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chapter 16

COMPLETE CLUSTER EXPANSIONS FOR
WEAKLY COUPLED GIBBS RANDOM FIELDS

V. A. Malyshev

It is well known [ 3] that cluster expansions used to derive
uniqueness, analyticity and exponential decay of correlations for

weakly coupled Gibbs random field are called vacuum cluster expan-

sions. The reason is that they give uniqueness of the vacuum and

the lower mass gap.
Our terminology "complete cluster expansion" follows closely

one of Glimm, Jaffe, and Spencer [1]. They deal with N-particle

cluster expansions where the cluster expansion provides some infor-

mation about the spectrum of the Hamiltonian in the N- particle region.
The methods of [1] allow such expansions for N < N (B), where B

is @ small coupling constant and N ([3) —© when 8 —-0
Here, we treat the expansion whlch gives information about the
In

this article we consider only lattice Gibbs random fields with bound-

ed interaction potential,

N-particle region for all N uniformly in B such that |B] < B

Our methods are quite different from [1] . We shall work in a

special basis which was first used in [2].

The cluster expansion proofs are crucially based upon delicate

505



506 V. A Malyshev

estimates of semiinvariants together with rather complicated com-
binatorial lemmas. They seem to be of independent interest, and
are essentially better than all known estimates.

This expansion seems to be the necessary step towards asymp-
totic completeness.

The main results are formulated in §I. The next paragraphs
(§§ 2~4) contain detailed estimates for semiinvariants. The proof of
the main result is given in § 5-7.

This article is a more general and refined version of [7]. It

contains, in particular, the case of a gauge field.

I THE COMPLETE CLUSTER EXPANSION

We consider the set T = TO X Z, where Z is the one-dimen-

sional lattice and To is an arbitrary denumerable set. Furthermore,

we identify T, with T X {0} CT. Assume that for each t€T we
(©)

are given the probability triple (Qt’ Zt’ By ). We define cartesian

products
Q= X . Z = XZ |, ACT,
teT t A tEA t
(o)-th(o), z=3, 5, = By
teT o]

The function F on  is said to be local iff it is measurable
w.r. L ZA for some finite ACT. The minimal such A is the
support of F.

Also, assume that we are given a system ¢ of finite sets

Ai C T such that

IAil_gdl< © (1.1

sup I{i:tEAi}l<d2<°0 (1 2)
teT
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for all i and all

_ (o)
t = (t1 ,'rl) €a (L. 3)
_ (o) . (o)
t, = (t2 ,72) €A with tET
and
T, EZ such that l-rl—Tzl_gl

Por the proof of our main result we must also assume that TO
is a lattice in ]RV, i.e. a denumerable setin R’ which is invariant
w.r. t. translations by v linearly independent vectors. We note
that this assumption is used only in the proof of Lemmas 6. ! and I. 1.
In this case we also assume that for all i

diam Ai_gd3 <o (L. 4)

For arbitrary Ai €x, let <I>Ai be a function with support Ai'
Such a system & = (QAi) is called a potential. We will always

assume that @A is uniformly bounded, i. e.
i

,‘I’A,50¢<°° (L 5)
i

For construction of a transfer matrix we will also need invariance

w. r. t. translations
1
u,T(t(o),'r ) = 1_17_(t(o),'7'l +7)
and reflections

ot = e(t(°),7) = 9(—t(°),7)

| We assume that u_ identifies Qt with Qu ¢» etc

In a standard way, one defines translatTions UT and reflections

L 0 of random variables on @, We assume that
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A

if @& €@ and 9(@A)€¢, then UT(sbA)e o (L. 6)
i i i

Let p be the limit Gibbs measure which is a limit in the usual

sense of measures Ky with densities

-1
=Z  exp(-p o ) L7
a0V A zv A

A€ 6

The existence and properties of such limits for small B easily
follow from considerations given below. We shall not dwell any
further on the matter., We denote H = LZ(Q’ Zo , u), and let PH be
the orthogonal projection onto H in L.2 (@, =,u). The transfer ma-
trix F is defined as the following operator in H:

F =P UPR,.

It has matrix elements
(6, F8,)r= <, (UE)> (L 8)
where <- > is the expectation w.r, t. Gibbs measure p.

We now define the special basis in H. Let

gXELZ(Q,EX,p), X€To

Let TO be well-ordered in some manner by the relation < and let

To,x= {y:yETO, y< x}

Furthermore, let PX be the orthogonal projection of H onto

LZ(Q,ZT , &), and put §.=9,-Pg_.

o, X
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For each finite IC To and for an arbitrary array GI = {gX }XEI’

we put éI = XHEIQX‘ It is clear that éI and éI‘ are orthogonal
if T41.

Lemma !. 1. Constants (i. e, G¢) and éI (which belong to H) span
all H.

One can often see that a more detailed assumption about & is

A
valid
3 (@)
g, =) 1 gf (L 9)
a=1 t €A
where cpt(a) are Zt-measurable and bounded uniformly in « and t.

(We do not use it here,)

We note that in some cases one can prove that (see [4])

F>0 (1. 10)

We note that (l. 9) takes place for gauge fields and (l. 10) also
but in radiation gauge [ 5] .

We proceed now to our main result. Letus be given two arrays
Gr=lo, e Gp=lodeqp, with lo l, llo <t @1p

From the definition of the semiinvariants w(J), we know that

A

G FCpL)y = <éI(UléI,)> =Zo(l). .. w(l) (L.12)

I’

where the summation is through all partitions ]l u... UIk of the set

U ulI C To U Tl Tl = ulTo' w(Ii) is the semiinvariant of I]il ran-
. A Al '

dom variables g ., xX€ N Ii and g,, x€ (ulIi) nr'.

A

Due to the orthogonality of gX for different x, the summation

in (L 12) is in fact only made over partitions such that for all i,
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Iin1$¢, I, 0 T + o (. 13)

Furthermore, we denote by C positive constants which differ
from one proposition to another, All of them can be explicitly de-

fined.

Theorem l. 2. There exist constants C >0 and Bo > 0 such that

for all B, gl < B,, and all G, G, which satisfy (. 11),
d

o)l s (cp) (. 14)

Here, d] is the minimal d such that there exist Al . d € b
A

such that the array T(A A

@“

,A ) is connected and I cl

T
We emphasize that C does not depend on B, IIi,

(.')_
1

I!
Definition of connectedness. TFor this we construct a graph G., with

r

vertices Al" - ’Ad' We connect Ai and Aj by a line iff AiﬂAjJ:

¢. T is called connected iff GI‘ is connected.

The proof of this theorem takes the larger part of the following

text. We also obtain absolutely convergent series (in ) for w(J)

('jX, etc. Let us consider the subspace 'HN CH spanned by all @I

with |I] < N; let P be the projection onto HN

Corollary 1,3, There exist constants C>0 and 6§>0 which do not

depend on B and N and sucn that

S5(N + 1)

la-p )TH (cp) (. 15)

Proof of this proposition as a corollary of Theorem 1. 2 for the case of
the Ising model (where § =1) is given in [10]. One can in fact find
much more detailed estimates there. The same estimates can be

easily obtained in our case by using the method of [10].
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Corollary 1. 4. Let Ea be the spectral family for ‘F. Then for
as (C B)ﬁ(N +1)

(- Ea)HN = (1- Ea)H (L 16)

This is evident from (L. 15).

II. BOUNDS FOR SEMIINVARIANTS OF PARTIALLY DEPENDENT

RANDOM VARIABLES

Let LSTARRL be random variables defined on ©@,=,p) and
assumed to have finite momenta. For each A= {i,... i }C {1,...,

P c 1 p
N}, we define % Hk:lo-ik and <o a>7 = <cril,. .. ,crip>; the
latter being the semiinvariant of random variables O‘il, ceey Ty
p

Let & be the partially-ordered set of all partitions o of the
set {l,...,N}. We define a <p iff each block of partition @ is
contained in some block of partition §. e, is the minimal partition
(each block consists of one point), e1 is the maximal partition which
consists of one block only. We define the following functions on
S

~

fl@) = 0 <o, > gle) =
i=1 A i

| L=
A
=}
\%

where o = (Ai, ... Ak) is the partition with blocks Ai'

Let us denote

C = max |[f(e) 2. 1)
" aem
That is, if o, | <G, with probability I, then
N
C < I C, 2. 2)
o=, i
i=1
One can also bound CO_ by using Holder inequalities. The main

result of this paragraph is
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Theorem 2. 1.

N
l<"1""’“N>|—<C¢n (3v,) (2. 3)
i=l

where vy is the number of indices j, j Jf i such that random vari-

ables o, and o'j are connected with a line in the qraph T defined

below.

Before proceeding to the proof of this theorem, we note that the

definition of semiinvariants gives

f@) = ), 9(p (2. 4)

B«

By the Mobius inversion formula [ 8],

gl) = ), HPR(p,a (2. 5)
Bsa
That is, we have [ 8]
ale) = Ef(ﬁ)(—l)ml—l(lﬁl -)! 2. 6)
B

where IBI is the number of blocks in B. Now we want to take in-
to consideration the fact that some pairs of random variables o may
be independent.

For this reason we shall define instead of &#¢ the other partial-
ly ordered set &T.

Assume that we are given a graph I with vertices labeled by
Tpoeee s Oy Suppose that I enjoys the following remarkable pro-
perty: o, = o-Alo-AZ if AlUAz = A, A n A, = ¢, and if there are
no lines in I between A1 and AZ'

Let &zr C &2 be the partially-ordered set of all partitions
@ = (Al" cey Ak) of the set of vertices of I'" such that the subgraph

Ty, of I with vertices from Ai is connected for all i. (Two
i
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vertices in TIjp  are connected with a line iff the same condition is

i
fulfilled in T.)
We denote by pr(ﬁ,oz) the Mobius function for &I‘ Using

<<rA>C =0

if I‘A is not connected, we obtain instead of (2. 4),

fla) = D 9(p), o€
P:psa, PE Lo,

The Modius inversion formula then gives

gla) = ), £(B) 4B, @) (2. 7)
B:psa,pE &

Our aim is to now calculate p.r(ﬁ, @). Let us define a circuit
T as a set of lines of I' such that every vertex of any line veT
is a vertex of exactly one other line Y& T,

Let us assume that all lines of I" are well-ordered in some
way: y; <y, <... <y . If T= {yi

1

ye ..yik}, Yil <... <yik, is
a circuit then we call T' = {yil,. A

. l} a broken circuit.

Lemma 2. 2.

pple o) = (DN m, 2. 8)

where ml is_the number of subsets G of the set of lines of T such

that ]Gl = N -1 and such that G does not contain any broken

circuit.

Proof: We note that &r is a geometric lattice [ 8] or M-lattice

(see [9], VII, §5, problem 9). Therefore, the lemma is a slightly

revised formulation of proposition l, p. 358, of [8].
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Corollary 2. 3.

N
e, e)l s v 2. 9)

where vi is the number of lines incident with vertex o,

Proof: We bound the number %l of subsets G of lines of T such
that |G| = N-1 and G does not contain any circuit. Clearly
m, < El' For this reason, we define for each G a one-to-one map
oy of G into the set VI‘ of vertices of T.
We first note that G is a connected tree: it is a tree since G
does not contain circuits, and it is connected since ]5] = N-1.
We consider an arbitrary line Y| €G and define cpré(yl) as an
arbitrary vertex incident with Yl' Let us assume inductively that
YooY, and cpc':'(yl),. .. cp'é(ym) are already defined. Let V
be the set of vertices incident with at least one of Yy Yy We

choose Vs in such a manner that one of its vertices belongs to

1

V_. Both vertices of y cannot belong to V_, as we obtain a
m m+l m

circuit in that case. Let us define g (Ym+l) as that of the two

verti ces of Yo+ which belongs to Vm if it does not coincide with

one of oz (yl),. l 08 (ym), and the other if it does.

We then see that cpé"l are different maps (since G are dif-
ferent of VI‘ into the set of lines of T, and that for each G and
each vEV., cpél (v) is incident with v. That is why the number
of such cpél (which is the number of GN) does not exceed Hvi.

Q. E. D

Lemma 2. 4.

Ly lupe, el s

s 4 (3Vi) (2. 10)

Proof: For arbitrary B & &I" we define the new graph I‘B which
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identifies vertices of I" which belong to the same block of B, i e
vertices of I', are blocks of (3. Between two new vertices b1 and

p

b2 there is a line iff there is a line in I between some vertices i

\ i €b .
11€b1 and 12 b2 Note that

prBe) = v (e, e)

We shall label partitions B &€ &zr of T by vertices of some tree ﬂ .
‘We shall construct vertices of our tree & inductively by the
following algorithm
1. Vertices of & haveorder 1,...,N and may be red or blue.
2. To each vertex of ¢gL will correspond some Tﬁ and a sub-

set D _ of vertices of T .
B B

3. The vertex of order 1 is unique. It is red and corresponds
to T’ = D, = ¢.

B B b ﬁ ¢

4. Over an arbitrary vertex of order k, there is only one ver-
tex of order k-1, and there is only one blue vertex of order k+1
under it.

5. Assume that a red vertex t or order k has already been

constructed and that I‘B and D‘3 correspond to it. Let vi be the
number of lines of I“3 incident with vertex i of l‘p, and let

v, <. <v

1- —~ 'm

We construct under t some number of red vertices not exceeding v

and 1 blue vertex. To this blue vertex will correspond the same

I‘ﬁ, but to Dﬁ we add vertex UE

Prom graph T_,, we can construct by not more than v, ways a

1
new graph I‘B by identifying vertex 1 of I"  with one of the v

r B !

other vertices of ', which are connected with 1 by a line, and do

P

not belong to Dﬁ . Each 1"B will correspond to a new vertex. All new

r ) 4 x s
new vertices have the same Dﬁ' (This is correct since the vertices
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of D_ are not identified in construction of rﬁr' )

B
We note that

A, for arbitrary P € %__, there is a red vertex which corres-

r?
ponds to 1“‘3. This follows easily from construction.

B. if we put Y, = H;n_lvr, where v, are assumed to corres-
pond to t, then for any vertex t of order k, and for any red vertex

t' of order k4l under t,

E v, > 2
Yt' vl+v-l vl 1=
7S Ty S
t 1r
o, v1=l
Furthermore,

Y el )y,

<1 red t

However, it follows from construction that

PIRA S2 0wt LV

red t red t blue t
of order k+l of order k of order k

<2 v, ot Ly
red t red t
or order k of order <k

The inequalities

k
imply that ak <3 . Thus Lemma 2. 4 is proved.

Theorem 2.1 clearly follows from (2. 7) if we use (2. 10).
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II.. BOUNDS ON SEMIINVARIANTS OF FUNCTIONALS OF
INDEPENDENT RANDOM FIELDS
Let T be a denumerable set, ¥ an arbitrary measurable space
with o—-algebra Zt and probability measure My defined for all

teT. We put

% = X%t , = XZt, k=X g, ZT= XZt
teT te T teT teT
lemma 3. 1. Let LSTERRL be local and have supports Bl" “ey BN

We denote

I=1{,...n}, I'= {n4l,...,N}

for i€l i€1I'). We define \71 to be equal to the number of v,

s . 1 *
such that j€I(j €I') and Bi n Bj + ¢. Then

B, |
|<o'l,...<rN> | SCO_E

3V, 4
i=] 1

) (3. 1)

Proof: This lemma will clearly follow from Theorem 2.1 if we can

prove that*'P
B, |
mv, < T4 ° 1 3V, (3. 2)
jer 1 ier jer

where vy is the number of i 4j, i = 1...N such that B, N BJ,:I: $.

j(l) = vj(l), vj(z) is the number of i 4j, i = 2,3,..,N
such that Bi n Bj 4: ¢. We have vj(l) = vj(z) + 6). , Where Gj =1 if
Bj n Bl 4 ¢, and is otherwise equal to 0.

For jE€I', v

’

*

Is. |
The factor C ' was omitted in Lemma 3.1 and Corollary 3. 3

of [7]. This does not affect the remaining results of [7].
%
¥ We define the graph I' with vertices c},..., oy connecting o

i
and o by a line iff B, N BJ. = .
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For each t € B1 , we choose an arbitrary (perhaps empty) subset
Bl €T

satisfying the following assumptions:
1. tEBi for each i€ (),
2. B NBY) = ¢ if t#¢,

3. if j€I' is such that BjﬂBl$¢, then j belongs to some
plt).
It follows from these assumptions that
@) 0 0 K
n v™= n (v,'-8)> 10 -v [T n Q- (1))]
jer jeT jerr t€B, JEBW) v,
|Bt)
> I oW o (l—'—‘l(t))‘3
jer ) tE B @
(where aft) >2, o(t)> |B®)])
B, |
> I v,(z) It Zl: I v,(1)4 !
jer ! t€ B jer !
From this we obtain
B, |
1 v,(l)54 : 11 v,(z)
jer jer ’

Inductively, we obtain the same inequalities for similarly de-
: 3 : C :

fined vj( ),... vj(n). From this (3. 2), a symmetric inequality, the

the next Lemma follow.

Let us now be given a system @& of finite subsets Ai €T
satisfying the following assumptions:
1. jA d, <o
lalsd <=,

2. sup |{i:te€Al}l sd, <.
teT 1
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where

.Z<Pl,...,Fk,<DA,...,¢>A>O (4. 3)
A 1 n
n
One can easily see that for fixed n in the sum (4. 3) only a
finite number of terms are different from zero.
We denote by d = d(Bl" . Bk) the minimal integer d >0
such that there exist A,...,A € % for which the array

T= (Bl’ oy By AL Ad) is connected.

Theorem 4. 1. The series (4. 2) is absolutely convergent for |6| <BO,

;30 >0 being sufficiently small, and

Kk B, dd
|<F,...,F°| <Cc_2[l 3v,8 @' 2%cp- (4. 4)
1 k a i=1 1
(All notation is the same as in Lemma 3. 2.)
Proof: For a given ordered array I = (Al’ RN AN)’ we denote by
£= (Ai ye ey Ai ) the minimal unordered array such that:
1 P
LAy, Ai are all different,
1 P
2. Any AiEI‘ is equal to one of Ai yoe ,Ai .
1 p

‘We note that all bn, n <d, are equal to zero. Using (3. 3), we

obtain for bn’ n > d, the following bound

k B, |

lanSZCUH (3v, 4 l)A ; (Cﬁ)lrl (4. 5)
i=l I: >d

Let RN be the number of unordered arrays T such that lf‘l = N,
and the array (Bl" . Bk)U T is connected. We shall prove that

IB, |+...+|B |
RN___<2 ! k Ry (4. 6)
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Let @ be given with supports A; € 6. We consider local
i

Pl, cee Fk with supports Bl’ ey Bk .

We denote by yo_ the constant defined in (2. 1) for the system
FI’ cey Pk s €[>Al, ey @An of random variables.

We consider the partition of {A,..., An} into m groups such
that Ai and Aj are identical if they belong to the same group and
are otherwise different, Let TEEPL denote the number of ele-

ments in these groups.

Lemma 3. 2.
k B, |
|<Fl,. -y B, B, % > < C [T 3v,4 YInt..n 'C

L i=1 1 m

(3. 3)
where vy is the number of j, j = 1,...,k such that Biﬂ Bj 4: ¢

and

d[ Jlog (@ +D[ +1]
C=13.4"1 2 2 (3. 4)

where | af = a is a is an integer and [a] + ! otherwise.

Proof: We use (3.1) first in the case where

= = = & = &
T e A B WA Vil
1 n
To bound
n v,
jer )

we inductively apply (3. 2) with I' being partitioned on the 2,4, 8,...

group by the dichotomic rule. For this we need the following

Lemma 3. 3. There exists a partition of I' on d2 +1 subsets

LIRS

j belong to different subsets of this partition then Ai N Aj = ¢.

such that IiﬂIj = ¢ for i#j, UL = I' andif i and

Proof: We first define the graph G with I' asthe setofits vertices.
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Vertices i and j are connected with a line iff Ai n Aj :‘: é. We
set the length of each line equal to 1. We set the distance p(i,j)
between two vertices equal to the length of the minimal path from i
to j. (If there is no such path we put pfi, j) equal to «.) We
choose a subset I' of vertices of G such that:

1. the distance between two arbitrary vertices of I' is at
least 2,

2. each vertex not belonging to I' is at distance 1 from I'.

We delete all vertices I' from G, and also all lines incident
with them. In the remaining graph we choose I2 in a similar way,
etc. The procedure will be complete after d‘2 +1 steps. In fact,
we can consider arbitrary vertex i. In the first step either i be-
longs to Il (and then everything is proved), or one of at most d2
vertices j, with p(i,j) = 1, belongs to I'. We repeat this reason-
ing in the next step, and continue in the same manner. The Lemma

is thus proved. The theorem follows immediately.

Iv. BOUNDS ON SEMIINVARIANTS OF THE GIBBS RANDOM FIELD
IN A HIGH TEMPERATURE REGION

We will change the notation of the preceding paragraph slightly
and will denote by Ko the measure p on (%, z). < >O will de-
note the expectation of Ko -

We define the new measure fy with density
_d—}:—: Zv exp (-B Z QA) 4. 1)

where < >V denotes expectation w.r.t My

If V—~2Z in the usual sense, we obtain the formal Taylor ex-
pansion
C _ n
<Fj, ..., F > = lim <F F,>, = ), b P (4. 2)

yo ooy
v 1 k™V n=o0
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where the number

dd. N
. 172
4, 7
Ry <2 (4. 7)
is the number of arrays I = (A ey AN)’ If‘l = N, such that some
~ N
fixed point t belongs to T:Ui:lAi.

We shall prove (4. 6) first. Let all points of T be enumerated
in some fixed manner, I is the union of r maximal connected sub-
arrays, f‘l, .y f‘r. One can easily see that r < IBll +o.. 4 lBk | . In
each f‘i, we take the first (in this fixed order) point

k

terN(JB), L= U ~a.
i i . J 1 ~ )
j=1 A €T,
!
The number of sequences of the form (tl’ ceny tl_) does not exceed
B [+...+[B,|
2 . This proves (4. 6).

Lemma 4. 2.

dd._ N
, 192
Ry <2

Proof: Let the set of all Ai be well-ordered in some way. We shall
give the algorithm for construction of an arbitrary array f‘, with
teT (t being fixed), with simultaneous ordering of each T We

first order the elements of T containing t:

Al_<...5Am, l_gmgdz.
This order is induced by the order in question of all systems of Ai'

The number of such sequences (4,... ,Am) is not more than 2 2-1.

We then take all elements of I° intersecting A, (the number of such

d,d 1
elements is not more than 2 1 2) and order them in a similar manner

after Am. Repeating this procedure with AZ’ etc. , we demonstrate

the Lemma.
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V. THE SERIES FOR CONDITIONAL EXPECTATION

Let us consider the Gibbs measure p defined in §4, and let
PA be the orthogonal projection onto LZ(Q,ZA,H) in LZ(Q,Z,H)-
(We return now to the notations of §1.)

Our aim here is to explicitly find the absolutely convergent

series for PA Ft’ o)
Let us consider finite A first. Let <> be the expectation

(0) A
P

, and let <-> be the expecta-

t € A, FELZ(Q,Et,p.).

of the measure Fo A X
’ tEIVA

tion of the Gibbs measure l\i]m < >\(/A) , where for ACV, we put
_ %
(A) <Fexp( ﬁUV\A)>o
<F> = o) ,
<exp (—BUV\A)>o
where
U = ) @
VA AcYaa A
Then

F ) & (1 l)
t ( A EZG A) >V
lim

V. <exp(-p Z QA)>\§A)
Ae GA

P,F, = M(FtIZ)A)

<F, exp -8 Z qu)>(A)
AEG,

<exp (-B Z <I>A)>(A)
A€GA

where G, is the set of all A €& such that AN A{ ¢, and
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AN(T\A) # ¢. From the last formula one can obtain

o0
1
P F = E = L (5. 1)
At n=o n, II'FZ:n I
where the summation is over all ordered arrays I'= (Al’ ceey An)’
A € G,, and where

i A’

n
= (- @ ...,D >

s CRSE, e, 8y

1 n
We can rewrite (5. 1) as the sum over all unordered arrays

I=(&,...,A), A €G,:

o0
PAE= ) ) (5. 2)
n=0 |I|=n
where
- n__ 1 (A)
= -p) n:!..n! <Pt’@A""’¢’A >
1 m 1 n

and where n,..., n ~are defined as in Lemma 3. 2. Using (4. 4),

we have for some C >0,

n+dI :
Il s lelce = (5. 3)

where dI t is the minimal p such that there exist Xl" .. ,Xp,
~ )~
A CINA, A€ &, such that the array (t, A A.,A A

5 LR

Kp) is connected. We note that C does not depend on t, n, I.

Theorem 5.1, If A is infinite, then (5. 2) also holds, o satisfy the

bound (5. 3), and the series

0

5o gl (5. )

n=0 |I|= n
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is convergent for sufficiently small 8.

‘We omit the rather straightforward proof of this statement.

VL. PROOF OF THE MAIN THEOREM

We want to prove the estimate (see §l)
%
lo@| 5 (CB) (L 14)
For I asin (5.2), we write

I= (AI\A) u... u (An\A)

and
ay= ), (6. 1)
B I:1=B !
From (5. 3), it easily follows that
n_o+d
B "B,t

legll < Iz l(cp) ‘ (6. 2)
with a different constant ¢ > 0. Here, d =d for T= B, and

B, t Lt
nB is the minimal n such that there exists I with I = B and

|I|=n.

To prove (1. 14), we insert into w(J)

where @ =g,. (We put Pt = gx.) Then, «(J) will be expanded

into the sum of terms

where m = II], J= (xl,. .. ,xm). From this we obtain
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lo@] <7 I<ay o0 yay > |
1 m

m ]Bil d(ﬁl,...,ﬁm)
s LI ag llve * 1 cp) (6. 3)
B B i=] i

where vi is the number of j such that Bj n Bi :‘: ¢, j=1,...,m.
Here, we have used (4. 4). C is some constant which does not de-

pend on B and B, and B = B, U {xi}.

Lemma 6. 1. Assume that m (pairwise different) subsets ﬁl ,

ﬁ CT are given. Let v1 be the number of j such that B ﬂB -1,4>,
= 1,.

»m. Then, there exists a C >0 such that for all m and

all Bl,...,ﬁm,

MB
>

m
2 (6. 4)

i l

We note that C depends onlyon T and & . The rather complicat-
ed proof of this Lemma for the case T = %' is given in [7]. (See
Lemma A, 4.) In the general case, the proof is quite similar. We
note that
ZdB,,X. > Zdﬁ (6. 5)
P71 i
Using (6. 2), (6. 4), and (6. 5), we now bound |w(l)|. We insert (6.2
and (6. 4) into (6. 3), and obtain
o0 i+dBi’Xi nBi+dBi’ x, +d(B1" ey Bm)
lo®l<2... 7 o c - (C)
B B
1 m

with some (new) constant C > 0. Changing the constant and nota-

tion, we rewrite the last inequality as

6R
oM <)} (Cp) . 6)
R
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where the summation is over all R = (ﬁl,. . ﬁm), and where

m

5y = dlB, .. .,Bm)+'2 9 x.
i=l i

It remains to prove that

0 d
Len tseop! (6. 7)
R
for some C1 > 0. But,
d +...+4d
6 , B,x "B, x
Yo R cpP Y ep V! mm (6. 8)
R D=1 R

where in E the summation is over all R satisfying
d(ﬁl,...,Bm) =D . 9)
We shall prove the auxiliary

, Bm). Then

Lemma 6. 2. Let R be the set of all arrays R = (ﬁl, ces
for each subset R'CR,

dBl,Xl+. L4 dBm’Xm ;
2 (P <(cp
RER'
where
d= min (d +... +d )
ReR Dr¥ B *m

Proof: The problem evidently reduces to the case when R' is the

set of all arrays R such that

d +... +d >d
Bl’xl Bm’xm

Let us fix an ordered array (rl, e ,rm) of integers with
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The number of such arrays is at most 4d. If we can prove that
dBl’ * r
Y, (©p > (c,p) (6. 10)
B, :d >r

1 Bl’ X =

then our result with C1 = 402 will follow. But the proof of (6. 10)
is quite standard.

To prove (6. 7), we take R = RD as the set of all R satisfying
(6. 9). Then

o0
o < Y cpP * D) 6. 11)
D=1
where
d(D) = min (d + +d )
RER, By %) B ¥m
But
D +d(D) > d] (6. 12)

which follows from the definitions.

From (6. 12) and (6. 11), the proof of the main result (L 14) is

straightforward.

VII. PROOF OF LEMMA 1.1

We choose some X € To and choose finite subsets R = {Xl’
.. Xk} C TO satisfying the following conditions:
1. xo > xl ... 0> xk , where > is defined by lexicographic

orderon T ,
o

2. R={x:x <X, p(x,xo) <d}, where p is the euclidean

v
distance in To CR .
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Let us first assume that {x: xi < X <Xi+l} is empty for each
i=40,1,...,k-1. We want to approximate bounded 9. within
arbitrary degree of accuracy by products of é‘xo, é‘xl,. sy §xk.
easy to prove (we omit it) that g, - kagx can be approximated

o) o)

Itis

with arbitrary accuracy by such products. Using the exponential
bound
6d
e, o, I <la, llcp (7.1)
k “o o)

where 6 >0 and C>0 donotdependon B and d, we obtain the
proof. The bound (7. 1) can be proved in the following way. We
apply

2 2
”PX 9. = = <M(gxo|2

)>.M@e =)
k %o k! %

{x<x o

which can be calculated for any given "boundary conditions" on
{x:x <Xk} by using e. g. (4. 2), (4. 3) for FlE 9y and k = 1.
o}
One easily observes from the estimates of §3 that the "boundary
terms give a negligible contribution, and we obtain (7. 1),
In the general case (i. e. when {x: X, <x <xi+l} are not

empty), we use the following decomposition

X(O) ) +... + X(k+1)

X, = +x (7. 2)
where
x(o)zx-P X, m-Px-—ﬁ ,
o X 0 X 0o X, 0
[) [e] 1
@_p % - k...,
X0 X, 0
x(k)-ﬁx xo—ﬁx X x(k-H:f; X
k-1 k ¥ ©
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and PX is the projection onto LZ(Q,Z{X, x}’p)' Furthermore, we
proceed as earlier, using bounds (7. 1) for each P{Xi< X <X }xo.
Since K is bounded by dv, the exponential bound (7. 1) dominates.

The proof is complete.
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