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Random Infinite Spin Graph Evolution

V. A. Malyshev

ABSTRACT. We define and study a general class of Markov processes that
includes most concrete processes used in applications. This class arose both
from computer science applications (grammars and graph grammars) and from
physics (quantum gravity). They are quite similar to processes with local
interaction, but the underlying space changes together with the spin values.
In this paper we prove for all finite times the existence of an infinite cluster
local dynamics starting with a countable graph. We establish the clustering
properties of this dynamics for small times. The new phenomenon of space
disappearance for large times is discussed as well.

1. Introduction

From the probability theory point of view, here we consider a kind of homoge-
neous stochastic processes with local interaction but without the underlying space.
From the computer science point of view, we consider large graph grammars and
their nondeterministic trajectories. From the topology point of view, we consider
infinite complexes (in this paper they are one-dimensional).

Here we do not speak about physics at all, but it is present behind the scenes in
the methods and the mere ideology of the paper. A spin graph corresponds to a field
on a lattice in physics, its stochastic dynamics is called the stochastic quantization
method. But here the lattice itself changes dynamically in time together with the
fields. Already the two-dimensional case is very popular in physics, and we shall
study it in detail in [9].

The outline of this paper is the following. Section 2 mainly contains definitions
and some motivation. In Section 3 we formulate and prove the main result: the
existence of the dynamics itself. For t — 0o, however, new unexpected problems
arise and we start discussing them there.

2. Random graph grammars

2.1. Spin graphs. Consider a (finite or countable) graph G with the set of
vertices V = V(G) and the set of links L = L(G). A subgraph of G is a subset
V1 C V of vertices together with some links connecting pairs of vertices from V;
and inherited from L. A regular subgraph G(V1) of G is a subset V1 C V of vertices
together with ALL links connecting pairs of vertices from V; and inherited from L.
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Links are not directed. There can be any finite number of links between two
vertices, loops are allowed as well. A link [ connecting the vertices u and v is called
incident to both of them and vice versa. A link is incident with the subset V if it
is incident with some vertex v € V'. We assume everywhere that each vertex has
at most a finite number incident links.

The distance p(v,v;) between two vertices v,v; of the graph is the minimal
length of a path connecting these two vertices, i.e., the minimal number of links in
such a path. Vertices connected by a link are called neighbors. The neighborhood
04(v), O1(v) = O(v), of the vertex v in G is the regular subgraph with the set of
vertices consisting of v itself and of all vertices at the distance not greater than d
from v.

A spin graph (also colored graph, marked graph, spin system, etc.) is a pair
a = (G, s), where s = s( - ) is a function s: V' — S with S the set of “spin values” or
alphabet. An isomorphism of spin graphs is an isomorphism of graphs respecting
the spins. The empty spin graph @ is the empty graph with no spin.

If we say that the set V' of vertices is given as a set, this means that the graph
is labelled, for example, we can enumerate V by positive integers. It will be useful
to extend the definition of labelling. Assume that we have some abstract set ¥,
which will be called the space. Then a labelling is an arbitrary embedding of V
into ¥. We shall often consider also equivalence classes of spin graphs (they are
sometimes called nonlabelled graphs). An isomorphism of spin graphs is given by
a one-to-one mapping between their sets of vertices respecting spins and links. It
will always be clear from the context whether we consider labelled or nonlabelled
graphs. One of the difficulties that we shall encounter later will be the absence
of natural labellings (or the absence of a natural space) for the set of vertices of
graphs evolving in time. One can even say that the set of vertices loses its exact
meaning.

2.2. Operations, substitutions, transformations. A spin graph dynamics

is a random sequence (where the moments ... < #; < tx41 < ..., are also random)
of spin graphs
ao = (Go, so0), at, = (Gt1vst1)7 ceey Oy = (Gtk7stk)7

to be defined below. The graph a4, is obtained from a4, , by a simple trans-
formation from some fixed class of transformations. We start by defining substitu-
tions, which are the generalization of the substitutions in grammars; see [8]. Note
that grammars correspond to graph grammars when the graphs are linear graphs
(chains).

DEFINITION 1. The substitution (production) Sub = (T;¢: Vy — V(IV)) is
defined by two “small” spin graphs I' and I”, the subset V; C V = V(I') and the
mapping ¢: Vo — V' = V(I); either of I and T” can be empty.

DEFINITION 2. The transformation T = T(Sub) (which eventually will also be
called a substitution) of a spin graph G corresponding to a given substitution Sub is
defined in the following way. Fix an isomorphism ¢: I' — I'; onto a spin subgraph
I'y of G. Consider the disjoint union of G and I", delete all links belonging to
T, delete all vertices in ¥(V) \ ¥(Vp) together with all links incident to them,
identify each ¥(v) € ¥(Vy) with v' = ¢(v) € I''. The function s on V(G) \ V(T';)
is inherited from G, and on V(I') from I”. We denote the resulting graph by
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G(Sub,v). Regular transformations are defined similarly, with the condition that
only isomorphisms ¢ to regular subgraphs I'; of G are allowed.

This can be formulated differently: one must first find a subgraph of G isomor-
phic to I', delete the subset V(I') \ Vi of vertices together will all incident links,
identify some vertices in V) and add some links between vertices of V.

Note that these definitions are in the same spirit as attaching one topological
space T to another T3 by the continuous mapping ¢: T — T», where T} is a closed
subspace of T7.

It is easy to see that some of the simplest operations, such as deleting and
appending a link, identifying two vertices, changing s in one vertex, etc., are trans-
formations according to the above definition. For example, to append a vertex, we
take I consisting of one vertex and I" empty (we assume that there exists only one
empty subgraph for each graph).

2.3. Graph grammars.

DEFINITION 3. A graph grammar is defined by a finite set of substitutions Sub;,
t=1,...,r. A graph grammar is said to be local if the I'’s corresponding to all
Sub; are connected. The language L(ag, {Sub;}) is defined also by (an initial) spin
graph ag = (G, sp) (finite or infinite) and is the set of all spin graphs that can
be obtained from «g by applying transformations an arbitrary number of times in
arbitrary order. More exactly, ap € L(ag, {Sub;}) and if @ € L(ag, {Sub;}), then
To € L{ag, {Sub;}) for arbitrary 7" = T'(Sub;).

Further on we consider only local dynamics. There has been recent activity in
graph grammars in the computer science framework; see [2] and the proceedings of
four conferences in graph grammars, the first one of which is [3]. Note, however,
that graph grammars (more exactly, operations on spin graphs) appeared under
another name earlier (see [11]). One should realize the existence (and this is quite
inevitable) of many different variations on the theme of graph grammars. All of
them use different generalizations of spin graphs (see for example, [2, 3}). Examples
are bipartite graphs (used in Petri nets), hypergraphs with hyperedges instead of
edges. The choice of a particular definition depends on local historical tradition,
personal taste, and favorite applications. The most general framework for all these
notions seems to be category theory.

We want to emphasize that many statements about such generalized graph
grammars can be reformulated using only simple spin graphs by enlarging the set
of spins, redefining a graph with new vertices and new edges, etc. In the general
theory it is convenient to choose the simplest formal definition without introducing
an infinite number of evident generalizations.

2.4. Markov process. We introduce a general class of Markov processes that
we call random graph grammars. The states are spin graphs, that is, pairs (G, s),
where G is a graph and s = s(v) is a function on the vertices of G taking values
in some “spin space” S. Contrary to processes with local interactions, where the
graph (normally a lattice) is fixed, in our definition the graph changes (locally)
together with the spin values. The process is specified completely by the initial
state and by the rates c(«, 3) of transformations from the state a = (G, s) to the
state 8 = (G1, s1).
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Let us fix some graph grammar. The only positive rates are those that corre-
spond to the transformations defined by substitutions from the fixed graph gram-
mar. We assume the analog of translation invariance, which has a more general
form here: the rates c(a, 3) depend only on the substitution done but not on the
place (that is not on the choice of ) where it is done. Thus c(a, B) take only a
finite number of different values ¢; = ¢(Sub).

Thus each allowed morphism 4 waits a corresponding exponential time (inde-
pendently of the others). When the first of these succeeds, it performs a transition
(transformation), and the procedure starts again, and so on. To give conditions
when this process can be defined globally (for the entire time interval [0, ) we
discuss two cases separately. When the initial graph is finite, we get a countable
Markov chain and we must only prove that it is nonexploding. When the initial
graph is countable, the Markov chain has a continuum number of states and the
construction of the dynamics is a more complicated problem with new unexpected
thermodynamic limit aspects.

We refer the reader to [5, 6] for conditions under which, for finite initial graphs,
the minimal nonexploding process exists. Our further assumptions, however, in-
clude these conditions.

2.5. Examples. It is worth noticing that the introduced class of processes
covers many famous processes.

e Branching processes. For the Galton-Watson process, the graphs consist of
isolated vertices, no links. Vertices represent particles, and spins represent particle
types.

e Processes with local interaction on a lattice. It is a local grammar and the
graph is not changed at all. Only spins undergo local transitions.

e A queue is a random string of symbols, where the symbols are the customer
types. For example in LIFO and FIFO protocols, the changes may be only at one
or at both ends of the string. At the same time, this is a particular case of a random
grammar, because one can put the special “nonterminal symbols” L (at the end of
the queue) and F' (at the beginning of the queue). The substitutions have the form
L — zL (customer z arrived) and Fy — F (customer y is served). In this case
the grammar is context free: customers arrive and are served independently of the
context. Generalization to queueing networks is discussed in [7].

¢ Random walks. For example, states of a random walk on Z, are strings
with one symbol (the length of the string is the position of the random walker).
In other words, a random walk is a one-sided linear grammar with one terminal
symbol and one nonterminal symbol (at the end of the word). Random walks on a
free noncommutative group are strings with particular substitutions at one end.

e An embedded graph grammar is a graph grammar with additional structure:
for a given embedding of the graph G into some topological space X (normally R"),
the embeddings of all its transforms G(Sub, 1) are given as well.

e Random fractals: embedded graph grammars with or even without spins;
see [8].

e Stochastic geometry. In stochastic geometry only embedded cell complexes
are considered; see [12].

* Random graph theory. This beautiful field with many deep results was always
very popular in combinatorics. The evolution of random graphs was studied already
by Erd6s and Rényi in 1960, and continued later by many authors; see [14, 4, 13].
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Unfortunately, in fact, the only model considered was the following: the number
of vertices held fixed, on each step we append a new link, choosing it with equal
probability among all absent links. In [5, 6] we gave many examples of more general
evolution.

e Quantum gravity models in physics, which now are the most popular funda-
mental models of nature. We shall consider such models in detail in [9].

3. Dynamics of infinite spin graphs

3.1. Labelled infinite graphs. We shall consider probability distributions
on the set of all countable spin graphs (with fixed spin space S). However, we
immediately encounter difficulties here. The probability space 2 and the o-algebra,
are quite standard, as long labelled graphs are considered and, moreover, the space
W of labels is fixed (it is not assumed equipped with a metric or a topology). Then
formally one can define the probability space Q to be the set of all triples (®, s, L)
(labelled spin graphs), where ® C W is the set of labels corresponding to the vertices
of the graph (all vertices have different labels), s is a function on ® with values in
S, and L is a symmetric function on ® x ® with values in Z, , the number of links
connecting a given pair of vertices.

Then the set of all spin graphs is a subset of the space (S U {@})¥ x Z}*¥
with the product topology. Let ¥ be the Borel o-algebra in this space. Probability
measures on this o-algebra are defined via the Kolmogorov theorem and are gener-
ated by finite-dimensional distributions P(O4(v) = «) for different d and v. Below
we make some assumptions on the graph grammar. It will follow that O4{v) are all
finite a.s.

This approach will be sufficient for us in the next section, where the finite times
dynamics is considered. When time tends to infinity, the labels are lost due to the
possible disappearance and appearance of vertices. Below other approaches will be
discussed.

3.2. Existence. Here we construct a Markov dynamics for arbitrary initial
countable graphs and prove that it is the thermodynamic limit of finite dynamics.
Below we give exact definitions. Moreover we shall show that, for small times, this
dynamics has a remarkable property, called the cluster property in [8]. Some ideas
of this sections are similar to [8] and we sometimes refer to this paper.

Fix some graph grammar G and fix some initial spin graph «(0) = (G =
G(0),s(0)). Choose a vertex in G(0) and denote it 0. Let Oy = On(0) = GN(0)
be the N-neighborhood of 0 in G. We make the following assumptions. Let A(D)
be the set of all graphs with the property that each vertex has at most D incident
links.

AssUMPTION. We assume that the initial graph belongs to A(D) and that
TA(D) C A(D) for all transformations T of our graph grammar.

We assume that the radii of all I" entering the definition of substitutions of our
graph grammar do not exceed 1. The latter assumption is needed only to make the
presentation shorter.

Denote by £3(¢) the Markov process starting at a finite spin graph 8. Consider
an increasing family GV (0) = O of finite spin graphs O; C - C On C ---. We
want to study the N — oo limit for the family ¢V (¢) = £o,, (t) of Markov processes
on the probability spaces Q.
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We shall need some auxiliary notation. Consider a graph G and a subset
V' CV =V(G). Introduce the boundary of width d

V' ={veV\V':0<pv,V') <d}, V' =V,

A subset Vi of vertices is connected if the regular subgraph with this set of vertices
is connected.

Now let us fix N and ¢. For the process £V (t) and a trajectory w, we say that
the vertex v € On was touched during the time interval [0, ] if it belongs to one of
the graphs ¢(I') in the random sequence of transformations. Denote by Q(N,t;w)
the set of all vertices in GV (0) = Ox that were touched by transformations of the
process £ during this time interval. Denote by 7~ (v) the following random field
on V(G(0)): nV(v) = 1ifv € Q(N,t;w) = Q(N,t;w) UAQ(N, t;w) and n(v) =0
otherwise. For a finite T C V, define the correlation functions

oty = (IT o)),
veT
Limiting correlation functions (we shall prove that they exist) define, by the Kol-
mogorov theorem, a probability measure on {0,1}V () (ie., the limiting random
field n(v)) or on the set of all subsets of V(G(0)). For any initial graph o = «(0)
let us define the random point set E(w,t, o) = {v : n(v) = 1}.

THEOREM 1. There exists a ty > 0 such that for any initial spin graph o and
any fized 0 < t < to the sequence of random fields n™ (v) tends weakly to a random
field n(v) = n(v; ) on V(a) as N — oo, i.e., (nf) — (nr) = ([],cz n(v)). More-
over, the random set E(w,t,a) consists of a countable number of finite connected
components a.s.

PROOF. Let Q,(N,t;w) be the connected component of Q(N,t;w) containing
the point v. It is empty if v itself was not touched. Let B,(N,tw) be the con-
nected component of Q(N,t;w) containing the point v. For some v these compo-
nents can coincide. Note that each B,(N,t;w) is the union of some Q. (N, t;w) U
04Qw(N,t;w). The union of the corresponding Q.,(N,t;w) is called the core of
By (N, t;w). 0

LEmMA 2. Let B € G(0) be a finite set of vertices such that0 € B. As N — oo,
the probabilities P(Qo(N,t;w)UIQo (N, t;w) = B) tend to a limit, which we denote
P(B). Moreover ), P(B) = 1.

To prove this, put PV(A4) = P(Q(N,t;w) = A). First, we obtain a special
representation for PV (A)/PN(@). Note first that PV () is easy to calculate,

PY(g) =[] P(T,¥),
Ty

where the product is taken over all I and all morphisms 9 of T into GV, P(T, %) =
exp(—A(T')t) is the probability that the subgraph ¥(I') does not undergo transition.
Note that all P(T",+) are close to 1 if ¢ is small enough. However, formulas for
PN (A) are not so explicit. Let p(B; N) be the probability that in the finite chain
starting at B all points in the core of B are touched and all vertices of the boundary
are not touched.
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LEMMA 3. For A the following formula holds:
PNy =[[pB. M ] P@,v),
B

where the product []5 is over all connected components of A, the last product is
over all (T',v) such that ¥(T') intersects A\ A. Note that then it cannot intersect
the core of A.

The proof of this lemma is similar to the proof of the corresponding lemma in
[8] (namely Lemma 2 on page 11).
From this lemma we have the following cluster representation:

PY(4) N N p(B;N)
=TTk, &y =-LT
IO LA A e
where the product [] 5 is over all connected components of A, the product 18 is

over all pairs (I',+) which touch the core of B. Note that if dist(B,G \ GV) is
larger than d = 1, then p(B; N) does not depend on N. In this case we denote it

by p(B).
We need also a cluster estimate.

LEMMA 4. We have k5 < a!Bl uniformly in N for some a = a(t) — 0 as
t— 0.

Let PY¥(B) be the probability that B is the connected component of A con-
taining 0. We can write the following cluster representation for it:
PV (B) = A PYA) _ PN@)SEPNA) ks Yp,.p, ke ks,
0 1=3,PN(A) PN@)L,PY(A) X, ke kb,
where Eg is over all A such that B is one of its connected components, B,..B,
is over all admissible (for example, corresponding to some A) systems of con-

nected components, Zgl ..B,, isover all systems of connected components such that
(B, By, ..., By,) is an admissible system. The system is said to be admissible if the
distance between each two components B;, B;, i # j, is larger than 1.

This expansion is written in a form that fits exactly into the general scheme
of cluster expansions as presented in [10, Chapter 3.1]. It is shown in [10] how to
get a convergent series for the probability Pi¥(B) using this scheme. Note that all
results from [10] hold for general graphs instead of the lattice Z¢ provided the main
assumption holds for some a D. Note also in our case that the parameter k,; in
[10, Chapter 3.1}, is identically 1.

The terms of the convergent series as defined in [10] do not depend on N up
to the terms of order ¢V for some ¢ = ¢(D) < 1. The exponential convergence (as
N — o0) of PY(B) to some P(B) follows.

Similarly one can obtain the cluster expansion for all correlation functions (¥ ),
E C V(G"N) and for all limiting correlation functions (ng) = limy_,o0 (7Y ), where
E c V(G(0)).

We shall use the sets E(w,t,«) for constructing the infinite dynamics. For
infinite dynamics, the vertices of the core of E are interpreted as the vertices that
were touched by substitutions on the time interval [0, ].

Let us consider the probability space €, = {0,1}%© on which the limiting
random field 7(v) is defined. Denote by p; the corresponding probability measure
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on . For w; € O let Bi(wy), k= 1,2,..., be all the connected components of
E(w,t, ).

For a given B consider the process that starts at a subgraph B of G(0), and
coincides with conditional finite dynamics with the same graph grammar under
the condition that all vertices in the core of B are touched but the vertices on
the boundary of the core of B are not touched. Denote by (¢, B) the conditional
process and by pp the corresponding conditional measure. The trajectories of this
process on the time interval [0,¢] are denoted by w(B). Denote the probability
space for this process by (Qg,Xp, ug).

The limiting probability space for the time interval [0, ¢] is the set 2 of all arrays

w = (wl,w(Bk(wl)), k= 1,2,. . )

Take some subsets Dy, ..., D, of G(0) and some measurable subsets E; C Qp,.
Let C(Ey, Ds1;...; Ey, Dy) be the set of all w such that each D; is equal to one
of the Bi(w;) and moreover w(By(w;)) € Ex. Consider the minimal o-algebra %
generated by all finite connected subsets C'(Ey, Dy;...; E,, Dy,) of €.

The probability distribution g is uniquely defined by the following conditions:
the projection of y on {0,1}V is u;, and

w(Cp,....p,)) = m(A(Dy,...,Dy)) H o, (E:),

i=1

where A(Dy,...,D,) is the set of all wy such that D; are its connected compo-
nents. Note that for a given N the conditional distributions of trajectories on B
are independent for different connected components.

Points of the probability space (2,%,u) are, by definition, the trajectories
of the infinite dynamics. The previous formula constitutes the cluster property.
Similar representations can be obtained for each finite N. In this sense the infinite
dynamics is the limit of the finite dynamics as N — oco. Now we can formulate the
final result.

THEOREM 5. For each t there exists a dynamics on the set of spin graphs which
15 the thermodynamic limit of a sequence of countable chains. Moreover, it has the
cluster property.

We have proved everything for small ¢t. However, contrary to the one-dimen-
sional case, we can construct cluster dynamics only for small enough ¢. It is easy
to construct examples where after a finite time the set of touched vertices has an
infinite component. Note that for all ¢; < t, a.s.

Ew,t2,a) C E(w, t1,a).

But the dynamics itself can be constructed by using the semigroup property
just by gluing together the dynamics for consecutive time intervals [nto, (n + 1)to]
of length ¢;. But this dynamics becomes more and more complicated as n — .
Some properties of the dynamics that hold uniformly under all initial conditions
for t < ¢y can be obtained for each finite ¢ as well. For larger times, control over
labels seems to be finally lost.

REMARK 1. In many examples (see [8, 5, 9]), the main assumption does not
hold. It seems, nevertheless, that for all those examples similar results are valid.
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3.3. Space reconstruction for large times. This part contains generaliza-
tions of some problems that were earlier discussed in more detail and for concrete
examples in the case of grammars; see [8].

Normally time evolution is considered in a fixed space. Here the space itself
(that is the graph) evolves in a quite unpredictable way: during the time evolution
vertices (that is, parts of the space) can appear and disappear. While the cluster
property of dynamics holds, the space still keeps traces from time 0: there is a set
of vertex labels that do not change, thus providing a coordinate system that allows
us to establish some order related to evolving finite connected components. If a
vertex was not touched, then the label it had at time zero does not change. If it has
been touched, then for small ¢ this label can be assigned as an appropriate function
of the countable Markov chain corresponding to the finite cluster.

Unlabelled spin graphs. Now we shall discuss how to define probability distri-
butions on unlabelled countable graphs. For this, one could choose our probability
space {1 as the set of all equivalence classes of countable spin graphs, which differ
only by labelling. What is then very unsatisfactory is that the notion of finite-
dimensional distribution (or correlation function) is lost. To have such a notion,
one should be able to specify the vertices at which this correlation function is taken.
This would be easy if there existed a function f(A) on the set A of all countable
labelled spin graphs A (the set of labels is not fixed), the value of f(A) being some
vertex in A. This specified vertex could have been a reference point (the origin) in
our space. For example, if o = (G, s) with G imbedded into some fixed space, it
is easy to construct f(A): just choose vy = f(A) closest to some fixed space point.
It is very plausible that in the general case we have NO natural embedding; any
attempt to fix a reference vertex will change the stochastic space structure in the
vicinity of the reference point. This resembles the effects produced by measure-
ments in quantum mechanics.

The only general way to find such a function is to use the Zermelo axiom of
choice, but this is highly nonconstructive.

We could also restrict the number of events. Then the o-algebra could be
defined as the minimal o-algebra containing all sets R(I"), where R(T') is the set
of all equivalence classes containing (somewhere) the fixed finite spin graph I' as
a subgraph. Alternatively, one could define a topology on the set of equivalence
classes and take the Borel o-algebra. For example, for grammars (linear graphs) {2
becomes the quotient space of SZ, i.e., Q consists of all orbits of the translations
in SZ. But then in the homogeneous case P(R(T')) are either 0 or 1. Thus such
direct approaches fail.

There are several ways out of this desperate situation.

Local observer. If we want to define a random spin graph as the limit of
some time evolution, there is another way to choose a reference point. If we start
with a fixed or random initial spin graph (finite or infinite), we can introduce a
local observer, i.e., a specified vertex vy(t). The evolution of the local observer is
defined by a function f on the pairs (v, Sub) taking values in V(I")U O (¥(T)). Its
interpretation is the following: if the vertex v disappears (if it belongs to #(T")), then
after the substitution Sub the local observer jumps from v to the vertex f(v,Sub) €
V(I)if V(I') # & and to f(v,Sub) € O1(¢/(T')) otherwise.

Stochastic local homogeneity for labelled spin graphs. Another approach is to
define an analog of the space homogeneous situation in which one need not specify
the place where the correlation function is considered. If the vertices are labelled
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by a fixed set ¥, then there are no problems. The classical Kolmogorov approach,
where the distribution is defined by the finite-dimensional distribution, holds. We
discussed this in the introduction to this section. However, when there is no space,
the notion of finite-dimensional distribution itself disappears.

DEFINITION 4. We say that a random spin graph is locally stochastically homo-
geneous (LSH) if for each d the distribution on the graphs Oy(v) does not depend
on v, i.e., for each d and each spin graph «, the probability p(d, a) = P(O4(v) = «)
does not depend on v.

LEMMA 6. If the spin graph is LSH at time 0, then it is LSH for at each finite
time.

Here the distance is not related to any metric on the set of labels, but is an
intrinsic characteristic of the graph. If there is a group U acting transitively on
the set of labels (it can be the group of shifts as in grammars, see [8], or the
permutation group on the set of labels), then one can define homogeneity with
respect to the embedding space. For grammars, for example, this coincides with
the above definition.

Another inconvenience is that the space of spin graphs with labelled vertices
is too huge: labels do not carry useful information, also there is an amount of
arbitrariness in the choice of labels for appearing vertices. Also we shall see below
that labels do not survive during dynamics. That is why one would like to consider
unlabelled graphs.

Unlabelled distributions. For the unlabelled space homogeneous case, we shall
define a set of numbers that could be an analog of correlation functions. Let us
consider the partially ordered system T of all finite unlabelled spin graphs with
respect to inclusion I' C IV,

For finite unlabelled spin graphs T', let numbers p(T') be given satisfying the
following (compatibility) conditions:

0<p() <L Tl = pI) <pI), Y pI’) = p(T)
=

for all ', where the sum is over all IV, T' ¢ I, {[V(I”) \ V(I')| = 1 such that any
two pairs (I',T'') are not isomorphic. Assume also that p(@) = 1. Such a system
is called a space homogeneous distribution on countable unlabelled spin graphs, or
briefly, an unlabelled distribution.

We now give examples of how such systems can be obtained.

First example: take a statistically homogeneous labelled spin graph; for some
fixed vertex v and unlabelled connected spin graph I' take the probability p(I'") that
there exists a connected spin subgraph isomorphic to I' and containing the vertex
v.

Second erample: for any unlabelled graph T, let n(T', N) be the number of
equivalence classes of nonisomorphic pairs (7, O,(N)) such that v is a subgraph of
O,(N) isomorphic to I'. Then define p(T') = n(I’, N)/|O,(N)|. In particular, let a
local observer vy (t) be given. Consider the probabilities p(¢,v) = P(Oq(vo(t)) = v)
for finite spin graphs 4. Normally they are different for different local observers
(as we saw in [8]), but the distributions far away from the local observer, as for
example,

— i M Ca®):y~ B v COp(w)}
p(f) = lim O (ec)]
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(for unlabelled ) can be the same for different local observers.

These limits define an unlabelled distribution. Since everything depends on ¢,
this also defines the dynamics of unlabelled distributions.

Time as a reference frame. Time also can serve as a reference frame if we
start with a finite spin graph. Assume first that the vertices cannot disappear.
Then let v; be the ith appearing vertex (in time order). Consider the probability
P(O4(v;) = a) that at time ¢ its d-neighborhood is isomorphic to a fixed finite spin
graph . Then we can consider different functions ¢ = (t) and the limits

Hm P(Oa(vy(p))) = o

it would be interesting to compare them.

If vertices can disappear, then a more general approach is possible. Let Cy{w)
be the spin graph at time ¢ for the trajectory w. For a fixed random trajectory w
one can consider the disjoint union C'(w) = |J, Ct(w) of all graphs appearing during
the time evolution. The vertices of C'(w) are the pairs (v,t), v € Ce{w).

Let us construct a reasonable connected graph, identifying some vertices in
C(w). Each appearing vertex can be characterized by its life time interval [t1, 2],
where t; is the time when it first appeared and t,, when it disappeared. Then we
identify all points (v,t} in C'(w) for fixed v and all ¢ € {¢1, o]

Denote the resulting spin graph (space-time) Ceon{w). Note that the time (of
appearance of the fixed vertex v) could be deduced from Ceon(w) as the scaled
distance (of v) from the initial vertex.

In [8, 5, 6] we considered nontrivial examples of graph evolution, where, more-
over, the unlabelled correlation functions were calculated.
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