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We consider Newtonian dynamics of N charged particles on the circle with near-
est neighbour interaction with Coulomb repulsive potential r− 1. Also there is an
external accelerating force which is non-zero only on a small part of the circle.
We construct homogeneous solutions where the velocities of all particles are ap-
proximately equal and their density is approximately uniform. This gives a qualita-
tive mathematical model for some features of the direct electric current, in agree-
ment with a suggestion by R. Feynman. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789542]

I. INTRODUCTION

The most developed part of mathematical statistical physics is the theory of equilibrium (Gibbs)
states on discrete lattices. This science is based on simple axioms followed by many solved problems,
including very difficult. However, in nonequilibrium statistical physics in continuous space there are
problems not even formalized on the mathematical level.

One of such examples is the direct electric current (DC). On the macro-level it is described by
Ohm’s law and, on the micro-level, it is often presented as the classical system of free or weakly
interacting electrons, each accelerated by the constant external force and impeded by external media.
There is an abundance of such models: the first such model refers to Drude, 1900, one can find it in
any textbook on condensed matter physics see, for example, Ref. 1. Recent papers deeply investigate
possible friction mechanisms see, for example, Refs. 2–4. Here, on the contrary, we ignore this
friction problem but turn to another fundamental problem.

The question arises where the accelerating force comes from because among 100 km of power
lines the external force acts only on some meters of the wire. Here, what one can read in the
“Feynman lectures on physics” (Vol. 2 of Sec. 16-2):

“...The force pushes the electrons along the wire. But why does this move the galvanometer,
which is so far from the force? Because when the electrons which feel the magnetic force try to
move, they push – by electric repulsion – the electrons a little farther down the wire; they, in turn,
repel the electrons a little farther on, and so on for a long distance. An amazing thing. It was so
amazing to Gauss and Weber – who first built a galvanometer – that they tried to see how far the
forces in the wire would go. They strung the wire all the way across the city....”

This was written by the famous physicist. However, after that, this “amazing thing” was vastly
ignored in the literature. Many more questions arise. For example, why DC moves slowly but such
stationary regime is being established almost immediately. Here, we are occupied with the first
one (some results concerning the second problem see in Ref. 7). Namely, we want to demonstrate
rigorously that even on the classical (non-quantum) level there is a mere possibility that the stationary
and space homogeneous flow of charged particles may exist as a result of self-organization of strongly
interacting (via Coulomb repulsion) system of electrons.

We use only classical nonrelativistic physics – Newtonian dynamics and Coulomb’s law, but
also the simplest friction mechanism, ignoring where this friction mechanism comes from. Rigorous
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models of strongly interacting electron systems, interacting also with the ionic lattice, do not exist
now.

A. The Model

We consider N point particles i = 1, 2, . . . , N initially at the points

0 ≤ x1(0) < · · · < xN (0) < L

of the interval [0, L] ∈ R. We assume periodic boundary conditions that is we consider the circle SL

= [0, L) of length L. The trajectories xi(t) are defined by the following system of N equations:

M
d2xi

dt2
= −∂U

∂xi
+ gF(xi ) − a(

dxi

dt
). (1)

The interaction U between the particles is

U ({xi }) =
N∑

i=1

V (xi+1 − xi ),

where of course xN + 1 = x1 and

V (x) = V (−x) = α

r
> 0, r = |x |.

The case α > 0 corresponds to the Coulomb repulsive potential that we consider here. Then the
repulsive force is

f (r ) = −dV (r )

dr
= αr−2.

It follows that the particles, during the movement, cannot change their order. gF(x) – an external
accelerating force (assumed sufficiently smooth) with scaling parameter g > 0. The friction function
a(v) is specified below. It defines the loss of kinetic energy via the interaction with external media.

It is well known that the solution of the system (1), for any initial conditions, exists and is
unique on all time interval [0, ∞), under sufficiently general assumptions on the functions F and a.
However, to get more detailed information about trajectories, one needs sufficient efforts.

II. EFFECTIVE FORCE

A. Parameters and constants

Throughout the paper, we are dealing with macro- and micro-parameters and (absolute) con-
stants. Absolute constants do not depend on the parameters of the model.

All our constructions are for N sufficiently large but finite – one cannot directly perform the
limit N → ∞ because there will be different micros-cales, influencing on the macro-parameters.
Macro-parameters L and F(x) are fixed (do not depend on N), for example, we put

C(F, m) = max
x

|F (m)(x)|, m = 0, 1, 2,

and put for convenience

C(F, 0) = 1.

Roughly speaking, our first approximation dynamics is

xk(t) = xk(0) + V t,
dxk(t)

dt
= V,

where V is a macro-parameter (the approximate velocity of particles).
Micro-parameters

M = M (N ), g = g(N ), α = α(N )
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depend on N (they satisfy some conditions defined below), but we will omit index (N). For example,
in some physical situation (in SI units) approximately

N−1 = 10−10, M = 10−30, α = 10−28.

These numbers were some guide for us, but we could not fit them completely – g had to be assumed
smaller than necessary.

B. Static configurations

For any particle configuration (xi = x (N )
i , vi = v

(N )
i ),

0 ≤ x1 = x (N )
1 < · · · < xN = x (N )

N < L

the effective force, acting on the particle i, is

wi − a(vi ),

where

wi = w(xi−1, xi , xi+1) = f (xi − xi−1) − f (xi+1 − xi ) + gF(xi ).

The following crucial result depends only on the parameter Cα,g = α − 1g.

Lemma 1: Assume Cα,g fixed or bounded as N → ∞, then for any sufficiently large N there
exists configuration x1 < · · · < xN (assuming zero velocities) such that the effective force is the same
for all i = 1, . . . , N, that is, there exists w such that

f (xi − xi−1) − f (xi+1 − xi ) + gF(xi ) = wi = w, i = 1, . . . , N . (2)

Moreover, for this configuration the following properties hold:

1. uniformly in i = 1, . . . , N as N → ∞,

�i = xi+1 − xi ∼ L

N
;

2. for any i denote �i = �(1 + δi), �1 = �. Then for all i,

|δi | ≤ 4α−1gL0�,

where L0 is the length of the support of F(x).

Proof: Let us call ψ(x) = gF(x) − w the virtual force. Then the required configuration can be
interpreted as a fixed point of N particle system for the external virtual force. The virtual force is
potential iff ∫

SL

ψ(x)dx = g
∫

SL

F(x)dx − Lw = 0. (3)

Then the (virtual) potential of the virtual force is

W (x) = −
∫ x

0
ψ(x)dx

and a required fixed point exists as a global minimum (in RN) of the potential

U (x1, . . . , xN ) +
N∑

i=1

W (xi ).

If such minimum is not unique, we take anyone.
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The effective force w > 0 can be found from condition (3). At the same time, summing
up Eq. (2), we get

g
N∑

i=1

F(xi ) − Nw = 0.

Thus, the constant effective force equals

w = g
1

L

∫
SL

F(x)dx = g
1

N

N∑
i=1

F(xi ). (4)

Assertion 1 of the lemma was proved in Theorem 1 of Ref. 5, see also Ref. 6. Now let us prove
the assertion 2 of the lemma. Summing up Eq. (2) for i = 2, . . . , k, we get

f (�(1 + δk)) − f (�) =
k∑

i=2

(gF(xi ) − w)

or

(1 + δk)−2 − 1 = α−1�2
k∑

i=2

(gF(xi ) − w).

Then

δk = [1 + Qk]−
1
2 − 1 =

∞∑
m=1

am Qm
k , Qk = α−1�2

k∑
i=2

(gF(xi ) − w), (5)

(−1)mam = 1.3 . . . (2m − 1)

2mm!
= (2m)!

(2mm!)2
∼ 1√

πm
, |am | ≤ 1, (6)

and

|w| ≤ g
L0

L
, |

k∑
i=2

(gF(xi ) − w)| ≤ (1 + L0

L
)g(k − 1). (7)

It follows that for sufficiently large N,

|δk | ≤
∞∑

m=1

(α−1(1 + L0

L
)gL0�)m = α−1(1 + L0

L )gL0�

1 − α−1(1 + L0
L )gL0�

≤ 2(1 + L0

L
)α−1gL0�,

if α−1(1 + L0
L )gL0� ≤ 1

2 . The lemma is proved.

Remark 1: The assertion 1 of Lemma 1 says that the asymptotics of �k does not depend on F.
We say in this case that F is not seen on the micro-scale N− 1 but only on the sub-micro-scale, see
Refs. 5 and 6. It follows that the density is macro-homogeneous. However, as it is clear from (5)
and (6), on the interval where F(x) = 0, the distances between particles slightly increase in the
clock-wise direction.

III. MAIN RESULT: MACRO-HOMOGENEOUS DYNAMICS

For any sufficiently large N we shall prove, for some special initial conditions, existence of the
dynamics for t ∈ [0, T), T = T(N) ≈ N, which we call macro-homogeneous on [0, T), this means that
that the following two properties hold as N → ∞:

1. (asymptotically homogeneous velocities) There exists constant (one more macro-parameter)
V > 0 such that uniformly in i = 1, 2 . . . , N and t ∈ [0.T) the velocities

vi (t) = v
(N )
i (t) → V,
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2. (asymptotically homogeneous density) uniformly in t ∈ [0.T), for any interval I ⊂ SL the
number N(I, t) of particles in I,

N (I, t) ∼ |I |
L

N .

A. Assumptions

We choose the simplest friction mechanism defined by the function which is linear in the (micro)
vicinity of the macro-parameter V ,

a(v) = A0 + Av, v ∈ (V − �, V + �),

where A0 and A > 0 are micro-parameters, coordinated with macro-parameter V , and micro-
parameter w so that

a(V ) = A0 + AV = w > 0. (8)

Concerning the parameters, roughly speaking, there are two assumptions: g is small enough, in
particular, g 
 A and

N−1 A2α−1 
 M 
 min(αN−1, A).

More exactly, it can be formulated as follows. For any sufficiently large N and some sufficiently
small absolute constant ρ > 0,

N−1 A2α−1ρ−1 < M < ρ min(αN−1 1

ln N
, A), (9)

CA,g = A−1g ≤ ρN−3. (10)

In particular, we will use below the first inequality in (9) more concretely

MαN

A2
> (16(2π )2)−1. (11)

The following example shows that these inequalities provide non-empty and natural domain of
parameters

g = N−γ1 , α = N−γ2 .M = N−γ3

with constants γ 1 > 2, γ 2 > 0, γ 3 > 0 and such that

γ1 > γ2, 1 + 2γ1 − γ2 > γ3 > max(1 + γ2, γ1).

Put also

Cw,g = w−1g = L

C(F, int)
, C(F, int) =

∫
F(x)dx . (12)

B. Initial conditions

We fix the initial configuration for the required dynamics as vi = V and xi are chosen as in
Lemma 1, that is,

xk+1(0) − xk(0) = �k, w = α�−2
k−1 − α�−2

k + gF(xk(0)),

and it is convenient to choose the coordinate system by x1(0) = 0. Thus, the initial effective force is
zero.

We could choose the initial velocities as

vk(0) = V + uk(0),

where uk(0) could be assumed sufficiently small, but for convenience we always assume uk(0) = 0.
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C. Main result

Theorem 1: Assume (8) and (9)–(10). Then for the chosen initial conditions (explicitly defined
in Sec. III B), there exists β > 0, not depending on N, such that the dynamics is macro-homogeneous
on the time interval [0.T), T = TN = βN.

D. Plan of the proof

Choosing initial configuration xk(0) is a delicate matter. We did it in Sec. III B, so that the
effective forces acting on each particle are the same at time 0. The dynamics xk(t) = xk(t) + V t,
k = 1, . . . , N , does not satisfy the main equations and we derive (in Sec. IV) the equations for the
deviations yk(t) = xk(t) − xk(0) − V t . It is very important that our choice of the initial conditions
allows to exclude the constant component of the effective force in the equations for yk(t).

We fix the basic linear part of these equations for yk(t) and solve them (Sec. V). It is rather
straightforward but demands delicate estimates. The rest linear and nonlinear parts of the equations
are considered as the perturbation and demand some iteration procedure. Section VI is devoted to
convergence of this procedure and to stability estimates. To prove this, we introduce special Banach
space where the convergence holds, that also demands some nontrivial estimates. There are many
similarities in the estimates – we tried not to repeat them. Finally, in Sec. VII, we give some remarks
and perspective.

In the rigorous proof, we tried to be very accurate with micro-parameters, that is with the
parameters depending on N. Absolute constants (we will meet finite number of them) are denoted c,
c1, c2, . . . and could be easily explicitly written but we did not do this because of no interest. Also
sometimes we denote C(F) a generic macro-constant depending only on F. Starting from Sec. V,
we take L = 1.

IV. EQUATIONS FOR THE DEVIATIONS

As the force F(x) is not translation invariant, the dynamics xk(t) = xk(0) + V t cannot satisfy
Eq. (1). We introduce the deviations yk(t) and their velocities uk(t) by

xk(t) = xk(0) + V t + yk(t), yk(0) = 0,

vk(t) = dxk

dt
, uk(t) = dyk

dt
= vk(t) − V, yk(t) =

∫ t

0
uk(t)dt,

and rewrite the main equation (1) as equations for the deviations

M
d2 yk

dt2
= f (�k−1(0) + yk(t) − yk−1(t)) − f (�k(0) + yk+1(t) − yk(t))+

+ gF(xk(0) + V t + yk(t)) − a(V + uk(t)). (13)

For any function h(k) on the finite cyclic group {k : k = 1, . . . NL}, with zero element NL = 0,
introduce the shift operator

(Sh)(k) = h(k + 1)

and finite difference operators (discrete derivatives),

∇kh(k) = ∇h(k) = ∇+h(k) = h(k + 1) − h(k), (∇−h)(k) = h(k) − h(k − 1),

in particular,

∇ yk(t) = yk+1(t) − yk(t).
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Sometimes, we will use Leibnitz formula for discrete derivatives (concerning calculus of finite
differences see Ref. 8 and references to classical papers therein),

∇( f1 . . . fn) = (∇ f1)S( f2 . . . fn) + f1∇( f2 . . . fn) = · · · =
n∑

m=1

f1 . . . fm−1(∇ fm)S( fm+1 . . . fn).

(14)
Note that it differs from the standard Leibnitz formula for differentiation only by shift operators. As
we will use it only for estimates from above, which are always uniform in k, the shift operators will
not play role.

Then

f (�k−1(0) + yk(t) − yk−1(t)) − f (�k(0) + yk+1(t) − yk(t)) = α(−∇−)(�k(0) + ∇+yk)−2 =

= α(−∇−)(�−2
k − 2

∇+yk(t)

�3
k

) + L3 (15)

L3 = α(−∇−)[(�k(0) + ∇+yk)−2 − �−2
k + 2

∇+yk(t)

�3
k

].

Formally,

L3 = α(−∇−)�−2
k

∞∑
m=2

dm(
∇+yk(t)

�k
)m, dm = (−1)m(m + 1). (16)

Applying − α∇ − to the first and second terms in the right-hand side of (15), and putting

δ1
k = (1 + δk)−3 − 1,

we have

−α∇−�−2
k = −α(�−2

k − �−2
k−1),

α(−∇−)[−2�−3
k ∇+yk(t)] = 2α[�−3

k ∇+yk(t) − �−3
k−1∇+yk−1(t))] =

= 2α�−3[(1 + δk)−3(yk+1 − yk) − (1 + δk−1)−3(yk − yk−1)]

= 2α�−3[yk+1(t) − 2yk(t) + yk−1(t)] + L2,

where

L2 = 2α�−3∇−[δ1
k ∇ yk].

Then the main equations become

M
d2 yk

dt2
+ A

dyk(t)

dt
+ [α�−2

k − α�−2
k−1 − gF(xk(0)) + w] − 2α�−3[yk+1 − 2yk + yk−1)] =

= L2 + L3 + gF(xk(0) + V t + yk(t)) − gF(xk(0)) − A
dyk

dt
).

As the first square bracket (that is the “effective acceleration force”) is zero, we get the final form of
the (differential-difference) equations

M
d2 yk

dt2
+ A

dyk(t)

dt
− 2α�−3[yk+1 − 2yk + yk−1)] = L1 + L2 + L3 + gφk(t), (17)

where

φk(t) = F(xk(0) + V t) − F(xk(0)),

L1 = g[F(xk(0) + V t + yk(t)) − F(xk(0) + V t)].
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First of all, we shall study in detail a cut-off system

M
d2 yk(t)

dt2
+ A

dyk(t)

dt
− 2α�−3[yk+1 − 2yk + yk−1)] = gφk(t), (18)

which we call the basic linear approximation and consider Li, i = 1, 2, 3 as perturbation terms. We
take them into account in Sec. VI.

V. LINEAR STABILITY

From now on we put L = 1, N = N1. Denote yk, 0(t) the solution of Eq. (18).

A. Fourier transform

Denote

�(h) = �(h)(n) = 1

N

N∑
k=1

hk exp(2π in
k

N
), (19)

the Fourier transform

� : l2({ k

N
: k = 1, . . . , N }) → l2({n = 0, 1, . . . , N − 1})

of the function h = hk on { k
N : k = 1, . . . , N }. The inverse Fourier transform is

hk =
∑

n

�(h)(n) exp(−2π in
k

N
). (20)

Put

η(n, t) = �(yk,0(t)), φ̃(n, t) = �(φk(t)).

Multiplying (18) on 1
N exp(2π in k

N ), summing in k and dividing by M, we get the decoupled equations
for n = 0, 1, . . . , N − 1,

d2η(n, t)

dt2
+ A

M

dη(n, t)

dt
+ 4α

M
�−3(1 − cos 2πn

1

N
)η(n, t) = M−1gφ̃(n, t). (21)

The characteristic equation

Q(z) = z2 + A

M
z + 4α

M
�−3(1 − cos 2πn

1

N
) = 0

has the roots

z1,2(n) = − A

2M
(1 ±

√
1 − 16Mα

A2�3
(1 − cos 2πn

1

N
)), (22)

If

1 − 16Mα

A2�3
(1 − cos 2πn

1

N
) �= 0,

then the roots are different and the general solution is

η(n, t) = η1(n, t) + η2(n, t),

where for l = 1, 2

ηl(n, t) = Cl (n)ezl t + ezl t

Q′(zl)

∫ t

0
e−zl t1 M−1gφ̃(n, t1)dt1 =

= Cl (n)ezl t + M−1

2zl + A
M

∫ t

0
ezl (t−t1)gφ̃(n, t1)dt1 = Cl(n)ezl t + rl(n)g

∫ t

0
ezl (t−t1)φ̃(n, t1)dt1,

(23)



023301-9 V. A. Malyshev J. Math. Phys. 54, 023301 (2013)

where

rl(n) = (−1)l 1

A
2

√
1 − 16Mα

A2�3 (1 − cos 2πn 1
N ))

. (24)

As yk(0) = 0 we have

C2 = −C1,

Introduce the Fourier transform of uk(0),

η′(n, 0) = ∂η(n, 0)

∂t
=

∑
l=1,2

Cl(n)zl(n) = C1(n)(z1 − z2).

It follows:

|C1| = |C2| = | η′(n)

z1 − z2
| ≤ M

A
|η′(n, 0)|.

From now on we assume for simplicity that uk(0) = 0 for all k, then

C1 = C2 = 0.

B. Main “linear” lemmas

If

16Mα

A2�
(2π )2 > 2

(guaranteed by the left inequality of (9)), then for any n �= 0 the roots z1, 2(n) are complex conjugate.
In the linear case, we need only boundedness of CA,g and Cα,g and condition (9). Under these

conditions, we will prove the following.

Lemma 2:

|η(0, t)| ≤ �2(t + 1)CA,g(C(F) + 4Cα,g) (25)

and for any n �= 0,

|η(n, t)| ≤ c

n
CA,g

√
M�

α
. (26)

Proof: We have for n �= 0,

�z1(n) = − A

2M
,

ηl(n, t) = rl(n)
∫ t

0
ezl (t−t1)gφ̃(n, t1)dt1.

As, by the left inequality in (9), Mα
A2�

is sufficiently large, and 1 − cos 2πn 1
N > c1( n

N )2 for some c1

> 0 and any n �= 0, then for l = 1, 2 from (24) we have

g|rl(n)| = 2CA,g| 1√
1 − 16Mα

A2�3 (1 − cos 2πn 1
N ))

| ≤ 2CA,g√
16Mα
A2�3 ( n

N )2c1

.
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Then

|η1(n, t)| ≤ 2CA,g√
16Mα
A2�3 ( n

N )2c1

|
∫ t

0
ez1(t−t1)dt1| = 2CA,g√

16Mα
A2�3 ( n

N )2c1

|�z1|−1(1 − e�z1t ) ≤

≤ c
1

n
CA,g

√
M�

α
. (27)

For n = 0, we have by (22) and (24),

z1(0) = − A

M
, z2(0) = 0, |r1,2(0)| = 2

A
(28)

and we need the following.

Lemma 3: For n = 0, we have

sup
t

|φ̃(0, t)| ≤ �2C(F, 2) + 8C(F, 1)Cα,g�, (29)

|
∫ t

0
φ̃(0, t1)dt1| ≤ �2(2(t + 1)(Cα,g + C(F, 2)) + 2C(F, 1)). (30)

From (28) and this lemma, we get

|η1(0, t)| = g|r1(0)‖�z1(0)|−1 sup |φ̃(0, t)| ≤ 2CA,g
M

A
(�2C(F, 2) + 8C(F, 1)Cα,g�) ≤

≤ 2CA,g(
M

A
�2C(F, 2) + 8C(F, 1)�2)

as M
A Cα,g < � by (9). Also

|η2(0, t)| = g|rl(0)
∫ t

0
φ̃(0, t1)dt1| ≤ 2CA,g�

2(2(t + 1)(Cα,g + C(F, 2)) + 2C(F, 1))

|η(0, t)| ≤ |η1(0, t)| + |η2(0, t)| ≤ �2(t + 1)CA,g(C(F) + 4Cα,g),

where

C(F) = 6C(F, 2) + 24C(F, 1).

Now we can prove the following.

Lemma 4: Uniformly in k,

|yk,0(t)| ≤ cCA,g

√
M�

α
ln N + �2(t + 1)CA,g(C(F) + 4Cα,g)

|∇ yk,0(t)| ≤ cCA,g

√
M�

α
ln N ,

|∇2 yk+1,0(t)| ≤ cCA,g

√
M�

α
ln N .

This is the direct calculation via Fourier transform. We use inverse Fourier transform (20), thus
we have only to sum up the terms of Lemma 2, this gives

|yk,0(t)| ≤
∑

n

∑
l=1,2

|ηl(n)|.

We see that the main term corresponds to the zero mode. Noting that

�(∇ yk,0(t)) = η(n, t)(e−2π i n
N − 1),�(∇2 yk,0(t)) = η(n, t)(e−2π i n

N − 1)2 (31)
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and

|∇ yk,0(t)| ≤
∑
n �=0

∑
l=1,2

|ηl(n, t)(e−2π i n
N − 1)|, (32)

|∇2 yk,0(t)| ≤
∑
n �=0

∑
l=1,2

|ηl(n, t)(e−2π i n
N − 1)2|. (33)

We see that for the first and second differences the zero mode vanishes, which gives better estimate.
The lemma is proved.

C. Proof of Lemma 3

To prove (29) note that for any t there is m(1, t) such that

xm(1,t)(0) ≤ x1(0) + V t < xm(1,t)+1(0)

and denote

γ = x1(0) + V t − xm(1,t)(0) = V t − xm(1,t)(0).

Put m(k, t) = m(1, t) + (k − 1). Then

xk(0) + V t − xm(k,t)(0) = γ + ηk (34)

and uniformly in k,

|ηk | ≤ 8Cα,g�.

This follows from (5) and the evident formulas

xk(0) = x1(0) +
k−1∑
i=1

�i =
k−1∑
i=1

�(1 + δi ) = (k − 1)� + �

k−1∑
i=1

δi

xm(k,t)(0) = xm(1,t)(0) + (k − 1)� + �

m(k,t)−1∑
i=m(1,t)

δi

xk(0) + V t − xm(k,t)(0) = γ + �(
m(k,t)−1∑
i=m(1,t)

δi −
k−1∑
i=1

δi ).

Then, we can write

φ̃(0, t) = 1

N

∑
k

(F(xk(0) + V t) − F(xk(0)) = 1

N

∑
k

(F(xk(0) + V t) − F(xm(k,t)(0)) =

= 1

N

∑
k

F (1)(xm(k,t)(0) + θk)(γ + ηk),

where |θ k| ≤ γ + |ηk| and we used (34). But

1

N

∑
k

F (1)(xm(k,t)(0) + θk) →N→∞
∫

S1

F (1)(x)dx = 0

and, moreover,

| 1

N

∑
k

F (1)(xm(k,t)(0) + θk)|γ = | 1

N

∑
k

F (1)(xm(k,t)(0) + θk) −
∫

S1

F (1)(x)dx |γ ≤

≤ C(F, 2)�γ ≤ C(F, 2)�2

| 1

N

∑
k

F (1)(xm(k,t)(0) + θk)ηk | ≤ C(F, 1)8Cα,g�.
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Finally, the bound is

C(F, 2)�2 + C(F, 1)8Cα,g�.

To prove (30) is more difficult: one should obtain maximal cancellation by carefully grouping
the summation and integration terms. Denote

bm = min(�m−1,�m), Im = (xm(0) − bm

2
, xm(0) + bm

2
) ⊂ S1.

For any pair (k, m) and any t define the set T(k, m) = T(k, m, t) ⊂ [0, t] as follows: t1 ∈ T(k, m) iff

xk(0) + V t1 ∈ Im, t1 ≤ t.

Note that for given k the sets T(k, m), m = 1, . . . , N, are disjoint, similarly for given m the sets T(k,
m), k = 1, . . . , N, are disjoint. The set T(k, m) consists of disjoint intervals

Ji = Ji (k, m), i = 1, 2, . . . , β = β(k, m, t),

enumerated in the order of their hitting (imagine a particle starting at xk(0) and moving with constant
speed V ), and β = [tV ] + 1 or β = [tV ] + 2. All these intervals have length |Ji | = V −1bm , except
J1(k, k), having length 1

2 V −1bk (we call them initial intervals) and, for given k, possibly one of the
others (namely, Jβ , we call them end intervals), which length can be less than V −1bm . We call the
intervals Ji(k, m), having length bm

V , regular, the others – non-regular.

Lemma 5: The sets T1(k) = [0, t]\∪mT(k, m), k = 1, . . . , N, and T2(m) = [0, t]\∪kT(k, m),
m = 1, . . . , N, have measure less than 2(t + 1)Cα,g�

2.

In fact, from (5) it follows that

δm − δm−1 =
∞∑

l=1

al (Ql
m − Ql

m−1) = −α−1�2(gF(xm) − w) +
∞∑

l=2

al(Ql
m − Ql

m−1)

|δm − δm−1| ≤ 2Cα,g�
2. (35)

Then the assertion follows from

|�m − �m−1| = �|δm − δm−1| ≤ 2Cα,g�
3,

N∑
m=1

|�m − �m−1| ≤ 2Cα,g�
2.

Lemma 5 is proved.
We can write

∫ t

0
φ̃(0, t1)dt1 =

∫ t

0
dt1

1

N

N∑
k=1

(F(xk(0) + V t1) − F(xk(0)))

= 1

N

∫ t

0
dt1(

N∑
k=1

F(xk(0) + V t1) −
N∑

m=1

F(xm(0))) =

= 1

N

N∑
k=1

(
N∑

m=1

β∑
i=1

∫
Ji (k,m)

+
∫

T1(k)
)F(xk(0) + V t1)dt1 − 1

N

N∑
m=1

t F(xm(0)) (36)

and for any m,

t F(xm(0)) = F(xm(0))(
N∑

k=1

β∑
i=1

|Ji (k, m)| + |T2(m)|).
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Take one of the regular intervals J0 = Ji(k, m), then there exists t0 ∈ J0 such that xk(0) + V t0 = xm(0).
Expanding in V (t1 − t0), we have

F(xk(0) + V t1) = F(xk(0) + V t0) + F ′(xk(0) + V t0)V (t1 − t0) + F ′′(xk(0) + V t0 + ϑ)V 2(t1 − t0)2

(37)

for some 0 ≤ ϑ ≤ V (t1 − t0). After integration over J0 the linear term in the right-hand side of (37)
vanishes due to symmetry with respect to t0, constant terms cancel with the corresponding terms in
the last sum in (36), and as a result we get

|
∫

J0

(F(xk(0) + V t1) − F(xm(0)))dt1| ≤ C(F, 2)�3.

The sum of such terms (for given k) over m and over all Ji(k, m) has the upper bound

C(F, 2)�2t. (38)

Taking into account the factor 1
N , we have the same bound after summation over k.

Consider now non-regular intervals. For the initial intervals, we write the expansion similar to
(37), taking t0 = 0. Then as above, the constant terms cancel, and the linear terms, after integration
give bound C(F, 1)�2. The end intervals Jβ , if there is some xm(0) ∈ Jβ , are treated similarly and
give the same bound. If there are no such xm(0) ∈ Jβ , then we consider the union Jβ − 1∪Jβ and do
the same procedure. As there are not more than 2N such intervals, the bound will not depend on t.
Namely, this gives the bound

1

N
2NC(F, 1)�2. (39)

Taking all together, namely, Lemma 5, (38) and (39), we get (30).

VI. NONLINEAR INTEGRAL EQUATIONS

We shall prove the theorem by taking into account linear and nonlinear terms which we skipped
in the basic linear approximation (18). Remind that we assume for simplicity uk(0) = 0 and thus
Cl(n) = 0. We consider Lj = Lj(k, t) as functions of k and t, given yk(t), and denote

H (n, t) = �(yk(t)), L̃ j = L̃ j (n, t) = �(L j (k, t))

(we will write down them explicitly below). Applying Fourier transform to (17), we get the main
system of equations in Fourier form

d2 H (n, t)

dt2
+ A

M

d H (n, t)

dt
+ 4α

M
�−3(1 − cos 2π

n

N
)H (n, t) = M−1φ̃(n, t) + M−1

3∑
j=1

L̃ j (n, t).

Similar to (23), we get the system of integral equations for H(n, t),

H = K (H ) + η (40)

with the nonlinear integral operators, acting on H,

K =
3∑

j=1

K j , K j =
∑
l=1,2

K j,l , K j,l (H )(n, t) = rl(n)
∫ t

0
ezl (n)(t−t1) L̃ j (n, t1)dt1

and the free term (that we have studied above)

η(n, t) =
∑
l=1,2

rl(n)
∫ t

0
ezl (n)(t−t1)gφ̃(n, t1)dt1.

Define the Banach space BT = BT,N of complex (continuous in t) functions b = b(n, t) on {0,
1, . . . , N − 1} × [0, T] with the norm

‖b‖ = sup
n,t∈[0,T ]

Dn|b(n, t)|,
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where

D0 = 1

�
,

and for n �= 0,

Dn = n

√
α

M�
.

It follows that for any n,

sup
t∈[0,T ]

|b(n, t)| ≤ ‖b‖D−1
n (41)

and thus for any subset Q ⊂ {0, 1, . . . , N − 1},∑
n∈Q

sup
t∈[0,T ]

|b(n, t)| ≤ ‖b‖
∑
n∈Q

D−1
n . (42)

Note that
N−1∑
n=1

D−1
n ≤ c

√
M�

α
ln N . (43)

Further on we put for any 0 < β < 1 not depending on N,

T = T (β) = βNC−1
A,g ≥ cβρ−1 N 3.

We shall prove that Banach fixed point theorem defines the unique solution in BT .

Lemma 6: There exists γ > 0, not depending on N and such that for any sufficiently large N the
ball

D(T, γ ) = {H ∈ BT : ‖H‖ ≤ γ }
is invariant with respect to any operator K, Kj, Kj, l and for any H1, H2 ∈ BT for some q < 1,

‖K (H1) − K (H2)‖ ≤ q‖H1 − H2‖. (44)

In particular, it follows from Lemma 2 that η ∈ D(T, γ ). It follows that there exists unique
solution and we can solve Eq. (40) by the standard iteration. We will prove lemma separately for
each Kj,l with sufficiently small q’s.

Bounds for L1: Consider two functions yk(t) and zk(t) of k and their Fourier transforms

H1(n, t) = �(yk(t)), H2(n, t) = �(zk(t)).

Denote

uk(yk) = F(xk(0) + V t + yk).

Using Taylor expansion, we have for some θk ∈ [zk, yk], θ ′
k ∈ [0, zk],

uk(yk) − uk(zk) = uk(zk + (yk − zk)) − uk(zk) = u(1)
k (zk)(yk − zk) + 1

2
u(2)

k (zk + θk)(yk − zk)2 =

= u(1)
k (0)(yk − zk) + zku(2)

k (θ ′
k)(yk − zk) + 1

2
u(2)

k (zk + θk)(yk − zk)2. (45)

We shall consider first the linear term

u(1)
k (0)(yk − zk) = F (1)(xk(0) + V t)(yk − zk).

Using the convolution formula

�(g1g2, n) = (�(g1) � �(g2))(n) =
∑

n1

�(g1, n − n1)�(g2, n1) =
∑

n1

�(g2, n − n1)�(g1, n1),
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we have for H = H1 − H2,

K1,l(H ) = grl(n)
∫ t

0
ezl (n)(t−t1)

∑
n1

χ (n − n1, t1)H (n1, t1)dt1,

where

χ (n, t) = 1

N

N∑
k=1

F (1)(xk(0) + V t) exp(2π in
k

N
).

Lemma 7:

|χ (0, t)| ≤ �C(F, 2) (46)

and for any 0 < n ≤ N
2 ,

|χ (n, t)| ≤ cn−1. (47)

Symmetrically for N
2 ≤ n < N .

Proof: As for any t, ∫
S1

F (1)(x + V t)dx = 0,

we have

|χ (0, t)| = |χ (0, t) −
∫

S1

F (1)(x + V t)dx | = | 1

N

N∑
k=1

F (1)(xk(0) + V t) −
∫

S1

F (1)(x + V t)dx |

≤ 1

N
max |F (2)(x)|.

For n �= 0, we can use the following summation-by-parts formula:

N−1∑
k=0

h1(k)∇h2(k) = h1(N )h2(N ) − h1(0)h2(0) −
N−1∑
k=0

h2(k + 1)∇h1(k),

where h1(N) = h1(0), h2(N) = h2(0). Put in our case

h1(k) = F (1)(xk(0) + V t), h2(k) =
k−1∑
l=0

exp(2π in
l

N
) = 1 − exp(2π in k

N )

1 − exp(2π in 1
N )

.

Then

∇h2(k) = exp(2π in
k

N
),

If n < σN, where for example σ = 1
4π

, then

1

N
|

N−1∑
k=0

h2(k + 1)∇h1(k)| ≤ max
k

|h2(k + 1)∇h1(k)| ≤ c
N

n

C(F, 1)

N
.

If σ N ≤ n ≤ N
2 , then similarly

1

N
|

N−1∑
k=0

h2(k + 1)∇h1(k)| ≤ max
k

|h2(k + 1)∇h1(k)| ≤ sup
σ≤x≤ 1

2

(| 2

1 − exp(2π i x)
|)C(F, 1)

N

= cC(F, 1)n−1.

To end the proof, we shall prove a general assertion which will be used also in further estimates.
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Lemma 8: If the function χ (n, t) satisfies the bounds (46) and (47), then under conditions (9,
10) the operator

K (H ) =
∑
l=1,2

grl(n)
∫ t

0
ezl (n)(t−t1)

∑
n1

χ (n − n1, t1)H (n1, t1)dt1

satisfies the bound (44) with q sufficiently small.

Proof: As in (23), we have by definition

‖K1,l (H )‖ ≤ sup
n,t

Dn|grl(n)
∫ t

0
ezl (n)(t−t1)

∑
n1

H (n − n1, t1)χ (n1, t1)dt1|.

First, for l = 1 consider, under supn , the case n = 0, namely,

sup
t

D0|grl(0)
∫ t

0
ezl (0)(t−t1)

∑
n1

H (−n1, t1)χ (n1, t1)dt1| ≤

≤ �−1g
2

A

M

A
(
∑
n1 �=0

D−1
n1

‖H‖ sup
t1

|χ (n1, t1)| + D−1
0 ‖H‖ sup

t1
|χ (0, t1)|) ≤

≤ �−12CA,g
M

A
‖H‖(c

√
M�

α
+ C(F, 2)�2) ≤ 2CA,g

M

A
‖H‖(c

√
M

α�
ln N + C(F, 2)�).

For the case n �= 0, we have from (24), similar to (27),

n

√
α

M�

1

n

√
M�

α
g

∑
n1 �=0

D−1
n−n1

‖H‖ sup
t1

|χ (n1, t1)| = g‖H‖
∑
n1 �=0

D−1
n−n1

sup
t1

|χ (n1, t1)|.

The sum of the terms with n1 �= n does not exceed c
√

M�
α

ln N , and the term with n1 = n �= 0 does

not exceed c
n �. Finally, we get the bound

c(

√
M�

α
ln N + 1

n
�)g‖H‖.

If l = 2, the case n �= 0 is similar to above. For the worst possible term with n = 0, z2(0) = 0, we
have

sup
t

D0|gr2(0)‖
∫ t

0
dt1

∑
n1

H (−n1, t1)χ (n1, t1)| ≤ �−1 2g

A
t
∑

n1

sup
t

|χ (−n1, t)H (n1, t)| ≤

≤ �−1 2g

A
t
∑

n1

sup
t

|χ (−n1, t)|D−1
n1

‖H‖.

The term

|�−1 2g

A
t sup

t
|χ (−0, t)|D−1

0 ‖H‖ ≤ 2CA,gC(F, 2)t�‖H‖,

with n1 = 0, is small because

CA,gt� < cβ.

The sum of the remaining terms (with n1 �= 0),

|�−1 2g

A
t
∑
n1 �=0

sup
t

|χ (−n1, t)|D−1
n1

‖H‖ ≤ 2CA,g

∑
n1

1

n2
1

√
M

α�
‖H‖

is small by the right inequality of (9).
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The second (nonlinear) term

zku(2)
k (θ ′

k)(yk − zk)

is intuitively simpler because of the additional small factor zk. Using the Fourier transform,
χ1 � H(n) is treated similar to the first term, where instead of χ (n, t) one should take

χ1(n, t) = 1

N

N∑
k=1

zku(2)
k (θ ′

k) exp(2π in
k

N
) = χ2 � H2,

where

χ2(n, t) = 1

N

N∑
k=1

u(2)
k (θ ′

k) exp(2π in
k

N
) = 1

N

N∑
k=1

F (2)(xk(0) + V t + θ ′
k) exp(2π in

k

N
).

We will need only the obvious bound

|χ2(n, t)| ≤ C(F, 2) (48)

but we can prove more. In fact, we have by (42) and (43),

sup
t

|yk(t)| ≤
∑

n

sup
t∈[0,T ]

|H1(n, t)| ≤ ‖H1‖
∑

n

D−1
n ≤ ‖H1‖(� + c

√
M�

α
ln N ) ≤ c(1 + ρ)�

(49)
as (9) gives √

M�

α
ln N ≤ cρ�. (50)

The same holds for |zk| and then also

|θk |, |θ ′
k | ≤ c�.

This shows that the estimates of Lemma 7 hold also for χ2(n, t), with the same proof.
Then by (42) and (50),

|χ1(n, t)| = |χ2 � H2|(n, t) ≤ C(F, 2)
∑

n

|H2(n, t)| ≤ C(F, 2)‖H2‖
∑

D−1
n .

Then using Lemma 8, we get the result. The third term in (45) is treated similarly.
Bounds for L2: We have

L2 = 2α�−3∇−[δ1
k ∇ yk] = 2α�−3δ1

k ∇−∇ yk + 2α�−3(∇−δ1
k )(S−1∇ yk),

L̃2(n, t) = 2α�−3ζ1,2 � �(∇−∇ yk) + 2α�−3ζ1,1 � �(S−1∇ yk),

where

ζ1,2(n) = �(δ1) = 1

N

N∑
k=1

δ1
k exp(2π in

k

N
), ζ1,1(n) = �(∇−δ1).

Lemma 9: For any n,

|ζ1,1(n)| ≤ cα−1g�2, (51)

|ζ1,2(n)| ≤ cα−1g�. (52)

This easily follows from Lemma 1, series (5) and bound (35).

Lemma 10: For q = 1, 2, the operators

K2,l,q (H ) = rl(n)
∫ t

0
ezl (n)(t−t1)

∑
n1

(exp(−2π i
n − n1

N
) − 1)q H (n − n1, t1)ζ1,q (n1, t1)dt1
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satisfy the bounds

‖K2,l,q (H )‖ ≤ α−1g�‖H‖.
Proof: We shall demonstrate the (straightforward) calculation for q = 2. The case q = 1 is quite

similar and even easier (because of �2 factor).
For l = 1, as in (23) we have by definition and by (31),

‖K2,1,2(H )‖ ≤ sup
n,t

Dn|r1(n)
∫ t

0
ez1(n)(t−t1)

∑
n1

(exp(−2π i
n − n1

N
) − 1)2 H (n − n1, t1)ζ1,2(n1, t1)dt1|.

Consider, under supn , first the case n = 0, namely,

sup
t

D0|r1(0)
∫ t

0
ez1(0)(t−t1)

∑
n1

(exp(2π i
n1

N
) − 1)2 H (−n1, t1)ζ1,2(n1, t1)dt1| ≤

≤ �−1 2

A

M

A

∑
n1 �=0

D−1
n1

‖H‖ sup
t1

|ζ1,2(n1, t1)| ≤ c
1

A

M

A
‖H‖α−1g

√
M�

α
ln N .

After multiplying on α�− 3, we get

cα�−3 1

A

M

A
‖H‖α−1g

√
M�

α
ln N ≤ c�−2CA,g

M

A
‖H‖

√
M

α�
ln N ≤ cρ‖H‖.

For the case n �= 0 we have, similar to (27),

α�−3n

√
α

M�

1

n

√
M�

α

∑
n1 �=0

D−1
n−n1

‖H‖ sup
t1

|ζ1,2(n1, t1)| ≤

≤ α�−3‖H‖�cCα,g� ≤ cg�−1‖H‖.
Similarly for l = 2,

‖K2,2,q (H )‖ ≤ sup
n,t

Dn|r2(n)
∫ t

0
ez2(n)(t−t1)

∑
n1

(exp(−2π i
n − n1

N
) − 1)2 H (n − n1, t1)ζ1,2(n1, t1)dt1|.

The case n �= 0 is similar to above. For the worst possible term with n = 0, z2(0) = 0, we have,
noting that the term with n1 = 0 is zero,

sup
t

D0|r2(0)‖t
∑

n1

(exp(2π i
n1

N
) − 1)2 H (−n1, t1)ζ1,2(n1, t1)|

≤ �−1 2

A
t
∑
n1 �=0

sup
t

|ζ1,2(−n1, t)|D−1
n1

‖H‖ ≤

≤ �−1 2

A
tcα−1g�cρ�‖H‖ ≤ cρ

1

A
tα−1g�‖H‖ (53)

as

∑
n1 �=0

D−1
n1

≤ c

√
M�

α
ln N ≤ c�

√
M

α�
ln N ≤ cρ�.

Finally,

α�−3cρ
1

A
tα−1g�‖H‖ ≤ cρt�−2CA,g‖H‖ ≤ cρβ‖H‖.

The last bound follows from (10). The lemma is proved.
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Bounds for L3: We shall consider the mth term L3;m of L3 in the series (16),

α(−∇−)
(∇+yk(t))m

�m+2
k

= α
1

�m+2
k

(−∇−)(∇+yk(t))m + α(S−1∇+yk(t))m(−∇−)
1

�m+2
k

.

The convergence of the series in m will follow from the obtained bound for L3;m. Using the Leibnitz
formula (14), we can rewrite the first term as follows:

α
1

�m+2
k

(−∇−)(∇+yk(t))m = −α
1

�m+2
k

m∑
j=1

(∇+yk(t)) j (S−1∇+yk(t))m− j−1(∇−∇+yk(t)).

Its Fourier transform will be

�(α
1

�m+2
k

(−∇−)(∇+yk(t))m) =
∑

n1

ζ1(n − n1, t)�(∇−∇+yk(t))(n),

where

ζ1(n, t) = �(−α
1

�m+2
k

m∑
j=1

(∇+yk(t)) j (S−1∇+yk(t))m− j−1).

Using Lemma 4, we have for m ≥ 2,

|ζ1(n, t)| ≤ α�−m−2m(cCA,g

√
M�

α
ln N )m−1 ≤ α�−m−2m(cρ�4)m−1 ≤ α�m(cρ)m−1.

Also by (33),

|∇−∇+yk(t)| ≤
∑
n �=0

|H (n, t | ≤
∑
n �=0

D−1
n ‖H‖ ≤ cρ�‖H‖.

Then, we have the result similar to (53). The second term is treated similarly. It is interesting to note
that nonlinear terms demand less restrictive bound than (10).

VII. COMMENTS

There are many problems left.

1. Most irritating and interesting is, however, only one: to include the ionic lattice to the model
of strongly interacting electrons. May be a satisfactory picture can be obtained only on the
quantum level. However, on the quantum level it is not clear even how to write down the
Schroedinger equation because the external field F(x) is not potential on the circle.

2. With our methods we could not prove stability for any time t ∈ (0, ∞) because of the zero
mode problem, that is existence of zero root for n = 0. Additional linear term proportional to
yk in the basic equation (13) could easily solve this problem but I could not obtain this term as
a result of realistic interaction with the ionic lattice.

3. Our assumption concerning smallness of g is too restrictive at least in two points. Firs, if α − 1g
is bounded, then the space scale N− 2 controls the effective forces acting on the electrons. If
α is smaller than g, then this scale will be in-between N− 1 and N− 2, but when it becomes
comparable with the scale N− 1, then the macro-scopic homogeneity will be lost. In particular,
the macro-velocity V may depend on the distance from the support of the external force.

4. The worst perturbation term is the linear term L2. Possibly, more refined techniques allow
better estimates.

5. Consider now “natural” initial conditions, that is with zero velocities and equal distances
between neighbor particles. The results of Ref. 7 make clear why the non-zero macro-velocities
can be attained in micro-time, but it is still difficult to understand how the initial conditions,
considered in the present paper, could be attained, starting from natural initial conditions.
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