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Uniform Cluster Estimates for Lattice Models

V. A. Malyshev
Moscow State University, 117234 Moscow B-234, USSR

Abstract. In [2] we obtained the complete cluster expansion for transfer-
matrix for lattice models with bounded potentials in high-temperature region.
Here we obtain necessary cluster estimates for semiinvariants of functionals
over Gibbs field with unbounded interaction in high-temperature region and
for contour models in low-temperature region.
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Introduction

One of the main obstacles on the way to the proof of asymptotic completeness for
AP(¢p), models of quantum field theory for small 1 was the absence of N-particle
cluster expansion for all N in 0<1<4,. Glimm, Jaffe and Spencer [1] obtained
N-particle cluster expansion with N— oo if A—0.

In [2] the author obtained the complete cluster expansion (i.e. for all N) in high
temperature region |B| <f, for lattice fields with bounded interaction potential.
The main ingredients in [2] were strong cluster estimates of semiinvariants

’Fg,--.,Fp > where Fy depends only on values of Gibbs random field in points
.<B, B is finite.
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Ife.g. [Fg|<1 then these estimates are

n

IK(Fgo-ees Fg Y S(CRY BB TT u,C5 0.1)

i=1

where d(B,, ..., B,) is roughly the smallest length of a connected tree with n vertices
b,e B;; dy is the smallest length of a connected tree with vertices in B and u; is the
number of j=1,...,n such that B;=B,;.

We obtain here estimates (0.1) for the case of unbounded potential in high-
temperature region and for contour functionals for the Ising model in low
temperature region. We should emphasize that our estimates are valid uniformly
in some region of temperature for arbitrary By,..., B,.

Nonuniform estimates with restriction to the size of B,,..., B, can be obtained
by analytical methods of [3, 4] and by method of [5].

In some other place we shall derive from this uniform N-particle cluster
expansion for transfer matrix for these models.

Our methods seem to be applicable to models of quantum field theory also.

Our strategy is the following. We use correlation equations (of Kirkwood-
Salsburg or Minlos-Sinai type) to get an explicit series for moments of Gibbs
random fields. We use this series to get explicit series for semiinvariants. In the
latter series we perform cancellations using Mobius function theory (we use one
theorem of J.-C. Rota) and some other auxiliary bounds.

To make this paper selfcontained we include all results we need from Mobius
function theory.

We prove cluster estimate (0.1) first in abstract situation (§2.1) and prove then
that this situation takes place in high-temperature (§2.2) and low-temperature
(§2.3) region.

Part 1. Auxiliary Bounds

1.1. Connectivity

This paragraph contains mainly definitions and simple lemmas.
A set ACZ is called d-connected it for each two points ¢,t'e 4 there exists a
sequence t=t,,t,,...,t,=t" of points t;e A such that |t,—¢t,_,|<d for i=2,....n.
A collection I'=(A4,,...,4,) of sets 4,CZ" is called connected if the following
graph G is connected : it has vertices 1,...,n and there is a line connecting i and j iff
A;NA;*0.

Lemma 1. There is a constant C=C(v,d) such that the number of (different)
d-connected sets A of cardinality r containing some fixed point t does not exceed C'.

Lemma 2. There is a constant C=C(v,0) such that the number of connected
collections ' =(A,,..., A,) containing some fixed point t in which all A; are pairwise
different and diam A;<¢ does not exceed C".

Further we shall often consider systems 2 of finite subsets of Z*. We shall
always assume that U is connected (ie. graph Gy is connected) translation
invariant and diameter of elements of U is uniformly bounded.
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For any finite ACZ" and any collection « of finite subsets B,CZ" we denote
d 4, minimal d such that there exists 1-connected set B contammg Aand |B|=
d (A)(6%(W)), minimal d such that there exists connected (respectively, such
that collection I'Ua is connected) collection I’ = (Ay, ..., Ay) such that 4,e A and

rEiL:le,.aA. (1)

Agreement About Constants. Further C, C,, C,,... will denote constants which
depend only on dimension v of Z* and possibly on system  in question. In one
formula one letter, e.g. C, can denote different numbers.

All these constants can be easily calculated.

It is not difficult to show that

C,d Sd(MChd, . @)

Lemma 3. The number of subsets BCZ’ containing fixed point t and such that d p="F
does not exceed C'.

Proof. Let B,,...,B, — all these subsets. Let D; be 1-connected, D,>B; and
|D;|=dp =r. For each i there may be not more than 2" subsets among D, D,

comcxdmg with D; (as if D;=D; then B;CD; and there is not more than 2’ subsets
of D).

Lemma 4. For each C there exists C, such that for each finite TCZ® and for 1>0
sufficiently small

Y(CH=(C rC,
r

where the summation is through all T such that |I'\=n and collection (I',T) is
connected (compare with Lemma 6.2 of [2]).

1.2. Bounds on Semiinvariants of Independent Virtual Field

Let a set V be given. Let for any nonempty finite 4 CV be given a number f(A4). A
collection of numbers f(A) we shall consider as moments of virtual field to justify
the following standard definition of formal semiinvariants g(A) of this virtual field
by induction

fld)=3g(B,)...g(By) (1)

where the summation is through all (non-ordered) partitions B,uB,u...UB, of
the set A.
We define for all partitions «a=(4,,..., 4,) of the set V.

k
fl@)= l_[ f4),  g@)= ]:[ g(4y) . 2

Let A be the lattice of all partitions of the set ¥ (see Appendix). From M&bius
inversion formula due to

=2 9B 3)

B=a
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one has

gle)= ﬁz Ha(B, 2)f (B) - )

(The explicit expression for pg(f, a) is well-known and proved e.g. in [6].)

Let now graph G be given the set of vertices of which is V. (For all graphs
considered below we assume that there is not more than one line between each
pair of vertices.) Let us denote G, ACV, a subgraph of G with A as a set of its
vertices. We shall call G5 a component of G, iff there is no lines between B and
A-B.

Let now function f(A) enjoy the following remarkable property

fA=f(4,).../(4) ©)

if for all i G, is a component of G ,.
Such virtual field f(A4) we call independent with respect to G.

Lemma 1. If G, is not connected and property (5) takes place then

g(A)=0. (6)
Proof. By induction in |A|
g(A)=f(4)— Y g(B,)...g(By) (7)

where the summation in )’ is through all partitions of A except trivial one.

Let A,,...,A, — all connected components of A (ie. G,, are connected
components in G ).

Then by induction g(B;) can be different from 0 only if B; belongs to some 4;.
From (7)

gA)=flA)—} f(4,)...f(4,)=0.

Let us denote

k
C/(4)=max [Jl f(Bi)‘ @®)

where maximum is through all partitions (B,,..., B,) of A.

Theorem 1. Let G, be connected. Then
lg(AI=3C(A]] 3y, ©)

ted

where v,=v") is the number of lines in G , incident with the vertex te A.

To prove this theorem we remark that due to Lemma 1 we can rewrite (4) as

f@= > 4. (10)

B:BSa,felg

If we restrict (10) to e U then we can use Mobius inversion formula for U; to
get for ae U,

9= Y  f(BHu B, . (11

Bsa,pelc
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Lemma 2.
i, (0, DIZ [T, (12)

teV

where v, is the number of lines in G incident with vertex teV.
Proof. We shall use Corollary A.1 where [V|=n. Then

b (0, D =my =1y

where 1, is the number of subsets X of lines of G such that [X|=n—1 and X does
not contain any circuit.

To bound m; we remark first that X must be connected tree: X is a tree as it
does not contain any circuit and X is connected as {X|=n—1.

We shall define now one-to-one map ¢, of the set X onto some ACV with
{A|=n— 1. For this reason let us consider any y, €X and define ¢,(y,) to be any of
two vertices incident with y,. Let us suppose by induction that we have already
defined y,,...,y,€X and @,(y,),..., o4(y,)- Let V,, be a set of vertices incident with
some of y,,...,7,. Let us choose a line y,,, , such that one of its vertices belongs to
V.. Vm+1 €Xists — otherwise a set {y,,...,7,,} must contain a circuit. Moreover both
vertices of y,,, ; cannot belong to V, — otherwise {y,,...,7,,,,} contains a circuit
as {y,,..., Y. connected by this inductive construction.

We put @ (7, ,) to be that of two vertices of y,,, ; which belongs to V,, if it
does not coincide with one of earlier defined vertices @y(y,),..., @x(y,,) and other of
these two vertices in the opposite case.

We define now a map yy of the set V into the set of lines of G putting y(v) =1y,
if @y(y;)=v, veV, and if there is no such y; then we put y,(v) equal to any of y,
incident to v. All y, are different as X are different. So, the number of all such X
does not exceed the number of all maps from ¥ to the set of lines mapping each

veV on a line incident to it. The number of such maps is equal to []v,.
teV
Lemma is proved.

Theorem will evidently follow from (11) if we shall prove

Lemma 3.
Zg; |par (B, 1)|§%l—;[,3vr‘ (13)
felc te

To prove this Lemma we note that
Har (B, 1) = par (0, 1) (14)

where G(f) is the graph obtained from the graph G in the following way: we
identify all vertices belonging to the same block B, of partition 8, i.e. vertices of
G(p) are blocks of . Two new vertices B; and B; are connected with a line iff there
is a line in G between some b, €B; and b,eB,. So

Hatg (0> 1) =ty 1B 1)=pg (B, 1)

due to property (D5).
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Proof of Lemma 3. We shall construct inductively a tree ®. Rules for unique
specification of this tree are the following.

1. Vertices of ® have other 1,2,...,n and each vertex is coloured in red or blue.

2. To each vertex corresponds exactly one graph G(8,), subset D, of vertices of
G(ﬁt) and ﬁzemG'

3. Vertex of order 1 is only one. It is red. Corresponding to her are G(8)=G
and D,=0. This vertex is the highest vertex of the tree in question.

4. Over each vertex of order K (K-vertex) there is exactly one (K — 1)-vertex.

5. Let K-vertex t is already constructed together with G(8,) and D, correspond-
ing to her.

Let v,(¢) — the number of lines of G(,) incident with vertex & of G(B,). Let
1s---» &, — all vertices of G(B,) not belonging to D, and moreover

CA(SVELA(SY RN (SR

Under t we shall construct not more than v(¢,) red (K + 1)-vertices and not
more than one blue vertex.

This blue vertex will have the same G(8,) as for t but to D, we add vertex &, (if
m=0). If m=0 we do not construct blue vertex.

From G(f,) one can construct a new graph G(f,.) in not more that v,(¢,) ways if
one will identify vertex &; with one of other vertices connected with &, with a line
and not belonging to D,.

Each such G(8,)) will correspond to a new red (K + 1)-vertex. D, for this vertex
is the same as for ¢ (it is correct as we do not identify vertices of D, in construction

of G(B,).
Proposition 1. For each fe A, there exists red te ® such that f= B,
Proof. Let v(1)<v(2)<...Zv(n) for vertices 1,...,n of G.

1st case. {1} forms a separate block of 8. Then we construct a blue vertex ¢ of
order 2 with ,=0 and corresponding D, has one vertex.

2nd case (opposite to 1st). In construction red vertices of order 2 let us choose
either of them under the condition that this vertex ¢ will have B, <8 and D,=#.

So we are reduced to the case when graph has one vertex less. Then we proceed
by induction.
Let us put for each te ®

7= [1 v(&)

EeG(fr)

Let K-vertex t be given and (K + 1)-vertex ¢’ under t.
If ¢’ is blue then by construction

Y=Yy - (15)
If ¢’ is red then

vt(él)+vt(§r)—2 < 2
v{SulS) T o)

Velv = (16)
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From (16) we get

2
Z?:évl _ytéz’yt (17)
Uy
where the summation is through all red (K + 1)-vertices t' under ¢.
Consequently »
YOows2 Y on+2 X oy,
redt redt bluet
of order K+1 of order K of order K
S22 w2 X w2 Y o
redt redt bluet
of order K of orderK—1 of orderK—1
<220y,
ofor‘;fe‘:irt< K
Put =
aK = Z yt .
redt
of order K
We have

K
ag 152 q
i=1

from where it follows that a, <3%a,.
By Proposition 1, Lemma 2 and (14)

PRIV ESDY vtéaIKZf"g% 131 3, .

BeUg redt

Lemma 3 is proved.

1.3. Bounds on the Intersection Numbers

Let a collection a of finite sets A,,..., 4, CZ" be given (some of A, can coincide). We
define

v;=v,(«), number of 4;, j=1,...,n, such that A;nA;#+0;

u;=u o), number of 4, j=1,...,n, such that A;=A,

Theorem 1. There exists a constant C >0 depending only upon v and such that for
each N and each system a=(A,, ..., A,) of I-connected finite subsets of Z"

N N N
CY |4l+ Y Inu;z Y Inv, . (1)
i=1 i=1 i=1

Proof. 1t is convenient to use the following notations. Let us divide & onto
equivalence classes: 4; and A; are equivalent iff they coincide as sets. The set of all
equivalence classes we denote 2. Other notations: 7, the set of all equivalence
classes of power k;

/", the set of all equivalence classes such that if 4; belong to such equivalence
class then |A|=r;

oy, the set of equivalence classes with k elements each of which has power r.

We put

ak=ldkl > cxr='ﬂr|, “;=Idl:| .
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Let ¢y, be the number of pairs (y,x), xe <, x4, such that (each)
representative of class y has nonempty intersection with (each) representative of
class y'.

We shall use the following evident properties of these numbers:

L. (symmetry) o, o =0y 4,0

2. (normalization) ) ko= Y ko, =N .
k k,r

3. Let A, be fixed. Then the number of classes in &, the elements of which has
nonempty intersection with A4; does not exceed

l4j)C" .

This follows from Lemma 1, 1.1.
We can rewrite (1) now

N

CY rkay,+ Y koy, Ink= Y Inv, . ()
k,r k,r i=1

We have from definitions

Z vi = k Z akr;k’r’k/ (3)

i k' ,r

where the summation in ) is through all i such that A, is a representative of a
iy
class belonging to .«7]. It follows that

k Z akr;k’r’k
ot
Y. Inv,<ka,, In "
i}, koy,

4)
Here we used inequality

ons() 5

for all y,,...,7,>0 such that y, +... +y,=7, y>0.
Due to (4) it is sufficient to prove that

CAN + ¥ ke, Inkay, 2 Y ko, In B, 6)
k,r k,r
where
Bkr = k/z'(xkr;k’r’k/

and

is the mean power for system A, ..., Ay.
From property 3 it follows that

T AT
Z akr;k’r’ é e Xr
k
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and so
Z ﬁkr Z k Z ockr k'r
< Y k'rCay=CdN . %)
K,

We denote &, =kaj, and shall prove that
CdN+Y.,6,,Iné,, = Z O, In By, 8)
k,r

under the condition (7).
For fixed r and 3,

; 5kr ln ﬁkr

attaches its maximum value when f,, are proportional to 4.
It is sufficient to prove this assertion for the case

O In By + Oppr In By,

with sum B=p, .+ Bi,, fixed and fixed §, . But it is a result of simple calculation.
It follows from this assertion that

Zﬁkr

Z 5kr ln ﬂkr = Z 5kr ln 5kr
Z kr
5" C’dN
< Y3 In———. ©)
k r
Due to (9) it is sufficient to prove that
6,,C’d
CAN+Y 6, In6,,= 25k,1 "' N (10)
k,r r
or equivalently that
Cdz—-Y5,1né, (11)
where 6,=8,/N under the conditions
Yo, =1, Yrd=d.
But
Z 5, <Ine’=d (12)

is a well-known property of entropy.
At the same time

- Y5 ss L+ Y Ss2. (13)

r>ed r>ed r>ed
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The first inequality in (13) is derived from the alternative : either
(ige_'
and then

—5,1n5,§5,r
or
d,<e’’

and then

—S,Iné,gir
e

(as x/e* is monotone decreasing in x).
Then (11) follows from (12) and (13).
Theorem is proved.

Theorem 2. There exist C>0 such that for each system A, Ay

N N

CYd,+ Y lnuyz=
=1 i=1

1

N
Iny, . (14)
=1

Proof. One can follow most closely the proof of Theorem 1 with the following
modifications : /" will denote a set of all classes each representative A; of which
has d,, =r. Property 3 follows from Lemma 3, 1.1. Theorem is proved.
Let now be given a system .o consisting of N not necessary different finite
subsets 4,,...,4yCZ" and let be given also m pairwise different points t,,...,1, e Z"
We divide system .o/ on classes in two different ways. First partition a,...,a, is
such that

Q.= N =0 if i%j

and all 4; belonging to one a, are the same but if A; and A; belong to different
classes they are necessarily different.

The second partition §,,...,5,, has the following property : for all i each A4, €4,
contains point ¢,

(The second partition is not uniquely determined by this condition. We
consider arbitrary such partition assuming existence.)

Lemma 1. In these notations

n m N
Z lail In I“i|§ z ;] In IéiH‘ Z |Ai' . (15)
i=1 i=1 i=1
Proof. Put
kij=lo;no,l .
Then

Lloftn 9,12 Tk Ik, (16)
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Let us consider class a, Let there exist exactly r classes §,,...,6 i such that
aiméj‘*ﬂ,...,(ximéjr#ﬂ,

Then for

Aeo;, |Alzr.
As

Z kijpzlaii

p=1

then by entropy inequality

Tklnk,z L‘:‘iln@ —jz/In Ioiil ‘
As
Y A1zl
Acx;
then
Ag;i'A' + %:kij Ink;; 2ol In o] - (17)

From (17) and (16) we have (15).
From this lemma and from Theorem 1 we get

Corollary 1. Let N 1-connected (not necessarily different) finite subsets
A,,...,AyCZ® and m pairwise different points t,,...,t,eZ’ be given. Then

N m N
CY |4+ Y 15,/In];|2 Y Inv,.
i= j=1 i=1

=1

Corollary 2. If we delete assumption of 1-connectivity of A,,..., Ay in Corollary 1
but retain all other assumption then

N m N
CY de+ Y 15Insi2 Y Iny,
i=1 j=1 i=1
or

N

m N
CY d @+ Y 16/Inl5;]z ¥ Inv, .
j=1 i=1

i=1 J

This follows from Theorem 2, Lemma 1 and inequality (2) of 1.1.

Appendix to Part 1

Calculation of Mébius Functions for Lattices

To make this paper self-contained we give here the complete proof of the explicit
formula for the Mobius function of the lattice of connected partitions of a graph.

In the general context we follow J.-C. Rota [6] correcting some inaccuracies in
the proof of the main theorem.
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Lattices

Let be given finite partially-ordered set P with order relation <. We define upper
bound for a set X C P to be an element pe P such that x < p for all xeX. Least upper
bound (Lu.b.) is an upper bound which is < than all upper bounds.

P is a lattice iff for all two of its elements p,, p, there exists Lu.b. p L V p,and the
greatest lower bound (g.l.b.) which is defined in the dual way.

Further we assume P to be a lattice.

The greatest and the least element of P we denote 1 and 0 respectively.

Examples

1. P=9 which is the set of all (non-ordered) partitions o =(A - Ay) of the set
{1,...,n}. We assume that a <f=(B,,..., B) iff each block A, is contained in some
block B; of B.

2. Let G be a connected graph with the set of vertices coinciding with {1,...,n}
and let A, CA be the set of all partitions a=(A4,,..., 4,) such that each block A;is
the connected subgraph of G.

One can easily convince itself that U and 2 are lattices.

Elementary Facts About Mébius Functions

Let us consider the set of all (complex or real) functions f(x,y) of two variables x,
ye P such that f(x, y) can be different from zero only if x < y. This set is an algebra
(incidence algebra) over (complex or real) number field with usual addition and
multiplication on a scalar and with convolution-type multiplication

hoy)y= Y flx 24z y) . 1

2:x2z=<y

This algebra has an identity-Kronecker symbol (x, y). We define ¢-function to

be
1, iffx<y
0, otherwise .

a&w={

Lemma A.1. {-function is invertible in the incidence algebra.

Proof. We define Mdbius function g, = u(x, y) of the lattice P by induction in the
power of segment [x,y]={z:x<z<y}:
ulx, x)=1,

pxy)=— Y px,z). (2)

z:xZz<y
One can verify that u{={u=>4.

Lemma A.2 (Moébius inversion formula). Let f(x) be a (complex or real) function
on P and

gx)= Y f(). ©)]

yEx
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Then
fx)= ygx 9y, %) .
Proof. _
y;xg(y)u(y, x)= 2)u(y, x)

2 2]C
Z f@)(z, y)uly, x)= Zf (2)d(z, %)= f(x) -

The followmg properties of Mobius functions we need in the sequel easily
follow from definition (2).
1. Let z, 2’ e [x,y]. Then

1pl(z, 2) = iy, (2, 2)) )

2. Let P* be partially-ordered set dual to P (it is obtained by order inversion in
P and coincides with P as a set). Then

1p(%, Y) = e, ) . (6)

3. Let P xQ be the cartesian product of lattices P and Q, i.e. it is a set of all

pairs (p,q), pe P,qeQ, and (p,,q,)<(p,,q,) iff p, <p, and ¢, <gq,
Then

Bpx WP 15410 (P2, 92)) = pplDs, PIHo(q4,9,) - (7

4. (Inclusion-exclusion principle.) Let P be the lattice of all subset x of some
finite set where x <y means xCy. Then

pp(x, y)=(=1)P1 I @)

where (x| is the number of elements in x.
This follows from the fact that P is isomorphic to the product of two-point
segments [0, 1] where 0<1.

Galois Correspondences

Let two lattices P and Q be given.

We call Galois correspondence between P and Q a pair of mappings o: P-Q
and n:Q— P such that

1. ¢ and = invert the order;

2. me(p))2p and g(n(g)) 2q for all peP, geQ.

Lemma A.3. Let moreover one has
1. a(g)=0iff g=1.
Then

a:g(a)=0
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Proof. From definition of Galois correspondence it follows that m(x)=b iff
x Zo(b) (e.g. if n(x)=b then x Zg(n(x) L o(b) and vice versa). Otherwise stated this
means that

zbép(n(x), a)={o(x, 0(b) . (10)

- We fix x and consider {,, (x, ¢(b)) and 64(n(x), a) as the functions on P (from b
and a respectively). We can apply then to (10) the M&bius inversion formula

8p(n(x),0)= ). Lo(x, 0(@)npa,0)

az0

= Y Lox, 0(@)up(0,a) . (11)

az0

Let us put n={-—4. From assumption 1 it follows that
8p(n(x), 0)=1—ng(x, 1) .
We can rewrite (11) as

1—ng(x, N={o(x,00)+ Y up(0,a)o(x, 0(a)) -

a>0

As 9(0)=0(n(1))=1 we have {,(x,0(0))=1 and then
—ng(x, )= "3, pp(0, @) olx, 0(a) .

a>0

As pu=0—un then

U0 )=~ ¥ 1gl0,x)nglx, 1)
0<x=1

Y Y (0, x)up(0, a) o x, o(a))

0=x<1 a>0

= 2 10,0050, 0(@)= Y pp0,a).
a>0 a:g(a)=0
Lemma A.4. Let L be a lattice and a subset RC L be given such that : 0 R and for
each xé L, x+0 there exists ye R such that y<x. Let k=2 and g, — the number of
subsets X CR such that |X|=k and Lu.b. of X is equal to 1. Then

U 0, )=gq,—g5+q,—.... (12)
Proof. In the Lemma A.3 we take Q=L* and P — the lattice of all subsets of R.

Also we take n(x), xeQ, as the subset of all elements of R which <x in L. In
particular n(1)=0 (empty set).

For AeR we take g(A) equal to the Lub. of 4 in L (i.e. glb. of 4 in Q=1L*).
Then (12) follows from Lemma A.3 and from (8).

Explicit Calculation of Mdbius Function

We define the rank r(p) of element pe P as maximal number r minus 1 such that
there exists a sequence x,,...,x,€P such that 0=x, <x,<...<x,=p. We call
atoms the elements of rank 1.
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Let R be the set all atoms of P. We call P a geometric lattice (equivalently,
M -lattice) iff ;

1. arbitrary element of P is the Lu.b. of some set of atoms (except 0);

2. if pis an atom and a is arbitrary then either p<a or p v a covers a (i.e. there
is np x such that a<x<pv a).

Other equivalent definitions see in [11].

Let us call a set X of atoms independent iff r (Lu.b. of X)=|X| and call it
generating iff Lu.b. of X is 1.

In the geometric lattice with r(1)=n—1 any independent generating subset of
atoms contains exactly n—1 elements.

Remark A.1. Itisnotdifficult to prove that A and A, are geometric lattices. The last
property for them s easy to prove directly (so we shall not prove it in the general case).
If between any two vertices of graph G there is not more than one line (edge) then the
set of atoms of U; can be identified with lines of G:o is an atom iff all its blocks
contain one element except one which contains two; we identify « with a line
which connects these two elements.

Let us call a circuit T a subset of atoms such that T is not independent but all
its (proper) subsets are independent.

Remark A.2. Tis a circuit in Uy iff the corresponding set of lines of G (constructed
in Remark A.1) is the closed path without selfintersections, ie. each vertex is
incident either with 2 or O lines of T,

Proof. Such a path C is not independent that is why if T>C then T=C.

We assume now that the set of all atoms of P is enumerated is some fixed way:
ay,-.., a4

If T={a;,...,a,} is a circuit and i, <...<i, then we shall call T =¢(T)
={a;,...,a;,_,} a broken circuit.

Let us denote ¢ ~'(T") some circuit T such that ¢(T)=T". In the situation of
Remark A.2 one can see that such current is unique.

Theorem A.5 (J.-C. Rota). Let P be a geometric lattice. Then

pp(0, ) =(—1y"m, (13)

where m, is the number of subsets X CR of atoms such that
1L [X|=r(1);

2. X does not contain any broken circuit.

Proof*. For the fixed enumeration of the set R of atoms we can order the set of all
broken circuits T7, ..., T, in such a way that (and otherwise arbitrary)

AT =AT) if i<j

where f(T')=i, is the number (in fixed enumeration of R) of the last atom in
T'={a,...,a,}, i;<...<i,

1" The presentation of this proof in [6] is wrong but the ideas can be restored. This is done here
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Let us denote S, — the set of all generating subsets X C R such that X contains T;
but does not contain neither of 77, 75,..., T,_;

Ri the set of all generating subsets X CR such that [X|=j and X does not
contam ., T,,.... T

R' 4 the set of all generating subsets X C R such that [X|=j, X does not contain
T,... , but contains circuit ¢~ (T}).

R’ B the set of all generating subsets X C R such that |X|=j, X does not contain
Ti,.. ,T ., contains 7} but does not contain circuit ¢ “NT).

Then for i=0,1,... one has

|R;|=|R3+1|+|R;+1’A|+|R3+I’Bi . (14)
Let us prove that for all i=0,1,...
pp(0,1)=|R%| — RS | + R} | — (15)

by induction in i. For i=0 this is Lemma A.4. For any i>0 we have by induction
and due to formula (14)
p(0,1)=|R5 1| =R | +|R M — ...
=|R%| —|R4| +|RY| — ... +|R5]
+ (RSP — |RE*) — (IR5®| = IRG*D + ... .
But |R44)=0 as circuit cannot contain exactly two elements (any two atoms
form independent subset).

We define one-to-one correspondence { between R%® and R%, in the following
way: for Xe R%® we put

X)=Xule {T)-T)).

{X)e R; 4 as element a,=¢ '(T))—T; cannot belong to any
T,,..., T;_, due to chosen enumeration of the system of broken circuits.

For 1f]<z and g, T] then

1> f(T})2 f(T) 2k .

From (15) it follows for i=o that

pp(0, 1)=(— )r(l)IRr(l)!

as if X does not contain any broken circuit (and so no circuit) then X is
independent. As X is generating at the same time then it contains exactly r(1)
elements. So |R|=0if j+n—1.

The theorem is proved.

Corollary A.1. In the situation of Remark A.2 one has
Har o0, D) =(=1)"""m, (16)

where m, is the number of subsets X of lines of G such that |X|=n—1and X does not
contain any broken circuit.
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Part 2
2.1. The Main Result

Let us consider probability measure u on SZ° where S is a set of spin values (a
measurable space) for each point of Z*; < - >-expectation with respect to pu.

Definition 1. Measure u is said to have cluster expansion with respect to given A if
for each local 1, there is an expansion

{ypy = be, br=bg(ws) (1)

where the summation is through all R such that R is a union of finite number of F
where I} is a connected array with elements in U and such that F NB=£g. It is
requ1red that for sufficiently small >0

(B

IbR(wp)l < Clipp)(CAYR® 2)
from which follows absolute convergence of (1) if C(y,) < co.

Let now local wy ,..., 1y be given. A cross section { is a function which to each
DC{1,...,n} associates some R= C(D)CZv such that:

1. bm,»(wl,)#o foralli=1,...,n;

2. {P)= H)C({l})'

We shall define G, with vertices {1,...,n} where vertices i and j are connected
with a line iff

[B,wl({iNIN[B;ui({i}]=+0 . 3)

Givqn Vp,»---» Wp, and cross-section { we define f(D) to be virtual field on
{L,...,n}:

f{D)= ( D) ;(D)( 2. tPB) 4

where m(D) is the number of different restrictions {}, onto D of all possible cross-
sections {’ such that for this D

(D)= H)C’({i}) - )

Theorem 1. Assume that p has a cluster expansion and each cross-section defines
independent virtual field f{D) with respect to G,. Then for A sufficiently small the
following uniform cluster estimate take place

n

(C).)d“‘ (By,..., B,) l‘[ u; (6)

i=1

ilda‘(‘ﬂ)

|<'PBl,---a1PB,.>[§CwCi:

where C,,=C/({1,...,n}) is defined in (8) 1.2 for

f(D)= <H%> (7)

ieD

dy(B,,...,B,) is the least such d that there exist A,,..., 4,6 U such that collection
I=(B,,...,B,, A,,...,A,) is connected.
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Proof. Given momentae of virtual field f(D) one can define semiinvariants g,(D)
using (1) or (4) of 1.2.

Lemma 1.
Wapovss 0, = gL ®)
We have by definition
{Wp, s ¥, =2 f(Dy)... fIDY (= 1 Hk—1)! ©)
and
Wppeos W0 = g {L,sm))
=Y fDy) ... f DY (— ) 1 (k—1)! (10)

where in (9) and (10) the summation is through all partitions (D, ..., D,) of the set
{1,...,n}.
To prove (8) it is sufficient to prove

f(Dy)...f(Dy)= ;fc(Dl)‘“fg(Dk) (11)

for any fixed partition (D,,...,D)).
Let us insert into the left hand side of (11) expansion (1) for f(D).
Then we obtain from the left the sum of terms

bg, ( Il wB,.) ---bxk( I1 (%,)) : (12)

ieD; ieDy
In the right hand side of (11) let us consider only those { for which
R,={D,) for i=1,.. k.

There is exactly m(R,)...m(R,) of such {. Lemma 1 follows from this if we
insert expressions (4) into right hand side of (11).
Let us use now independence of virtual field f(D). Then

g{D)=0 (13)
if subgraph D, of G, with vertices in D is not connected. That is why one can use
MGobius inversion formula as in 1.2 for lattice U, (its M&bius function is denoted
B):

Casevss¥n, Y= X o, DD, D) (14)

where the summation is through all partitions 6=(D,,..., D,)e %
From here using (8), (13), Lemma 2 of 1.2 and formula (14) of 1.2 we get
k

I<¥g,-- > Wp 2= ; > I1 2AL, O)f(D)) (15)

o=(Dy,..., Dre¥g, i=1

where in )"’ the summation is through all { such that G, is connected ; v({, 6) — the
number of j=1,...,k such that

[C(Di)u (lkl)) B,)} N [C(Dj)u (ng B,)] +0 .

el €L
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The right-hand side of (15) can be bounded by

S 3 1|k bu 1)

a« Ry,..., Ry i=1 lea;

v{R,....,R}) (16)

where v{R,,...,R,) is the number of j=1,..., k such that
(RUN)N(R;NN)*8, N,={]) B,.
lea;
The summation in (16) is through all partitions «=(a;,..., ) of {1,...,n} and all
R,,...,R,CZ" such that:
1. The following graph G(R,,..., R} is connected : it has vertices {1,...,k} and
a line between i and j iff

(RUNIN(R;UN)F0 ;
2. for some (
R,={(D), i=1,... k.

We can delete condition 2 and leave only more weak condition.

2. Foralli=1,...,k there exists a collection I of sets belonging to 2l such that
a collection (I, B, :lea,) is connected and I;=R,.

We shall bound (16) under conditions 1 and 2.

Using (1) we have

e (st,)

i=1 lea;

R'-,. [029]

SCH= } (17

qu-

For all &« and i=1,...,k we choose a point t(x) which is the first in
lexicographic order among points of { ) B,. We denote a collection of these points

for a given « teay
no)=(ty(a),..., 1(2)) .
Let us put for any collection # of points

u(n)="Y Iny,

ten

where u, is the number of t'e#n such that t=¢"
Using Corollary 2 of 1.3 we get

k
iljl viRy,..., Ry Sexp [u(n(x))]1C* % do,@ N
where
Q;=R,UN,,
In view of condition 2’
4o (WS 55 (AW +dy () <572
+ Z dg (W) +dy(B,:leay) )

lea;

where dy(B,, B;,,...) is defined in Theorem 1.
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Then

k k n
_Zl d, (W= .21 S5 (W + .21 dg(W)+dy(B;,...,B,) . (20)
= i= i=

Using (17), (18), (20) one can bound (16) by
C,exp {i dp(W)In C+dy(B,,...,B,)In C} Y exp [u(n(e))]

’ k
Y. exp [ Y, 0% (W) n (iC)] X (21)
i=1
One can perform now summation through all R, ..., R, satisfying conditions
1.2 for fixed a. It gives

¥

Z (C}.)izl

£ 13,
é C|1= 1 I(Czi)du(Bl ..... B,) (22)

with C, and C, not depending on a.
This follows from Lemma 4 of 1.1.
Then (21) is bounded by

C,exp | dg(Win C+dy(B,,...,B,)In(C)

i=1

- Y exp [uln()] - (23)

We shall bound the last sum. Let f§, i=1,...,m, be groups of equal points

among t,,...,t,, f; +...+ B, =n where t, is first point of B, in lexicographic order.
It is easy to see that

Yexp [ul@) < [T X061 +1) (24)

m
i=1

where 8, runs all partitions of §;. Right-hand side of (24) can be bounded by
cm [T 18" (25)
i=1
what follows e.g. from Theorem 1 of 1.2 for the case of complete (with all possible

lines) graph G but can be easily proved directly. Inserting (25) into (23) we get due
to

CXPZ IBiln|Bl= l=—11 Y;

and to Corollary 2 of 1.3 the result of Theorem 1.
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2.2. High-Temperature Expansions

We prove here that conditions of Theorem 1, 2.1 are fullfilled for a large class of
lattice spin systems in hight-temperature region.

Let for each point te Z’ some set S, of “spin values” be given. We may assume
S, to be equal to S. Let X, be some o-algebra of subsets of S, and u-probability
measure on (S,, 2,). Let us put

Q—t >;vS,, 2A=te>f42t, ZZV_=2, = >t<yf’ ,

(- Yo-expectation with respect to u’. A function F on Q is called local if it is
measurable w.r.t. X, for some finite 4. We write F=F , in this case.

Let a system U of finite subsets of Z’ with uniformly bounded diameter be
given and for each 4e W is given a local function @ ,. A collection @ =(P ) is called
a potential,

Let us put

k,=exp(—A®,)—1, kr=1]]k,

Ael’
for each non-ordered array I' =(A4,,..., 4,) with 4,6 W (we suppose here that 4, are
mutually different).

Here constants C, C,, 4, depend only on the situation in question, i.c. on v, U,
.

We assume in this paragraph that there exist constants 1,>0 and C >0 such
that uniformly for 0<Ad<4, and for all I’

[<kpDol S(CAHIT m

We specify a class of potentials for which (1) is fullfilled and which is sufficient for
most applications.

Functions @, in question are uniformly bounded from below and have a
representation

Na
D=3 o0 @
a=1

where A={t,,....t,}, N, and expectations {|p\}|">, for suitable fixed p are
bounded uniformly in a, A, t.
With the inequality

[yl = KHIe‘“’A( @W>

Ael' O

=(C /1)'”< [J 2 I>

Ael

one gets (1) for this class of potentials.
We remind that Gibbs measure y,, is given by the density
du

40 =2v " exp(=2Uy) 3)

Uy= Y @&, { dy-expectation w.r.t. py.
AeU ACV
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If for each local bounded F
lim (Fy, =<F>
exists it defines limit Gibbs measure u(V—Z" in the sense of van Hove).

Theorem 1. Under the condition (1) measure u has cluster expansion and conditions
of Theorem [ in 2.1 are fullfilled for 0< A< Ay with 1,>0 sufficiently small.

To prove this theorem we shall get first equations of Kirkwood-Salsburg type
for what we use the following formula. We fix BCV
exp(—AUy)= [] (1+ky)

AV
= ;kr: ;/ krexp(—AUy _poiy) 4)

where in the first sum the summation is through all I (including empty one) and in
Y is through all '=(A4,,...,4,) such that collection (B,I)=(B,4,,...,4,) is
connected.

We consider now the class of all local v, with finite momentae.

Inserting (4) into {ypgexp (—AUy)D, dividing on Z,, and passing to the limit we
get

(wgy = ;' <wgkrdo faoi »

Seor="lm f50F . (5)
W=2,_4/Z,, BCV.
Let us fix now for each nonempty finite A CZ" some point ¢t ,€ A. Then we get

fAzfA—tA_ Z” <kr>ofAuf >
T (6)
f@ =1

using (4) for f,_,. In " the summation is through all connected I such that tAef
and I'CZ’—(A—t).

In [7] we used the ideas of [8] to prove uniqueness of solution of (6) and other
properties. All these results will easily follow from considerations below and we do
not stay on it.

We derive the explicit series for (y;> and f, here.

We first specify a correspondence A—t .

Let % be the collection of all finite subsets of Z*. We force # to be graph such
that there is a line between B,, B,e# iff B, = B, \ty or vice versa. We note that#
is a connected tree. Vertex  is the lowest vertex of 4. For each vertex Be4 there is
exactly |B| vertices below B.

We require that

1. For each Be# a point t, lies on the boundary of B [i.e. euclidean distance
0lt, 2" \B)=1].

2. If B,u...UB, is a partition of B onto its 1-connected components then
tp=tg, for some i.
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It is easy to achieve the performance of this conditions by induction in |B|. Let
us consider finite sequences of pairs
y=[(B,}),...,(B,I))], q=0,1,...,
where
B,=B(y)e# . I;=I)

are collections of pairwise different sets 4e 2 and moreover:
L. For p>1 B, lies below B,_,ul,_, in 4.
2. For p>1 1T, is a nonempty connected collection such that

ty,€l,CZ'—(B,—1p) .
Lemma 1.

{yppy= gay @)
where

a,= <kaI'1(y)>0 {—= krz(y)>o = qu(y)>0

and the summation is through all vy satisfying conditions 1,2 and the following
condition 3. B,(y)=B and I'\(y) may be empty or such that collection (B,I'}) is
connected.

Moreover series Z la,| is convergent.

Proof. Let us consider system (6).

Iterating it we get its explicit solution

fi=1+Ya, ®)
where ‘/

Zly=<_kr,>o---<_qu>o

satisfy condition 1 and condition 2 but for g=1 and moreover B, C 4. (7) follows
from (8) and (5).
For proof of absolute convergence we use (1). Then

la,| £ Clwg) (CAYTH1--*1Tdl )
where, e.g. if yp is bounded, then

Clyg)=sup [yl
or otherwise in L,(du'®)

Clyg)=llwsll .

We note that uniformly in py with finite (Jyg*>,

Ky gk o= Clig) (CHIT .

We need also
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Lemma 2. The number of I such that (B,I") is connected and |I'|=N does not
exceed 2'FIC¥,

Proof. Let I,..., I, be maximal connected subcollections of I' (and thus uniquely
determined). For each i=1,...,r we choose the first in lexicographic order point
t;eI; among points of I’ B.

The number of arrays (¢,, ..., t,) does not exceed 2!®l. The number of different I
for given ¢; is bounded in Lemma 2, 1.1.

We return to the proof of Lemma 1 and denote

"i=|BiUfi_Bi+1|=|Bi1+|fi|“1—|Bi+1| >

ie. r; defines the degree of descent along the tree # in choosing B, ,.
We have

q—1 -
Y n<IBl+ YL
i=1 i

From this follows that the number of different sequences (r,,...,r,_,) does not
exceed 2/BI* 1Tl +1fg],
Collecting all estimates we derive that the number of sequences y such that
IGGN=Ny.., ILGI=N,
does not exceed
4IBICN:+. +Ng (10)

From (9) and (10) absolute convergence of series (7) evidently follows. Lemma 1
is proved.
The support of y is defined to be

suppy=f1u...uf; .
We resumm now series (7) denoting

br(pp)=bg= Z a,,

y:suppy=R
bp(wp)=0 if {y:suppy=R} is empty, (11)
(by=a,= <wpo) - '

The resummed series is
Cyg>=2 by . (12)
R

This resummed series gives desired cluster expansion. It is not difficult to
persuade oneself that the independence of virtual fields-cross sections is also
fullfilled.

2.3. Contour Cluster Expansions for Sufficiently Low Temperatures

We consider here only Ising model with interaction

U=-B Y o0,, o=%1, )

lt—t'|=1
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for p>0 sufficiently large but the same methods are applicable to the other
contour models. We suppose the definition of contours for this model to be known
and simplest properties of this model also. Let us consider this system in volume V
with (4)-boundary conditions or in infinite volume which is the limit of these
systems with (+)-boundary conditions.

We shall consider non-ordered collections of contours 3 =(I,..., I}) which can
coincide. We call 3 admissible if all its contours are pairwise disjoint (and different
consequently).

Let 9=(I3,...,I;) admissible. We denote g, to be probability that I5,...,I] are
present in configuration.

Correlation equations of Minlos-Sinai [9] are

o(®)=e MY (— 1)P([8 - T(9) V) ,
; @
o@=1.
We fixed for each admissible 9 some contour I'=I'(9)e 9 such that |I'(3)| (the
length of I') is not less than |I"| for any I''€ 3 and otherwise arbitrary.
The summation in (2) is through all § (including empty one) such that
1. each I'ed intersects I'(9); (3)

2. collection 9°UJ is admissible where $°=9—TI(9).
We shall seek explicit solution of (2): For this reason we consider all sequences

P=0- )=, 8,0)

of admissible collections of contours, We require that §,=0, 9,%0, i=1,...,n—1
and

8,028, j=2.....n )
and that each I'e 9,— 97_, intersects with I'(3;_,(y)).
Let us put

=5, 0xp| < 2 M6

- ) ()
e, =(~ 1Y
Lemma 1.
e(®)= g,ay (6)
where the summation is through all y such that 3,(y)=3. Moreover series
;Iayl @

is convergent.

Proof. We prove first absolute convergence. To each y corresponds a sequence of
pairs of numbers

ry) =001, (1 73)]
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where
ri=II) and r?

J J

is equal to the sum of the lengths of all I'e 9,0, \99.
The number of y such that r(y)=r for given sequence r does not exceed

n— N .
iy (ri+r3)
;2

From this and from (5) it follows that

Z la,| < Z (Cexp(—p) RAGELE .

In fact the collection {I' (8):j=1,...,n—1} up to permutation coincides with
collection

8,09, \9DU... U3, , \9_,) .

Series (8) evidently converges.
Put

I=yr

I'e$

and for each R C(Z)* (dual lattice) put
bR = ZR ay (9)

where the summation in ) ® is through all y such that

Ud=R (10)

Sey
and put by =0 if there is no y, satisfying (10).

Theorem 1. For each v, there exists a cluster expansion [in (Z*)* instead of Z” and
with respect to W={all lines of (Z')*}] -

Y= Z by
with
gl <(Ce #)IRI, (11)

We denoted yy here a random variable equal to 1 if all T'eY are present in
configuration and equal to 0 otherwise.

Corollary 1.
ds;
[yt 10, ] S (Ce P00 Ty C (12)

where 8(3, ..., 9,) is minimal |R| among R which contain all 8, and is a union of
contours.
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Contrary to this we shall prove now

Proposition 2. There is no strong cluster estimates for o, e.g. there is no
A=(Mp))>0 such that AB)—0 if f— o0 and

K6, s o, IS0y L n, A (13)

where m is the number of groups of identical t; and n; — the number of elements in
these groups.

Proof. Estimate (13) being valid one can consider Gibbs measure with density
d
d":’"‘ = Z, }exp (h ZI;O',)
+ te

where u, is Gibbs measure in an infinite volume — a (+)-pure phase.
It follows that limit measure uh=1ilr,n Ky, is translation invariant and has

momentae {y), given by a series in semiinvariants {g,,...,5, > which converges
and is analytic in h for |h| sufficiently small because of (13). But this contradicts to
the known fact [10] that for h<+0 translation invariant measure having cor-
respondent Gibbs conditional probabilities is unique and is not analytique in the
point h=0.
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