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Abstract. Shortly speaking, static charged cluster is a rigid body with charge
distributed over it, For any system of such clusters the potential energy is the
Coulomb potential energy. Here we give examples of system of clusters for which
there exists stable configuration, that is minimum of potential energy.
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1. Introduction

Celestial Mechanics, the famous science, explains configuration and dynam-
ics of planets in the Universe via gravity forces. It is believed that molecular
dynamics (for example, in biological organisms) exists mainly due to electro-
magnetic forces, where electrostatic (Coulomb) force is the most important.
But why then the science, that could be called Coulomb mechanics, had never
been even started. In despite of the fact that it has the same inverse square law
(however, with not only attraction forces but also repulsive). One of the main
reasons why it still does not exist – it seems to be more difficult.

First of all, it is well-known that static system of point charges is never stable
by Earnshaw theorem. We give short review of corresponding classical theorems
below. Moreover, in classical equilibrium statistical physics were widely studied
large random systems (Gibbs fields) of charged particles, see for example [10–
16]. For systems of point particles with different signs even additional external
fields do not provide desired stability. Structured reviews of recent results in all
these directions could be very useful for our project.

To get stable objects, instead of point particles one should find natural mod-
els for atoms and molecules. Now these are considered mainly in nonrelativistic
quantum mechanics. However, one can try to come back to classical physics
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and try to study classical models for stable objects of this kind. Here point
particles should move (due to mutual Coulomb interaction forces) inside some
domain, then such system is called dynamical Coulomb cluster. Some results
and techniques of Celestial mechanics can be used in the future Coulomb me-
chanics, for example to explain the existence of atoms, where centrifugal (that
is, the rotation with velocity dependent of the radius) force is necessary. Ex-
ample is two particle system with different charges, when one of the particle
rotates around another. This is a classical basic result from Celestial mechan-
ics. But completely new techniques is necessary to prove existence of stable long
molecules without centrifugal forces and to prove existence of solid state using
only Coulomb forces.

Simpler approach is to add other forces between charges in the cluster.
If such system is without internal movement, then we call it static (or solid)
Coulomb cluster (see below exact definition). Thus, we assume that other (un-
known) forces make them solid. Moreover, Coulomb clusters may consist not
only of point charges but also continuous charge distribution, resembling the
electron wave function in quantum mechanics around positive nucleus.

The Model Static charged (or Coulomb) cluster in Rd is a pair (µ, ϑ) of finite
measures on Rd with the same bounded support O of diameter ε > 0 (often we
consider ε to be small). The measure µ is non-negative and corresponds to mass
distribution (or even mass density), and ϑ can be alternating, and corresponds
to the charge distribution, or defined by charge density q(x), x ∈ O. Below for
d = 1 we consider arbitrary clusters but for d ≥ 2 we consider only rotationally
symmetric clusters, that is when O is a ball with the center at some point X
and (µ, ϑ) are invariant w.r.t. rotation group around X.

The system of several, i = 1, . . . , N , such clusters – (µi, ϑi), Oi, εi, with
non intersecting supports Oi is called classical system of clusters. We will call
Qi = ϑi(Oi) the (full) charge of the cluster i, and the potential (Coulomb
interaction) energy of such system of clusters is defined as

U = U(µi, ϑi, G) =
∑

(i,j)∈I

ˆ
Oi

ˆ
Oj

1

|xi − xj |
dϑidϑj ,

where I is a system of pairs (i, j), i < j, that is the set of edges of some graph
G with the set of vertices {1, . . . , N} and the set of edges I.

Remark 1.1. We want also to emphasize that we use inverse square law for elec-
trostatic forces in any dimension, that is “dimension 3” force. In dimension 1 it
is an approximation to the 3-dimensional thin tube, in dimension 2 – to the thin
layer between two parallel planes. Another reason is that it can be derived in
any dimension not from Maxwell – Lorentz equations, and even without Newton
law, but only using Galileo axioms, see [1].
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We see that U does not depend on the measures µi. On the other hand,
each measure µi defines the center of mass of the cluster i

Xi = M−1
ˆ
xiµi(dxi), M =

ˆ
µ(dxi),

that is the center of Oi. If for any i, j the distances

dij = inf
x∈Oi,y∈Oj

|x− y| > 0

between Oi and Oj are not zero, then the potential energy U is finite.
The potential energy U(X1, . . . , XN ), if we assume rotation invariance of

each cluster, is a function of N vectors Xi. And by translation invariance, the
function of only N − 1 vectors Ri = Xi+1−Xi,= 1, 2, . . . , N − 1. But in fact it
depend only on the vector D of distances dij such that (i, j) ∈ I.

There are two ways how one could define dynamics of such clusters: 1) use
equations of rigid body physics; 2) consider regular continuum particle systems
(see [17]) and use approximation of such systems by N particle systems with
asymptotically (as N → ∞) infinite forces which conserve distances between
any pair of particles (see examples in [18]). Then due to rotation symmetry of
clusters only forces, for example between clusters i and j, will be only in the
direction of the vector between mass centers.

We consider here the following definition of stability: assuming that U(R1, ...
RN−1) is a smooth function, we say that the point (R1, . . . , RN−1) is stable if
U has strict minimum at this point. In other words, if two conditions hold: 1)
all “forces” −∇RiU are zero, 2) the corresponding Hessian is positive at this
point. Intuitively, then Xi can move permanently in their own potential wells.
Here we give many examples of such stability for two and three clusters.

Useful and more general definition kind of stability could be the following.
Dynamic stability: 1) the system is called bounded for some class of initial
conditions, if all distances dij rest bounded for any time 0 ≤ t <∞, 2) clusters
never collide, that is all distances dij are larger than some δ > 0 for any 0 ≤
t <∞.

In dimension 3 we will also consider the so called quasi-quantum systems
of clusters, that is when Oi may intersect. This is inspired by analogy with
quantum mechanics where wave function of a particle may have even unbounded
support.

2. One-dimensional case

A cluster is called k-point cluster if the set O is a k-point set.

2-point cluster and point particle We consider two following clusters: 1)
2-point cluster, that is two point measure in the points x1 < x2 = x1 + ε, ε > 0,
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with charges correspondingly: positive q+ > 0 at x1 and negative, which is
convenient to denote −q− with q− > 0, at x2; 2) there is also 1-point cluster,
that is a point particle with negative charge q < 0 at the point x3 so that
r = x3 − x2 > 0.

Proposition 2.1. Let the parameters ε, q+, q−, q be fixed. If Q1Q2 < 0, that
is q+ − q− > 0, that is full charges have different signs, then the function U(r)
has exactly one minimum on the interval (0,∞).

Proof. One can show existence without any calculations, and the same proof
will be used below in more general cases. Note first that U(r) → +∞, if
r → 0. Moreover, the repulsive force (for any value of q+) also tends to +∞,
and it follows that the derivative dU

dr tends to −∞. At the same time, when
r → +∞ the function U(r) → 0. And by condition q+ > q− the force on the
point particle (with negative charge) will be negative for sufficiently large r.
Then the derivative dU

dr should be positive for sufficiently large r. This means
that U(r) increases for sufficiently large r and tends to zero “from below”. It
follows, as U(r) is smooth, that it should have global minimum. This will be
point minimum as U(r) is a rational function. And then at the point minimum
its second derivative is positive.

Remark 2.1. In fact, for existence of minimum, it is sufficient that dU
dr > 0 for

all sufficiently large r, and at least one of the following two conditions hold:

1) U(r) > 0 for some r > 0;

2)
dU

dr
< 0 for some r > 0.

However, in this case one can do more exact statements with all calculations
done explicitly. Potential energy is

U(d) =
q+q

r + ε
− q−q

r
.

The condition ∂U
∂r = 0 gives the equation

q+
(r + ε)2

=
q−
r2

=⇒ q+
q−
− 1 =

ε

r

(
2 +

ε

r

)
.

We see immediately that for existence of the solution it should be q+ > q−.
Moreover, the solution for the minimum is unique and is given by

ε

r
=

√
q+
q−
− 1 =⇒ r =

ε√
q+/q− − 1

.
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Non-point cluster and point particle Now we consider again cluster on
the interval x1 < x2 = x1 + ε, ε > 0, with point charge q+ > 0 at x1, but
negative charge −q− is assumed to be uniformly distributed on the interval
(x1, x2). The point particle with negative charge q < 0 is again at the point x3,
so that r = x3 − x2 > 0.

Proposition 2.2. Let the parameters be fixed. If again Q1Q2 < 0, then the
function U(r) has unique minimum on the interval (0,∞).

Proof. To prove existence of the minimum similarly to the previous proposition,
it is sufficient to show that U → +∞ as r → 0.

The charge density ρ− on the interval (x1, x2) is defined from

q− =

ˆ ε

0

ρ−dx = ερ−

and the potential energy is:

U(r) =
q+q

r + ε
−
ˆ ε

0

ρ−qdx

r + x
=

q+q

r + ε
− q−q

ε

ˆ ε

0

dx

r + x

=
q+q

r + ε
− q−q

ε
(ln(r + ε)− ln r) .

It follows that as r → 0 we have U(r) → +∞. Note that even the solution of
the equation ∂U

∂r = 0, or

0 =
q+

(r + ε)2
− q−

ε

(
1

r
− 1

r + ε

)
=

q+
(r + ε)2

− q−
r(r + ε)

=

=
q+r − q−(r + ε)

r(r + ε)2
=
r(q+ − q−)− εq−

r(r + ε)2
,

is unique and is equal to

r = ε
q−

q+ − q−
=

ε

q+/q− − 1
.

Then, as minimum exists, it is exactly this unique solution.

Two 2-point clusters Consider two clusters: 1) the first one at the points
x1 < x2 = x1 + ε; 2) the second – at the points x3 = x2 + r, x4 = x3 + ε. The
charges are q1 > 0, q2 < 0, q3 < 0, q4 > 0. Assume also that q1+q2 > 0, q3+q4 <
0.

Proposition 2.3. Potential energy has minimum on the interval (0,∞). More-
over, it is unique.
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It can be proved similarly to the proof of Proposition 2.1 that at least one
minimum of U(r) exists for r > 0. Now we will prove its uniqueness. We have

U(r) =
q2q3
r

+
q1q3 + q2q4

r + ε
+

q1q4
r + 2ε

=

=
(q1 + q2)(q3 + q4)r2 + b1r + b0

r(r + ε)(r + 2ε)
,

where b1, b0 are not interesting for us. Note that U → +∞ as r → 0, and
U → −0 as r → +∞. Then the graph of the function U(r) can intersect real
axis only odd number of times. But as the polynomial in the numerator is or
order 2, only once. That is, U(r) has exactly one zero in (0,∞).

Extrema of the function U(r) in the set (0,+∞) are zeros of the following
equation:

0 = −dU(r)

dr
=
q2q3
r2

+
q1q3 + q2q4

(r + ε)2
+

q1q4
(r + 2ε)2

=

=
P (x)

(x− ε)2x2(x+ ε)2

where we denoted x = r + ε, and

P (x) = (q1 + q2)(q3 + q4)x4 + 2(q2q3 − q1q4)x3ε+

+(q1q4 + q2q3 − 2q1q3 − 2q2q4)x2ε2 + (q1q3 + q2q4).

Again change the variable y = x/ε:

0 = −dU(r)

dr
= (q1 + q2)(q3 + q4)

y4 + a3y
3 + a2y

2 + a0
ε2(y − 1)2y2(y + 1)2

,

where

a0 =
(q1q3 + q2q4)

(q1 + q2)(q3 + q4)
.

The set r ∈ (0,+∞) becomes the set y ∈ (1,+∞). The transformed function
we shall denote also by U(y). We saw that U(y) has only one root on (1,+∞).
As the numerator of the derivative of U ′(y) is a polynomial of 4-th degree, the
number of its roots is not more than 4. As U → +∞ if y → 1, and U → −0 if
y → +∞, then the derivative has odd number of roots on (1,+∞), that is 1 or
3.

Let us show that it cannot be 3. Assume they are 3. It follows, that as the
polynomial in the numerator of the derivative has degree 4, then all roots of it
are real. Note that their product is

y1y2y3y4 = a0 =
(q1q3 + q2q4)

(q1 + q2)(q3 + q4)
> 0,
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as in the numerator both terms are negative, and the denominator is negative
by our assumption. Then, as we assumed that 3 roots are positive, then also
the fourth one. But then

a1 = a0

( 1

y1
+

1

y2
+

1

y3
+

1

y4

)
= 0

which is impossible if all roots are positive. So, the function U(r) has only one
extremum in (0,+∞), which is the desired minimum.

Two non-point clusters Consider two clusters: 1) the first one at the point
x1 with charge q1 > 0, and on the interval (x1, x2 = x1+ε) with constant charge
density of total charge q2 < 0; 2) the second on the interval (x3 = x2+r, x3+ε =
x4) with constant charge density with total charge q3 < 0, and positive charge
q4 at the point x4. Assume also that q1 + q2 > 0, q3 + q4 < 0.

Proposition 2.4. Potential energy has at least one minimum on the interval
(0,∞).

Define charge densities on the intervals:

q2 =

εˆ

0

ρ2dx⇒ ρ2 =
q2
ε
, ρ3 =

q3
ε
.

Then potential energy is

U(r) =
q1q4
r + 2ε

+ (q1ρ3 + q4ρ2)

εˆ

0

dx

r + ε+ x
+ ρ2ρ3

εˆ

0

εˆ

0

dxdy

r + x+ y
=

=
q1q4
r + 2ε

+ (q1ρ3 + q4ρ2)I1(r) + ρ2ρ3I2(r).

We want to show that as r → 0

0 < lim
r→0

U(r) <∞, −dU
dr
→∞.

This is clear from the following calculations:

I1(r) =

εˆ

0

dx

r + ε+ x
=

εˆ

0

d(x+ r + ε)

r + ε+ x
= ln(x)|r+2ε

r+ε = ln(r + 2ε)− ln(r + ε),

−dI1(r)

dr
=

1

r + ε
− 1

r + 2ε
=

ε

(r + ε)(r + 2ε)
,
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I2(r) =

εˆ

0

εˆ

0

dxdy

r + x+ y
=

=

εˆ

0

(ln(r + y + ε)− ln(r + y))dy =

r+2εˆ

r+ε

ln(z)dz −
r+εˆ

r

ln(z)dz =

= (z ln(z)− z) |r+2ε
r+ε − (z ln(z)− z) |r+εr = (r + 2ε) ln(r + 2ε)+

+r ln(r)− 2(r + ε) ln(r + ε) = r ln

(
r(r + 2ε)

(r + ε)2

)
+ 2ε ln

(
r + 2ε

r + ε

)
,

−dI2(r)

dr
=

εˆ

0

(
1

r + y
− 1

r + y + ε

)
dy =

= 2 ln(r + ε)− ln(r)− ln(r + 2ε) = ln

(
(r + ε)2

r(r + 2ε)

)
,

−dU(r)

dr
=

q1q4
(r + 2ε)2

+
ε(q1ρ3 + q4ρ2)

(r + ε)(r + 2ε)
+ ρ2ρ3 ln

(
(r + ε)2

r(r + 2ε)

)
=

=
q1q4(r + ε) + (q1q3 + q4q2)(r + 2ε)

(r + ε)(r + 2ε)2
+
q2q3
ε2

ln

(
(r + ε)2

r(r + 2ε)

)
.

Now the argument similar to one in the proof of Proposition 2.1 gives that there
exists at least one minimum.

A chain of N clusters with nearest-neighbor interaction Consider N
one-dimensional clusters i = 1, . . . , N, where the measures (µi, ϑi) are three-
point measures at the points xi − εi,1, xi, xi + εi,2 with charges qi1 < 0, qi2 >
0, qi3 < 0 and masses µi1, µi2, µi3 correspondingly. We assume that cluster i is
symmetric , that is µi1 = µi3.εi,1 = εi,2, qi1 = qi3.

Moreover, it is always assumed that x1 < . . . < xN and ri = (xi+1− εi+1)−
(xi+εi) > 0 for any i = 1, . . . , N−1. Then U = U(r1, . . . , rN−1) is the function
of all ri, i = 1, . . . , N −1, and Qi = qi1 + qi2 + qi3 is the full charge of the cluster
i. Moreover, assume that I consists of N − 1 edges (i, i+ 1), i = 1, . . . , N − 1.

Proposition 2.5. If Qi < 0 for odd i, Qi > 0 for even i, then the function
U(r1, . . . , rN−1) has at least one minimum in RN−1+ .

To see this, it sufficient to note that the potential energy is the sum U =∑N−1
i=1 Ui(ri). It follows that all mixed derivatives in the Hessian are zero. The

Hessian is diagonal, and as each Ui has minimum at some point ri,0, U also has
minimum at (r1,0, . . . , rN−1,0).
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Complete 3-cluster interaction Note first that it is easy to prove that the
system of 3 particles may have fixed configuration but only not stable.

Now consider the same model as above and let N = 3. Assume that all 3
clusters are symmetric, remind that also Q1 < 0, Q3 < 0, Q2 > 0. But now
assume that any pair of clusters interact, that is the potential energy is

U = U1,2(r1) + U2,3(r2) + U1,3(r1 + r2 + 2ε)

= V (r1) + V (r2) + U1,3(r1 + r2 + 2ε),

where functions U1,2 and U2,3 are assumed to be the same functions which we
denoted by V (r). Let rmin > 0 be minimum of V (r).

Denote V (k)(r) = kV (r) the same function but where all charges of the
cluster 2 are multiplied by k (then cluster 2 we denote as 2(k)). It has minimum
at the same point rmin. Then the potential energy Uk(r1, r2) of the system of
clusters 1, 2(k), 3 is

U (k)(r1, r2) = kV (r1) + kV (r2) + U1,3(r1 + r2 + 2ε).

Proposition 2.6. There exists k0 > 0 such that for any k > k0 the potential
energy U (k)(r1, r2) of the system of clusters 1, 2(k), 3, has minimum at the point
(ro, ro) for some r0 = r0(k). Moreover, r0(k)→ rmin as k →∞.

Proof. Instead of U (k)(r1, r2) we can consider the function

1

k
U (k)(r1, r2) = V (r1) + V (r2) +

1

k
U1,3(r1 + r2 + 2ε).

Note that all these functions are analytic for r1 > 0, r2 > 0. Then we can
consider 1

kU1,3(r1+r2+2ε) as a small perturbation of the function V (r1)+V (r2).

Due to symmetry we start with the function 1
kU

(k)(r, r). We know from section
3.1 that the graph of the function V (r) intersects real axis at some point x0 > 0.
Then the graph of the function 1

kU
(k)(r, r) intersects real axis at the point

x0 + δ, where δ = δ(k) → 0 as k → ∞. Also, the critical point of the function
1
kU

(k)(r, r) of one variable r tends to the minimum of V (r) as k →∞. Moreover,
at the point r1 = r2 = r

∂

∂r1

1

k
U (k)(r1, r2) =

1

2

∂

∂r

1

k
U (k)(r, r).

Thus, ∇U (k)(r0, r0) = 0.
Now, to show that it is minimum of the function U (k)(r1, r2) of two variables

r1, r2, it remains to note that, by analyticity, two Minors of the Hessian

∂2U

∂r21,2
(ro, ro) =

∂2U1,2

∂r21,2
(ro) +

∂2U1,3

∂r21,2
(ro, ro),
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∂2U

∂r21
(ro, ro)

∂2U

∂r22
(ro, ro)−

(
∂2U

∂r1∂r2
(ro, ro)

)2

stay positive at some neighborhood of the point (rmin, rmin).

3. Two-dimensional case

Circle-type cluster and point particle Consider the following two clusters:
1) at point z = (x1, 0) ∈ R2 there is charge q+ > 0, and the charge −q−, q− > 0,
is uniformly distributed on the circle {y : |z − y| = ε} of radius ε > 0 with
center at z; 2) there is also point particle with negative charge q < 0 at the
point (x2, 0}, such that r = x2 − (x1 + ε) > 0.

Proposition 3.1. If Q1Q2 < 0, then U(r) has minimum on the interval (0,∞).

Proof. To prove the existence of the minimum, similarly to the Proposition 2.1,
it is sufficient to show that U → +∞ as r → 0.

The charge density on the circle is defined as follows:

q− =

2πˆ

0

ρ−dϕ = 2πρ−

Then the potential energy is

U(r) =
q+q

r + ε
−

2πˆ

0

ρ−qdϕ√
(r + ε− ε cos(ϕ))2 + ε sin(ϕ)2

=

=
q+q

r + ε
−

2πˆ

0

q−qdϕ

2π
√

(r + ε)2 + ε2 − 2(r + ε)ε cos(ϕ)
=

=
q+q

r + ε
− q−q

2π
√

2(r + ε)ε

2πˆ

0

(√
(r + ε)2 + ε2

2(r + ε)ε
− cos(ϕ)

)−1/2
dϕ.

It is easy to see that for r = 0 this integral diverges in the neighborhood of
ϕ = 0.

Remark 3.1. In fact, in this case we can get explicit formula for U(r). Consider
the last integral. Denote

(r + ε)2 + ε2

2(r + ε)ε
= a,
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and as r > 0, we get that a > 1. Then

2πˆ

0

dϕ√
a+ cos(ϕ)

= 2

π̂

0

dϕ√
a+ cos(ϕ)

= 2

π̂

0

dϕ√
a+ 1− 2 sin2(ϕ/2)

=

= 2

π̂

0

dϕ√
a+ 1− 2 sin2(ϕ/2)

=
4√
a+ 1

π
2ˆ

0

dψ√
1− 2 sin2(ψ)/(a+ 1)

=

=
4√
a+ 1

K

(√
2

a+ 1

)
,

where K(k) is the complete elliptic integral of the first kind. It is known that
K(1) =∞, which gives that U → +∞ as d→ 0.

Remark 3.2. Denote rmin an existing minimum. Then we get configuration
with interesting form of stability. The point particle can stand still (with zero
tangential velocity v−v(0) = 0) at any point on the distance rmin from the circle.
Also it can rotate stationary along the same circle with any fixed tangential
velocity v 6= 0. Note that this is impossible in Celestial mechanics, where in the
famous 2-body problem the radius uniquely defines the tangential velocity.

If we choose the initial coordinate (x2(0), 0) with x2(0) = x1(0)+ε+rmin+δ
and initial tangential velocity v(0) = 0, for sufficiently small δ > 0, then the
point particle will oscillate on a small interval of R1 around x1(0) + ε+ rmin.

Two circle-type clusters Define two clusters on the plane R2 = {(x, y)}.
The first one consists of the particle at the point x1 = (x1, 0) with charge
q1+ > 0, and the measure on the circle of radius ε > 0 with center at x1. This
measure has full charge −q1−, q1− > 0, uniformly distributed on this circle.
The second consists of the point charge q2+ > 0 at the point x2 = (x2, 0),
and the measure with full charge −q2−, q2− > 0, uniformly distributed on the
circle of radius ε > 0 with center at the point x2. Moreover, we assume that
r = x2 − x1 − 2ε > 0.

The charge densities on both circles are (we introduce angles ϕ on the left
circle and ϕ on the right

q1− =

2πˆ

0

ρ1−dϕ = 2πρ1−, q2− =

2πˆ

0

ρ2−dϕ = 2πρ2−

and the potential energy is

U(r) =
q1+q2+
r + 2ε

−
(
q1+q2− + q1−q2+

2π

)
I1(r) +

q1−q2−
4π2

I2(r),
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where

I1(r) =
1

ε

2πˆ

0

dϕ√
( rε + 2ε− ε cos(ϕ))2 + ε2 sin2(ϕ)

,

I2(r) =
1

ε

2πˆ

0

2πˆ

0

dϕdψ

ρ(ϕ,ψ)
,

where ρ(ϕ,ψ) is the distance between points on the circles corresponding to
angles ϕ and ψ.

Proposition 3.2. U(r) < ∞ for r ∈ (0,∞), but the repulsive force −dU(r)
dr

tends to +∞ when r →∞.

Note first that for sufficiently small ε > 0 the function U(r) > 0 for not too
large r, and this fact is sufficient for existence of the minimum.

Proof. It is easy to see that, for small ε, I1(r) is uniformly bounded in r ∈ [0,∞).
Now we want to prove that 0 < I2(0) <∞.

For this consider on the plane R2 = {(x, y)} two circles of radius ε with
centers at the points (−ε, 0) and (ε, 0) correspondingly. They intersect only at
(0, 0). To get the upper bound for I2 it is sufficient to consider the interaction of
parts of these circles correspondingly in the two upper quarter planes {(x1, y) :
0 < x1 < a, 0 < y < a} and {(−x2, y) : −a < −x2 < 0, 0 < y < a} for small
0 < a < ε. Choose two points of these arcs L1, L2:

ξ1 = (x1, y1 =
√
ε2 − (x1 − ε)2), ξ2 = (−x2, y2).

The distance between them is

ρ(ξ1, ξ2) =
√

(x1 + x2)2 + (y1 − y2)2 >
√
x21 + x22.

Then the potential energy between two negative uniform charge distributions
is, for some constant C > 0 (note that charge density is the function of x1, x2,
bounded from below and from above),

U12 =

ˆ
L1

ˆ
L2

dξ1dξ2
ρ(ξ1, ξ2)

= C

ˆ a

0

ˆ a

0

dx1dx2
ρ(ξ1, ξ2)

< C

ˆ a

0

ˆ a

0

dx1dx2√
x21 + x22

. (3.1)

It can be considered as the integral over domain Q = (0, a) × (0, a) of the
quarter-plane R2

+ = {(x1, x2)}. Then, in the polar coordinate system (R.ϕ) on
the plane (x1, x2) we have that the last integral is less than

ˆ
Q

Rdrdϕ

R
< 2πa2.
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The second assertion of the Proposition can be proved quite similarly. Namely,
instead of arcs take two segments: y = x1, 0 < x1 < a, on the right quarter-
plane and y = x2,−a < −x2 < 0 on the left quarter-plane. The distance on R2

between points ξ1 = (x1, x1) and ξ2 = (−x2, x2) is

ρ(ξ1, ξ2) =
√

(x1 + x2)2 + (x1 − x2)2 =
√

2
√
x21 + x22.

Then the modulus of the force between these two points is F = ρ−2(ξ1, ξ2) =
1
2 (x21 + x22)−1. And its projection Fx onto x-axis is

1√
2
F−1(ξ1, ξ2) ≤ F−1x (ξ1, ξ2) ≤ F−1(ξ1, ξ2)

and, as the integral ˆ a

0

dx1dx2
x21 + x22

=∞,

this give the result.

4. Three-dimensional case

4.1. Classical Theorems

Mean-value Theorem Remind that C2-function u = u(x) in open domain
O ⊂ R3 is called harmonic if it satisfies the Laplace equation ∆u = 0 in this
domain. Let B(x, r) be the a ball with center at some x ∈ O, with radius r > 0,
and ∂B(x, r) be its boundary. The mean-value theorem [9] says that for any
harmonic u and any x, r such that B(x, r) ⊂ O

u(x) =

ˆ
B(x,r)

u(y)dy =

ˆ
∂B(x,r)

udσ. (4.1)

Earnshaw theorem This theorem says that harmonic function u(x) can have
neither point maximum nor minimum in O. For example, let x be such a
minimum, then the mean-value theorem gives us contradiction if we choose r
sufficiently small. We do not know the history of this theorem, just Earnshaw
is the most often name mentioned in the literature, see the related papers in
[2–8], in particular chapter 7.5 in [4].

Newton’s Shell Theorem Newton’s Shell theorem consists of two parts:
1) a point charge q at point x ∈ R3 and the charge uniformly distributed on

either the sphere ∂B(x, r) or on the whole ball B(x, r), for any r, produce the
same scalar electrostatic field at any point y outside the ball, that is

ϕ(y) =
q

|x− y|
=

1

4πr2

ˆ
∂B(x,r)

q

|z − y|
dσ(z) =

3

4πr3

ˆ
B(x,r)

q

|z − y|
dz.
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To deduce it from (4.1) take some point z outside B(x, r) and consider harmonic
function u(x) = 1

|x−z| . And note that the interaction energy of charge 1 at point

z with charge q at the point z, and with and distributed charge on B(x, r) or
∂B(x, r) are given by the same integrals, and thus they are all equal. And these
integrals can be considered also as the scalar field at the point z, created by any
of these 3 charged clusters – point x, ball B(x, r) and ∂B(x, r).

2) ϕ(y) is constant inside the closed ball B(x, r) if the only charge is uni-
formly distributed on the boundary ∂B(x, r). That is such distributed charge
produces zero force on any particle inside the ball. For this assertion there is a
simple geometric proof.

4.2. Examples of stability for quasi-quantum systems of clusters

Consider two clusters:
1) A ball B(x, 1) has the charge q+ > 0, uniformly distributed on its bound-

ary ∂B(x, 1) and the charge −q− < 0, uniformly distributed inside this ball.
2) A ball B(y, ε) has the charge q < 0 uniformly distributed inside B(y, ε).
The distance between two clusters is r = |x− y| − 1−ε. Then U(r) depends

only on r. We assume that q+ > q−. Then for r sufficiently large U is negative
and tends to zero. For any r > 0 U(r) is also negative and equals (q+−q−)q/(1+
ε+r). When |x−y| becomes less than 1−ε , the function U(r) becomes positive
as positive charge q+ does not interact anymore with cluster 2 (by second Shell
Theorem) as this cluster is inside the ball B(x, 1). It follows that the force on
y will be repulsive. And thus U will have unique minimum inside the interval
(−ε, 0).

One could of course give more examples: 1) cluster 2 has the same structure
as cluster 1 but the positive charge of the sphere is less than the negative charge
inside the ball; 2) cluster 2 has a point charge 0 < q1 < |q| at the center. And
many others.
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