).

This follows from the fact that most complexes have the trivial automorphism
group. Indeed, a non-rooted complex can be made a rooted one by choosing first a
cell of dimension two, which gives the factor N if the automorphism group of the
complex is trivial. Similarly, the choice of one of its three edges gives the factor 3.

We denote by C'(NV,m) the number of disc triangulations for which the exterior
face (that contains the north pole of the sphere) has m edges, and by Co(N,m)
the number of these triangulations for which the exterior face is a rooted face (in
other words, one of boundary edges is singled out and oriented anticlockwise). The
following result is similar to the previous one but can be proved in a simpler way.

Lemma 5. C(N,m) ~ m~1Cy(N,m) for large N and for any chosen m.

Proof. Let us consider the automorphisms of the disc. We enumerate the edges
of the boundary in a cyclic order, 1,2,...,m. An automorphism ¢ of the disc is
uniquely defined if j = ¢(1) is given, that is, if we know the edge to which the edge
with index 1 is mapped. Indeed, in this case, the triangle adjacent to the edge with
index 1 is mapped by ¢ to the triangle adjacent to the edge j, and so on according
to the connectivity.

We claim that for a given j almost all complexes (for N large enough) admit no
automorphism such that j = ¢(1). To this end, let us show that, for each complex
A with a non-trivial automorphism ¢, we can decompose the complex into two
subcomplexes, 4; U Ay = A, in such a way that each face belongs to only one of
these subcomplexes and ¢A; = A;. This can be done by induction as follows. We
take a boundary edge, and put a triangle 7' with this edge in A;. Then we let
¢T € As. Each step of the induction consists of taking another triangle that has
a common edge with the part of A; already constructed. We can now modify A,
internally, in a number u(V) of ways bounded below by some function u(N) with
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u(N) — oo uniformly with respect to A as N — co. This can be done by choosing
u(N) triangles in A, that are not too close to each other and by independently
modifying some neighbourhood of each of them, while preserving the boundary of
the neighbourhood and the number n of cells in it. This is indeed possible because
C(n,b) > 1, where b is the number of edges on the boundary. Thus, for given A,,
the proportion of complexes with ¢A; = A, is small. We have thus proved that
only very few complexes have an automorphism ¢ such that j = ¢(1). Since m is
fixed, this holds for all j.

By the above lemmas, to prove the theorem it remains to establish the relation
C()(N) ~ CQN~%CN.

The hope that formula (3) has a universal nature is strongly supported by the
fact (proved below for triangulations) that for all such examples the first positive
singularity of the generating function 3~ Co(IN)2" is algebraic, and this yields the
asymptotics (3).

Remark 1. Let us assume that an algebraic function y(z) is analytic at the origin
and has its minimal positive singularity at a > 0. We say that its leading exponent
is b if there are non-integer rational numbers b;, ¢ = 1,2, . ..,d, and functions g;(x),
i=0,1,...,d, such that b = maxb;, the functions g;(z) are analytic at the point
T = a, and

n
z\bi
y@) =Y 0@ (1-2) " + 0(a).
i=1
Then we have the following expansion (known as Darboux’ theorem):

_ n gl(a‘) —b—1_-—n
y(:l,') - ; CnZ', Cn F—(-_———b)n a .

In our case (for Co(N)) we have b = 3. Tauberian theorems can also be applied in
this situation.

We give some examples for which all constants in the asymptotics are known;
see [22] and its bibliography. The first example is the above class of all triangula-
tions. Here Co(N) ~ v N -3¢V and ¢ = 3\/§ . For convex polyhedra we obtain
Co(N) ~v3N~3¢N and ¢; = %. For simplicial triangulations Co(N) ~ 74N~ 3¢V
and ¢ = # Many other examples could be given; however, we only want to under-
stand the general underlying mechanism.

Tutte [23]-[25] began to study the asymptotics for C(N,m) and developed a
powerful “quadratic” method. Afterwards, many authors developed this method
and obtained the asymptotics for various classes A (see the review [26] and the
recent paper [20]).

The main idea of Tutte is to use the following recurrent equations for C(N,m),
N=0,1,...,m=2,3,...:

C(N,m)=C(N-1Lm+1)+ 3  C(Ni,m)C(Naymz), m>3, N1,

Ni+Na=N-1,
mi+mae=m+1

c0,2)=1, CO,m) =0, m>2.



704 V. A. Malyshev

These equations can readily be derived from Fig. 5, where the orientation of the
rooted edge is marked by an arrow, the rooted vertex is the beginning of the arrow,
and the rooted face is to the right of the arrow (it contains the north pole of the
sphere). These pictures define two types of moves, called Tutte moves. Let us take
any rooted chart with parameters (N — 1,m + 1), make a Tutte move of type 1,
take any ordered pair of rooted charts (N1, m;), (N2, ms), and make a Tutte move
of type 2. Any rooted chart (N, m) can be obtained uniquely in this way. The pair
(0,2) corresponds to the so-called edge chart, or edge complex, with a single edge
that is counted twice.

—_—
linear move

+
—_—
quadrauc move

Figure 5. Linear and quadratic moves

Introducing the generating function
o [e o)
Uz,y) = Y 3 C(N,mzNy™?,
N=0m=2
we obtain the following functional equation:

Uz,y) = U(z,y)zy ™" + U*(z,y)zy + 1 — 2y~ 'U(x,0).

Let us use this equation to prove that U(z,0) is algebraic, and let us find its
principal singularity in a somewhat more general setting.

Green functions. We consider some class A of complexes. Let A(my,...,my) be
the class of complexes defined by the same restrictions as A that are homeomorphic
to the sphere with k£ holes and m; edges, ¢ = 1,...,k, on the boundaries of these
holes. We also assume that the boundaries are disjoint. The Green functions are
defined as follows:

Z(mla"'amk) = Z exp(—“F(T))
TcA(mi,...,mg)
= C(N,mq,...,my)exp(—uN), (4)
N

where Z corresponds to the case k = 0. The rooted Green functions are defined
similarly,

ZO(mlv"‘vmk) = Z exp(—uF(T)) :ZCO(NaTr“’"'7mk)exp(_iuN)7
TEAQ(Tn1 ..... mk) N
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where the subscript 0 means that we consider complexes with a distinguished edge
on the first boundary with m; edges, the so-called local observer in the terminology
of [6] and [7]. It is desirable to have an expression for Green functions in terms of

the basic distribution (as for Markov chains).
n

The Green functions are associated with the derivatives p

Z
n = _X(n)(,u')v that
is, with the factorial moments of N.
Lemuma 6. The partition function and its first two derivatives are finite for
I = jicr, and forn > 2
d"Z ()
dum

)—aAl——n

~ c(n) (/L — Her

as p — prer + 0.

Proof. We shall see below that Z is an algebraic function of z = e™# and has the
principal singularity C(1 — %)“"_1 at the point 29 = e #e. In a neighbourhood
of zyg we have

1- 2 1 e b o L — fher-
)

This agrees well with the following simple intuitive argument.

Lemma 7. For fired k, m1,...,my, there are constants ¢, and cz, 0<cy <cz <00,
such that
ClNk_ICQ(N) < Co(N, my,... ,mk) < CQNk-_lC()(N).

Proof. We first take k = 1 and prove the upper bound. Let us take some complex
A € Ag(m) with N faces and glue up the hole using some complex B € Ag(m)
with 7 faces, where 7 depends only on m. We obtain a complex C' = C(4) € Ap
with N + 7 faces; the number of the complexes thus obtainable is at most Co(r, m).
Therefore, Co(N,m) < Co(r,m)Co(N + r) < c2Co(N). The lower bound and
the induction on k can be treated similarly. However, another method is more
convenient, namely, we can take a complex in Ay and construct from it complexes
with k holes. To this end, we must arbitrarily choose k — 1 faces in the above
complex (this gives the factor N*~1) that are adjacent to the boundaries with
Mo, ..., my edges, respectively. Then one should arbitrarily choose closed paths of
lengths mo, . . ., my, respectively, starting from each of the selected edges.

4.1.1. Uniform asymptotics. Two questions arise. What is the asymptotics of
C(N,m) as both N and m tend to infinity, and what is the asymptotics of other
global variables, for instance, of the number of vertices, and so on? We shall see
that these two questions are related.

The quantities V, L, and F are well-defined random variables in the grand canon-
ical ensemble, and we may speak of their joint distribution. In general, only two
of them are independent because of Euler’s formula, V — L + F = 2. For trian-
gulations, where each face has three incident edges, we have only one independent
variable because L = 3F/2. For the class of all rooted charts, where there are two
independent variables, we have the following lemma.
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Lemma 8. Let E(V | F = N) be the conditional mean number of vertices when the
number of faces is N. Then

E(V|F =N)~¢cN

for some ¢ > 0.

As follows from the formula on p. 157 of [22], the number of rooted charts with
N +1 faces and m + 1 vertices is

Nom) = L _(AN+m=2 1 (amiN-2
TN —1 m 2m — 1 N )
Thus,
B |N) = 2ol N,

o c(Nym) Ome

where amax is defined as the maximum of the function ¢(N,m = aN ) with respect
to a (related to the asymptotics of large deviations).
Let us now consider one-particle Green functions.

Lemma 9. The series

2, = Y NN, m)

Nm

is convergent for v > v(u), where v(u) is a non-increasing function that can be
infinite in a neighbourhood of the origin (see Fig. 6).

Proof. The proof is obvious because the coefficients of the series are positive.

v

f——— o ——— o

Figure 6. Critical curve

For the family of distributions defined by the partition function Z(v, p), it is of
interest to study the asymptotics and the exponents for the case in which y = av,
where the constant a is fixed, 0 € a < co.

This can readily be done by means of the explicit formula (see [22]) for the
number Co(N,m) of triangulations with a distinguished edge on the boundary
(rooted triangulations):

29%2(2m + 35 — 1)1 (2m — 3)!
ColNom) = G @+ 39) (= 212 (5)
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where N =m+2j is the number of cells that are not exterior. We have Co(N,m)=0
if N —m is odd.
Hence, as j,m — oc we obtain

vm : 2m + 33
t J+2m .
CO(N, m) ~ Cons ],———(2 3],) 2 j ;

in particular, for j ~ Bm with 8 > 0 we have

1 . B 2428
Co(N, m) ~ const — 2]+2m—ﬁm log 5135 —(2+28)mlog 3155 .
m

Thus, the exponent is a = —2 for all 8 such that 0 < 8 < co. For a chosen m, the
exponent does not depend on m and is equal to a = —g. Moreover,

Co(N,m) ~ ¢(m)N‘ch.

Furthermore, ¢(m) ~ Cmz ¢ as m — .

4.2. RMM approach. A random matrix model is a probability distribution u
on the set of self-adjoint n x n matrices ¢ = (¢;;) with density

dp _ 9
e Z 1exp(— tr(fﬁ) —tr(V)),

where V = Y~ ax¢* is a polynomial in ¢ that is bounded below, and v is Lebesgue
measure on the real n2-dimensional space of vectors (¢ii, Redij, Im ¢y, < 7). This
distribution can be rewritten in the form of the density

dp

—— = Z: texp(—tr(V

dI»LO 0 p( ( ))7

with respect to the Gaussian measure pg. We can readily see that the covariances
of the measure pg are

(Dij, Dr1) = (Dij, die) = héirdji.

We note that for the mere existence of the probability measure p it is necessary
that the leading coefficient a, of V' be positive and p even. In this case we can use
the well-developed theory of RMM models, which we do not treat here; see [27].

The fundamental relationship (due to t’Hooft) between RMM’s and two-
dimensional quantum gravity is given by the formal series in semi-invariants or
in diagrams (see [28]),

o (1) o (=1)*
log Zo = o (), (V) => o > I(Dy),
k=1 Dy

k=1

where } ), is the sum over all connected diagrams with k vertices. For instance,
let V = aq¢*. Then each diagram has labelled vertices 1,...,k and L = 2k edges,
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and each vertex has labelled legs 1, 2, 3, 4 corresponding to the factors of the product
¢i;QjkPri¢ii. Each leg, say the one corresponding to ¢;;, can be represented as a
two-sided strip whose sides are marked with the matrix indices ¢ and j. We assume
that the coupling of the legs-strips is such that coupled sides have the same indices.
Since each index occurs twice at each of the vertices, it follows that, starting from
some side with index i, there is a unique path in the diagram along edges with
index i. These paths are closed; they are called index loops. Summing over the
indices, we obtain the factor n"V, where N = N (D) is the number of index loops.

As a result we have
yo ) (—as)® a4) Z B2k N(Dy)

For each graph D, there is a minimal cell embedding f(D) of this graph in a
compact orientable surface S, of genus p [13]. The term “cell embedding” means
that each index loop bounds an open domain of the surface S, \ f (D) homeomorphic
to a disk, and the minimality means that p is the minimal genus with this property.
The chart f(D) has k vertices, 2k edges, and N faces. Setting a = —a4 and using
the Euler formula k = N + 2p — 2, we obtain

(—as) EpL(Di)y N(Di) — gk p2kp N (ah2 ) (ah2)2p 2 (ha) 1exp(—,uN—I/p)

with g = —In(ah?n) and v = —21n(ah?).

The calculations in RMM are usually performed as n — oo only, and therefore to
obtain finite values of y one must use a scaling of the form ah? = b/n and b = e #.
Passing to the limit as n — oo, we obtain ¥ — oo, and only the terms with p = 0
have minimal order. The limit lim,_,,  lim,_ . is called the simple scaling limit.
It was proved in [29] that & = —I in this case, which again shows the universal
property of this exponent.

Let us stress some important points of this approach.

e For V = a4¢*, the order of all vertices is four. Therefore, the dual complex
D* (whose vertices are inside the faces of D) has two-dimensional faces with
four edges. The main question is whether this list contains all complexes
with quadrangle cells (homeomorphic to closed surfaces) exactly once.

e This question is related to the consideration of the combinatorial factors.
Dividing by 4%, we eliminate the enumeration of the four legs; however,
we leave them cyclically ordered. The automorphism group of our diagram
can be factorized into two factors. The first one, C,(D), is related to the
permutation of vertices, and the other, C;(D), is related to the permutation
of legs at each vertex. For almost all diagrams the first factor is trivial;
however, for some of them we have C,(D) > 1. We can sum over the
non-labelled diagrams (which is customary), in which case each diagram
acquires the factor

Ci(D)

D)

This means that this counting under consideration does not coincide with
the natural counting used above in the combinatorial approach. There are
no rigorous proofs of the fact that there is no difference asymptotically.
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e It is impossible to have positive coefficients simultaneously for the RMM
and on the set of complexes thus obtained. For the RMM, a probability
distribution can be obtained for a < 0 only, and a probability distribution on
the diagrams is achieved only if @ > 0. Thus, we must justify the possibility
of analytic continuation from a < 0 to a > 0. Therefore, although the free
energy for the above scaling can be calculated rigorously, a complete proof
that this scaling singles out exactly the planar complexes remains to be
found.

o There are other pure gravity models that can be treated by this approach;
in these models, the numbers n(q, T) of vertices v with ¢, = q are explicitly

used,
z=3% I1&"",

TeA ¢g>2

where the ¢, are parameters (see [4]).

§5. Linear boundary dynamics

The probability distribution
P(T) = Z ' exp(—pF(T))

on some class A of complexes is invariant with respect to a simple Markov process
T'(t) with range in A. The process T(t) is defined by the following infinitesimal
transition rates. At the instant ¢t we decompose T into separate cells with some rate
A+ (N), where N = |T'|, add another cell, and randomly glue all cells together, that
is, if N = F(T'(t)), then we choose T(t + 0) according to the uniform distribution
on the complexes of class A with N + 1 cells. We also make a random choice of a
complex with N — 1 cells with rate A_(N).

If A (T) =bf(N) and A_(T) = df (N — 1) for some positive function f(N) and
positive constants b and d, then the probability distribution P(T') is invariant with
respect to this process. The proof consists of the remark that the process induced
on the numbers N is a reversible Markov chain, namely, a birth-and-death process
on Z4 with jump rates g; ;41 = bf(i) and ¢;;—1 = df (i — 1) and with go; = 1.

The simplest method of Monte-Carlo simulation is to choose N as large as pos-
sible and simulate the uniform distribution on complexes with N cells. A dynamics
in which N is varying in the course of time can be more convenient. In the remain-
ing part of the paper we study the local dynamics. We start with a simplest local
dynamics, which does not preserve our measure, but still it is of interest to study
its invariant distribution and calculate the exponent. We shall see that we are thus
in another universal class (that is, the exponent takes another value).

5.1. Local growth. We consider the class of smooth cell surfaces and assume
that the cells are triangles. We begin with one triangle, and each step consists in
attaching a new triangle to the boundary. There are two kinds of attachment (see
Fig. 7), either to one edge or to two edges with a common vertex. To any edge on
the boundary we attach a triangle with rate A;. To any pair of neighbouring edges
on the boundary we attach a triangle with rate A>. At any instant, the complex
is homeomorphic to a closed two-dimensional disc, and its boundary to a circle.
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We assume that the initial state of the process is a single triangle and that,
if the number m(t) of edges on the boundary is equal to three at an instant f,
then only A;-transitions are possible. We can consider the states with m = 3 as
triangulations of the sphere for which the exterior of the disc is identified with the
face of the sphere that contains the north pole. The instants at which we are in
these states can be interpreted as the closing of a hole in the sphere. At the other
instants, the state is a triangulation of the disc.

S SIS R )

Figure 7. Dynamics on the boundary

Remark 2. Tt is important to note that there are two modifications of this dynamics.
In the first modification we regard the set of equivalence classes of cell surfaces as
the set of states. In this case, the transition rates are \;m', ¢ = 1,2, instead of
Aim, where m' is equal to m divided by the order of the automorphism group of
the disk triangulation. In the other modification, we single out a (rooted) edge on
the boundary, and transitions can occur only if they touch this edge.

There are three different, types of behaviour of this Markov process: subcritical or
ergodic, critical or null-recurrent, and supercritical or non-recurrent. For all these
cases, we study the behaviour of local correlation functions and of the following
global variables at time ¢,

F(t)=F(T({), V() =V(T®), LE)=LT{#), m)=m(T®),

where L is the total number of edges and m is the number of edges on the boundary.
Subcritical case. By definition, in this case we have Ay > Aq.
Theorem 6. If A\, > Ay, then
m(m = N) = lim P(m(t) = N) ~nooo CN~'exp(~vN), v=In—.

t—oo

Let 7 be the random number of jumps until the first return to the state with m = 3,
and let Po(T) = P(T(r) = T) for any triangulation T' of the disc. Then

AQ—,\1>N

Py(F(T)=N)~C <A1 5

Proof. We first note that the length m(t) of the boundary is itself a Markov process,
and the evolution of the boundary can be regarded as a random grammar with the
alphabet consisting of a single symbol 1 (representing the only edge) and with the
substitutions

A1 1= 11, Ag: 11— 1.
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This process is obviously reduces to a branching process with one particle
type in which A; is the birth rate and A, is the death rate. The Markov chain m(t)
(with continuous time) thus obtained whose states are the points of the lattice
interval [3,00) has jumps +1, and the corresponding rates are A1k and Ak from
a point k € [3,00). The initial state is m(0) = 3. The stationary measure for the
process m(t) is

115 i
m(m = k)= =3 ~ Ck™' exp(-vk), v=—-ln>—.
Hi=4 /\27, )\2

Remark 3. We note that, for the dynamics with a local observer, the same consid-
erations show that

k-1
n(m=k) = M ~ C exp(—vk).
Hi:4 Az

As was expected, the exponents differ by one.

Let us consider the (discrete-time) jump process z, = m(t,) for the process m(t),
——— (A2 + Ay 82
AL+ /\2( 2+ Aus’)
be the generating function for the transitions of the jump process and let f,(s) be
its nth iterate. Let n(w) be the first instant at which m(t,) = 3. As is known [30],
m— Ay — A

At + Ao '

where ¢; <ty < --- are the instants of the jumps. Let f(s) =

P(n(w) = N) = fN(O) - fN*l(O) ~ CmN,

This completes the proof.

Supercritical case. If A\; > A2, then the boundary has exponential growth. The
array (V, L, F,m) behaves like a degenerate branching process with four types of
particles and with the following rates:

Aam:V V1L Lo L+2,F>F+1,m—>m+1,
m:V3VL>L+2F3F+1,m—-m-1.

Therefore, for some random variable £ we have

m(t) ~ Lexp(Ar — A2)t, E(t) ~ e1€exp(A — A2)t,
V(t) ~ sz exp()\l - )\Q)t, L(t) ~ C3£€Xp(/\1 - Az)t;

the proof repeats the analogous argument in [7] with regard to the Euler formula
V — L+ F =1+ m and the relation L = %

Critical case and the exponents. If Ay = A1, then the process m(¢) is null-recurrent.
One cannot speak of its stationary probabilities, but there is an infinite positive
stationary measure. It has the asymptotics 7x = constN%*cN with the exponent
a=-1.

We can introduce another analogue of stationary probabilities: let us consider
P(T(r) = N), where T(7) is the number of cells at the terminal instant 7.
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Lemma 10. Let Ay = Ay = X. Then

P(T(r) = N) ~ % .

This is well known; see [30].

Remark 4. The exponent here is slightly different from the equilibrium case, a =
-2 # —%. Moreover, the following phenomenon occurs. The exponents in the
ergodic case and in the null-recurrent case are different: @ = 0 and a = -2,
respectively. That is, the partition function for the critical case is convergent, but
the limit of the partition functions as pu —+ pe, is infinite.

Limit correlation functions. Even if the exponents differ from those of the phys-
ical theory, it is of interest to study local correlation functions, which define the
fluctuations of the curvature.

We denote by ¢ the vertex that appeared at the ith step. We set ¢;(t) = 0 if ¢ did
not appear before the instant ¢t and we set ¢;(¢) equal to the number of triangles
(or edges) incident to 7 otherwise. Let 7(¢) be the first instant at which the vertex
1 appears.

Theorem 7. There are numbers xx, Y. xXx = 1, such that

lim lim P(qi(r(i) +s) = k) = xx
8§00 100
for Ay > As. For any two vertices i < j, let p(i,7) be the initial distance between

them (that is, the distance at the instant 7(j)). Then there are constants a,b > 0
such that

lim P(qi(r(j) +s) =k, ¢;(r(j) +s) =] p(i,§) = d) - Xlel < bexp(—ad)

§—00

for anyi < j. If Ay 2 Ag, then

lim lim P(gi(r(i) + 5) = k[ m(r(i)) = m) = xx-

Moreover, all local correlation functions x are analytic functions of Ay and Ay for
all values A1, A2 > 0.

Proof. For the vertex i we set &;(s) = q;(7(i) +s). We note that £;(0) = 2, and the
number ¢; increases until both adjacent links to this vertex become covered by a
new triangle. Let us consider some vertex i on the boundary and take two edges,
(1—2,i—1) and (i — 1, 1), to the left and two edges, (i,i+1) and (i+ 1,7+ 2), to the
right of this vertex. In the limit of an infinite boundary we have five independent
Poisson processes £_2, £_1, &, &1, and &. The processes £_o and & describe the
simultaneous covering of the pair (¢—2,7—1), (i—1,14) of edges and the pair (i,i+1),
(i + 1,4 + 2), respectively. The processes £_; and &, describe the covering of the
edge (i — 1,¢) and the edge (i,i + 1), respectively. The process & is the appending
of a triangle to the edges (i — 1,7) and (¢, + 1). Thus, x&, & = 2, is equal to
the probability that a Poisson process with rate 2A; + 23 has exactly k£ — 2 jumps



Probability related to quantum gravity. Planar gravity 713

before the first jump of another Poisson process that has rate A, and is independent
of the first process.

The other assertion of the theorem can be proved quite similarly if we note that
the processes g;(t) and g;(t) are independent until the distance between i and j
becomes less than four. For the distance to become less than four, many \;-events
must occur “between” i and j, which has exponentially small probability.

We note that, for Ay > A1, a similar property of exponential correlation decay
holds. Let us define the mean curvature

6—q
q

k=ER=) 2r——=x,,
where the sum is taken over all ¢. It follows from the exponential decay that the
central limit theorem holds for the scaled curvature.

Theorem 8. For Ay < A\ the random variables

LB —kV()
V()

are convergent to the Gaussian distribution as t — co.

5.2. Reversible boundary processes. We did not obtain the desired exponent
for the dynamics introduced above for rather delicate reasons. Let us give an
intuitive probabilistic explanation. The invariant measure under consideration is
quite simple: for each N, all complexes are equiprobable. At the same time, one
can expect that the invariant measure is rather simple if the process is reversible.
The above process is not reversible and, to obtain a reversible process we must add
the possibility of deleting faces. For instance, let \; = A2 = \; we assume that each
boundary triangle can be deleted with rate u. The following argument shows that
this Markov process is reversible. Let a; be complexes. We consider closed paths
of the form oy, as, ... , oy, o1, where each a4 is obtained from «; by appending
or deleting a triangle on the boundary. The number of appendings in this closed
path ap, as, ..., a,, a1 must be equal to the number of deletions, and thus it is
equal to n/2. We denote by A,y the rate of transitions from the complex o to the
complex 8. Then

)\a1a2 T ')‘anal = )‘alan T )‘Otzal = ()‘/*L)n/z

However, the deletions can move the modified complex outside chosen class. For
example, deleting some triangles, we can obtain a disconnected complex. Thus,
one should assume that the deletion is impossible if the resulting complex does not
belong to our class A of complexes. This “boundary” set of states has a rather
complicated structure, and it is difficult to use the standard procedure of obtaining
the stationary probabilities via the balance equations. However, by admitting dis-
connected complexes but preserving the irreducibility of the process, we obtain a
(non-local) operation of joining connected components. It is exactly the last oper-
ation that leads us to non-linear Markov processes, which we study in the next
section.
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§6. Non-linear boundary dynamics

In the preceding section we considered a Markov dynamics whose states were
complexes. The dynamics was local and homogeneous on the boundary. This
setting did not provide the needed exponent. Here we construct a dynamics giving
exactly the exponent a = ——%. However, this dynamics is not a Markov process. It
can be represented as a system of independent particles (or universes) interacting
with one another, but this is not like a Markov infinite system of particles. The
simplest pairwise interaction (gluing) of two complexes gives a quadratic functional
equation and leads to the desired exponent.

6.1. Quadratic quasi-processes. Let A be the set of probability measures on
some space S. Let us consider a class of transformations M : A — A that generalize
the Markov chains. These transformations are not generated by random maps
S — S and are non-linear on A.

Let S be a countable set and let a Markov chain be defined on the state space
S with transition probabilities pas from a to B for which 3°5 5., Peg = 1. This
determines a linear transformation L on A by the formula

q={qs} = Lg= {Z Qapaﬁ}-
(o3
We also assume that a probability kernel is given,

P((a,7) 2+ B):Sx8—=S, D P(ay)—=8) =1
I

It is assumed to be symmetric,
P((a,7) = B) = P((v,2) = B) and P((a,7) =) =0.

It can even be deterministic. This kernel determines a quadratic transformation @
on A by the rule

g={g} > Qq= {Z 484, P((8,7) = a)}-
By

Taking a convex combination, we obtain the following transformations (formally,
co + 1L + c2@) on the class of measures on S:

q(a7 t+ ]-) =7 Z q(ﬁ) t)pﬂa
s

+ 72 Z q(ﬂa t)q(’y, t)P((ﬂa 7) - Oé) + (1 —T - 7'2)60(0), (6)
By

where co(a) is a probability measure and r; and 7o are non-negative real numbers
such that 0 < 7y + r2 < 1. We see that the total mass ) g(a) =1 is preserved.
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This can be interpreted as follows. Let us consider countably many particles on
S and denote by g, the mean number of particles at a point «. With probability r,,
each particle (independently of the others) makes a jump according to the
probabilities pos. This defines a linear transformation. With probability o, the
particles combine into pairs, and the mean number of pairs (o, 3) is the product of
the means; moreover, each pair («,7), independently of the others, gives birth to
a single particle at the point 8 with probability P(e,y — 8). Furthermore, with
probability 1 — ry — r9, immigration of particles to the points a occurs with mean
values co(a). We stress that there is no stochastic process in the ordinary sense,
and we have a transformation of measures only. This seems to be related to field
theory for strings (second quantization of strings), but this physical theory still has
no mathematical status.

A little general theory. There is no general theory of such quadratic quasi-processes,
but we need at least a little of it. Let us represent a quadratic process in the form

W =piW; + paWa + (1 — p1 — p2)Wo.

Let k1 be the contraction coeflicient for W1, that is, a number satisfying the relation
IWi(p1 — p2)|l < ku |ln — pol] for any probability measures py and po. Let ko(z)
be the contraction coefficient for the stochastic matrix Py, (z) = P((z,y) — z2), and
let k2 = sup, ka(x).

Theorem 9. Suppose that pr1k1 + 2peka < 1. If the number of states is finite,
then there is exactly one fized point of W, and the rate of convergence to this point
is exponential. If the number of states is denumerable, then the same assertion
holds under the assumption that there is a (Lyapunov) function f(z) such that

20 f(@) <00 and (Wp)(z) < f(z) for u(z) < f(=).

Proof. Let us take two probability measures v and ¢ = v +e. We obtain the
following contraction property for p(v, u) = le||:

p(Wp, Wy)

= [PWae + 23" @e@P((@9) = 2) + 22 Y v(@e@P((2,9) = 2)|
< (prk1 + 2p2ks) le]] -

This implies the first assertion of the theorem. To prove the other assertion, we note
that, because of compactness, there is a fixed point v in A = {p: p(z) < f(z)},
and for any pg the sequence W™y is convergent to v.

Quasi-processes with continuous time are defined similarly. Instead of the prob-
abilities p, we introduce the rates A; with some rate A\; we perform a linear trans-
formation and with some rate Ay we make a quadratic transformation, and immi-
gration occurs with some rate Ag. The equations for the stationary measure are as
follows:

(A +de+d0)m(@) = A Y 7B, )psatre D w(B,)n(y, ) P((B,7) = @) +Aoco(a).
B By
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The time evolution is governed by the equation

WD 03 (a(8,1) ~ e, ) s
5
+X2 ) (908,0)9(7,8) = gl )) P((8,7) = @) + do(co(e) — q(ar, 1)).

By

6.2. Generating functions. For the set S we now take the set of all rooted disc
triangulations (with root on the boundary). We also take some probability measure
to on S for the initial measure and assume that the dynamics is given by the Tutte
moves shown in Fig. 5. For the measure co(a) we take the unit measure on the
complex with N = 0 and m = 2 that consists of a single edge and two vertices. It is
convenient to assume that this complex belongs to the class A under consideration.
All the randomness is included in the probabilities pg, p1, and ps, and the “linear”
jumps and the stochastic kernel are assumed to be deterministic,

D(N,m),(N+1,m-1) = 1,
P(((Nl,ml), (Ng,mz)) — (N1 + No+1,m; +mg — 1)) =1, %((0,2)) =1.

If the initial measure yy is such that the value of the measure po(T") on any complex
K depends on N = N(K) only, m = m(K), then all iterations T"ug of ug have
this property. We always assume below that this property holds; we claim that
the limit of the iterates T™ugy then exists and is unique. In fact, it can be shown
that this statement remains valid for any initial probability measure pg because the
dynamics “sweeps out” the initial measure from any finite subset of S.

Under our assumption we can consider the projection of this dynamics on Z3,
where the points of Z% are denoted by a = (N, m), N stands for the number of
faces, and m is the number of boundary edges. That is, the measure of a point
(N, m) is the sum of measures of the corresponding complexes. It turns out that
this projection is a quadratic quasi-process of the above type. Let us introduce the

generating function
o0

Uz,y) = > qN,m)zNy™
N,m=0

We note that the following homogeneity condition holds: for any «a, 8, a1, 81, and ¥
such that all points a, 8, o + 7, 8+ v, a1, B1, a1 + B1 + v belong to the quarter
plane we have

Po,a+y = Gy, P((a,ﬂ) - a+16+7) = P((alnal) oy +ﬁ1 +’)I) = b’)"

Thus, the invariant measure ¢(/N,m) of the dynamics is specified by the recurrence
equations

g(N,m) =rig(N —1,m +1)

+ 7o Z g(N1,m1)q(N2, m2) + Tod(N,m),(0,2)
N1+ No=N-1mi+mo=m+1
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and the boundary conditions
C(N,0)=C(N,1)=0, C(0,2)=1, C(O,m)=0, m#£2.

Multiplying by zVy™ and adding, we obtain the corresponding equation for the
generating functions,

U= rlny_l + rgUzzy_l +(1=-r - 7"2)?/2 - wy_lrl ZQ(NJ 2)-75N.712-
N
One can carry out the scaling

x—>mr1_1, g(N,m) — aqg(N,m)

(1 —-7ry — 7"2)7‘2
1

in the main equation. By setting ar =1 and 8 = , we obtain

U=Uzy '+ U%zy™' + By? — zy~! Zq(N, 2)zNy2.
N

This equation is said to be canonical. We note that the case 8 = 1, or in other

ro(l —r .
terms r; = 2§—+2—), corresponds to the counting problem for complexes and
T2

was completely solved by Tutte. In fact, we only reproduce his analysis in a more
general setting.

If there is a solution U of the canonical equation with non-negative coefficients
g(N,m), then the invariant measure g(N,m) for this dynamics is of the form
G(N,m) = a1 (N, m). :

We restrict ourselves to the class E of invariant measures satisfying the following
conditions:

1) (exponential bounds) ¢(N,m) < CN*t™ for some C > 0,
2) q(N,m) are non-negative.

The main result is the following theorem.

Theorem 10. For anyr andra, a positive invariant measure exists and is unique.

201 -7y —
It is finite if and only if ( T127 ra)Tirs <1

The theorem is a consequence of the next lemma with regard to the above scaling.

Lemma 11. For any 8 there is a solution of the canonical equation with positive
coefficients in the class of measures under consideration, and this solution is unique.

The series 3_ n ,, (N, m) is convergent if and only if % > 1.

6.2.1. Analysis of the functional equation. We prove here the main lemma.
By setting U = y?W and defining S,,(z) by the relation

W(z,y) =Y Sm-2(z)y™ 2,
m=2
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we can rewrite the functional equation as follows:
W =8+ zyW? + 2y " (W - 9), S(z) = So(z) = W(z,0). (7)

If the expression So(z) is known as a formal series, then all the S, are determined
recursively from it by

ySo = Py + yzS1, y28 = y2ac5’§ +y%xS,,. ...

We follow in part the discussion in [22]. Let us represent the above functional
equation (7) in the form

(2zU + z —y)? = 42%y*S + (x — y)* — 408zy° (8)

and denote its left-hand side by D. Using the left-hand side, we introduce the
analytic set {(z,y) : 22U + £ — y = 0} in a small neighbourhood of the point z =
y = 0. We note that this set is not empty, since it contains the point (0,0), and
it defines a function y(z) = z + O(z?) in a neighbourhood of z = 0. Let us prove
that the functions y(x) and S(x) are algebraic. We have two equations that hold
at the points of this set:

oD

D =0, —— =0,
Oy

or
42°y?S(x) + (z — y)? — 4B8xy® = 0, )
8z%yS(z) — 2(x — y) — 128xy* = 0,
from which we can find both y(z) and S(z):

_ B -36y*)

T = y(l - Z/Byz)a S = (1 — 2[31}2)2 .

The algebraic function y(z) satisfies the equation y2 + py + ¢ = 0 with

Its discriminant

A= —4p® —27¢° = p? (-;— - 272:2)

is not a square in the field of rational functions. Therefore [31], the Galois group

2
278"

Cardano solution of the cubic equation in the form

_a [ P s« ¢ p
y“\/2+ 4+27+\/2 V7Tt

is S3, and the ramification points are £ = + Let us (formally) write out the
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q ¢  p
a2 yE+ 5

and thus there is no singularity inside the circle of radius z; = \ /2—%. We need a

branch with y(0) = 0. Since y(z1) > 0, it follows that, if the discriminant vanishes,
then y(z1) = ¥/x1/(28). Iterating the equation

_ T
T 1-28y2"

we see that all coefficients of the expansion of y(z) at the point £ = 0 are positive.
The leading singularity of y(z) is (¢ — 21)2. The function S is algebraic, and it is
analytic for |z| < {/52;. Indeed, S can have a pole at a point z with |z| <

We note that

’

Y

2

278" 278

only if 1 — 28y%(z) = 0, which yields z = 0, and this is impossible. We write
yo{z) = y(x) and make the substitution

_ B - 3By5())
(1—28y3(z))*°
in (8). In the expansion of S, two terms with opposite sign give a cancellation
of the lowest-order singularity (z — #1)'/? of the function yo(z), and therefore
the function S has leading singularity of the form (z — x1)%/2. To represent the
expansion of U explicitly, we write

D = 4yy2(1 - 38y3) + (yo(x)(1 - 2842 (2)) — v)° — 48y°vo(z)(1 — 2612 (z))
= (y — yo)*(a(z) + b(x)y),

because y = yo(z) is a double root of the main equation, and

a(z) = (1-28y3(2))*,  blz) = —4Byo(x)(1 — 28y5(x)).
Choosing the minus sign, we obtain

Uy =Lt - YD 22 0@) o)

which gives a legitimate expansion.
For a given z, the radius of convergence of U regarded as a function of y is

: [, _ 4By o Y.
determined by the zeros of v/a(x) + b(x)y, or /1 — — ¥ Since -, increases
on the interval [0,z;], it follows that the radius of convergence for z = z; is

Ty

B= B

6.3. Correlation functions. Using the representation below of complexes by
trees, we shall prove that for most vertices the conditional distributions of the
random variables g, are convergent to a common limit as N — co. To this end, we
use a special method of singling out a vertex v in a recursively constructed complex.
We discussed this problem in [6] and [7] in a more general situation. The proof is
combinatorial and has no analytic nature; it is rather sophisticated, and we present
it in an informal way.

z = yo(z)(1 - 2By (2))

va(z) +b(z)y — 1

2z ’
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6.3.1. Representation of complexes by trees. The process of constructing
complexes by the successive use of Tutte moves (or “Tutte substitutions”) can be
represented as a planar tree. This gives a one-to-one correspondence between the
set of complexes and a certain class of planar trees. A planar tree has a rooted
vertex and grows upwards (this is shown in Fig. 8 by the directions of the arrows).
Let Ay be the class of rooted disc triangulations. We denote the vertices of trees
by the symbol v and the vertices of complexes by w.

b
g
SR =
2
a ,2 d
a

Figure 8. Planar trees and charts

Let us introduce a class Tg of planar trees defined as follows. Each tree of this
class can have three types of vertices: 0, 1, 2, according to the number of edges going
upwards from a given vertex. The vertices of type 0 are also called end vertices. Let
n; be the number of vertices of type i. Among 2-vertices (that is, vertices of type 2)
there are vertices incident (that is, connected by an edge) to a single 0-vertex; we
denote the number of such vertices by nsg, and the number of 2-vertices that have
two incident 0-vertices by ngg. For any vertex v we denote by T, the tree formed
by v and all vertices above v. We denote by n;(v) and so on the corresponding
numbers for the tree T, and note that ng(v) = na(v) + 1. In these terms the class
Ty is characterized by the following restriction: ng(v) —ny(v)—1 > 0 for all vertices
v of type 1.

Lemma 12. The construction below defines a one-to-one correspondence between
Ay and Ty.

Let us show first that each complex generates a planar tree belonging to Ty, that
is, there is a function f from the set of complexes to the set of planar trees. We prove
this by induction on the number of faces. The complex itself is represented by the
rooted vertex of the tree. We reduce the complex by inverse Tutte substitutions
in which we draw upwards one edge in the case of a substitution of type 1 and
two edges in the case of a substitution of type 2 that divides the complex into
two complexes. These two complexes we associate with the right and left vertices,
according to the orientation of the rooted edge of the complex, by the following
rule. The rooted edges of both new complexes have the same orientation, and one
of them succeeds the other. To the left vertex we associate the complex with the
preceding rooted edge and to the right vertex that with the subsequent rooted edge.
At each step, the number of faces is reduced by one, and we proceed by induction.
At a step at which we obtain a complex formed by a single edge (an edge complex),
the corresponding vertex becomes an end vertex of the tree.

Let usnotethat N = ny+nq, L =ng+n,1+n92, V=ng+1,and m = ng—n, +1.
Here N, L, m, and V are related to the complex, and the numbers n;, ngo, and so
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on to the tree. To prove the last of the above relations, we note that each 1-vertex
and each 2-vertex (except for the vertices that are incident to 0-vertices) reduce
the number m by one, each of the nyg vertices increases m by one, and each of ng
vertices increases m by three. Thus, m = ngg + 3ngp — n1 — (N2 — ngo — Ngg) =
ng —ng + 1. Since m > 2 for the complexes under consideration, we obtain the
restriction introduced above.

Let us show now that each planar tree of class Ty generates a complex, that is,
f is one-to-one. Let us take a tree and proceed by induction from upper vertices
to lower ones. Any end vertex is declared to be an edge complex. Let us take V
edge complexes and enumerate them from left to right as the end vertices of the
tree, v =1,2,...,V. These edges give V + 1 vertices of the complex. Let us mark
all these end vertices. At each step of the induction we take a non-marked vertex
v such that all vertices above it are marked. If v is of type 4, then at the given
step of the induction we use a Tutte substitution of type i. After this step we
mark the vertex v. Conversely, a complex constructed in this way is mapped by
the function f to the tree from which we started. All complexes in the course of
induction are legitimate because m > 2. This proves the lemma.

The contribution of the tree G(T') is defined as the product r{°rry?, where
n; = n{T) is the number of vertices of type i, which is certainly equal to the
probability of the corresponding rooted complex.

Remark 5. The planar trees are in one-to-one correspondence with the systems of
parentheses that can be arranged in a product a; - --a, in a non-associative and
non-commutative algebra, see Fig. 9. However, the above restriction on Ty makes
the situation more complicated.

Figure 9. Planar trees and parentheses

6.3.2. Local curvature. Let us take an end vertex v and set {(v) = max(v,V —v).

Theorem 11. Asl(v) — oo (in which case V — 0o and N — 00), the equilibrium
distribution P has the limit

lim P(gy = k) =p(k), Y pk)=1.
k=2

Proof. Corresponding to any end vertex is a complex consisting of a single edge.
The number of these complexes is V. Let us imagine that these edges are placed
horizontally along a horizontal line and are directed from left to right. Let us take an
end vertex v and the left (that is, the rooted) vertex w = w(v) of the corresponding
edge complex. We choose the orientation of the boundary to be anticlockwise. Let
us define a history of each vertex w(v). This history can be described both in
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terms of the complex and in terms of the tree, and it is convenient to use both
descriptions. By definition, a history consists of several parts, the so-called stages
of the history, which are formed by a unique path from v to the root of the tree T
downwards. From the viewpoint of complexes, the history terminates either at the
instant the vertex w(v) disappears from the boundary of the complex (this means
that ¢, stops changing) or at the root of the tree if w remains on the boundary of
the complex. The first part of the history continues until the vertex is covered by
an edge, and ¢q,, can change only on such pieces of the history. From the viewpoint
of trees, the first part of the history starts from the end vertex v, goes downwards
from vertex to vertex, and continues until it meets the first right 2-vertex. A 2-
vertex is said to be a right vertex if we (that is, the vertex w) arrived at this vertex
from the right, that is, the vertex w(v) belongs to the right complex. The next part
of the history starts at an instant w(v) arrives at the rooted edge of the complex,
and it terminates exactly as the first part does.

If a vertex a of the tree is below the vertex v = w(v), then w belongs to the
corresponding complex f~!(a). We denote by a(w) the least a such that a < v and
the vertex w belongs to the boundary of f~1(a).

Let us denote by b{w) the least vertex b such that b < v and the vertex w is
a rooted vertex of the corresponding complex for any b; belonging to the interval
v > by > by > - > bin the tree. The length L(v(w)) of this interval (path)
in the tree is exactly equal to the difference ¢,{j) — g (k), where j is the first
complex of the path (that is, an edge complex) and k is the last one. We claim
that Py (L(v(w)) = n) < Cexp(—vyn) for some v,C > 0 and note that, for the
proof, it suffices to consider an arbitrary invariant measure because for each of
these measures the conditional probabilities (for chosen N and m) are the same
(we are mainly interested only in the case m = 3).

If one deletes all 1-vertices from the tree, then the resulting tree (without 1-
vertices) is said to be bare. It defines an equivalence class of dressed trees each
of which can be obtained by appending several 1-vertices to it. Each non-negative
measure on the set of trees induces a measure on the equivalence classes, that is,
on the bare trees. We begin with these.

The case of bare trees. If there are no l-vertices at all, then m = ng +1 = N,
and the number of faces is also equal to m. In this case, all vertices belong to
the boundary of the complex and, after a vertex is covered by an edge, it stops
participating in the process, that is, its history consists of only one part. Moreover,
this vertex can be covered by an edge only when something is joined from the left to
the complex containing w, and until this happens, there can be, say, k¥ adjunctions
from the right, which give k extra edges to g,,. Under any right adjunction we add
to w some complex that corresponds to a tree covering an interval to the right of v.

For example, let us estimate the probability P(k; j1, ..., Jx) that there are exactly
k adjunctions of intervals of the lengths ji,...,jx that cover the interval I, =
{v+1,...,v+ R} and occur before the left adjunction that covers the interval
I = {v—L,...,v— 1} for some L. We make use of the Markov property that
can be described as follows. Let I be an interval. A vertex v' = v(I) is said to
be I-separating if it exactly covers the interval I. Then the number of trees with
separating vertex v’ is equal to t¢(I)¢(V — I +v'), where #(1) is the number of trees
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on the interval I, because t(V — I + v') is also the number of quotient trees with
respect to the set of subtrees on I. Thus, the probability that v’ is I-separating
can be estimated as

HIE(V — I +0')
t(V)

< min(b, cI~3/?),

1 2
where t(n + 1) = T (:) ~ en~32" are the well-known Catalan numbers and

b < 1. In particular, according to this relation, the probability P, that a right
adjunction with a vertex v occurs before a left adjunction does not exceed some
constant P, < d < 1.

Therefore, by the Markov property, we see by induction that

Plgyz2r)y<a”

for large values of r and for some a < 1. Thus, we have obtained exponential
estimates. The existence of the thermodynamic limit follows from the fact that the
influence of the boundaries manifests itself only with probabilities less than a'(¥).

The case ny > 0. We choose here a bare tree and consider an auxiliary problem
concerning the distribution of 1-vertices on it. We obtain estimates that are uniform
for bare trees.

We consider first the probability that the vertex w acquires a large value of g,
due to 1-vertices before it is covered for the first time. We find such estimates for
each part of the history separately, and consider in detail only the first part of the
history. Let v be a vertex at which the first part of the history is terminated. Let
T, be the tree over this vertex (with root at v) and let f~!(v) be the corresponding
complex.

We consider first the case in which T, has only one 00-vertex. In this case,
O-vertices are joined in succession to trees that already exist. This means that
the possible ways of arranging 1-vertices can be characterized as the number
of all possible ordered tuples of non-negative integers, ai,...,a,, such that
Sh ai<k—2forallk=1,2,...,n.

We can pose the following abstract urn problem. Suppose that we have n urns
and m balls placed in these urns. Let a; be the number of balls in the ith urn. Let
c¢(n, m) be the number of arrangements ay, . .., a, of balls satisfying the conditions
Y% lai <kand Y7, a; = m < n. The following recurrence relation holds:

m

c(n,m) = Ec(n —1,m - k),

k=0

or
c(n,m) =cn,m—-1)+e¢(n~1,m-1),

which readily implies the asymptotics for the number ¢(n,m;i) = ¢(n — 1,m — 9)
of arrangements among the above ones (whose number is c(n,m)) such that there
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are exactly ¢ balls in the last urn. We can easily obtain an explicit formula for the
generating function,

o0

fley)= 3 3 clmmpmy™ = g fees S kat,

n=-—o00 m=1 k=1
c(n,m) <b
c(n,m—1)
for some b < 1, and we want to find a method (different from that of generating
functions) that might work in a more general situation. To this end, we first rewrite
c{n,m) in terms of the number of paths from the line m = 1 to the point (n,m),
where a step of the path can be either (0,1) or (1,1). We have

whose coefficients coincide with ours for n > m. We claim that

n
c(n,m) = Z kL(k;n,m),
k=m+1

where L(k;n,m) is the number of paths from the point (k,1) to the point (n,m)
(because c(k,1) = k). Since L(k;n,m — 1) = L(k — 1;n — 1,m — 1), we see that
C(Z—(T—gm—i)—ﬁ =1+ O(1/m). This proves our result.

Let us pass now to the general case. Instead of the urn problem on the interval
[1, 7], we have an urn problem on an arbitrary planar tree T satisfying the conditions

Z a, < V(Ty), Z ay = m,
i€T, veT
where a, is the number of balls in the urn (at the vertex) v of the tree and V(T})
is the number of vertices of the tree T,. Let ¢(T,,m) be the number of such
arrangements on the tree T, with m balls. For example, if there are two edges
going upwards from the vertex v to vertices v(1) and v(2), then
m
(Ty,m) = Zc(Tv,m;i), Ty, m;i) = Z c(Ty(1), m1)e(Ty(2y, ma2)-
=0 mi+mao=m—i

The rest of the argument is similar to the above. Let us note that ¢(T,,1) =
V(T,). We want to compare ¢(T,,m;1) and ¢(T,,m;i + 1); to this end, we iterate
the last recurrence relation for ¢(T,,m;i + 1) to the very end, that is, we obtain
the sum of terms of the form B:! in each of which all factors are of the form
¢(Ty, 1) for some v'. To the iteration process for ¢(T,,m;7+ 1) there corresponds a
similar process for ¢(T,, m; %), and thus to each summand Bi+! there corresponds a
summand B¢ in the expansion for ¢(T,,m;). In this summand, one of the factors
is ¢(T,,2) instead of the factor ¢(T,s,1) in the summand Bi{t'. Thus, we have
c—(—% > 2 as above. This yields estimates that are uniform with respect to
the 1jt;are trees. The influence of the boundary is again exponentially small.

Repeating this argument for two-particle functions, we can prove the following
theorem.

Theorem 12. As V — oo,

|<qv1qv2> - (qv1> (qv2>| < cexp(—a Ivl - U?I)
for any two vertices v1 and ve such that l(v;) = oo.
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§7. Internal dynamics

In the previous sections we considered the dynamics for which changes during
one step are possible either only in a neighbourhood of the rooted edge or only
on the boundary of a disc triangulation. Here we consider a dynamics for which
changes are possible at any place of the complex.

Thermodynamic limit of local processes. For a given stochastic dynamics, by a
local process we mean the process g, (t) given by the number of edges incident to a
given vertex v at an instant ¢. It is assumed that this vertex, which was singled out
at the instant ¢ = 0, cannot disappear. Let us present two examples of interesting
behaviour of such local processes.

The first example is related to Gross—Varsted moves. We note that these can be
introduced not only for simplicial complexes but also for the other classes above of
complexes with triangle cells. Let v be a vertex. By the star St(v) of v we mean
the edges and triangles incident to it, together with their boundaries.

Let us consider GV-moves of types 1 and 2 and the move inverse to a GV-move
of type 2, and a Markov chain with state space the set of complexes of class A in
which all cells are triangles. The jumps are defined by the jump rates A;, i = 1,2,
and p of these moves, for each pair of adjacent triangles in the case of a move
of type 1, for each triangle in the case of a move of type 2, and for the star of
each vertex of order three in the case of the move inverse to a GV-move of type 2,
respectively.

If A = p =0, then V, L, and N are invariants. Let A’ C A(N,L) be an
irreducible component of the set of complexes with given N and L. We set C(A') =
|A’|. We state the next lemma without proof.

Lemma 13. If Ay = p =0 and Ay = A, then the Markov chain on each component
A’ is reversible with respect to the uniform measure. On the class of simplicial
complexes, the unique irreducible component coincides with the entire class.

We merely note that the first assertion of the lemma is verified by the condition

7ra)\aﬁ = = 7Tﬁ/\ﬁoz for Aﬁa = )\aﬁ = \.

A
(4"

At the instant 0 we take a complex with N vertices, choose a vertex v in it, and
consider the random variables qf,N)(t) which are the numbers of edges incident to v
at time ¢. The following example shows that the large-time limits and the large-N
limits can fail to commute, that is,

lim lim # lim lim
t—00 N—oo N—oot—o0

for local quantities. Thus, Monte-Carlo simulation can be misleading in this case.
Lemma 14. As N — oo, the limit process ezists and is a random walk on [3,00)

with transition rates A;;+1 = Aij—1 = M. Moreover,

. . (N) _ _
tl—lglo 1\}H>noo Pla,” () = k) =0.

At the same time,
lim lim P(¢{V)(¢) = k) #0.

N—o00 t—00
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Proof. We have L=3N/2, V=(N +4)/2, and limpy_,, lim;_, o quN) t)=L/V=3.
We also note that for a chosen N the process qf,N) (t) has the Markov property, with
state space 3,..., N and rates A; ;41 = A;i—1 = Ai. In fact, each edge incident to
v can be changed to a transversal one; moreover, for each triangle containing v, its
edge not containing v can be deleted by a GV-move, which gives an additional edge
incident to v. The limiting random walk is null-recurrent. This proves the lemma.

Note that we have made essential use of the fact that the star of a vertex v looks
like an umbrella with centre at v.

Let us consider now a Markov chain in which the only transitions are A-moves
{(Alexander moves). Each vertex i competes for the right to make an A-move; in
other words, two Poisson processes go out from this vertex, with rates A and p,
respectively, and the first event occurring at one of the vertices accomplishes an
A-move. If the event corresponds to the first process, then we randomly choose (with
probability ;') one of the edges on the boundary of St(i) and make an A-move
corresponding to this edge. If the event corresponds to the other process, then we
randomly choose one of the vertices v of degree four on the boundary 8 St(:) and
one of the two possible inverse A-moves, and precisely this move is performed. If
there are no vertices of degree four on 8St(z), then no moves are made. After this,
the process starts from the beginning.

We note that a vertex ¢ that has appeared in this way can later disappear. Let
t(7) be the instant at which the vertex ¢ appears.

Theorem 13. If A > u, then ¢;(t) — oo with positive probability. If A < p, then
the vertex disappears almost surely, and Eq;(t) is uniformly bounded.

Proof. For each vertex v, let a(t) = a,(t) be the number of vertices j on 3St(v)
with g; = 4, and let b(t) = ¢,(t) — a(t). Let us choose a vertex i. If v € 9St(i),
then we denote by v + 1 the next vertex on 9St(7) in the clockwise direction.

Let us consider the process (a;(t),b;(t)) and, for a fixed configuration outside
St(4), write out its infinitesimal jumps in Z2. For a direct and inverse A-move,
there are only three possibilities.

AN A-move

Figure 10. Proof of the theorem

1. Two edges {marked by 1 in Fig. 10) appear on some edge (this is the edge
(v — 1,v) in Fig. 10). Thus, in this case, the transition is a,b =+ a + 1,b
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with rate 222 = 2). Here and below, the factor 2 occurs because the

q
same move can also be produced by the opposite vertex. The inverse move
a
a,b— a,b+ 1 has the rate 2u— = 2pu.
a

2. This move is produced by the vertex v € 9St(i) (the dotted edges 2 in
Fig. 10), and a new vertex appears on the edge (i,v + 1). This produces
a change in the vector (a,b) only if ¢,41 # 4. Thus, here we have the

transition a,b —+ a + 1,b — 1 with rate 2\a—. The inverse move gives the
Qv

jump a,b — a — 1,b with rate 2a;¢i.
a

3. The next move is also produced by ‘E)he vertex v (the edges marked by 3 in
Fig. 10). For g,, the transitions 4 — 3 and 5 — 4 can occur.

In fact, we do not need the rates for Cases 2 and 3: we note only that these
jumps preserve ¢; = a + b. We assume first that ¢ > A. In this case the embedded
process f(n) = ¢;(tn) = a(t,) + b(t,), where t,, are the jump instants, satisfies the
inequality

E(f(n+1)]f(n) < f(n)-¢

for some ¢ > 0. The proof can be given by means of the apparatus of submartingales
(see, for example, [32]). For p < A we have

E(f(n+ 1) f(n) > f(n) +e,

and we use a similar method.

It seems plausible that if A < p, then, for all sequences #(i) tending to infinity,
the process ¢;(t) tends to some distribution if s = ¢t — ¢(¢) is fixed. For A < pu,
this can be rigorously proved. On the other hand, for the critical case p = X,
the random variables g;(t) fluctuate as in Brownian motion. Comparison with the
results of the previous sections gives an argument that we do not obtain the desired
invariant measure under this dynamics.
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