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ERGODICITY OF INFINITE SYSTEMS OF
STOCHASTIC EQUATIONS

V. A. Malyshev, V. A. Podorol'skii,
and T. S. Turova

We consider the system of random variables 52, indexed by the lattice points z & Zv,
te=R,, satisfying the system of Ito stochastic equations:

dgt = [by (&) + by (Ei4p)] dt + AW, (V)
where D = (I, = 0, by, . .., In} © 2", &up = (84 - . ., Buy), while the functions b;: R—R and
b;: R¥ — R satisfy the conditions:

a) there exist g, > 0, Q > 0 such that

by (u) > Boy if w < —0Q,

bo () < —Borif  u> Q; (2)

b) the function b, has continuous derivatives up to and including the third order and
for some B, > 0 one has

| b (@) I, 1857 (W) | < Bo(n=1,2,3), ucsR; (3)
¢) the function b; has continuous partial derivatives up to and inlcuding the third
order and for some B; > 0 one has

- a " 42 ~ 33by (7)
@], |5 @), | i 0@ |+ | o | <P

1<i j kEN)- (4)

L]

Assume, in addition, that
H=m, :=2° ")

where n, are random variables such that for some ¢ > 0, C > 0 we have
Mexpia(n,|+ ...+, N<C
for all k= N5z, .. .,25, EZ"; 2, 5= 25, i 7 J.

The fundamental feature of this system is its invariance with respect to the lattice
shifts. Existence and uniqueness theorems for such systems have been considered in [1, 27.
However, ergodicity has been investigated only for linear systems [3], for systems with
monotonicity properties [4], or for similar systems with discrete time [5, 6].

Here we consider the case of a small perturbation of a system without interaction, i.e.
a system of processes, indexed by the points z& Z¥ and independent for various t for any
fixed realization n = {nz}. This system (1) admits complete control: an explicit series
for finite-dimensional limit distributions, exponential convergence, etc.

The fundamental result of this paper consists in the following theorem.

THEOREM 1. Let &, ze=2Zv, t > 0, be the process defined by the system (1), (1') and
assume that the conditions (2)-(4) are satisfied. Then there exist g, > 0,9 >0, t, > 0, such
that for any finite subset X of Z¥, any ¢, |e | <&, any t>1i, t >0, vy =R* we have

| p¥ (¢t + ¢/, vx) — pX (8, vx) | <O ( X e®,
where @ (| X |) >0, p* (i, vx) is the probability density of the process (&, 2= X).
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We note that for an infinite system the transition probabilities P(E,dzﬂ t) are singu-
lar measures. Therefore, the standard methods for proving ergodicity cannot be applied
here. Our methods combine the methods of Lyapunov functions for chains with transition
densities, coupling methods, the parametric method, and the method of cluster expansions.

1. The Exponential Convergence of the Density of an "Unperturbed' Process. THEOREM
2. Let E(t), t=10, ) be a one-dimensional homogeneous Markov process, for which there
exist densities p&v of the probabilities of the transition in time t from the point u to
the point v, and assume that there exist 0 < t; < t,, Q > 0 such that for some nonnegative
function f, monotonically increasing on [0, «), the following conditions hold:

A) there exist B, B > 0 such that

p;v<Beb<mun—fuum, pfw<B, u,veR, <ty (5)

B) there exist E > 0, € > 0 such that
MUUEG+D D) —FIE@ D TF1E@]) =u} < —e, (6)
MFCTEC+D D —FOIEGDPH(IE® ) =u}<E (7)

for any u > Q, LT &,
Then there exist A > 0, § > 0, 0 < h < B, t, > 0 such that

Ip‘“' — Piw | < Ae-Stehitmaxijut, v, (8)

uw

t+t’ t - —F(jw
S|x|>lw‘ ] pu';t — Pix|dz < Ae-Btehlfmaxiful, 1) (lwh] (9)

for all u, v, we=R, ¢ >0, t > ¢,.

The proof of Theorem 2 is based on the following result which is, basically, an ana-
logue of Lemma 1.1 of [7]; we give it without proof.

LEMMA 1. Let n(#),¢e [0, <) be a homogeneous Markov process on a line, for which there
exist transition probability densities ﬂEv and such that for some 0 < t; < t, one has:

A) there exist B > 0, B > 0 such that
T < Bebuo v =R, 4 <1< by

B) there exist E > 0, £ > 0 such that
M+ —n@In@=u < —e
M@+ —m@OF In@) =u}<E

for any ues R, , <1 8,
Then there exist A > 0, o > 0, 0 < h < B such that
PN@>vin(0) =u} < dewervn, u, veR, t>0.

For the proof of Theorem 2 we consider the process (£,(t), £,(t)) on R?, t = 0, t,,
2ty, ..., defined by the densities of the probabilities of transition in time t, from the
point (u, v) into the point (u', v'):

pi‘u’au’v" if u=v,
plzt!u"pf.“v’y if u 5'5 v, (ua U) SE [_ Q’ 0]27
’ 7 ’ ’ 1 . ’ ’
pltsu,vyu,v)={ xu,v;u',v')+ m(pf)u,_x(u, vy u',u’))-

(P — (W, v V', V), if  usED,
(u7 U) = [— Q' Q]Z’
where
% (4, v; W', ') = min {phy, par}

X (u, v) = SR ¥ (w, s ', u') A,

Suv is the §-function on R if one of the variables (u, v) is fixed (§,y = 0 if u = v).
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We mention some properties of the process (£,(t), £,(t)):

10
1) SR ptyu, vy u,v) dv’ = pf}uf, SR p (t; U, U3 w,v)du’ = Pfé‘v/; (10)
2) if (5, (1), & (1) = (u, v) = [—Q, QF*, then
PE(E+t)=850+t)E @) @) =) = SR ptyu, vy u', w)ydu =X (u, v) >0 (11)

3) if g, ()= E, () then E (14 &) = E (@ + tl_)'

LEMMA 2. Let A be the moment when the process (%&;(t), £,(t)) hits for the first time
the set ¢ = {(1, vy & R* u = v}. Then there exist I', Yy, h > 0 such that

PASLIE 01> U, 1& 01> VIE (0, & (0) =@ v) _
& Tt ghlitmaxiful, Wh-fmaxit, V1, YU, V>0, u,ve R. (12)
Proof. Let t = nt,. We set
ﬁ(t; LLO, Uo; unv Un; Tl, vy Tk) )

QG v SG [ :=1p (tl; Ui-1y Vi-1s Uiy Ui)][Hj___._l duJ' dvj] S L
b 1

= n-—

0, w,="vy;

where

G = R\ [—0, 01\ ¢, if ity &E ATy .- Tih

¢, = 1—0, QI \ ¢, it i, = {Ty, .- Tiks
n - .
D (8 Uoy Vo5 Uny Un) = 2‘k=1 2‘0<T,<...<Tkstp (85 Uy Do» Uns Un;
‘ Tiooo0 Ty);
ﬁ(t, Uy, UO; G; Tl’ . e uy Tk) = SG\qﬁ<t; uov vo; u, v, T17 ey Tk) du dU;

(13)
P (t; ug vo; G) = 2:=1 2‘0<T,<..‘<Tk<zﬁ(t’ g Vi Gy Tys oo oy Te)-
We show that for
(g, v0) & [—Q, QFF, @ = [—Q, Q) 5 (8 uo, vo; @) < Tie™,

Ty, ¥ > 0. (14)
Applying Lemma 1, it is easy to show that
P& (), B ED, 7=t 2t ..o &
18, (1> U, 18 0>V (5 (0), & (0) = (u, 1)} < Ae-ctehliomexiful, l-fmaxitl, VI, (15)
Vu,ve=R; U, V>0.
From here, in particular, we obtain: for some K, a > 0 we have
F(t; gy v0s @, ) < Aot (g, vo) E T (16)
From the positive recurrence of the process (£,(t), £,(t)) and (11) there follows

‘_}:;1 B (nty; vy, vyy @; nty) <1 — gy ,whereg, > 0. (17)
From (16) and (17) there follows the existence z, > 1, €, > 0 such that
S 2B (ntg; ug, vy; G nty) <1 — ey, (18)
Taking into account (13) and making use of (18) one can show that

E‘n=1 25 B (nty; uy, v,; Q@) < 2‘,,=1 (1 — &) oo,

which proves (14).
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Now, from (14), (15), and (16) it is easy to derive

SSlxI>U sy P (& o G0t 20y dzdy < Tpevitetitmax (. T (19)

for some Ty, v, >0, (u,, v,) = @. From here and from (15) we obtain the estimate (12).

We proceed to the proof of Theorem 2. From the properties of the process (£,(t), £,(t))
we have

| pf,x —_ pf.x [dx <C 2 SS Pt u, v; z, y) dx dy < 2Te-Vighl((maxtjul, [ohH~fdwh],

S[ac|>|w| x>0, [11>{w}

Then, for ¢, < tv< {;, we have

| BT — phefdz = ISR P Pl dy —§ BT Pl dy| da

<Jx(>[w]

< ply-2Tevexp o [f (max (g [v]h 7 (| w D dy- (20)

Sf2’5|>1u'l

Making use of condition (5), it is easy to derive

4T

| P — phe | dz < T oxp (h f(max qlu |, [v]h) — £ w D]} (21)

S|x|>xw|

for t; < tv<t, and for some T > 0.
If t' > t,y, where t, satisfies:t1<§t0([%§] +—1y1<it2,T== {%;] + 1, then
T , g
P —phelaz <§ B AT — pE T de

SIJ=|>|"7l l f=l>fwl = k

L AjemVexp {& [f (max {| u | v 1) —f(|w)]}where Ay > 0.

In a similar manner, for t', t" > t, we obtain

ooy | P — P [dz < Ao exp (k[ (max ([u . [0 ]) — F ()]

from where there follows the validity of (9).
Statement (8) follows from the boundedness of pﬁv for t;, <t {, and from the inequality
Pt — pho| < | PU T — P |
The theorem is proved.

2. Properties of the Density of the Transition Probability of the "Unperturbed'' Process.
We consider the equation

dEs = b, (8) dt + AWy, (22)

where the function b, (u), u & R satisfies the conditions (2), (3). It is known (see, for
example, [8]) that under the indicated restrictions on b, the process & has transition den-
sity po(t, u,v), t>0,u,v &R such that there exist (d/dt)p, (¢, u, V), (8/6u)py (t, u, V), (8%/6ud)p, (¢
u,v), >0, u,v= R, and p,(t, u, v) is bounded on any segment [t,, t,], 0 < t; < t, < o.

L]

LEMMA 3. There exist o,, 0, > 0 such that

1

Polt, u, v) <l eoit v e (u-t)/2t0; (23)
4 L o u—-r)2/2t-0,
= Do (6w, v) | < o0t — e-(w-v/2to (20

for all t>0,u,ve R
LEMMA 4. There exist h > 0, §, 04 > 0, T > 0 such that
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pO (t1 u, U) < 0’31

| Po (t. 1. v) | < oetrent
for t>T, u,ve R

LEMMA 5. Let T be the quantity defined by Lemma 4. Then there exist o, h, A > 0 such
that

SR P (8, u, v)etltldy < detl, > 0; (25)
] . 1 . :
| pett s u)|ehmdu<A e, 0 e < T (26)

C oy

R (27)

The proofs of these lemmas carry a purely technical character and we omit them.

3. Existence of the Densities of the Transition Probabilities for §§, 2z Z¥.  Let A
be a bounded subset of Zv, and let D ¢ A. We consider the system

gé == 01 2 $ A;
dE; = [by (B)) + by (Ehap)] dt + dWE,  ze A (28)
B = u,;

where ju, | << C,z= A. This system defines a process on RMI, whose transition function has
density pA (t, u, v), u == {u,, ze= A), v= (v, ze= A), satisfying the inverse Kolmogorov equation
(the proof of this fact for |A| < « is similar to the proof in the one-dimensional case (see,
for example, [8]). Thus,

28 (¢ u, v) = (Hy -+ eHy) p (¢, ), (29)

a 1 o2 g .
h ==S .—,———‘—E ———,H=; b ~—_ The d ty of the " turbed"
where H, zeAbO (uz) 7u 5 n T 1 A l(uzm)duz e density o e ''unperturbe

process, satisfying the equation (¢ = 0)
2 At u,v) = Hoph (1,1, ),
will be denoted by p%. Since each solution of the equation

p* = pp + e@pt, (30)

where (®p4) (¢, u, v)=St

OS Al ot —s, u, ut) HpA (s, u!, v) dulds, is a solution of equation (29), it
R

follows that the solution of (30) is unique (see, for example, [9]). It is clear that in
the case of the convergence of the series
P (31)

where @%p2 = P, ®pl = OdD-1p} (k =1,2, ...), this solution has the form

pr =5 e p).
LEMMA 6. The series (31) converges absolutely for each ¢, |A]| < » and uniformly with
respect to u, ve RIA for all ¢, >0, t > ¢

Proof. By definition,

A8 Sp_a
Opp tu ) = 3 § 0 pd sy — s u, -

Z=(21y ..y 7)2AK o

. H:_;l [bl (t2,+) -—az-i— Po (85 — sisr U, ui*l)] dut. .. du* ds, (32)
2

NE]
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where s, = ¢, s =0, u'=u, Ul =, df == ds; ... ds;.

From (32) it is easy to obtain
k_A S Sp-1
|0 pt (b s )| < Y kSO...S (T

Sm—ieA 0
: B $i— Siaps i dud L. dul) 5.
{Hi: 7=y 1 }{H’ ziséypo_( 1y Yy Ly )} y y)
From here and from (25)-(27) we find

1
S Po(t — Sps Uy uy) .
YEiZn 0 2} YR

a i i+1
7 Po (8; = Sis1» Uy, Uy )
¥

at -1 ARz wees 25}
I(ka(l’\(t,u’v)‘<z X ...So Alﬁs .

7=Ak vo
(uy=vy)*
__2?__0}
hiuyl s YA e dF,
-{HUEM, o A (IT, oy BAF (51 = 5102 4) — (33)
where A, > O,
1V, o< T
Fo —{ et 1>T;
therefore,
) k/2
| 0F pp (8, u, v) | <[ AJF ebnS ol e (34)

k !
[z):
for some S = S(t,) > 0, from where we obtain the assertion of the lemma. The lemma is
proved.

Assume further that X = {x;, ..., Xm}- We consider

pA' X(t1 UA, UX) =S

vx =RX y, =R

A
el v

Rrial-m

LEMMA 7. There exists

lim pA' X (tv UA, UX) = PX (t7 u, UX);
Atzvy

u=(u,z&2"), lu|<C =2 (35)

Proof. By virtue of Lemma 6 we have
A =S ok koA .
Sﬁw-m P (¢, u, v) HzeA.\x dv, = 2k=oa SRIAI—m O py (¢, u, v)
oo ¢ Sk _ :
) HzeA\X dv, = Zk=o of deAk So' - So 6 5k ou, ) - [.HzeA\X d”z;l ds, (36)

where

o6, %,k u,v)= S

3 i
A H i 9 A 1 k
Po (£ — sy, u, ul) ( i1 [bl (uz;4) ot P (8i — S U U +1]> dut...du®.

Ak
riAjs Z;

Definition. By a cluster of power k with vertex X we shall mean any vector z = (zl,
.» 2k) such that 7z e Zv* and

1) ZkEX,
2) se{Uy{m+DNUX (=1 .., k=1

Clearly, the summation in (36) is carried out in fact only over those z which are clus-

ters, the number of which does not exceed Mk, M being a constant that depends on m, v, N
(see [10]).
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Thus, taking into account (34), we obtain

tk-l/Z
k !
=]

for some S; > 0, i.e., the series (36) converges uniformly with respect to |aA] > 0. From

here there follows the possibility of taking the limit lim under the summation sign of the
1Afsoo

(37)

l § Cka;? (¢, u, v) Hz@\\x dv, | < 'MkaU;"eth

YRplAl-m

series (36); further, from the fact that

SRlAl-m D*pg (2, u, V) H.—eA\X dv. = S @ pi (t, u, v) stTs\x dv:, (38)

RIK |-m

for all sufficiently large |A|, |A|, we obtain the assertion of the lemma.
4. The Exponential Convergence of pX(f, u, vx) for t - =,

THEOREM 3. There exist g, >0, # >0, such that for any finite subset X of ZV and any
e, le] < €y, there exist £, >0, ©® =0 (] X |) >0, such that

] PX (t + t’9 u, v.\‘) ha P‘\' (ts u, U_\‘)I < ee—ﬁt,

where px(t, u, VX) is the density of the finite~dimensional distribution of the process E,tz:,
z & X, satisfying the system of equations (1) with initial conditions & = u,, ju, |<C. 2 ZV.

Proof. By virtue of the absolute convergence of the series (36) and the equality (38),
we have

| pX (¢ +t's u, vx) — pX (¢, u, vx)| <|Hzéxp0(t + ¢t uy, vy — Hzex Do {ts Uz v:)l

k4

o A , A,
+ 2k=1 ef ISRIA,,.Q-m ((kao Y4t u, v)— D py ¥ (¢, u, v) HzeAk\X dv,

where Ay = |- (Jim {2; + D}}, while z is a cluster of power k with vertex X. Now we estimate

S ZE—cluster(zca)k_l Sn' n Sn [S: o S:H <Hve«zx, 2 UX

L.
AT,y 2o o1 s e ) )05 4§75 G T, § om0 )
[T pms B ]

. {Hf: 2y Do (S; = Siaps u;’ u;ﬂ)} dul}j N du;] d§] Hu& N dv,.

the difference

A ’ A
‘ SRIAkI—m (@*po* (¢ + ¢/, w, v) — @ po* (2, u, ) stA;;\X dv,

a iit
a Po(S; — Sispy Uys Uy )
Y )

: (SRk | Po ¢+t — 53, uy, wy) — po (t — §1, Uy, “’L)I : {Hi: 2.y B,

4t
t

i i
Do {8i — Sis1s Uy, Uy

A
auy

With the use of the previous estimates we obtain

A, , . Ay
15, e @0 (¢ ¢ 0, 0) = @ 0 ) [ e

< M"'etho},"S'g {SZ e Szk_l (H:;o F(s; — 3i+1)) 45 -+ S:_H, s S?—l (H:'c=1 Fo(si— si+1)) dE} ’ (39)

where S, > 0 is some constant, which, in turn, does not exceed

. m ek ¥ t .
M (exp {ACKY) o S;(e-ﬁ-%ﬁ;/%—ﬂ”) for k> 5,0, 9,0,

and

. : t
MFeiCigy Sge-tt  for k<

where T is defined in Lemma 4.
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From here
| p? (L + 1 u, vx) — ¥ (1 u, vx) | < Amoy e ¥elC + 03’ A'e?",
A ALY >0,
which concludes the proof of Theorem 3.

Proof of Theorem l. We note that
p¥ (¢, vx) = M;.jpx (¢, &% vx).

Further, from the assertion of Lemma 1 we find that the constant h can be selected so that
0 <h < a Now it is easy to obtain the assertion of the theorem: for this it is suffi-
cient to consider the system (1) with an arbitrary fixed initial condition n' and then to
repeat the proof of Theorem 3, making use, instead of the estimates

Hz=z,. s 2y ehluz‘ < ehck
in the formulas (33), (34), and (37), the estimates

ML, e <M, ..

ea’ull} <"

K
The theorem is proved.
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