COMBINATORICS AND PROBABILITY OF MAPS
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Abstract. We give an introductory pedagogical review of rigorous mathematical results con-
cerning combinatorial enumeration and probability distributions for maps on compact orientable
surfaces, with an emphasize on applications to two-dimensional quantum gravity.

1. Introduction

We give an introductory pedagogical review of rigorous mathematical results con-
cerning combinatorial enumeration and probability distributions for maps on com-
pact orientable surfaces. The main goal of this paper is to present the main ideas
concerning central unsolved mathematical problems in the field related to quantum
gravity and strings. I could not include, for example, billions of results concerning
various classes of plane maps, there are very nice results among them but most of
them just confirm that those classes of maps belong to the same universality class.
The reader will find such results in more special reviews.

We give also a rigorous description of some terminology, related to discrete
quantum gravity. Bibliographical reviews on quantum gravity see [2-4]. Earlier
mathematical ideas see in [1, 16], some fresh mathematical exposition of some parts
of discrete quantum gravity see in [34]. We do not touch an enormous number of
relations of maps with other fields of mathematics like moduli of curves [8], Galois
theory see [5, 6], topology [28].

After the definition of map itself it is important to know main examples of
subclasses maps, they are defined via some topological restrictions on maps. Next
we give an introduction to Tutte’s enumeration theory, using partly different tech-
niques. After this we present elements of dynamical triangulation calculus. A short
exposition of random matrix approach is given as well.

Gibbs families are defined as a far going generalization of Gibbs distributions.
For easiest subclass of maps, called planar Lorentzian models, we present more or
less complete results. The last section is devoted to the most difficult problem,
maps with matter fields on them. Rigorous results can only be obtained now with
cluster expansion techniques.

I would like to thank Prof. E. Brezin, V. Kazakov, V. Liskovets, A. Okounkov,
A. Vershik for valuable discussions and information.
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2. Maps are defined

Consider a compact closed orientable smooth surface S, of genus p, that is a sphere
with p handles. It is useful but not necessary to have a differentiable structure
(which is known to be unique) on it. Denote also S, ; the surface S, with k holes
(that is k disks deleted), thus S, o = S,. The boundary of S, i consists of k smooth
circles. A smooth map on S, j, is a triple (S, x, G, ¢), where G is a connected graph,
considered as a one-dimensional complex. G may have loops and multiple edges.
Let V(G), L(G) are the sets of vertices and (open) edges of G. ¢ is an embedding
of G into S, x such that the following conditions are satisfied:

1. for each edge | € L(G) ¢(1) is a smooth curve on S, x;

2. the connected components (called cells or faces) of the complement S, 1 \ ¢(G)
are homeomorphic to an (open) disk. It follows that if £ > 0 then the boundary
is contained in ¢(L(G) U V(G)).

Two smooth maps (S,,,k,G,qb),(S;,,k,G’ ,¢') are called equivalent if there is
a one-to-one homeomorphism f : S, — Sl’,’k, respecting orientation and such
that f : ¢(V(G)) = ¢'(V(G")) and f : ¢(L(G)) = ¢'(L(G")) are one-to-one.
Combinatorial map is an equivalence class of smooth maps. Further on we consider
only combinatorial maps and call them maps for shortness.

Combinatorial definition of maps

There is a pure combinatorial definition of maps, that does not use surfaces at all.
It is based on the notion of a ribbon (or ordered, or fat) graph: graph with a cyclic
order of edge-ends at each vertex. Edge-end (or leg) is a pair (v,l) where v is a
vertex and [ is one of its incident “half-edges”.

The combinatorial definition starts with a triple (E,w, P), where E is a finite
set with even number of elements and two permutations w and P. It is assumed
that all cycles of w have length 2 and that the group generated by w, P acts
transitively on E. For each map (S, ,G,¢) one can canonically define a triple
(E,w, P) so that E is the set of edge ends of G, w interchanges two edge-ends
of each edge, and for each vertex v P is a cyclic permutation of the set of all
edges incident to v corresponding to the clockwise order for a given orientation
of S, k. Inverse construction is given by the following theorem. In combinatorics
community it is refered to Edmonds [7], but algebraists indicate that it goes back
to Hamilton.

Theorem 1. For any triple (E,w, P) there is a unique map T where the factor set
E/w is the set of edges, the factor set E/P is the set of vertices (with a clockwise
order of incident edges), the factor set E/(wP) is the set of faces, denoted by F(T').

The construction of the map proceeds by induction: on each step one face from
E/(wP) is appended by identifying corresponding edges.

Fat (ribbon) graph can be obtained from an ordinary graph by replacing each
edge with fat edge, thus an edge will have two distinct sides. If vertex v has I(v)
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Figure 1. Vertex of a ribbon graph

incident edges then 2I(v) sides will also have cyclic order, and in a neighbourhood
of v they will look as in the Figure 1. This combinatorial definition was used also
in algebraic problems, for example, concerning moduli space of curves, see [8].

Classes of maps
Denote A the class of all maps. There are many subclasses of A, defined by some
restrictions on maps. We give a few number of important examples.

1. Maps of genus p, that is all maps with fixed p and any k. In particular planar
maps have p = 0. See a long list of subclasses of planar maps in [9, 10].

2. We define triangulations (called quasi-triangulations in [11]) by the following
restrictions: the boundary of each cell consists exactly of three edges and
the map is nonseparable, thus multiple edges are allowed but no loops. For
example, let Ag1(N,m) be the class of all triangulations of Sp, that is of
the disk, with N triangles and m edges on the boundary of the disk. Note
that all combinatorial triangulations can be obtained by taking N copies of a
triangle and identifying some pairs of their edges, that is why their number is
finite for fixed N. Note also that the class of simplicial complexes is a subclass
of triangulations in this terminology.

3. Rooted triangulations A, (N, m) of Sy that is in each triangulation one
boundary edge is distinguished with one of its vertices, this edge is called the
root. Equivalence relation is modified correspondingly so that the mappings
f respect the roots.

4. One face maps on S,, that is all T € A with |F(T)| = 1.

5. Slice-triangulations. We define slice-triangulations (in physical literature they
are called Lorentzian models) of the 2-dim cylinder Sy 2. Consider triangula-
tions T of the cylinder S x [M, N], where S! is a circle, M < N are integers.
Assume the following properties of T': each triangle belongs to some strip
S' x [§,j+1],j = M,...,N — 1, and has all vertices and exactly one edge
on the boundary (S* x {j}) U (S* x {j + 1}) of the strip S* x [j,7 + 1]. Let
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k; = k;(T) be the number of edges on S* x {j}. We assume k; > 1. Then the
number of triangles F' = F(T') of T is equal to

N-1

F=2 Z ki + kn + kn. (1)
j=M+1

3. Enumeration for fixed genus

3.1. GENUS ZERO

Starting from 1962 Tutte publishes a series of papers where he solves the enu-
meration (censoring) problem for various classes of planar maps. He invents a new
method of solving such problems which was developped in hundreds of papers. The
heart of this method consists of two parts: deleting of an edge to get recurrent equa-
tion and a method to solve the resulting quadratic functional equation, containing
two unknown generating functions: from two and one variables correspondingly. I
use this occasion to note that some years later quite independently I developped
(in connection with the Riemann-Hilbert problem for two complex variables) a
new method for solving linear functional equation with three unknown functions:
one function of two variables and two functions of one variable. These methods are
quite different but have one common point—projection of the equation on some
algebraic curve.

Let Co(N,m) be the number of triangulations in AJ | (N, m), that is with N
triangles and m edges on the boundary. It is not difficult (see [13]) to prove apriori
bounds: there exist 0 < C; < Cy < oo such that for all N and m

CN < Cy(N,m) < CY

There are more general results concerning such exponential apriori bounds for the
number of triangulations of a manifold for dimensions more than 2, see [17].

More difficult is to find exact asymptotics. One of the theorems by Tutte can
be formulated as follows

Theorem 2. If N = 0o and m is fized then

Co(N,m) ~ NN

where v = \/Z},a = -3 c=c(m).

Proof. The following recurrent equations

Co(N,m) = Co(N — 1,m+1) + > Co(Ny,m1)Co(Ny, ms)

N1+N2=N-1,mi+mo=m+1

can be obtained by deleting the rooted edge. After deletion of the rooted edge
there is a rule to define a new rooted edge for each of the resulting maps. This is
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Figure 2. Recurrent equation

shown on Figure 2. There are two possibilities which correspond to the linear and
quadratic terms correspondingly.

It is very convenient to assume the following conditions which will be the
boundary conditions for the systems of equations below

Co(N,O) = CO(N, 1) = O,C()(O,m) = 5m,2,C’0(l,m) = 0m,3

Only the case N = 0, m = 2 needs comment: this corresponds to a degenerate
disk, an edge with two vertices.

Multiplying (7) on zV¥y™ and summing }"%_ 3°°°_ we get the following
equation in a small neighbourhood Q € C2 of z =y =0

F(z,y) = F(z,y)zy ' + F(z,y)zy™" +y° — ayF(z) (2)

where we introduced the generating functions

Flz,y) =Y Y Co(N,m)ay™, Fn(z)= Y Co(N,m)a".
N=0m=2 N=0

F and F; are unknown functions.
Here we solve the functional equation (2). We rewrite it in the following form

(2zF(z,y) + = — y)* = 42y’ Fa(z) + (z — y)* — 4zy® (3)

and denote D its righthand side. Consider the analytic set {(z,y) : 2zF+z—y = 0}
in a small neighbourhood of = y = 0. Note that it is not empty, (0, 0) belongs to
this set and it defines a function y(z) = £+ O(z?) in a neighbourhood of z = 0. In
particular, it will be shown that y(z) and Fa(z) are algebraic functions. Because
of the square in the righthand side of (3) we have two equations valid at the points
of this analytic set

oD

D:O, 6_y_0

or
42y’ Fy(z) + (z —y)°> — 4z =0 (4)

822y Fo(x) — 2(z —y) — 1209° =0
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from where one can exclude the function F;(z) by multiplying second equation (4)
on ¥ and subtracting it from the first equation. Then

y=1z+2° (5)
or
_ T
y= 1—2y2 (6)

By the theorem on implicit functions this equation gives the unique function y(z),
analytic for small z with y(0) = 0. It is evident from (6) that the convergence
radius of y(z) is finite. Note that y(z) is odd and F3(z) is even, because for any
triangulation N —m is even.

We continue to rededuce here Tutte results in a different way. y(z) is an alge-
braic function satisfying the equation y® + py + ¢ = 0 with p = —%,q = 5. The
polynomial f(y) = y>+py+q can have multiple roots only when f = f; = 0, which

gives T4+ = +,/=. These roots are double roots because f,; # 0 at these points.

For z, = \/;l; we have y, = y(zy) = %, that can be seen from f; = 3y* - 1=0
and f = 0. From (6) it also follows that x(—y) = —z(y) and thus y(z) is odd. It
follows that y(z) has both z4 = ﬂ:\/g as its singular points.

From (4) we know F(z) explicitely, after that F(z,y) is explicit from equa-

tion (3). The unique branch y(z), defined by equation (6), is related to the unique
branch of F»(x) by the equation

_ (=3g%@) _ 2
B Ty T VW)

that is obtained by substituting z = y — 2y to the first equation (6).
We know that Fy(z) has positive coefficients, that is why = 4/ 2 should be

among its first singularities. Then z = —,/ —227 should also be a singularity of both
y(z) and Fy(x).

The principal part of the singularity at the double root z is y(z) = Az —
$+)d+% for some integer d. As y; = y(z4) is finite then d > 0. At the same time
y'(x) = ﬂ;2—@) that is oo for z = z. It follows that d = 0. For F, we have the
same type of singularity A(z — 2,)%t7 but here d = 1 as Fy(z) and F!(z,) are
finite but Fy'(x4) is infinite.

The theorem follows from this. We proved also that the generating functions
are algebraic. One can check also that

2z 2z

Automorphism groups. How from the results for rooted triangulations to get
results for unrooted? Everything here is based on the following principle. Let
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Ao1(N,m) be the class of unrooted triangulations of the disk with N triangles
and m edges on the boundary, let |Ao1 (N, m)| = C(N,m) and let C™™"(N,m)
be the number of such maps with nontrivial automorphism group.

Theorem 3. For almost all maps in the classes Ag; (N) and Ag(N) the automor-
phism group is trivial, more ezactly, for fired m

Cnontr(N, m) o
C(N, m) N—oo

There are many proofs of this theorem for many classes of maps, see [9]. This
is convenient to do in two steps.

Lemma 4. If m is fized and N — oo then
C(N,m) ~ L Co(N,m)
y m 0 , M

Proof. Let us enumerate the edges of the boundary 1,2,...,m in the cyclic order,
starting from the root edge. Automorphism ¢ of the triangulation of the disk is
uniquely defined if the image j = ¢(1) of the edge 1 is fixed. In fact, then the
triangle adjacent to the edge 1 has to be mapped by ¢ onto the triangle adjacent
to j, and so on by connectedness.

Consider the strip of width 1, adjacent to the boundary, that is the set of
triangles of three types: those which have a common edge with the boundary
(type 1), two common adjacent edges (type 2) and those, having with the boundary
only a common vertex (type 0). Thus the strip, that is the sequence of triangles
can be identified with the word a =z, ...z,, n > m, where z; = 0,1,2 represent
the triangle types. Consider the set W (m,no,n1,ns) of words with given m and
numbers n; of symbols ¢ = 0,1,2. An automorphism of a disk gives a cyclic
automorphism of the word a. The sets W(m,ng,ny,ns) are invariant however.
Note that

m=mn;+2ns, ng>n+ns
and the length of other boundary of the strip equals m’ = ng. Thus, if there is no
nontrivial cyclic automorphism of the word, then there are no automorphisms of
the whole triangulation of the disk. It is easy to see, that for a given sequence ng(m)
and as m — oo the set of words from Up, n,W(m,ng,n1,nz), having nontrivial

cyclic automorphisms, is asymptotically zero compared with the number of words
in Up, ne W{m, ng, n1,no). O

Let now C(NN) be the number of triangulation of the sphere with N triangles.

Lemma 5. If N = oo then

CN) ~ 2-Co(N,3)
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Proof of this intiotively clear assertion can be obtained along similar lines.

3.2. ARBITRARY GENUS

Let C(N, p,0) be the number of (unrooted) triangulations of S,, and Co(N, p,

k+ 1;m,my,...,mg), m,mi,...,mg > 2, be the number of triangulations of
S, k+1, k=0,1,2,..., where one boundary (with m edges) has a rooted edge, and
where the remaining k& boundaries have my, ..., my edges correspondingly.
Theorem 6. Then for fized p,k,m1,...,mg as N — 00
5 5 27
C(N,p,0) ~ f(PIN9N, a=2,b=—c-1Lv=4/%
CO(Na £, ka m,my,... amk) ~ f(pa kama mi,... 7mk)Nap+b+1+k'yN-

There are many similar results on enumerating such maps but not in terms of
the number of triangles, see [14, 15]. This theorem can be proved by using Tutte’s
idea of deleting the rooted edge. We shall see what are the resulting recurrent equa-
tions. Start with some triangulation with parameters N,p,k+1,m,my,...,mg.

The operation of deleting the rooted edge can produce more possibilities than
in case p=0,k=1:

1. neither p nor k change, only m -+ m+1, N > N —1;

2. the hole merges with another hole, thus p is not changed, k becomes less by
L

3. the hole cuts a handle, thus p > p— 1, k=2 k+1;

4. the hole cuts the surface itself thus producing two surfaces with parameters
pi ki, i=1,2, such that p1 +p2 =p, k1 +ka =k + 1.

For example, we get a closed system of equations for p = 0, p cannot increase.
Moreover, for p = 0 the parameter k¥ cannot increase, moreover equations for
Co(N,0,k;m, my, ..., my) are linear assuming we know Co(N, 0, j;m,ms, . .., m;)
for 0 < j < k. Thus, equations for the generating functions are nonlinear only on
the first step with p = 0, k = 0. Afterwards (for p = 0, k > 1 and for p > 0) the
equations for the generating functions become linear, however very bulky. One can
find treatment of similar problems in [14, 15] and references therein.

Universality classes. We considered only the case of triangulations. There are
many results (see [9]) showing that v (and also c) strongly depends on the class of
maps, on the contrary o (called the critical exponent) does not. However, v does
not seems not to depend on p, k,m, my, ..., mg. An example of another universality
class is the class of slice-triangulations, see below.
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4. What is two-dimensional gravity

Metric structure on the surface related to a given triangulation is defined once it is
defined for each closed cell so that the lengths of the edges are compatible. There
are two basic approaches for defining such metric structure. In the Dynamical
Triangulation approach all triangles are identical, lengths of edges are equal a and
the metrics inside triangles is the standard euclidean metrics. In the Quantum
Regge Calculus they are random.

We will use further on the Dynamical Triangulation approach. One can show
then that the differentiable structure exists such that the metrics is sufficiently
smooth everywhere except for the vertices, where the number gy of triangles
adjacent to the vertex v is different from 6. One can prove this by induction
putting pairs of adjacent triangles on the plane.

We can show that the curvature is zero everywhere except for the vertices v
with ¢, # 6, in those vertices the curvature becomes discontinuous. In fact, the
curvature is measured using the parallel transport (Levi-Civita connection). That
is the curvature should be proportional to the difference of the angles for initial
and transported vectors of a vector (lying in the plane of the triangle) along a
small closed path. If the path lies inside a triangle then the angle is zero as on
the euclidean plane, if the path encircles a point on some edge then it is zero (by
unfolding the two half planes separated by this edge). Only paths around vertices
may give nonzero difference. Around the vertex v the angle between the initial and
the transported vector is g, = 2w — > ;¥se = 5(6 — qy), where ¢y, is the angle
of the simplex f at vertex v. Note that

27V — st = ZZ‘pf” = ZZ%‘” =qF
v v f f v
Using the Euler formula

x=2-2p=V-L+F

one can get from this the Gauss-Bonnet formula,

2251, =47y

. - . F
for triangulations, using L = 37

Einstein—Hilbert action on the smooth manifold for the so called pure gravity
(that is without matter fields) is

/(clR + 02)\/§dz

where R is the gaussian curvature, g-metrics. By Gauss-Bonnet formula for smooth
surfaces [ R\/gdz = 4wy. Thus the discrete action should be (up to a constant)
Ap + pN, where p is the genus and N is the number of triangles.
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When the genus is fixed, that is the surface itself is fixed (but not its metrics),
the first term becomes superfluous, and pure gravity (without matter fields) is
defined by the following grand canonical partition function

Z =3 exp(-uN(T)) = 3 C(N) exp(~pN)
T N

with the corresponding canonical partition function

Zv= Y exp(—pN) = C(N)exp(-uN)
T:|F(T)|=N

There is a critical point per = logy. If g > per then Z < 00, and if p < prer
then Z = oo. In the critical point the terms of the series have power decrease (or
increase), defined by the critical exponent a. This critical point does not depend
on p.

However, if the surface has a boundary then the situation is different, there
are some extra degrees of freedom (see more about this in the section 7.2). If the
surface has a boundary then Euler formula is

x=V-L+F+k

where k is the number of components of the boundary. Gauss-Bonnet formula has
the form

2 e, =4n(x —k+9L)

where L is the number of edges (or vertices) on the boundary, if for the vertices v
of the boundary we define €, by 7 — &, = % qu-

4.1. SOME CENTRAL PROBLEMS

The situations when p is fixed and when p is random are physically quite different.
The first one corresponds in physics to string diagrams, the second—to the so
called spin foam, when there are local fluctuations of the topology. In fact, in this
case p is of the order N.

Spin foam. If the genus is not fixed then the grand canonical partition function
would be

Z = exp(-pN(T) — 2p(T))
T

where T runs over all triangulations. However one can easily show that this series is
divergent for any p, A. In fact, the number of maps with IV triangles irregardless to
genus has a factorial growth, that cannot be compensated by exponential factors.
Thus it is natural to consider the canonical partition function

In= Y exp(—2(D))

T:|F(T)|=N
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instead of the grand canonical. Unfortunately, there are no results concerning
this canonical partition function—this is one of the central unsolved problems.
However, there are another interesting possibilities to choose a canonical ensemble.
For example,
Zv= ) exp(-Ap(T) - uF(T)).
T:L(T)=N

For this case we shall get some results in the next section.

Strings. Assume now that to each triangle f of F(T') there corresponds a spin
oy, taking its values in the space S with some positive measure g on it. For some
symmetric function ® : § x .S — R define the following partition function

ZN = Z H /duo (o) exp(=2p(T) - B Z ®(of,0p)).

T:N(T)=N fe|F(T)| <ff'>

The case S = R? and ®(0,0") = (0 — ¢')? corresponds to Polyakov action for
strings with the target space-time of dimension d. There are no results (even on
the physical level) concerning calculating this partition function even for p = 0,
random matrix models do not work here. The latter circumstance is quite sur-
prising because another physical approache (Hamiltonian quantization) to free
quantum boson strings work quite well.

Zn gives an example of probability distributions which we call Gibbs fami-
lies below. We shall say some word about the general theory of such probability
distributions.

Continuum limit. It is reasonable to assume that under some scaling limit random
discrete spaces converge in the Hausdorf-Gromov distance to a smooth manifold.
Even for simple examples it is a formidable problem to prove such a convergence.

Conventional string theory approach. An alternative approach to two-dimen-
sional gravity, see [29], is similar to the conventional continuum path integral
approach, and its more refined BRST procedure. String theory approach to treat
the continuum analog of Zn consists heuristically in the following remark. Due to
invariance of the action with respect to the diffeomorphism group G, and the group
G of Weyl transformations, the path integral can be factored on the integrals over
G'1, G4 and some residual factor. The residual factor can be reduced to the integral
over moduli of complex algebraic curves. It seems difficult however to make this
illuminating staff well-defined. Relation between the two approaches were discussed
in [8].

5. Random genus.

Consider the class A° of all rooted maps of S, irregardless to p. Let Fy »(p) be
the number of rooted (one edge is specified together with its direction) maps with
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p+ 1 vertex and b + p edges of the closed compact surface of genus p. We give a
simple asymptotic formula for canonical partition function

ZIn) = D Y Fop(p)y®

b+p=N p=0

with any complex y.
The operation of deleting a rooted edge gives the following recurrent equations,
see [19], for the numbers Fy, = 3 Fp,,»(p)

p—1 b

Fyp= Z ZFk,ij—k,p—j—l +2(b+p) - DFp1p, bp>1 (7)
7=0 k=0

In fact these equations hold also if either b = 0 or p = 0, except the case b =p =0,
if we put
Fo=1, F_.1,=F_1=0

We should say more about the cases b = 0 and p = 0. The case b = p = 0
corresponds to an imbedding of one vertex into the sphere. The casesp > 1,5 =0

correspond to trees, imbedded to the sphere, Fp , = p!(iii)!. Numbers Fj , with
p=0,b>1areequal to (20 —1)(26—-3)... = @,—b?r!, that is to the number of
512
partitions of {1,2,...,2b} onto pairs.
Put

be=bp(y) = Y Fopy’by1 =0,bg=1
b+p=k

for y > 0. The main result is the following theorem.
Theorem 7. For any complex y > 0 and as k — oo

be(y) ~ f(y) K12V
where c(y) > 0 is a constant analytic in y.

This result has physical interpretation. Consider the probability measure on
the set of general rooted maps with b+ p = N (canonical ensemble) with the
following partition function

Zn(y) = Z Fy pexp(—Ab) = Z Fypy?
b,p:b+p=N b,p:b+p=N

with y = exp(—)). Then we have the following asymptotics for the partition
function .
ZN(y) ~c(y) Ntexp((In2 — A)N)N¥~2

One can, using —2p — F'—m — 2 = —b, rewrite this in other terms up to a constant
factor
ZIn@w)= Y, exp(=20p(T) — pF(T))
T:L(T)=N
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only for u = A. It follows that the critical point A., = In2 and the critical exponent
is exp(—A) — 3.

6. Random matrix techniques

For mathematical initialization to this beautiful methods we refer the reader
to [24], complete but more physical presentations one can find in many physical
papers, see for example [21].

6.1. FIXED GENUS

One of the central models of random matrix theory is the following probability
distribution x on the set of selfadjoint n x n-matrices ¢ = (¢;;) with the density

e _ ¢?

g1 —tr( L) —

S =z exp(—tr(5) — (V)
where V = Y~ az¢* is a polynomial of ¢, bounded from below, v is the Lebesgue
measure on the real n?-dimensional space of vectors (¢, Re ¢ij, Im gy, i < 7).
If V = 0, then the measure p = po is gaussian with covariances (¢;, ¢};) =
(¢ij, Pix) = héixd;1. The density of p with respect to pg is equal to

dp

o = Z; ' exp(—tr(V)).

For the existence of u it is necessary that the degree p of the polynomial V were
even and the coefficient a, were positive. For this case there is a deep theory of
such models, see [25].

Fundamental connection (originated by Hooft) between matrix models and
counting of maps on surfaces is given by the formal series in semiinvariants or in
diagrams (see for example [20]) (we neglect log Zy)

(1 = (1)
ogZzzT<tr(V),...,tr(V)>=Z ZI(Dk)
D;.

k!
k=1 k=1

where <tr(V),...,tr(V)> is the semiinvariant of order k of the random variable
tr(V)) with respect to the gaussian measure i, 3_ 5, is the sum over all connected
diagrams Dy with k vertices and L = L(Dy) edges.

Assume, for example, V = a¢?, a > 0. Then each diagram has enumerated
vertices 1,.. ., k, to each vertex corresponds the random variable tr(¢*). Moreover,
each vertex has enumerated edge-ends (legs) 1, 2, 3,4, corresponding to all factors
in ¢@;;¢;x dr1d1i, one should further sum over all indices 4, 7, k,{. By coupling legs
we L = 2k edges. The leg, for example corresponding to ¢;;, can be imagined as
a strip (ribbon) (defining thus a ribbon or fat graph), the sides of the leg have
indices ¢ and j correspondingly. In a neighborhood of the vertex the ribbons are
placed on the surface as on the Figure 1. It is assumed that coupling of ribbon
legs is such that the coupled sides have the same indices.
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As any index appears even number of times in each vertex, then for a given
edge [ with index i, there is a unique closed connected path in the diagram con-
sisting of sides with index ¢, and passing through I. These paths are called index
loops. Summing over indices we will get then the factor n’¥ where N = N(Dy)
is the number of index loops in the diagram. Finally we get the following formal

- series

> —(_,S)k > NP = 37 (—dar?)t Y aNEW = 3 (—dah®)n" M (K, N)

k T Dy k Ey kN

where in the second sum the summation is over all graphs with unordered set
of vertices, and the set of legs of each vertex is only cyclically ordered. While
changing from D to E we introduced the factor :—!(‘%, where A(FE) is the power
of the automorphism group of E. We omit A(E), assuming that for “almost all”
(as k — o0) graphs A(F) = 1.

In the third sum M (k, N) is the number of maps with &k vertices and N faces.
Here a map means a map from the class of 4-regular maps, that is each vertex
has degree 4. By Edmonds theorem (see section 2) for any graph E there exists a
unique (up to combinatorial equivalence) embedding f(E) of this graph to some
oriented compact closed surface S, for some genus p and such that each index
loop bounds an open subdomain of S, homeomorphic to a disk. This map has
k vertices, 2k edges and N faces. By Euler forrilula, k= N+ 2p— 2 we get the

following formal expansion, putting h =1, a = -

log Z = Z N+2p 2 -—2p+ZC( )

where C,(N) is the number of maps with N faces and having genus p. It follows
that for example for p = 0, the sum of terms corresponding to maps with N faces
and having genus p can be formally obtained as

logZ Z( BN -2Co(N).

n——)oo n2

There is a beautiful techniques to extract Co(N) from this, however I do not know
any completely rigorous treatment.
There are generalization of the random matrix model with () matrices M,

where the action is
Q-1

Tr(ZV )+ > MyMyys)

q=1

and its continuum analog, see review [23]. Such generalizations allow to do calcu-
lations for some models with spin.

One face maps. There is another direction in the combinatorics of maps, now
more related to algebra. One considers triangulations with one (see [26]) or fixed
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finite number of cells (see [8, 28]). Maps with F = 1 for S, coincide with trees
imbedded in Sp, that is with plane trees. Their number is given by Catalan num-
bers. Generally, their number was calculated in [26, 27). This is related to string
theory approach to two dimensional gravity, see section 4.1.

7. Gibbs Families

Here we introduce very shortly a unified general framework for discrete random
spaces, a generalization of the now classical theory of Gibbs fields (see [30, 31]),
which we call Gibbs families (“Gibbs fields on Gibbs graphs”).

We define graph with a local structure. Let F4 be the set of all finite graphs
with diameter d.

Definition 8. Let the function o(y) on F4 be given with values in some set S.
Local structure (of diameter d) on the graph G is given by the set of values {o(7)},
where v runs all regular subgraphs v of diameter d of the graph G.

Ezxamples. — Graphs G with some function o(v) on the set V(GQ) of vertices
(spin graphs) correspond to a local structure with d = 0.

— Gauge fields on graphs: for each vertex and for each edge values from a
group R are defined, in this case one can take d = 1.

— Simplicial complex is completely defined the following function on complete
regular subgraphs (of its one-dimensional skeleton) of diameter 1: it takes
value 1, iff this subgraph defines a simplex of the corresponding dimension,
and O otherwise. Here one can also take d = 1.

— Penrose quantum networks [33, 32: in a finite graph, each vertex of which
has degree 3, to each edge | some integer p; = 2s; is prescribed, where halfin-
tegers s; are interpreted as degrees of irreducible representations of SU(2).
Moreover, in each vertex the following condition is assumed satisfied: the sum
of p;, for all three incident edges, is even and any p; does not exceed the sum
of two other values. Then for the tensor product of three representations there
exists a unique (up to a factor) invariant element, which is prescribed to this
vertex.

We fix some function s(7y), defining a local structure. Let F{*) be the set of all
finite graphs with the local structure. Potential is a function @ : F(*) - RU {00}.
The energy of a finite graph I' € F(® is defined as

HI) =) &)
yCFP

where the sum is over all regular subgraphs y € F(®) of I. For any subclass
F < F® the Gibbs family with potential & is the following probability dis-
tribution on ]—'és)

W(D) = Z5) exp(—BH(I)),T € F(¥

Zpeo = > exp(-BH(T))

rer{®
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it is should be assumed that Z F© # 0, 00. Another possibility is not to introduce a
subclass ]—'0 C F® by hand but to choose “hard core” (that is taking values co)
potential which distinguishes exactly the subclass fé ), see more details in [34].
For some increasing sequences }'1(3) C .7-'2(3) C - C f,(f) C - C FO of
finite graphs with the local structure defined by s(-) one can naturally define weak

limits of the Gibbs families with given ®, 5. See a detailed exposition of this theory
in [34]: for example, analog of DLR-condition.

7.1. CORRELATION FUNCTIONS FOR MAPS

For maps without a local structure correlation functions define frequencies of
“small” subgraphs in the map. We consider only the probabilities of graphs con-
taining the rooted edge. Then using the analogs of the theorem 3 one can get rid of
specifying rooted edge. Let us consider the class A, (N, m) of rooted triangulations
T of the disk with N triangles and m edges on the boundary. Then the potential
® = 0 gives equal probabilties for all maps in A3; (N, m). Fix some map I' of the
disk and let p™(T') be the probability that a neighborhood of the rooted edge is
isomorphic to the map I'.

Theorem 9. For any T there ezists the limit lim p™ (') = n(T).

The proof is easy. Let I' have n(I") triangles, m(I') edges on its own boundary,
among them m;,(I") are internal edges of T'. Delete all triangles of I' from 7.
This can produce one or more maps of the disk. Each of these maps has at
least one boundary edge in common with some of m;,(I") edges. The first one
(in the clockwise order) we define to be rooted for that map. However, it can be
proven using explicit formulae for Co (NN, m) that the probability, that this deletion
produces more than one map, tends to one as N — oo, this is a corollary of N -3
factor. Then the theorem follows again from the explicit formulae for Co(N,m). O

In the combinatorics papers there are many more refined results concerning
the distribution of subgraphs, see [9].

7.2. PHASE TRANSITION FOR PLANAR TRIANGULATIONS

We consider triangulations T' € UmAgyl(N ,m). The canonical distribution on this
set of triangulations is defined by the probability Py n(T") of triangulation T'. One
can introduce Py n in four equivalent (easy to verify) ways:

— by the interaction proportional to the general number of edges, that is
Pon(T) = Zy" exp(—p1 L(T))

where L(T') is the number of edges of T', including all boundary edges;
— by the interaction proportional to the sum of the degrees of vertices

Py n(T) = Z()_,le exp(—% Z degv).
veV(T)
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Thus

ZN:Z Z exp(—% Z degv).

m TeAd,(N,m) vev(T)

Using a duscrete analog of Gauss-Bonnet theorem (see above), one can show
that this is a discrete analog of Einstein—Hilbert action. Note that this is a
particular case (with parameters t, = t) of the interaction , considered in [22]

H t(r;(q,T)

q>2

where n(g,T') is the number of vertices of degree q.
— by the interaction proportional to the number of boundary edges.
~— By the Gibbs family with fictitious spins o, in the vertices v of the triangula-
tion, taking values in any compact set, and assume that the potential of the
Gibbs family is
®(oy,0p) =1

for any two neighboring vertices v, v'.

We will observe phase transitions with respect to parameter u;. It has the
critical point py . = log12. Let 8y = Bo(1) be such that

(1 + 3(;18%0))
————exp(—p +logl2) =1
(1+ 25)?

Theorem 10. The free energy limy % log Zo.n = F s equal to —%m +c c=

3 'g: ifﬂl > Mer, and to

4@
1+ 505)

3 Bo |
—zp1 + ¢+ Bo(—p1 +log12 +/ lo dg
7 o(—41 ) | log 1T 2y

2

Zf ,ul < ll'l,cr-

Note that if pt7 — pi,er then fo — 0.
Let m(N) be the random length of the boundary when N is fixed. Its proba-
bility can be written as, using |L(T)| = 23X + 2,

Poy(m(N) = m) = O} exp(—m 5 )Co(N,m), Oa,x = 3 exp(~us ) Co(N,m)
m

Theorem 11. There are 3 phases, where the distribution of m(N) has quite
different asymptotical behaviour:

— Subcritical region, that is 12exp(—p1) < 1. Here m(N) = O(1), more
exactly the distribution of m(N) has a limit limy Py(m(N) = m) = pn,
for fizted m as N — oco. Thus the hole becomes neglectable with respect to N.
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— Supercritical region (elongated phase), that is 12exp(—u;) > 1. Here the
boundary length is of order O(N). More exactly there exists € > 0 such that
limP(),N(m]‘\‘,y‘ >¢e)=1.

— In the critical point, that is when 12exp(—p1) = 1, the boundary length is
of order /N. The exact statement is that the distribution of Mﬁ converges
in probability. :

Let us remove now the coordinate system from the boundary, that is we con-
sider the class Uy, Ag,1 (N, m) of unrooted triangulations. The free energy remains
the same. Only in the critical point the distribution of the length changes-—stronger
fluctuations appear.

Theorem 12. In the critical point without coordinate system the boundary length

is of order N® for any 0 < a < % The ezact statement is that the distribu-

tion of :—;’gﬂj"ﬁ converges to the uniform distribution on the unit interval, that is
1
Po,N(%Sﬁg—g—%ﬁ—g)%ﬁ—aforalloga<ﬂgl.

7.3. SOME STOCHASTIC OPERATORS

One can construct probability distributions on S, generalizing the distribution
of the previous section. For example, take Sp 2 and define a stochastic kernel on
the set {2,3,...}

o _ Inmyma)
Stm = ma) = Jim Swlm = m), - Sn(m = m) = o tm,m)

if the limit exists, where the conditional (the lengths of the boundaries are fixed
to m and m; ) partition function Zy(m,m,) is defined as

Zy(m,my) = C(N,m,m;) exp(—p1(m +m,))

where C{N, m,m1) is the number of unrooted triangulations T of Sp 2 with N tri-
angles and boundary lengths m and m;. We study these operators in a forthcoming
paper.

Similar stochastic kernels can be defined for systems with spins. Consider, for
example, triangulations of S, with spin o, in the vertices taking values in the
finite set E. Assume that a function f : E x E — R is given, which defines a
nearest-neighbor potential ® so that ®(oy,0,) = f(ow, 0y ) if at least one of two
vertices is inside the triangulation and by ®(0y,0y) = 1 f(0y, 04 ), if both are on
the boundary. One could say equivalently that a local structure is given such that
it knows whether the 1-neighborhood of v is a disk or a “half-disk”. Let L(FE) is
the linear space having elements of F as a basis.

Such operators can have relation to topological field theory (TFT) and scat-
tering matrices for string models. In TFT, for example, one considers an abstract
set of such operators

Spk(L(E)P™ @ -+ ® L(E)®™ — L(E)®™+ ® ... ® L(E)®™)



89

13

Figure 3. Surfaces with boundaries

satisfying some axioms concerning composition of these operators. These axioms
can be given in different ways: that of Atiyah [35, 36] using functorial approach
and the (not well-defined) approach using functional integrals. As far as I know
now only simple examples of TFT, which are direct sums of the system without
spin, see the last chapter of [18].

8. Lorentzian Models

Lorentzian models appeared in physical papers [37-39], where several approaches
were suggested. Here we present rigorous formulations and results, see proofs
in [40].

Above we defined slice-triangulations of the cylinder. They are easier to handle
and complete control is possible.

Assume that kpr = k and kny = [ are fixed. Introduce Gibbs measure on the
(countable) set A, nj(k,1) of all such triangulations

Nt (T) = Zigh g exp(—pF(T)). ®)

Define correlation functions for random variables k;,j € [M + 1, N — 1], taking
values from N = {1,2,...}, and for finite subsets J C [M + 1, N —1]

um Nk (ks = nj, 5 € J). (9)

The behaviour of the system depends on to which region u belongs: define
subcritical, critical or supercritical region if 2exp(—u) < 1, 2exp(—u) = 1 and
2exp(—p) > 1 correspondingly.

In the subcritical region we get a limiting probability measure on N'Z.
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Theorem 13. If 2exp(—p) < 1 then the limiting correlation functions
. _ 0o -
S g N Nk (kg =k, G € J)

exist for any finite subset J C Z and any vector (k;-’, j € J). The measure defined
by these correlation functions is a stationary ergodic Markov chain on N with the
following stationary probabilities

(n) = (1 - (A2()%)*n(Aa())*™ 7,

where

1-—+v1-s2
Mfs)= VI s = 2exp(-p).

Theorem 14. In the subcritical case the asymptotics of the partition function is

Zi-n k) ~ (1= (a())*)” ()7

Theorem 15. In the critical case the asymptotics of the partition function is

1 > 1.
Zi-n.n(k, ) ~ o N % Yz k) ~ Tl .
=1

For any J and any k? the correlation functions

Wm gy n gk = k3,5 € J) =0.

N—o00

In the critical case one can study the continuous limit N — oo. Take the interval
[0, N]. We take the length of a horizontal edge equal to 1. At time aN, a < 1, let
kiaN) = kjan(k,1) be the volume (the number of edges) in our one-dimensional

Universe. Define the macrolength as Flan) and the macrotime as «.
& N
Theorem 16. For any positive k,1

Fk
lim —fleN
N—ooo

2a(1 — @), (10)

and limit does not depend on k and 1. If | is not fized then

’
lim Ek[aN] =
N-—o0

a(2 — a).

This shows that in our scaling limit the continuous two-dimensional Universe
looks like the surface of a paraboloid of revolution, with two (or one, if [ is not
fixed) singular points. This can be interpreted as the expansion of this Universe.

Proposition 17. In the supercritical case the finite volume partition function

Zjo,N) exists only if
>In{ 2cos T
K N+1/)

As N — oo this region, where the partition function exists, becomes empty.
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9. Gravity with matter fields

Here we shortly describe central ideas of the new cluster expansion techniques,
which allows to treat combinatorial and probability problems for maps with spins.
In statistical physics cluster expansions proved to a powerful tools, sometimes
a unique tool allowing complete control over the problem. Disadvantages of this
method is the necessity of a small or large parameter in the interaction, and
also sufficient difficulty. We are interested here the stability problem of the critical
exponent in the asymptotics of the partition function, however other questions, as
correlation functions, can be treated as well. We consider only planar triangulations
with matter fields with compact set of values in high temperature region. We shall
see that for Gibbs families, to which maps belong, cluster expansions have many
new features unknown for statistical physics and quantum field theory. The main
new feature is that the empty space has an entropy, to take into account this
entropy Tutte’s method should be incorporated into the expansion.

We again consider the class A}, (N, m) and denote T* the dual graph of the
triangulation T, its vertices v € V(T™*) correspond to triangles of T, edges I €
L(T*)—to pairs of adjacent triangles. All vertices of T* have degree 3 except
vertices corresponding to the triangles (there are not more than m = |B(T)| of
such triangles), incident to at least one boundary edge, where B(T) is the set of
boundary edges of T'.

In each triangle of T', or in each vertex v of the dual graph T, there is a spin o,
with values in the set FE, this set is assumed finite for simplicity.

Partition function for the canonical ensemble (with fixed number N > 0 of
triangles and fixed number m > 2 of boundary edges) is defined as

Z(N,m) = Zg(N,m) = > Z(T)
T:|F(T)|=N,|B(T)|=m

where the partition function Z(T') for a given triangulation T' € Ag , (N, m) is

20 =B Y exw(-B Y. ¥(0w,00)),N=|F(T)| = V(T

{o,:veV(T*)} <v,v'>

where <v,v’'> means a pair of nearest neighbor vertices (that is of adjacent trian-
gles) v,v' € V(T*), ®(s,s') is a symmetric real function on § x S, 8 > 0—inverse
temperature.

To be concrete we shall consider the ensemble with boundary conditions empty
on the internal boundary, that is there are no spins on the triangles of F(T')
adjacent to the boundary of the disk, thus no interaction with these triangles.

We prove that in some cases the partition function has canonical asymptotics.
This means, there is a constant ¢ = ¢(®, 8) such that for fixed m, 5, ®

Z(N,m) ~ ¢(m,®, BN~ 5.

The critical exponent a = —g is also called canonical. For example, we have the
following result.
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Theorem 18. Let
k= Z[exp(——ﬂ@(a, o)) —1]<0.

o,0’

Then for B sufficiently small Z(N,m) has canonical asymptotics.

Theorem 19. If ® < 0 is not identically constant, then for 8 sufficiently small
the asymptotics is not canonical.

Ezample: scaling transformation

A simple example is the constant nearest-neighbor interaction ¥,(o,0') = p.
For non-rooted triangulations the term ¥ gives an overall factor exp(—fBuL*) =
exp(—3BuN). Appending ¥, to some interaction ® results in a scaling transfor-
mation of the generating functions (see below). Otherwise speaking, appending
such interaction changes only the constant ¢(8) in the asymptotics, and does not
change the canonical exponent.

9.1. CLUSTER EXPANSION TECHNIQUES

To present the main ideas we consider a simpler model-—maps with random
impurities. A map 7" with impurities is a map where some triangles are colored.

Note the distance between triangles in dynamical triangulation models is the
distance between the corresponding vertices in the dual graph, that is the length
(number of edges) of the shortest path between them in T*. A set A of triangles is
called connected if between each pair of triangles ¢, s € A there is a path, belonging
to A, in which any pair of consecutive triangles are on the distance not greater
than d = 1.

For each set A define the external boundary 0.A as the set of triangles on
distance 1 from A. A cluster (more exactly, a T-cluster for a given triangulation T')
of colored triangles is a maximal connected subset of the closure cl(V},(T)) =
V2 (T)U 8. (V2 (T)) of the set V%, (T) of colored triangles.

We define now the hierarchy of T-clusters for a given triangulation 7. For any
set V C F(T) the complement F(T) \ V consists of the two parts: exterior part
Ext(F(T)\ V), consisting of all triangles of F(T) \ V, which can be connected
with the boundary by connected path, belonging to F(T) \ V, and the interior
part Int(F(T)\ V), containing all other triangles.

Let V be one of the T-clusters. Then the interior part of its complement
F(T)\ V consists of some number r of connected components V1, ..., V,.

For given T a set V C F(T) = V(T*) of triangles is called simple if it is
connected and its interior part is empty. We say that T-cluster has level 1 if it is
simple.

We define clusters of level n > 1 by induction: T-cluster V has level n if n is
the minimal number such that in its interior part there are only clusters of level
less than n. Thus the T-clusters form a forest (a set of connected trees), where
clusters are vertices of this forest. Two vertices of the tree are connected by an
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edge if one of the corresponding T-clusters is in the interior part of the other one,
and their levels differ by 1.
A random cluster model on maps assumes the following properties for any T':

1. Cluster V has a weight k(V') > 0, so that the partition function of the random

cluster model is
ZONmy= > [ kv
T:F(T)=N VCF(T)

where the product is over all T-clusters.

2. The cluster estimate holds
k(V) < gVl

3. Isomorphic clusters have equal weight.

4. All clusters are simple.

Nonempty T'-cluster V' is called complete if it contains all triangles of T'. It is
obviously simple and thus ¥ consists only of this cluster. The complete T-cluster
V is obviously unique and we define

E(T) =k(V).
Then the cluster generating function is defined as
Wz,y) =Wile,y)= Y > Wyne"y™ Wi = > K@)
N=3m=2 T:T€AS, (N,m)
Then the equation for the generating functions
Uie,y) = 3 3 20N, m)eym
N=0m=2
isforn=1
U(e,y) = Ui (e, 9)zy " + Ut (o, 9)zy ™" +y° + Wi(z,y) —2yS(z)  (11)
with

oo
Si(@) =Y 2 (N, 2)z".
N=0
Proof. We have recurrent equations, similar to the case 8 =0

ZO(N,m) = ZO(N — 1,m + 1) + On,00m,2 + Wi,

+ > ZMW(Ny,m1)ZW(Nyymg)  (12)
N1+Na=N-1mi+mao=m+1
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form >2,N >0 and
Z(l)(_l,m)) = Z(l)(N,O)) = Z(l)(Na 1)) =0.

Tutte’s method is applicable to this equation, because W is analytic in a domain
of radius which increases when 8 decreases.

If we do not assume the simplicity of clusters (property 4) then one uses an
inductive procedure in n. For example, to get the partition function Z() (N, m),
taking into account only maps having no clusters of level more than 2 but con-
taining at least one cluster of level 2, we use already obtained level 1 generating
function for Z() (N, m) as the function W (z,y) = Wa(z,y) for the equation to
find the generating function for Z ()(N, m), etc. On each step the equations look
like equation (11).

We omitted also the first step of the expansion, necessary to get the random
cluster model from our high temperature model. On this step one uses a (standard,
statistical physics type [42, 20}) cluster expansion for each fixed T', followed by the
resummation. There are however some finer points, for example, the weights of
clusters are not positive anymore.

See details in {41]. I hope that this method can be extended to more general
situations: low temperature, unbounded spins etc. However, it demands additional
efforts.

I also did not mention here two kind of physical results: methods of conformal
field theory to get critical exponents and random matrix techniques to do calcu-
lations for Ising model on maps. There should be deep connections with cluster
expansion. Isosystolic inequalities approach to genus independence of 7 for models
with matter fields see in [43).
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