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ESTIMATES FOR THE INTERACTION POTENTIAL BETWEEN

TWO ATOMS

V. A. Malyshev∗ and R. A. Minlos†

We consider a quantum system consisting of two electrons in the Coulomb field of two immovable nuclei

spaced at a fixed distance, which is considered the problem parameter. We use spectral theory methods to

obtain estimates of the system ground-state energy as a function of the internuclear distance. We obtain

part of the results under the assumption that the Coulomb interaction constant between different atoms

is small. We discuss the importance of the presented investigation for quantum chemistry.
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1. Introduction

This paper is devoted to a single mathematical problem: obtaining detailed information about the
structure of solutions in the restricted quantum four-body problem. This is the first problem in a circle of
problems connected with the fundamental question in quantum chemistry: What is the interaction between
atoms? Such problems have always been outside the mainstream of the development of the theory and
have not received sufficient attention from mathematicians although these problems are closely related to
the two thoroughly investigated divisions of spectral analysis for Schrödinger operators, scattering theory
and bound state theory.

It is commonly accepted that atoms should be treated exclusively at the quantum level. The bound
states are found for one-electron atoms and ions explicitly, and there are many approximate methods for
estimating them for many-electron atoms. It would seem also natural to treat molecules as purely quantum
systems consisting of several nuclei and electrons. One obstacle to this is the calculation complexity,
and there are no explicit calculations of eigenfunctions or eigenvalues even for a hydrogen molecule or
ion. In other words, the situation for molecules differs essentially; it resembles the situation in celestial
mechanics, where the three-body problem also admits no explicit solution. These conditions have led
to a strange mixture of approximate quantum and classical approaches in molecular physics. Moreover,
in parallel with the long existing, entirely computational quantum chemistry, there have appeared new
developing computational sciences such as molecular dynamics or molecular mechanics, which simulate a
large molecule as a system of classical particles with some artificially introduced two-particle potentials.
The question of where these potentials should be taken and also the more general question of where the
various potentials used at the microlevel in statistical physics should be taken (e.g., the Lennard-Jones
potential and the quadratic potential of harmonic oscillators) to investigate the microscopic properties of
a substance remains open at the mathematical level. At the same time, the only fundamental “legitimate”
potential is the Coulomb potential (if the magnetic properties and the spin are neglected). It is natural
to ask whether this multitude of potentials can be derived from the Coulomb potential. Although this
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Fig. 1. Typical form of interaction.

question has undoubtedly been widely discussed in physics, we are unfamiliar with any rigorous results of
this kind.

There are also other similar questions without answers. For example, chemists and also physicists (see,
e.g., [1]) treat atoms as molecular components that nevertheless do not lose their individuality. A natural
question arises: What does it mean that “atoms” are identified in a system of nuclei and electrons? Another
question is whether we can give exact definitions for various kinds of chemical bonds, such as covalent, ion,
and hydrogen bonds.

The approach usually used in physics and quantum chemistry (see, e.g., [2]–[4]) is as follows. For two
neutral atoms with Z1 and Z2 electrons, we consider a restricted problem in which the corresponding nuclei
are fixed at a distance x from each other, and we calculate the least eigenvalue E(x) of the system of Z1+Z2

electrons in the field of the two immovable nuclei. The interaction energy of the two atoms separated by a
distance x is then understood to be

U(x) = E(x) − E0,1 − E0,2 +
Z1Z2e

2

|x| , (1)

where E0,i is the ground state energy of the ith atom, Zie is the charge of the ith nucleus, and the third
term in the right-hand side corresponds to the Coulomb internuclear interaction. Part of our results relate
to the case Z1 = Z2 = 1, and a small constant α is introduced before the Coulomb interaction between
different atoms for the rest.

The primary question is about the reasonability of the definition itself. If this definition (somehow
averaged over x) seems natural for bound states, i.e., for two-atom molecules, then it is a priori totally
unclear how it relates to scattering or, generally, to the relative dynamics of two atoms. The justification
of the latter relation is usually connected with the Born–Oppenheimer adiabatic approximation. There is
an extensive physical literature on this subject (see, e.g., [5]), but the mathematical justification has been
obtain only in the framework of the semiclassical approximation (see, e.g., [6]–[9]).

The next question, about the qualitative behavior of the function U(x), was resolved in the framework
of computer calculations because there are unsolved problems even in the case of immovable nuclei: while
the restricted three-body problem has explicit solutions in celestial mechanics, this is not so in the quantum
case (but see [10] for the case of two electrons in the field of two nuclei).

Here, we consider a system of two hydrogen atoms, i.e., Z1 = Z2 = 1. We prove several results
confirming the typical form of interaction presented in many monographs on quantum chemistry (see,
e.g., [2]) and shown in Fig. 1. We note that the Lennard-Jones potential

ULJ = 4ε

((
σ

r

)12

−
(

σ

r

)6)
,
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where ε, σ > 0 are parameters, has the same qualitative behavior. Of course, the above formula cannot be
derived accurately; in particular, such a rapid increase at zero cannot be obtained. Therefore, we can only
speak about the qualitative behavior. Three features are fundamental: the rate of increase at zero, the rate
of decrease at infinity, and the existence of a single minimum.

2. Results

We consider a quantum system consisting of two nuclei (protons) fixed at the points 0 and x in the
space R

3 and two electrons in the field of these nuclei. Let y be the position of the first electron and x + z

be that of the second. The Hamiltonian of the system in the space H = L2(R6) = L2(R3) ⊗ L2(R3) is

H = H(α, x) = H0,y ⊗ 1 + 1 ⊗ H0,z + αV (y, z),

where
H0,y = −∆y − 1

|y| , H0,z = −∆z −
1
|z|

are the Hamiltonians of the hydrogen atoms with nuclei fixed at the respective points 0 and x. The
interaction between the particles of different atoms is given by the operator of multiplication by the function

V (y, z) = Vx(y, z) =
1
|x| −

1
|x − y| −

1
|x + z| +

1
|x − y + z| ,

where the proton and electron charges are assumed to be +1 and −1. The parameter α ≥ 0 is equal to
unity in the physical case.

If we let E0/2 denote the ground-state energy of the hydrogen atom, then H(0, x) also has a single
nondegenerate bound state Ψ0 with the energy E0 = E0(x), which is, of course, independent of x. As is
well known [11], the ground state of the hydrogen atom is determined by the wave function (we assume
that the nucleus is located at the point 0)

ϕ(y) =
1√
π

e−|y| ∈ L2(R3), (2)

and consequently

Ψ0 = ϕ(y)ϕ(z) =
1
π

e−|y|−|z|. (3)

We note that the term α/|x| in the Hamiltonian is a constant number, and it is convenient to state some
properties in terms of the Hamiltonian with the internuclear interaction excluded,

Helectron = Helectron(α, x) = H − α
1
|x| ,

i.e., the Hamiltonian of a system of two electrons in the field of two nuclei.
We first present some known facts about the Hamiltonian Helectron.

1. The Hamiltonian Helectron is essentially self-adjoint on C∞
0 for all x and all α and is bounded below

and moreover uniformly bounded with respect to x for a given α (see Theorems X.12, X.15, and X.16
in [12] and also [6]).

2. For α > 0, the essential spectrum of Helectron fills the half-axis [µ,∞), where µ = µ(α, x) < 0,
and the discrete spectrum consists of infinitely many eigenvalues on the half-interval [Eelectron

α (x), µ)
that converge to µ (see [13]), where Eelectron

α (x), the infimum of the spectrum of the Hamiltonian
Helectron(α, x), is the least eigenvalue of Helectron and moreover nondegenerate (see [12], [14], [15]).
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We let
Eα(x) = Eelectron

α + α
1
|x|

denote the least eigenvalue of H . It is important for determining the interatomic interaction, which is
defined in accordance with (1) as

U(x) = U (α)(x) = Eα(x) − E0(x) = Eα(x) − E0.

Because of the spherical symmetry, we have Eα(x) = Eα(r), i.e., Eα(x) depends only on r = |x|, and we
use both notations where it does not lead to misunderstanding.

It can be easily verified that the set of the operators H(α, x) for a fixed x is an entire analytic family
(in the sense of Kato) in the neighborhood of the point α = 0 (see Theorems X.12, X.15, and X.16 in [12]).
By the Kato–Rellich theorem, for small values of α, there exists a unique nondegenerate eigenvalue Eα(x)
in some neighborhood of the point E0(x) (see Vol. 4 of [12]). And it can be expanded in the Rayleigh–
Schrödinger series

Eα(r) = E0 +
∞∑

n=1

αncn(r), (4)

which converges for small α.

Lemma 1. There is an α0 > 0 such that series (4) converges uniformly in x for |α| ≤ α0.

Theorem. 1. The relation

U(r) =
α

r
+ O(1), r → 0,

holds for all α > 0.

2. For an arbitrary r, the first coefficient in series (4) has the form

c1(r)
.= lim

α→0

Eα(r) − E0

α
=

1
r
− 1 − e−2r

r
− e−2r

6

(
r2 +

9
2
r +

81
4

)
=

= e−2r

(
1
r
− 1

6

(
r2 +

9
2
r +

81
4

))
. (5)

The function c1(r) has a single (nondegenerate) minimum on the interval (0,∞), decreases exponentially

as r → ∞, and increases as 1/r as r → 0. Moreover, the full interaction U(r) also has a single minimum

for small α.

3. The second coefficient in the perturbation theory satisfies the inequalities

D1

r6
< −c2(r) <

D2

r6
, (6)

where 0 < D1 < D2 < ∞ are some constants.

4. For all α > 0 and sufficiently large r, we have

−U(r) <
C

r6

for some constant C = C(α) > 0.

The electron spin is not taken into account in the model we consider here, but similar calculations can
also be performed with the spin included.
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3. Proof of the theorem

3.1. The first statement in the theorem: Small values of |x|. We consider the function
Helectron, i.e., the Hamiltonian of two electrons in the field of two nuclei fixed at the origin and at the
point x. If these nuclei are at the same point, i.e., x = 0 and α = 1, then this is a helium atom. For small
α, it is natural to take the internuclear distance r as a perturbation parameter. In this case, it is known
that for this problem with two electrons in the field of two centers, the Hamiltonian Helectron(x) is bounded
below uniformly in x, and the least eigenvalue exists [13], is nondegenerate [14], [15], and depends smoothly
on x [6]. Hence, the only increasing contribution to U(x) at zero is given by the internuclear interaction,
i.e., by α/r.

3.2. The second statement in the theorem.

3.2.1. Electrostatic interaction. We let ρ(y) = |ϕ(y)|2 denote the probability density for the
ground state to have an electron at the point y ∈ R

3. In the corresponding system of units, ρ(y) is then
the charge density of the “electron cloud,” and by (2), we have

ρ(y) =
1
π

e−2|y|. (7)

Therefore, the hydrogen atom can be regarded as a charge system, and the interaction between the two
atoms can be treated as the Coulomb interaction between two such charge systems. Namely, let µ1 and µ2

be two finite measures in the space R
3 with a zero total charge, i.e.,

∫
|dµi| < ∞,

∫
dµi = 0, i = 1, 2.

By the electrostatic interaction (or two-potential) between these measures, we mean the function

Ues(x) = α

∫
1

|x + z − y| dµ1(y) dµ2(z), x ∈ R
3. (8)

In our case, we have

dµ1(y) = dµ2(y) = δ(y) + ρ dy,

Ues(x) = α(U00(x) + U01(x) + U10(x) + U11(x)),

where the four terms in the above formula are defined as follows: the interaction between the two nuclei
located at the points 0 and x is

U00(x) =
1
|x| ,

the interaction between the nucleus of the first atom and the electrons of the second atom is

U01 = −
∫

1
|x − y|ρ(y) dy,

the interaction between the nucleus of the second atom and the electrons of the first atom is

U10 = −
∫

1
|x + z|ρ(z) dz,
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and, finally, the interaction between the electrons of different atoms is

U11 =
∫

1
|x − y + z|ρ(y)ρ(z) dy dz.

A special case of the two-potential is the main definition in potential theory (see [16]): the function

Upotential(x) =
∫

1
|x − y| dµ1(y), x ∈ R

3,

is called the potential (or one-potential) of the measure µ1. It is obtained from expression (8) if the function
µ2(z) is taken equal to δ(z), i.e., to the unit measure at the point 0. This coincides with the electric potential
created by the measure µ1,

Upotential(x) = U00 + U01 =
1
|x| −

∫
1

|x − y|ρ(y) dy.

In this case, we have

Ues(x) = α

∫
Upotential(x) dµ1(x) = αUpotential(x) − α

∫
Upotential(x − z) dρ(z).

We also note that as follows from formula (3) and the results in [12], Ues(r) coincides with the first term of
series (4),

Ues(r) = αc1(r) = (Ψ0, αV (r)Ψ0).

3.2.2. A crude estimate for the rate of decrease. We first show that Ues(x) decreases faster
than any power of r−1 using a simple and visual method, and we then present a less intuitive derivation of
the expression for c1(r). We prove the following lemma.

Lemma 2. If both the hydrogen atoms are in the ground state, then Ues(x) decreases faster than any

power r−N as x → ∞.

Proof. It suffices to prove that for an arbitrary positive integer N > 0, the function Upotential(x)
decreases faster than r−N . For this, we use the asymptotic (multipole) expansion for large r (see, e.g., [17])

∫
ρ(z)

|x − z| dz =
∞∑

l=0

l∑
m=−l

4π

2l + 1
1

rl+1
Ylm(ϑ, ϕ)Qlm,

where Ylm(ϑ, ϕ) are spherical functions and

Qlm =
∫

Y ∗
lm(ϑ, ϕ)rlρ(r) dz, dz = sin ϑ dϕ dϑ r2 dr.

As usual, this expansion means that the finite sum
∑N

i=0 differs from the left-hand side by O(r−N−1). On
the other hand, by the spherical symmetry of ρ(r), all coefficients Qlm are zero except the coefficient Q00,
which is equal to 1/

√
2π. Because we also have Y00 = 1/

√
2π, we see that the asymptotic series consists of

a single term 1/r, which proves our assertion about the rate of decrease of Upotential(r).
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3.2.3. Derivation of formula (5). In what follows, we assume that the point x lies on the positive
part of the first of the axes 1, 2, and 3 in the space R

3. The derivation reduces to direct calculations. In
our case, we have

U11(x) =
1
π2

∫
y+u+v=x

e−2|y|−2|v|

|u| dy du dv,

U01 + U10 = − 2
π

∫
e−2|y|

|x − y| dy.

We consider the Fourier transforms of these two integrals,

I1(p) = Ũ11(p) =
∫

ei(p,x)U11(x) dx =
1
π2

ϕ2
1(p)ψ(p),

I2(p) = − 2
π

∫
ei(p,x)

∫
e−2|y|

|x − y| dy dx,

where

ϕ1(p) = 2π

∫
R3

ei(p,x)e−2|y| dy, ψ(p) =
∫

ei(p,x)

|y| dy.

We introduce the spherical coordinates in which −π/2 ≤ φ ≤ π/2 is the angle between the vector x and
the x1 axis, and −π ≤ ϑ ≤ π is the angle between the vector z and the Ox2x3 plane. We then have

ϕ(p) = 2π

∫ ∞

0

r2

∫ π

0

dϑ sin ϑ eir|p| cos ϑ−2r dr =
16π

(p2 + 4)2
,

ψ(p) =
∫

ei(p,x)

|y| dy =
4π

|p|2 .

Hence,

−I1(p) =
210π

p2(p2 + 4)4
, I2(p) =

27π

p2(p2 + 4)2
.

We now calculate the inverse Fourier transforms. Writing s = |p| and, as usual, r = |x| and also introducing
the spherical coordinates, we obtain

−(U01(x) + U10(x)) =
1

8π3

∫
e−i(x,p)I2(p) dp =

=
16
π

2
∫ ∞

0

s2 ds

∫ π

0

dϑ sin ϑ
eirs cos ϑ

s2(s2 + 4)2
=

=
16
πr

2
∫ ∞

0

ds
eirs − e−irs

is(s2 + 4)2
=

16
πr

2
∫ ∞

−∞
ds

eirs − e−irs

3is(s2 + 4)2
=

=
25

πr2i
2πi

(
1
24

+ Res
(

eirs

s(s2 + 4)2

)∣∣∣∣
s=2i

+ Res
(

e−irs

s(s2 + 4)2

)∣∣∣∣
s=−2i

)
=

=
25

r

(
1
24

+
(

eirs

s(s + 2i)2

)′∣∣∣∣
s=2i

+
(

e−irs

s(s − 2i)2

)′∣∣∣∣
s=−2i

)
=

=
25

r

(
1
24

+
r

24
e−2r − e−2r

24

)
= −2

(
e−2r +

1 − e−2r

r

)
.
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Similarly calculating the other integral, we obtain

U11(x) =
1

8π3

∫
e−i(x,p)I1(p) dp =

1 − e−2r

r
− e−2r

6

(
r2 +

9
2
r +

33
4

)
,

whence (5) follows.
In particular, the resulting explicit expression implies that Ues(r) decreases exponentially at infinity.

3.2.4. The proof of Lemma 1. We essentially use the technique related to the famous Kato in-
equality here (see [18], [12]). For the proof, we note that the function 1/|ξ| can be represented as a sum of
two functions,

1
|ξ| = φ1(ξ) + φ2(ξ),

where φ1(ξ) ∈ L2(R3) and φ2(ξ) ∈ L∞(R3). Using the method in the proof of Theorem X.16 in [12] (also
see Example 2 in Vol. 2 of [12]), we then obtain∥∥∥∥

(
1
|y| +

1
|z|

)
f

∥∥∥∥
L2(R6)

< a‖(∆y + ∆z)f‖L2(R6) + b‖f‖L2(R6) (9)

for f ∈ C∞(R6), where a, b > 0 are some constants and the constant a can be chosen arbitrarily small.
Similarly,∥∥∥∥α

(
− 1
|x − y| −

1
|x + z| +

1
|x − y + z|

)
f

∥∥∥∥
L2(R6)

< αa‖(∆y + ∆z)f‖L2(R6) + αb1‖f‖L2(R6). (10)

It follows from (9) that the operator

H0 = −∆y − ∆z − 1
|y| −

1
|z|

satisfies the estimate

‖H0f‖L2(R6) + a‖(∆y + ∆z)f‖L2(R6) + b‖f‖L2(R6) > ‖(∆y + ∆z)f‖L2(R6),

i.e., the inequality

‖(∆y + ∆z)f‖L2(R6) <
1

1 − a
(‖H0f‖L2(R6) + b‖f‖L2(R6))

holds. Substituting this inequality in (10), we obtain∥∥∥∥α

(
− 1
|x − y| −

1
|x + z| +

1
|x − y + z|

)
f

∥∥∥∥
L2(R6)

< a2‖H0f‖L2(R6) + b2‖f‖L2(R6), (11)

where
b2 =

αa

1 − a
b + αb1, a2 =

αa

1 − a
.

For small a, we have αa/(1 − a) < 1, and the two constants a2 and b2 are independent of x. It follows
from inequality (11) that the operator Helectron is self-adjoint and is bounded below. In this case, the
Rayleigh–Schrödinger series for the lower eigenvalue of this operator differs from the corresponding series
for the eigenvalue of the operator H(α, x) only in the constant α/|x|, and these series consequently have
the same convergence radius R0. Using Theorem XII.11 in [12], we obtain the estimate

R0 ≥
[
a2 + ε−1

0 [b2 + a2(|E0| + ε0)]
]−1 = Rlower,

where ε0 is the half-distance from the minimal eigenvalue to the remaining spectrum. The right-hand side
of this inequality is independent of x. Because the convergence rate of a power series converging inside some
circle is determined by the radius of the circle, we conclude that the series in question converges uniformly
in x. The lemma is proved.
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3.2.5. The end of the proof of the second statement in the theorem. As previously noted,
the first term in expansion (4) has the form

αc1(r) = Ues = α(Ψ0, V Ψ0) (12)

and coincides with the electrostatic (classical) interatomic interaction Ues(r) introduced above. We see
that the function Ues(r) is of the order of α/r as r → 0 and that the absolute value of U1(r) decreases
exponentially as r → ∞. Because the expression in the parentheses in the right-hand side of the formula

Ues(x) = αe−2r

(
1
r
− 1

6

(
r2 +

9
2
r +

81
4

))

is the difference between a decreasing function and an increasing function and Ues has different signs in the
neighborhood of zero and at infinity, the function Ues(x) has a single zero for x > 0. As can be shown by a
simple calculation, the derivative U ′

es(x) can also be represented similarly and hence also has a single zero
at some point xmin > 0. Therefore Ues(x) has a single minimum Ues(xmin)) < 0. It can be shown that this
minimum is nondegenerate.

It was proved in [6] that the least eigenvalue Eα(x) of the operator H is twice differentiable with
respect to r and the first and second derivatives E′

α(x) and E′′
α(x) can be expanded in power series in

α that are obtained by differentiating series (4) with respect to r. This and the uniform convergence of
series (4) imply that the full interaction has a single minimum for sufficiently small α.

3.3. The third statement in the theorem.

3.3.1. The lower estimate for the second coefficient in the perturbation theory. For large
r, the “small parameter” is β = r−1. Although the operator V formally disappears at β = 0, the parameter
β is involved in the perturbation nonlinearly, which leads to some difficulties.

For small α, the second coefficient in the perturbation theory has the form (see Sec. XII.2 in [12])

c2 = −
∫
|λ−E0|>ε0

(λ − E0)−1 d(V X0, PλV X0) =

= −
(

V X0,

∫
|λ−E0|>ε0

(λ − E0)−1 dPλV X0

)
=

= −(V X0, (λ − H0)−1(1 − P0)V X0), (13)

where we set X0 = Ψ0. This implies

|c2| ≤ ‖(H0 − E0)−1(1 − P0)‖ ‖V X0||2 ≤ C0‖V X0‖2,

where C0 is the norm of the operator (H0 − E0)−1 on the subspace orthogonal to X0.
We estimate the asymptotic expression for the norm of V X0 at small β, for which we split the range

of each variable y and z into two regions. For example, in the case of y, we split the range as

|y| ≤ |x|δ, |y| > |x|δ,

where δ > 0 is sufficiently small, and we then write

A11 = {(y, z) : |y| ≤ |x|δ, |z| ≤ |x|δ}, A12 = {(y, z) : |y| ≤ |x|δ, |z| > |x|δ},
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and so on. In this case, the function ϕ(y) is represented in the form

ϕ(y) = ϕ1(y) + ϕ2(y), ϕ1(y) = ϕ(y)1|y|≤|x|δ , ϕ2(y) = ϕ(y)1|y|>|x|δ ,

and a similar representation is obtained for ϕ(z). In this case, ‖V X0‖2 splits into 16 summands,

‖V X0‖2 = (V X0, V X0) =
∑

i,j,k,l

aij,kl, aij,kl = (V Xij , V Xkl), i, j, k, l = 1, 2,

where Xij = ϕi(y)ϕj(z). Here, only the terms aij,kl with (i, j) = (k, l) turn out to be nonzero. We first
consider the term a11,11 corresponding to the region A11. If the coordinates x1, x2, x3 are chosen such that
the vector x lies on the x1 axis, then it is convenient to represent V in the form

V = V (β) = β

(
1 − 1√

1 − 2y1β + β2|y|2
− 1√

1 + 2z1β + β2|z|2
+

+
1√

1 + 2(z1 − y1)β + β2|z − y|2

)
= B1β + B2β

2 + B3β
3 + R3(β)

with the integral expression

R3(β) =
1
6

∫ β

0

(β − t)3V (4)(t) dt

for the remaining terms. It is easy to show that

B1 = B2 = 0, B3 = B3(y, z) = −1
2
(y, z) − 6y1z1.

Therefore, we can write the interaction as

V = β3B3 + R3(β). (14)

Some simple calculations show that for 0 < t < β and (y, z) ∈ A11, the expression V (4)(t; y, z) admits the
estimate

|V (4)(t; y, z)| < const · (|y|3 + |z|3).

It follows that
|R3(β; y, z)| < const · β4(|y|3 + |z|3).

Because we have the estimates

0 <

∫
A11

[β3B3(y, z)ϕ1(y)ϕ1(z)]2 dy dz <

< β6

∫
R3

∫
R3

B2
3(y, z)ϕ2(y)ϕ2(z) dy dz =

C11

r6
,

where C11 > 0 is a constant, and

∫
A11

|β3B3(y, z)R3(y, z)|[ϕ1(y)ϕ1(z)]2 dy dz = O(r−7),

∫
A11

|R3(y, z)|2[ϕ1(y)ϕ1(z)]2 dy dz = O(r−8),
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we obtain
(V X11, V X11) <

C11

r6
.

The other terms aij,kl contain at least one function ϕ2 with an estimate e−|x|δ in the integrand. For
example, we consider the term

a12,12 =
∫

A12,12

V 2(y, z)ϕ2
1(y)ϕ2

2(z) dy dz,

which in turn consists of nine integrals appearing as V is squared. Three of them, for example, the term

J1 =
∫∫

1
|x − y|2 ϕ2

1(y)ϕ2
2(z) dy dz,

involve the square of the interaction. This term is estimated as

|J1| < C1

∫
R3

1
|x − y|2 e−2|y| dy

∫
|z|>|x|δ

e−2|z| dz <

< C1

[(∫
|x−y|≤1

+
∫
|x−y|>1

)
1

|x − y|2 e−2|y| dy

] ∫
|z|>|x|δ

e−2|z| dz < C2e
−|x|δ ,

where we use the summability of the function 1/|x− y|2 in the neighborhood of the point x. The other six
integrals involve crossterms, for example,

J2 =
∫∫

1
|x − y|

1
|x − z|ϕ

2
1(y)ϕ2

2(z) dy dz = I1I2,

where

I2 =
∫

1
|x − z|ϕ

2
2(z) dz =

(∫
|x−z|≤1

+
∫
|x−z|>1

)
1

|x − z|ϕ
2
2(z) dz <

< C3e
−2|x|δ +

∫
ϕ2

2(z) dz < C3e
−2|x|δ + C4

∫
|z|>|x|δ

e−2|z| dz,

I1 =
∫

1
|x − y|ϕ

2
1(y) dy =

(∫
|x−y|≤1

+
∫
|x−y|>1

)
1

|x − y|ϕ
2
1(y) dy <

< C5e
−2|x|δ +

∫
ϕ2

1(y) dy < C5e
−2|x|δ + C6

∫
R3

e−2|z| dz < C7.

There are finitely many constants Ci; they can be easily estimated but are unimportant for our further
aims. The other integrals are estimated similarly. The resulting estimates imply that

a12,12 = o

(
1
r6

)
.

We thus find similar estimates for a22,22 and a21,21. Finally, all these estimates and formulas (13) imply
that there is a constant D2 such that

c2 > −D2

r6
.
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3.3.2. The upper estimate. We split the interval (E0 + ε0,∞) into the half-intervals

ik = (ak, ak+1], k = 1, 2, . . . , a1 = E0 + ε0.

We can then write c2 in the form

c2 = −
∑

k

∫
Ik

(λ − E0)−1 d(V X0, PλV X0), (15)

and each term in the sum is positive. Therefore, to find a lower estimate for this sum, it suffices to consider
only the interval I1, where a2 is equal to the second eigenvalue of H0. The second eigenvalue E2 has the
multiplicity eight, but in view of the same positivity, we can restrict ourself to one of the eigenvectors, for
example, to Ψ1 = ϕ(y)ϕ1(z), where the function ϕ(y) is defined in (7) and the function ϕ1(x) has the form
(see [3])

ϕ1(z) =
1

2
√

2π
e−|z|

(
1 − |z|

x

)
.

We let PΨ1 denote the projection operator onto Ψ1 and consider

(V X0, PΨ1V X0) = (V X0, (Ψ1, V X0)Ψ1).

It can then be shown in the same way as above that for sufficiently large r, this expression admits the
estimate

(V X0, (Ψ1, V X0)Ψ1) >
C22

r6

with some constant C22 > 0, whence it follows that

c2 < −D1

r6
,

where B2 > 0.

3.4. The fourth statement in the theorem. The eigenvector X = Xβ, which we do not assume
to be normalized but do require that the condition

(X0, Xβ) = 1 (16)

be satisfied, corresponds to the eigenvalue Eα(x), which is denoted by E = Eβ here. We recall that
X0 = Ψ0 = ϕ(y)ϕ(z) is a normalized eigenvector of H0, i.e.,

H0X0 = E0X0, ‖X0‖ = 1.

We introduce the projection operator P0 onto X0,

P0F = (X0, F )X0. (17)

We take the inner product of the obvious relation

(Eβ − E0)Xβ = (H0 − E0)Xβ + αV Xβ
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with X0. By condition (16), this gives

ε = εβ = Eβ − E0 = (X0, αV Xβ). (18)

In what follows, we assume that α = 1, and we seek a “perturbed” eigenvector X = Xβ with the eigenvalue
Eβ for the Hamiltonian H = H0 + V ,

HXβ = EβXβ . (19)

It follows from the results in [6] on the convergence of the spectrum of Hβ to the spectrum of H0 as β → 0
that for every sufficiently small neighborhood O(E0) of the point E0, there exists β0 such that for β < β0,
the intersection of the spectrum of H(α = 1, x) with O(E0) consists of the single eigenvalue Eβ .

To estimate E, we now use the technique presented in [19]. As noted, ε can be taken sufficiently small.
In this case, the operators H0−E + cP0 and H −E + cP0 have the same domain and have inverse operators
for a fixed c and sufficiently small ε. Indeed, we introduce the spaces P0H and (1 − P0)H. The operator
H0 − E + cP0 acts as H0 − E on (1 − P0)H and as multiplication by c − ε on X0; therefore,

(H0 − E + cP0)−1 = (H0 − E)−1

(
1 − c

c − ε
P0

)
.

Hence, for sufficiently small β, the norm ‖(H0 − E + cP0)−1‖ is bounded by a constant independent of β.
Therefore, the results in [6] again imply that the operator (H − E + cP0)−1 exists and that for sufficiently
small β, its norm is bounded by a constant independent of β.

Consequently, we can write

H − E + cP0 = (H0 − E + cP0)(1 + (H0 − E + cP0)−1V ),

(H − E + cP0)−1 = (1 + (H0 − E + cP0)−1V )−1(H0 − E + cP0)−1. (20)

Furthermore, the eigenvector X (by (17)) satisfies the equation

(H − E + cP0)X = cX0,

i.e.,
X = c(H − E + cP0)−1X0.

Taking the scalar product of this equation by X0, we obtain

1 = c(X0, (H − E + cP0)−1X0).

Using formula (20) and the relation

(H0 − E + cP0)−1X0 = (E0 − E + c)−1X0,

we rewrite the equation for E in the form

1 =
c

c − E + E0
(X0, (1 + (H0 − E + cP0)−1V )−1X0).

Multiplying by c − E + E0 and subtracting the identity

c = c(X0, (1 + (H0 − E + c)−1V )(1 + (H0 − E + cP0)−1V )−1X0),
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we finally obtain
ε =

c

c − ε
(V X0, (1 + (H0 − E0 − ε + cP0)−1V )−1X0). (21)

We write
A = (H0 − E0 − ε + cP0)−1.

Then
(1 + AV )−1 = 1 − (1 + AV )−1AV,

and we can rewrite (21) as

ε
.=

c

c − ε
(V X0, (1 + AV )−1X0) =

c

c − ε
[(V X0, X0) − (V X0, (1 + AV )−1AV X0)]. (22)

We can estimate the second term in the right-hand side in the same way as for c2 if we note that (20)
implies the boundedness of the norm of (1 + AV )−1A,

|(V X0, (1 + AV )−1AV X0)| ≤ ‖V X0‖ ‖(1 + AV )−1A‖ ‖V X0‖ ≤ C(V X0, V X0).

The first term in the right-hand side of (18) decreases faster than any power of 1/r. Hence, the resulting
estimates give

E − E0 = U(r) > −C

r6

with some constant C > 0. The theorem is proved.

Remark. It seems that statements 3 and 4 in the theorem describe the exact asymptotic behavior of
C/r6. We see two possible approaches for proving this. The first approach is to take the whole spectrum, for
which there are some explicit but rather cumbersome formulas, into account in expansion (15). The second
approach is to use the Weinberg–van Winter cluster expansions for the resolvent or expansions similar to
them.
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