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Introduction

Historical Comments

Two-dimensional random walks in domains with non-smooth boundaries inter-
est several groups of the mathematical community. In fact these objects are
encountered in pure probabilistic problems, as well as in applications involv-
ing queueing theory. This monograph aims at promoting original mathematical
methods to determine the invariant measure of such processes. Moreover, as
it will emerge later, these methods can also be employed to characterize the
transient behavior. It is worth to place our work in its historical context.

This book has three sources.
1. Boundary value problems for functions of one complex variable;
2. Singular integral equations, Wiener-Hopf equations, Toeplitz operators;
3. Random walks on a half-line and related queueing problems.

The first two topics were for a long time in the center of interest of many
well known mathematicians: Riemann, Sokhotski, Hilbert, Plemelj, Carleman,
Wiener, Hopf. This one-dimensional theory took its final form in the works of
Krein, Muskhelishvili, Gakhov, Gokhberg, etc.

The third point, and the related probabilistic problems, have been thoroughly
investigated by Spitzer, Feller, Baxter, Borovkov, Cohen, etc.

To sketch the march of thought, let us recall that many simple problems per-
taining to the M/M/k queue amount, very roughly, to solve equations of the
form

Q()m(2) =U(2), Vl2|<1,

where U and 7 are unknown, holomorphic in the unit disk D, continuous on
the unit circle; U is a polynomial of degree m, and 7 is the generating function
of a discrete positive random variable, say the number of units in the system.
Then, provided the model is meaningful, the known function @Q has in general
m zeros in D and this sufficient to determine U and .
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In the GI/GI/1 queue, a basic problem was to find the distribution of the
stationary waiting time W of an arriving customer, which satisfies the stochastic
equation

W W + o], (0.0.1)

where ¢ is a known random variable, independent of W and taking real values.
Using Laplace transforms, equation (0.0.1) yields

w(s) = y(s)wt(s), (0.0.2)

where y(s) = 1 — E[e™*°] and the unknown functions w*, w™ are holomorphic
in the right [resp. left] half-plane. The function + is given, but a priori defined
only on the imaginary axis. It turns out that (0.0.2) is exactly equivalent to the
famous Wiener-Hopf factorization problem.

After this, there were two main directions of generalization for multidimensional
situations.

o The first one is a multidimensional analog of the Wiener-Hopf factorization,
when the problem or equation depends on extra-parameters. The theory in
then is quite analogous to the one-dimensional case and the simplest example
concerns Wiener-Hopf equations in a half-space. Much more involved is the in-
dex theory of differential and pseudo-differential operators on manifolds with
smooth boundaries. However, when one wants to get index theory for Wiener-
Hopf equations in an orthant of dimension k¥ or other domain with piecewise
smooth boundaries, it becomes immediately clear that one needs more knowl-
edge for similar equations in dimension k& — 1. For example, there is an index
theory for equations in a quarter plane (k = 2}, due to B. Simonenko, because
we have a complete control for k = 1.

o Then, completely new approaches to these problems were discovered by .the
authors of this book, the goal going much beyond the mere obtention of an index
theory for the quarter plane. The main results can be summarized as follows.

1. Use of generating functions, or Laplace transforms, is quite standard and
the resulting functional equations give rise to boundary value problems
involving two complex variables. When the jumps of the random walk are
bounded by 1 in the interior of the quarter plane, the basic functional
equation writes

Q(z,y)n(z,y) + q(z, y)7(z) + §(z, ¥)7(y) + go(, y)m0 = 0. (0.0.3)

2. The first step, quite similar to a Wiener-Hopf factorization, consists in
considering the above equation on the algebraic curve @ = 0 (which is
elliptic in the generic situation), so that we are left then with an equation
for two unknown functions of one variable on this curve.
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3. Next a crucial idea is to use Galois automorphisms on this algebraic curve
in order to solve equation (0.0.3). It is clear that we need more informa-
tion, which is obtained by using the fact that the unknown functions 7
and 7 depend respectively solely on z and y, i.e. they are invariant with re-
spect to the corresponding Galois automorphisms of the algebraic curve.
It is then possible to prove that the unknown 7 and 7 can be lifted as
meromorphic functions onto the universal covering of some Riemann sur-
face S. Here S corresponds to the algebraic curve Q = 0 and the universal
covering is the complex plane C.

4. Lifted onto the universal covering, = (and also ¥) satifies a system of
non-local equations having the simple form

{7r(t+w1) wn(t), VteC,

7(t + ws) = a(t)w(t) + b(t), VteC,

where wj [resp. ws) is a complex [resp. real| constant. The solution can be
presented in terms of infinite series equivalently to Abelian integrals. The
backward transformation (projection) from the universal covering onto
the initial coordinates can be given in terms of uniformization functions,
which, in the circumstances, are elliptic functions.

5. Another direct approach to solve the fundamental equation consists in
working solely in the complex plane. After making the analytic continua-
tion, one shows that the determination of 7 reduces to a boundary value
problem (BVP), belonging to the Riemann-Hilbert-Carleman class, the
basic form of which can be formulated as follows.

Let £* denote the interior of domain bounded by a simple smooth closed
contour L.

Find a function ®* holomorphic in L*, the limiting values of which are
continuous on the contour and satisfy the relation

PH(a(t)) = G)P*(t) +9(t), teL,
where

* g, G € H,(L) (Holder condition with parameter y on L);

* a, referred to as a shift in the sequel, is a function establishing a one
to one mapping of the contour £ onto itself, such that the direction
of traversing L is changed and

o) = 2 e HL (L), o(t) £0, Vie L.
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In addition, most of the time, the function « is subject to the so-called
Carleman’s condition

a(a(t)) =t, Vte L, where typically oft)=1.

6. Analytic continuation gives clear understanding of possible singularities
and thus allows to get the asymptotics of the solution

All these techniques work quite similarly for Toeplitz operators or for random
walk problems. Here our presentation is given for random walks only for the sake
of concreteness. More exactly, we consider the problem of calculating stationary
probabilities for ergodic random walks in a quarter plane. But other problems
for such random walks can be treated as well: transient behaviar, first hitting
problem [36] and calculating the Martin boundary.

The approach relating to points 1, 2, 3, 4 was mainly settled in the period
1968-1972 (see e.g. [46), [48], [49], [47], [57]).

The method in point 5 was proposed in the fundamental study [26], carried out
in 1977-1979, which was strongly referred and pursued in many other papers
(see [6], 7], 8], [10], [12], [13], [17}, 20}, [28], [23], [27], [24], [25], 30}, [60), [63],
[64]) and in the book by Cohen and Boxma [19).

Contents of the Book

In chapter 1, it is explained how the functional equations appear and why they
bring complete knowledge about the initial problem. Section 2.1 contains some
material necessary for the rest of the book. In section 2.2, the first step is
presented, namely the restriction of the equation to the algebraic curve. This
curve is studied in section 2.3 and 2.5, together with the initial domains of
analyticity of the unknown functions. Simple basic properties of our Galois
automorphisms are given in section 2.4,where the notion of the group of the
random walk is introduced.

Chapter 3 is exclusively devoted to the analytic continuation of the unknown
functions.

When the group of the random walk is finite, a very beautiful algebraic the-
ory exists, for solving the fundamental equations (both the homogeneous and
non-homogeneous one). This is the subject of chapter 4. We get necessary and
sufficient conditions for the solution to be rational or algebraic. In fact, the
solution is obtained in the general case. The analysis contains completely new
results belonging to the authors, which are first published here. It is also inter-
esting to note that finiteness of the group takes place for some simple queueing
systems, which are discussed here as well. A first concrete example of algebraic
solution in a queueing context was found in [31].
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The case of an arbitrary group is made in chapter 5, by reduction to a Riemann-
Hilbert BVP in the complex plane. Necessary and sufficient conditions for the
process to be ergodic are obtained in a purely analytical way, by calculating the
index of the BVP (which, roughly speaking, gives the number of independent
admissible solutions). The unknown functions are given by integral forms, which
can be explicitly computed, via the Weierstrass p-function.

Chapter 6 concerns degenerate but practically important cases (e.g. priority
queues, joining the shorter of two queues, etc.), when the genus of the algebraic
curve is zero. [32] In this case even simpler solutions exist.

Clearly, we could not cover in this book all related problems and ideas. Some
of them, concerning in particular the asymptotic behavior of the probability
distribution, are discussed in the final chapter 7.
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1. Probabilistic Background

1.1 Markov Chains

For this brief section, the readers who are not probabilists are referred to any
standard text-book on countable Markov chains (MC) in discrete time. We
shall give exactly the altogether indispensable amount of information which is
needed.

A discrete time homogeneous Markov chain with a denumerable state space A
is defined by the stochastic matrix

P= “paﬂ"’ a,f € A,

such that
Pas 20, Y Pap=1, Va€A

B
The matrix elements of P* will be denoted by pgg

Definition 1.1.1 A MC is called irreducible if, for any ordered pair o, 3, there
exits m, depending on (o, ), such that
o33 #0.

In addition, an irreducible MC is called aperiodic if, for some a, § € A, the set
{n: pgg # 0} has a greatest common divisor equal to 1. It follows that the
same property is true for all ordered pairs o, 3.

Definition 1.1.2 An irreducible aperiodic MC is called ergodic if, and only if,
the equation

P =, (1.1.1)

where T is the row vector m = (w4, @ € A), has a unique £;-solution up to a
multiplicative factor, which can be chosen so that

Z e =1, together with o > 0.
a
The mo’s are called stationary probabilities. See [11]. The random variable rep-

resenting the position of the chain at time n will be written X,, and X will
denote the random variable with distribution w .
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1.2 Random Walks in a Quarter Plane

The class of MC we shall mainly consider in this book are called mazimally
space homogeneous random walks. They are characterized by the three following
properties.

P1 The state space is A =22 = {(3,5) : 4,j > 0 are integers}.

P2 (Mazimal space homogeneity) Z_z,_ is supposed to be represented as
the union of a finite number of non-intersecting classes

z:=Js.. (1.2.1)
T

Moreover, for each r and for all o € S, such that

pa,a+(i,j) # 01 o+ (’l,j) € Z-zi- )

Pa,a+(ij) does not depend on a, and can therefore be denoted by ,p;;. Through-
out most of the book, the classes S, will have the following structure:

Z%=5uSuSs"u{(,0)} (1.2.2)

where
S = {G,4):4,3 >0},
S’ {(,0) : ¢ > 0},
S" = {(0,5):j > 0}.

The internal parts S’ and S” are called respectively the z-axis and y-axis. In this
case, the probabilities ,p;; will be simply written p;, pj;, plj, pY;, according to
their respective regions S, 5’,.5”, and {(0,0)}. It is worth noting, nevertheless,
that in section 1.3 a more general partition of the state space is considered.

The last property deals with the boundedness of the jumps, which will be sup-
posed unless otherwise stated (see e.g. chapters 5 and 6).

P3 (Boundedness of the jumps) For any a € S,,
Pap =0, unless —d; < (8- a); < d},

for some constants 0 < df < oo, where (8 — a); is the i-th coordinate of the
vector 8 — a, i = 1,2. In addition, the next important assumption will hold
throughout this book

df =1, for theclass S, =S.

T

The ergodicity conditions for the r.w. £ can be given in terms of the mean jump
vectors
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M = (M, M) = (Y ips Y i)
M = (M,M) = (Zzp,,,z Jp”) (1.2.3)
M MII MII) — (Z zpt],ijj) .

We shall consider only irreducible aperiodic random walks.

Theorem 1.2.1 When M # 0, the random walk is ergodic if, and only if,
one of the following three conditions holds:

M, <0, M, <0,
(i) MM, - MyM}, <0,
MM — MM < 0;

(ii) M, <0, M,20, MM —MM! <0;

(ii) M, >0, M,<0, MM, —MM.,<0.

A probabilistic proof of this theorem exists in [29]. A new and purely analytic
proof is presented in chapter 5 and the analysis of the case M = 0 is carried
out in detail in chapter 6.

As announced in the general introduction, this monograph intends to provide a
methodology of an essentially analytic nature, for constructing and effectively
computing the invariant measures associated to the random walks introduced in
the present section. In fact, it is worth to emphasize that all these methods can
be also employed (up to some additional technicalities) to analyze the transient
behavior of the random walk, and to solve explicitly the classically so-called
Kolmogorov’s equations, which describe the time-evolution of the semigroup
associated to a Markov process, see e.g. [11].

1.3 Functional Equations for the Invariant Measure

We derive here the fundamental functional equations to be used throughout
the book. It is useful to present them in a more general situation, which means
that for a while we do not assume any boundedness of the jumps. To that end,
consider the MC

Xo=(X....XF), n>0, X,eZk,
with state space

qu={z=(zhm 2) 1z 20, i=1,...,k}
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which is partitioned into a finite number of classes

zk =Js.,

so that the following assumption holds: two states belong to the same class S,
if, and only if, the probability distributions P, of the jumps from these states
are the same. The corresponding probability densities are the ,p;; introduced
in the preceding section 1.2.

Let us define the vector of complex variables
u=(uy,...,ux), HEC, |yl=1 i=1,...,k
and the jump generating functions

P.(u) = Eu¥m1-X) /X, = 2], z€,, (1.3.1)

with the standard notation

Since by our assumptions P,(u) does not depend on z, Kolmogorov’s equations
take the form

Elu¥+)] = B [u¥ryon—%] = Z E [ Lx,es.y] Pr(w). (1.3.2)

To account for the stationary case, we introduce the generating functions

7 (v) = E [u¥1(xes,y] = Z U7, (1.3.3)
ZESr

where 7, denotes the stationary probability of being in state z. Taking the limit
n — oo in (1.3.2) and using (1.3.3), we get the basic equation

Z 1= P (u)] 7 (u) =0. (1.3.4)

Note that when the jumps are bounded from below, (1.3.4) is defined for all
u = (ur,...,u), u €C, || <1, i =1,...,k Since we shall mainly
consider the case k = 2, it will be convenient to rewrite (1.3.4) in a more explicit
way, by means of the notation below, which will be ubiquitous throughout the
book.
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n(z,y) =Y m Ty,
1,5=1
n(z) = Z miox !,
i>1
7(y) = Z oy’ Y,
721
{Q(z,y) = wy( -1+ Zpﬁx‘y"), (1.3.5)
W
oz,y) = x(z > Pty - 1)
i>—13>0
jz,y) = y(z > vty - 1),
i>0 j>-1
lqo(w, y) = (Zp?jz‘y’ - 1),
W

where we have set p% = p(0,0),(i.)-
Now equation (1.3.4) takes the fundamental form

l —Q(IB, y)7r(a:, y) = q(x, y)ﬂ'(x) + &(xa y)%(y) + 1!'00(]0(13, y)' ’ (136)

When property P3 holds, it is immediate to check that the functions @, g, g and
go introduced in (1.3.5) are polynomials in z,y. In addition, 7(z,y), 7(z), 7(y)
have to be holomorphic in the region |z|,|y|] < 1. Thus, the analysis of the
invariant measure of the random walk amounts to solve the functional equation
(1.3.6), in agreement with the next theorem.

Theorem 1.3.1 For the irreducible aperiodic random walk to be ergodic,
it is necessary and sufficient that there ezist n(z,y), n(z), m(y) holomorphic in
|z|,|ly| < 1, and a constant mgo, satisfying the fundamental equation (1.3.6)
together with the {1-condition

)
Z |7l'ij| < 00. (137)

£,j=0
In this case these functions are unique. ]

Theorem 1.3.1 proceeds directly from the material given in definition 1.1.2,
asserting existence and uniqueness of a finite invariant measure for irreducible
ergodic Markov chains. We shall seek for solutions of (1.3.6) from the following
point of view:

Find functions n(z,y), (), 7(y), satisfying (1.8.6), holomorphic in D x D and
continuous in D X D, where
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DE{zeC:|z|<1} and DH{zeC:|7 <1}

The main idea consists in working on the variety Q(z,y) = 0, (z,y) € D x D
and the content of the book shows, by means of various approaches, that this
is sufficient to obtain all aforementioned functions.

Remark 1.3.2 A priori, finding a solution w(z,y), holomorphic in D X D and
continuous in D x D, does not imply the £;-condition (1.8.7), as it emerges
from the theory of functions of several complex variables (see for instance [9]).
Furthermore, supposing the system is not ergodic, one will see that a solution
of (1.8.6) can yet ezist, holomorphic in D, X D,, with a < 1, where D, is the
disk D, £ {2 € C :|z| < a}.




2. Foundations of the Analytic Approach

2.1 Fundamental Notions and Definitions

We gather here some of the basic notions which appear elsewhere in the book
and are strictly necessary for our purpose, namely the resolution of the equations
(1.3.6). The logical structure of this paragraph is self contained, but, for a deeper
and more detailed presentation, we refer the reader to classical monographs [34,
72]: Although the first five chapters of the book demand much less generality,
we think that a more abstract understanding is nevertheless useful.

A separable topological space is called a two-dimensional manifold M, if each
point belongs to a neighborhood which is homeomorphic to an open disk in the
complex plane C. A pair (U, ¢), formed by some neighborhood U C M and its
associated homeomorphism ¢ is called a chart. The mapping ¢ : U — C defines
a system of local coordinates in U. A collection of charts {(U;, ¢;), ¢ € I'}, where,
for some index set I, {U;, @ € I'} is an open covering of M, is called an atlas A.

A connected two-dimensional manifold M is an (abstract) Riemann surface S,
if there exists an atlas Ag with the following property:

For any pair (U,p), (V,9) of charts in Ag, such that UNV # 0, the
mapping @ oY~ is holomorphic in Y(UNV) C C.

The classical notion of holomorphic functions can be generalized to the case of
Riemann surfaces. Let S be a Riemann surface, Ag its atlas, and Y C S an open
connected set of S. A function f : Y — C is said to be holomorphic in Y, if, for
any chart (U, ¢) in Ag, the mapping f o ¢! : p(U) — C is holomorphic in the
normal sense in the open set o(U) C C. The set of all functions holomorphic
in Y builds an algebra over C.

Let now S and T be two Riemann surfaces. The mapping f : S —» T is
said to be holomorphic if, for any pair of charts (U, o), (V, %) belonging to Ag
and Ar respectively, with f(U) C V, the mapping 9 o f o ¢! is holomorphic
in o(U) C C. The uniqueness theorem remains valid: if f; and f, are two
holomorphic functions from S to T which are equal on an infinite compact set
of S, then they must be equal everywhere.

In a similar way, the definition for a function to be meromorphic can be extended
as follows. Let Y C S an open set of the Riemann surface S. A function f :
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Y — C is called meromorphicin Y if f is holomorphic in Y — Yy, where Yo C Y
is a set of isolated points such that
lim |f(z)]=00, VpE€Ys.
z€Y,z—p

The points of Y, are called poles of f. Note that one can show that locally f is
the quotient of two holomorphic functions. The set of meromorphic functions in
Y form a field. It is classical to remark that, after compactification, the complex
plane C is isomorphic to the Riemann sphere P!, the point at infinity becomes
an ordinary point and the meromorphic functions on Y can be considered as
holomorphic mappings from Y to P1.

2.1.1 Covering Manifolds

Let X and Y represent two Riemann surfaces and A : Y — X a holomorphic
mapping of Y onto X (i.e. to any point of X, there corresponds at least one
point of Y). This assumption is useful only when Y is not compact, since it
can be shown that, whenever Y is compact, any holomorphic mapping h is
necessarily onto and that X is compact [34]. The pair (Y, h) is called a cover
and Y is a covering manifold of X. When h is not constant, h~!(z) is a discrete
subset of Y, for any z € X. A point y € h~}(z) is said to lie over z (or to cover
z) and z is the projection of y on X.

Definition 2.1.1 If, for any neighborhood V' of y, the restricted mapping hy
is not one-to-one, y is called a branch point. More precisely, y € V is a branch
point of order n — 1 if there exist two charts (U, ) € Ax, (V,¢) € Ay, y €V,
with h(V) C U, and a finite number n, such that

(poh)(v) =modp(v), WweYV,

where the function v, : C — C satisfies y,(2) = 2". This means that each
point € h(V) \ h(y) is covered by ezxactly n points of Y contained in V' \ y,
the deleted neighborhood of y. Often n will be referred to as the multiplicity. If
n =1, i.e. h is a one-to-one mapping V — U, for some V, then y is called a
regular point.

Since h is holomorphic, it can be shown that there exists an integer s, such
that every point £ € X is covered by exactly s points of Y, provided that a
branch point of order k — 1 is counted & times. Then, the covering manifold
Y will be called an s-sheeted covering of X. It is important to note that s can
be infinite, and we shall encounter this case. Among all covering maps without
branch points, there exists exactly one, up to an isomorphism, which is simply
connected and usually referred to as the universal covering.

Definition 2.1.2 [Proper mapping] Let (Y, k) be a cover of X. The mapping h
is called proper if the preimage of every compact set is compact. In particular,
if Y is compact then h is always proper.
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Suppose that X and Y are Riemann surfaces and h : Y — X is a proper
non-constant holomorphic mapping. Let B be the set of branch-points of A and
A= h(B). Let also Y’ £ Y \ h71(A) and X’ £ X \ A. Then the restriction
hyy» : Y' — X' is a proper unbranched covering, which has a well defined finite
number of sheets n. The following more general property is valid.

Proposition 2.1.3 Let X and Y be Riemann surfaces and h : Y — X is a
proper non-constant holomorphic mapping. Then there exists a natural number
n such that h takes every value c € X, counting multiplicities, n times.

Definition 2.1.4 [Lifting] Let us introduce the following objects.
x X,Y, two Riemann surfaces, and Z a topological space;
*x h:Y — X, a holomorphic mapping;
x f:Z — X, a continuous function;

A lifting of f with respect to h is a continuous mapping g : Z — Y, such that
f=hog

Proposition 2.1.5 Let (Y, h) be a cover of X. Let L be an arc of X having
its origin at T (i.e. there ezists a continuous mapping f : [0,1] — X, where
L = f[0,1] and f(0) = z). Then, Vy € h™X(z), 3 an arc in Y, which has its
origin at y and lies over L.

Proposition 2.1.6 [Uniqueness of lifting]

(i) Let (Y,h) be a cover without branch-point. Let g1 and g; be two liftings
with respect to h. Then either g1(2) # g2(2), V2 € Z, or g1 = g2. In
addition, if f is holomorphic, then any lifting g is also holomorphic.

(ii) In general, when there are branch points, the preceding property holds pro-
vided that, with the notation introduced just after definition 2.1.2, X, Y
and Z are replaced respectively by X', Y’ and Z' = f~1(X").

Remark 2.1.7 This proposition will be used either to lift arcs, in which case
Z = [0,1), or also to compare different mappings, taking then Z =Y.

The study of analytic functions in the complex plane entails frequently the
introduction of Riemann surfaces on which the analytic functions are single-
valued. In most of the cases —and particularly in this book— these surfaces are
composed of several sheets lying over C and they are compatible with the defi-
nition of abstract Riemann surfaces given above. In fact, they can be described
by the gluing of germs. The germ of a function f at a point z € C is the set of
all disks O, with center z, such that there exists a convergent power series
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flz)= ian(z —z)*, Vz€eO,. (2.1.1)

n=0

In general, for given x and O, there can exist k, different series (2.1.1), each
of them representing , for instance, the branches of an algebraic function (see
definition thereafter). All the pairs (O, k), numbered in an arbitrary way, can
be pasted together to build an analytic configuration which is the Riemann
surface of the analytic function f.

The problem of uniqueness of the above analytic continuation process is solved
by the following fundamental monodromy theorem.

Theorem 2.1.8 Let X be a Riemann surface. Let ug and u; two homotopic
curves on X, each joining the points A and B, which implies the existence of uy,
t € [0, 1], a set of curves representing a continuous deformation of ug into u,. Let
f be a function holomorphic in a neighborhood of A and admitting an analytic
continuation over u;, Vt € [0,1]. Then the two analytic continuations, over ug
and w, respectively, lead to the same holomorphic function in a neighborhood
of B. In particular, if X is simply connected, then all closed curves on X are
homotopic to one point and, if f can be continued along any curve starting from
A, then there exists one and only one function holomorphic on X and coinciding
with f in a neighborhood at A. ]

2.1.2 Algebraic Functions

Let X be a Riemann surface and M(X) be the field of meromorphic functions
on X, and let

n
P(T)=) fT', fieM(X),
=0
be an irreducible polynomial of degree n in one indeterminate T, with coeffi-
cients in M(X). When X is the complex plane C, the equation

P(Y) = i fYi=0, fie M(X). (2.1.2)

=0

implicitly defines a multi-valued function Y (z), z € C, called an algebraic func-
tion. Equation (2.1.2) has in the neighborhood of every z, but a finite number of
them called critical points, exactly n distinct finite roots Yi(z), Ya(z), ... , Ya(z),
which are the branches of the algebraic function Y (z). In the domain obtained
by removing from the complex plane the critical points, each branch of the
function Y(z) is regular. There are any two sorts of critical points: poles and
multiple points called branch points. This point at infinity in C does not play
a special role and can be both a regular or a branch point, as can be seen by a
change of variables.
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At any regular point zy, there exist exactly n different convergent power series
(or germs)

Yiok(z) = Zc; (zo, k) (x — z0)', k=1,2,...n,
=0

satisfying (2.1.2). Moreover, in the neighborhood of a branch point, the algebraic
function is made of a cyclical system of branches, each of them having a power
series expansion with fractional exponents. It is possible to construct a Riemann
surface, referred to as the Riemann surface of the algebraic function Y (z), by
putting together the above germs. One of the main goal pursued by Riemann,
when he introduced these abstract surfaces, was to render algebraic functions
single-valued. This possibility is contained in the following theorem.

Theorem 2.1.9 There exist an holomorphic n-sheeted proper cover (Y, n)
of X and a function F € M(Y'), such that

A (F@) =0, VyeY. (21.3)
=0

The triple (Y,n, F) is unique up to an isomorphism and is sometimes called
(see e.g [84]) the algebraic function defined by the polynomial P. [ ]

Up to some notational abuse, Y is simply called the Riemann surface of P,
and Y(z) is the corresponding algebraic function. Frequently, X will be the
Riemann sphere. In this situation Y is compact, since X is compact. It can
be shown that every compact abstract Riemann surface can be realized as the
Riemann surface of some algebraic function.

The above theorem is in fact intimately connected to Galois theory, the princi-
ples of which will be outlined now.

2.1.3 Elements of Galois Theory

Let K and L denote two arbitrary fields, such that K C L. We say that L is a
finite extension of K, if L is a vector space over K of finite dimension n which
is called the degree of L over K and is denoted by [L : K].

Let K|[T] be the polynomial ring in one indeterminate T over the field K.
The extension L of K is said to be normal or a Galois extension of K, if any
polynomial P € K|[T], irreducible and having a root in L, has all its roots in L.
The necessary and sufficient condition for L to be normal is that there exists
P € KIT) irreducible, such that the roots of P form a basis of L, as a vector
space on K.

The Galois group G(L/K) of the extension L of K is the group of automor-
phisms of L leaving all elements of K invariant. The order of this group is
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denoted by [L : K] and any of its elements realizes a permutation of the roots
of any polynomial P € K[T], provided that P is irreducible and has all its roots
in L. Any extension of degree 2 is obviously normal.

Let (Y, 7) be a cover of X. An automorphism o of Y is called a covering au-
tomorphism if 7 = 7 o g, which means that Vy € Y, the points y and o(y)
have the same projection on X. The set of all covering automorphisms form a
multiplicative group denoted by Aut(Y/X), which is a subgroup of the group
of automorphisms of Y.

Definition 2.1.10 Let (Y,7) be a cover of X without branch point. One says
that w is normal or Galois if, for any yo,y1 € Y, such that 1r(y0) = n(y1), there
exists 0 € Aut(Y/X), such that o(yo) = y1. From proposztwn 2.1.6, it follows
that o is unique, setting Z=Y, f=mando =g.

Proposition 2.1.11 Let (Y, ) be a universal cover of X (i.e. simply connected
and without branch-point). Then w is Galois and Aut (Y/X) is isomorphic to
the fundamental group of X (i.e. the set of homotopy classes of closed curves
going through some arbitrary but fized point). (See e.g. [34]). [ |

Proposition 2.1.12 Let (Y, 7) a cover of X, the mapping 7 being proper. Then
every covering transformation o' € Aut(Y’'/X') can be extended to a covering
transformation o € Aut(Y/X) and m will be called Galois if (Y, my+) is Galois,
in the sense of definition 2.1.10. |

Finally, the following important general theorem holds.

Theorem 2.1.13 Let (Y, n, F) the algebraic function corresponding to the
equation P(T) = 0, where P is an irreducible polynomial of degree n, having all
its coefficients in M(X).

Define the mapping n* : M(X) — M(Y) by the relation
[m(N](y) = f(n(y)), Vy€Y andfe M(X).

(This means that the range of ©* is a subfield of M(Y') which can be, in this
way, identified with M(X)). Then the field M(Y) is an extension of degree n
of M(X) and is isomorphic to the quotient field M(X)[T]/P(T). Moreover the
groups Aut(Y/X) and G(M(Y)/M(X)) are isomorphic and the mapping

$:0— s, with ¢(f)=foo™!, VfeM().

is an automorphism of M(Y') leaving M(X) fized. The covering m is Galois if,
and only if, M(Y) is a Galois eztension of M(X). [ ]
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2.1.4 Universal Cover and Uniformization

Every Riemann surface of a polynomial with coefficients in M(P!) is topolog-
ically isomorphic to a sphere with g handles attached to it. The number g is
called the genus of the Riemann surface.

Let S be a compact Riemann surface with its associated polynomial @ and
(92, 7) its universal covering. A is unique up to an automorphism of £2. It is
known [38] that only three possible situations can take place.

(i) £2 =P, the Riemann sphere, then g = 0.
(i) 2 = C, the (finite) complex plane, then g = 1.
(i11) 2 = D, then open unit disk, then g > 1.
The next result can be found for example in [72].
Proposition 2.1.14 There ezist two functions f,g € M(S) such that
(i) Q(f,9)=0;
(ii) any function belonging to M(S) is a rational function of f and g.

We shall also use the following, see e.g. [34].
Proposition 2.1.15 Every meromorphic function on P! is rational. |

Remembering that A : £2 — S, it follows that the functions fand g, respectively
given by _
f=FfoX g=go),

with f, g given in proposition 2.1.14, are meromorphic on {2 and invariant with
respect to the group of covering automorphisms. It is customary to state the
following.

Definition 2.1.16 The pair of functions f,§ gives an uniformization of M(S),
or, equivalently, uniformizes any h € M(S).

2.1.5 Abelian Differentials and Divisors

Here we quickly present two essential notions, which will be essentially used
in chapter 4. In general, any holomorphic or meromorphic differential on a
Riemann surface S will be called an abelian differential.

1. A holomorphic differential on S is called abelian differential of the first
kind.
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2. A meromorphic differential all of whose singularities are poles of order
> 2 is called an abelian differential of the second kind.

3. The abelian differentials of the third kind are taken to be all abelian dif-
ferentials on S.

Theorem 2.1.17 [72] The vector space of holomorphic differentials on a com-
pact Riemann surface has dimension equal to its genus g. ]

In particular, when the genus is 1, Abelian differentials of the first kind are
unique up to a multiplicative constant. See also remark 3.3.5 in section 3.3.

An important question is to be able to specify the locations and the orders
of poles and zeros of meromorphic functions defined on an arbitrary compact
Riemann surface S. To this end, one designates several points P, Ps,... , P
and the associate orders (integers) my,mg, ..., my of these points. Then the
following symbol

PMPpM . PM™

will be used to denote the points P, P, ... , P, with the corresponding asso-
ciate integers, and will be called a divisor. When P; is a zero (or pole) with
multiplicity m;,72 = 1,... , k, of some meromorphic function, the corresponding
divisor is referred to as a principal divisor. For a divisor to be principal, a nec-
essary condition is ) m; = 0 (see [72]). In chapter 4, we shall also need Abel’s
theorem stated hereafter for the sake of completeness.

Theorem 2.1.18 [72] A necessary and sufficient condition for a divisor a to
be a principal divisor is that there exists a singular 1-chain -y, with boundary
07, such that

Oy=a
and
[as=o0
v
for each differential of the first kind on S. ]

2.2 Restricting the Equation to an Algebraic Curve

In the preceding section, we have introduced a function 7(z,y) of two complex
variables and two functions of one complex variable m(z) and 7(z) which we
would like to find. Here we present the method to get rid of m(z,y) allowing us
to write a functional equation involving only these two functions of one complex
variables. This method has four facets, which can be easily converted into each
other.
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2.2.1 First Insight (Algebraic Functions)

Consider the multi-valued algebraic function Y(z) satisfying the polynomial
equation

Qz,Y(x))=0, VzeC, (2.2.1)
where Q is given in (1.3.5). A first naive approach consists just in instantiating
y = Y(z) into the fundamental equation (1.3.6. This substitution is a priori
valid only for the pairs (z, Yi(z)) such that

lz <1, Yi(=)| <1,

where Y;(z),i = 0,1, are the two branches of Y(z). For these values, we get
from (1.3.6)

0 = q(z, Yiy(z))m(z) + g(=, Yi(z))7(Yi(2)) + moogo(, Yi(z)). (22.2)

This approach will be used in a self-contained way, allowing to get and to solve
an integral equation of Fredholm type for m(z), by using convenient conformal
transformations associated to elliptic functions.

2.2.2 Second Insight (Algebraic Curve)
Let I, ¥ {z € C: |z| = a} with, for the sake of shortness,
'€, the unit circle.
Let B be the algebraic curve in C? defined by the fundamental equation

Q(z,y) =0. (2.2.3)

As observed at the end of chapter 1, if there exist functions n(z,y), n(z), 7(y),

analytic in D? = D x D, continuous in D’ and satisfying the fundamental equa-
tion, then we have necessarily, for all (z,y) € BN D?,

q(z,y)m(z) + q(z, y)7(y) + 90(z, y)mo0 = 0. (2.2.4)

But solutions of (2.2.4) a priori would not imply the continuity of 7(x,y) in D.
That this continuity holds follows indeed from the next two lemmas.

Lemma 2.2.1 Assume that conditions of theorem 1.2.1 hold and the poly-
nomial Q(z,y) is irreducible. Then 3e > 0, such that the functions 7 and T can
be analytically continued up to the circle I, in their respective complex plane.
Moreover, in D}, they satisfy equation (2.2.4) in BNDZ,,. ]
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This lemma will be proved later in section 2.5. Let us note that the second
assertion follows directly from the first one by the principle of analytic contin-
uation.

It is important to mention right away the case of zero drift, i.e. M = 0, consid-
ered later on in section 6.5. Then the algebraic curve has genus zero, but the
conditions of lemma 2.2.1 do not hold, since one will show that it is not possible
to continue 7 nor 7 up to some I, Ve.

Lemma 2.2.2 Under the conditions of lemma 2.2.1 the function

__4(z,y)m(z) + 3(z, )T (Y) + q0(z; ¥) o0
n(z,y) = Q(z,y)

(2.2.5)

is analytic in D},,. ' [ ]

Proof. This is just a direct corollary of the famous Weierstrass “Nullstellen-
satz”, which claims that, if p is an irreducible polynomial, 4 is holomorphic in

an open domain V C C™ and h=0on {p =0} NV, then 2 is holomorphic in
V. [ ]

Remark 2.2.3  The reader has already guessed that this projection onto the
algebraic curve can be carried out in more general situations and in particular
for cases in dimension greater than two.

Remark 2.2.4  The analyticity of the functions n(z,y), 7(z), 7(z) in D2,
in the ergodic cases of theorem 1.2.1 can also be derived from a Lyapounov
function method, by purely probabilistic arguments (see [29]). It can be shown,
in particular, that there exist constants C > 0, 0 < a < 1, which can depend
on the parameters p;;, pj;, pij, such that

5 < Cattd,

2.2.3 Third Insight (Factorization)

First, we show that, using a one-dimensional factorization of Q(z,y) with re-
spect to any of the two variables z,y, we obtain indeed the projection onto the
algebraic curve. For this purpose, we have to introduce the two branches Yp(z)
and Y;(z) of the algebraic function Y () on the unit circle I'. Exact definitions
will be given in the next section.

Choosing = # 1, |z| = 1, we can write

Q(z,y) = a(z)Q* (z,9)Q" (z,y),

where
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a@) = pue® +pnz +p1n Q@ (5y) =yy- (@), @ (zy)=1- 2

This is exactly a Wiener-Hopf factorization of @ considered as a function of y,
after setting y = exp it for all real ¢. Then the fundamental equation (1.3.6) can
be rewrittene as
T,y)m(z) + q(z,y)m(y) + 7 T,
a(.’t)Q"'(:l:, y)ﬂ'(l’, y) ( y) ( ) qé 22 y()y) 00‘]0( y) (2.2.6)

Let P} and P; denote the projection operators in the commutative Banach
algebra B of functions on the unit circle, that is

{ > ad Z Iak|<oo}

k=~00 k=-o00

o 00 00 -1
P: (Zakzk) = Zakzk, P; (Zakzk) = z akz", Pz+ + P =14
—o00 )

k=0 k=—00
where I; denotes the identity operator. We shall use the formula

P (;"(")) wa)t, VwePHB), lol<1  (227)

z
Applying now P, (taken as an operator acting on functions of y) to both sides

Y
of (2.2.6), using (2.2.7) with a = Yp(z) and simplifying by yLlfzx)’ we get
— Yo
exactly equation (2.2.2) for the branch Yy(z).
The point z = 1 always requires a more careful analysis, which can be carried
out by exploring the non stationary Kolmogorov equations and using generating
functions in space-time variables.

2.2.4 Fourth Insight (Riemann Surfaces)

Assuming that the polynomial @ is irreducible, we know from section 2.1.2 that
the equations °
Q(z,Y)=0 and Q(X,y)=0

define two Riemann surfaces (with the two corresponding algebraic functions
Y (z) and X(y)). In fact (see e.g. [72]), these two surfaces have the same genus,
and hence are conformally equivalent. Thus we will consider a single Riemann
surface, denoted by S, which is the Riemann surface for both Y (z) and X(y),
but has two different coverings

hy:8—-C;, hy:8S—-C,

where C , denotes the complex plane with respect to the z-coordinate.
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Any function f on a domain V C C, can be lifted onto h;1(V) C S, yielding
thus a new function f o f o hy. Correspondingly, one has § o g o hy,. Hence,
taking for f and g the identity functions, we are entitled to put

z(8) = he(s), y(s) = hy(s), sesS. (2:2.8)

The general flowchart is given in figure 2.2.1.

S
x(s) y(s)
X ®)
C. — - C,
Y(z)
Fig. 2.2.1.

On S, we have Q(z(s), y(s)) = 0 and it will be convenient to write

i(s) & n(z(s), () EH(y(s)),
i(s) £ qla(s),y(s)), ete.

Then, for all s € h;'(D) N h;'(D), we have the equation
#(s)d(s) + T(s)a(s) + dols) = 0, (2.2.9)

in which ¢, f]’, go are meromorphic functions on S, as resulting from the composi-
tion of meromorphic functions. We will reformulate lemma 2.2.1 on S in section
2.5. In fact, there are two constraints of primary importance: the solution #
[resp. 7] of (2.2.9) has to be a function of the sole quantity z(s) [resp. y(s)]. As
shown in the next section, these properties of # and 7 will lead to the central
idea, based on the use of Galois automorphisms of S.

2.3 The Algebraic Curve Q(z,y) =0

The present study relies essentially upon the properties of the algebraic func-
tions Y (z) and X (y), defined by the curve in question. All necessary results will
be put together and most of the features of these functions will be formulated
in terms of the probabilities p;; of the jumps in the interior of the quarter-plane.

Definition 2.3.1 The random walk is called singular if the associated poly-
nomial Q is either reducible or of degree 1 in at least one of the variables.
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Lemma 2.3.2 The random walk is singular if, and only if, one of the fol-
lowing conditions holds:

A There ezists (i,5) € Z2, |i| < 1, |j| < 1, such that only p;; and p_; _; are
different from 0 (see figure 2.8.1a and the three cases obtained by rotation);

B There exists i, |i| = 1, such that for any 3, |j| < 1, p;j = 0 (figure

2.8.1b,c);

C There ezists j, |j| = 1, such that for any i, |{| < 1, py; = 0 (figure
2.8.1d,e).
a b c d e

Fig. 2.3.1.

Proof. Let us define the triple a(z), b(z), c(z), [resp. @(v), b(v), &(v)] by

Qz,y) = 29> _pya'y’ — 1) = a(z)y? + b(z)y + c(z) = &(y)a® + b(y)z + &(y).
(2.3.1)

We assume pgo < 1, so that b(z) # 0, b(y) # 0. Then we have the following
chain of equivalences:

Q is of degree 1 with respect to y & a(z) =0 p; =0, Vi

This is exactly the cases A and C of the lemma, with 2 = 1 and j = 1 respec-
tively. Analogously the two remaining cases in B and C, which correspond to
¢(x) =0 or ¢(y) = 0, yield the reducibility of Q.

Suppose now that @ is of degree 2 both in z and in y. We shall consider two
possibilities.

(a) Q= fifz, where fi and f, are of degree 1 in each variable. Then we can
write, fori = 1,2,

{ filz,y) = (Az+ B)y— (Ciz + Dy),
”
#

(Ai, B,) ( ) 1= 1 2
(4, C:) # (0,0).
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Ex hypothesis, a(z) # 0. Since also ¢(z) # 0 (as mentioned above), we have

2

H(A,-z: + B;) =a(z) and H(C,w + D;) = ¢(z),

i=1 =1

which implies that the pair of vectors (A;, B;) and (As, By) [resp. (Cy, Dy),
(Cs3, D,)] are simultaneously positive or negative. Thus, ad libitum, we can take
choose (A;, B;) and (A3, Bs) to be positive, i.e. A;, B; > 0,i=1,2.

The relationship

(A1z + B1)(Cax + D3) + (Asz + By)(Chz + D1) = (1 — poo)z — p-1,0 — P10z,
(2.3.2)

shows that the vectors (Cy, D) and (C3, D;) are both positive. This implies
that p_;0 = p1o = 0 and also that both polynomials (A;z + B,)(Coz + D) and
(A2z + B;)(Ch1z + D)) are linear in z. So we obtain

Alcg = BlDQ = A2C’1 = BgD] = 0,

which yields either

BI=B2=CI=CQ=O
or

A1=A2=D1=D2=0.
Consequently, there exists a polynomial p of one variable, such that Q(z,y) is
equal either to p(zy) or to z?p (%) Since Q(1,1) = 0, necessarily p(1) = 0.
Here also, we have to consider two sub-cases:

* Q(z,y) = p(zy), yielding Q(z,y) = (zy — 1)(puzy — p-1,);
* Q(:l:,y) = 172? (%): yielding Q(fﬂ, y) = (y - 1‘)(17—1,13/ = pl,-lz)-

(b) Q = fifs, where f; is of degree 0 with respect to x. Let us prove in
fact f1 is of degree 1 in y. Assume for a while it has degree 2 in y. Then
Q(z,y) = fi(y)f2(z) and both f; and f, have degree 2, so that exists o, 5,7,
where

a(z) = afy(z), blz) =pBfz), cfz)=fa(z).
Hence o > 0,7 > 0 and f; has positive coefficients. But b(z) has one negative
coefficient, so that 8 < 0, which yields p_j0 = p1o = 0 and fo(z) = Az, A > 0,
contrary to the hypothesis.

Hence f; has degree 1 in y and we can write f;(y) =y + 8, 8 # 0, so that

Qz.y) = w+5) (a(x)y N —‘[-f—)) ,
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which yields
b(z) = Ba(z) + £5)
As b(z) has one strictly negative coefficient, one must have 8 < 0 together with
P10 = p-10 = 0. It follows also that
P11 = P1,-1 = P-1,1 = Pp-1,-1 = 0.

Similarly, the situation obtained by exchanging the roles of z and y would give

Q) = (z + F) (a(wz + l%.’l) .

The proof of lemma 2.3.2 is terminated. |

2.3.1 Branches of the Algebraic Functions on the Unit Circle

Let P be the simplex

P= {(P—l,-l, N Epij =1, pyj > 0}-

(%)

The points of this simplex are the parameters of a random walk inside the
quarter-plane. In the simplex P, we shall often consider the set A of points for
which M, = 0. This set subdivides P into two convex sets A, and A_, for
which M, > 0 and M, < 0 respectively.

Definition 2.3.3 A random walk is said to be simple if only pio, Po1, P-1,0,
Po,—1 are not equal to 0.

Lemma 2.3.4  Let the random walk be non singular and My # 0. Then the
algebraic function Y (z) has on I' two branches, denoted by Yo(z) and Yi(z),
such that Y5(1) < Yi(1). There are two possible cases.

(i) If M, > 0, then |Yo(z)| < 1 and |Yi(z)| > 1.V|z| = 1 and the equality takes
place only for £ = 1, where Y1(1) = 1. Moreover, Yo(z) (resp. Yi(z)),
z € I, is a real analytic curve, situated inside (resp. outside) the unit
circle I, for x # 1.

(i) If My < 0, then |Yo(z)| < 1, for |z| = 1 and the equality takes place only
for z =1, where Yo(1) = 1. Moreover, |Y;(z)| > 1, Vz.

When M, # 0, similar properties hold for the algebraic function X (y), the two
branches of which are denoted respectively by Xo(y) and X;(y). [ ]

Proof. First, we shall state some simple assertions:



22 2. Foundations of the Analytic Approach

(i) Let P(z,y) = 3 pijz'y!. Then the equation
P(z,y) =1, l|z|=yl=

cannot hold for non singular random walks, except for £ = y = 1. This
follows from elementary considerations on the sum of complex numbers.

(i) The equation P(1,y) = 1 has two roots, 1 and E 1; (see 2.3.1), and the

two following situations can arise:

(a) if My <0, then Yp(1) =1, ¥1(1) = 08))

(b) if M, >0, then 0 < Yp(1) = 8 <L, vnQ=1
Take |z| = 1 and assume a(z) # 0. Then the roots in y of a(z)y? + b(z)y + ¢(z)
are continuous with respect to a(z), b(z) and c(z). Consequently, the image
Y (I") consists of no more than two connected components. Thus, by (a), this
image can intersect I" only at the point y = 1. The case corresponding to the
points {|z| = 1,a(z) = 0} is obtained by continuity.

Assume for example My < 0. (The argument hereafter would be the same for
M, > 0, just replacing D by C \ D). It follows now from (ii) that, if Y(I") is
connected, then Y (I") N D = (. Hence proving Y (I") N D # @ will show at once
that Y(I") has exactly two connected components: one of which, denoted by
Yo(I'), belongs to D and the other one, Y;(I'), belongs to C \ D. For z € I,
Yo(z) and Y;(z) are simple closed analytic curves, and this amounts to say that
Y (z) has no branch point on I'. This is really the case, because at a branch
point Y (z) would take only one value, which is impossible due to (a) and (b).

It remains to prove the existence of points z, |z| = 1, and ¥, |y| < 1, such that
P(z,y) = 1. It suffices to check the particular case z = —1. To this end, we
shall use a powerful continuity argument.

Any point p € A_ can be connected, along a continuous path £ C A_, with
some point pp € A_ corresponding to a simple random walk (see definition
above). Moreover £ can be chosen to ensure the continuity of the two roots of
P(—1,y) = 1 with respect to the parameters of A_, provided that one does not
cross the hyperplane

a(-1) = pu — pro+p-12=0.
Next one checks easily that, for any simple random walk,
-1<Y(-1)<1,

whence it follows that Y5(—1) C D for any random walk and the proof of the
lemma is concluded. a
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2.3.2 Branch Points

Our concern is now to locate the branch points of the algebraic function, which,
in particular, define the genus of the Riemann surface. Starting from simple
random walks, we will deduce general properties by using continuity arguments
with respect to the parameters (i.e. the points of P), as in lemma 2.3.4.

Lemma 2.3.5 Consider a simple random walk satisfying M, # 0. Then
Y (z) has two branch points 1, =2 inside D and two branch points z3, T4 out-
side D. All these four branch points are positive and equal to (with an obvious
notation)

1+ 2, /Po1Po,-1 — /1 £ 4,/Po1Po,-1 + 4Po1Po,-1 — 4P10P-1,0

o1 2p10 ’
a: 1+ 2,/Po1po,1 + /1 £ 4,/Po1Po,~1 + 4PorPo,~1 — 4p10P-1,0
3.4 .
' 2p10

When My =0, My # 0, there are still four positive branch points, which satisfy

O<r<ze=1l<z3<14 if M;<O0,
O<zi<z<l=x3<2y, 0f M;>0.

Proof. Factorizing the discriminant D, of the equation
po1y’ + y(zp1o + % =1) +po-1 =0,

we get the two following relationships which define the branch points, after

d
having set g(z) 24 ProT + P-107 namely

9(z) = 1+ 2,/por1po, 1 » (2.3.3)

9(z) = 1 - 2\/poipo,-1 - (2.3.4)

Since g(1) = p1o + p-10 < 1 — 2/Poibo,—1 and g"(z) > 0, the equation (2.3.3)
has two positive zeros, one is bigger and the other is less than one. The same is
true for equation (2.3.4). Other cases can be treated quite similarly. |

The next two preliminary lemmas will be used in the proof of the subsequent
lemmas 2.3.8, 2.3.9 and 2.3.10.

Lemma 2.3.6 The point z = —1 is a branch point of Y(z) if My = 0 and
either of the two conditions is satisfied

P10 = Po1r = P-1,0 = Po,-1 =0,
P11 = P1,-1 = P-11 = P-1,-1 = P10 = p-10 = 0.
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Proof.
D(-1) = (1+p1o — Poo + 19—1,0)2 —4(p11 — po1 + P-11)(P1,-1 — Po,-1 + P-1,-1)
2 (a(1) +¢(1))” - 4a(1)c(1) = (a(1) — c(1))* = M.
Thus D(-1) = 0 yields first D(1) =0, i.e. the point z = 1 is a branch point of
Y (z). Moreover the equalities D(—1) = D(1) = 0 imply that
(i) b(=1) = —b(1) = a(1) + (1),

and, either
.y Ja(=1) = a(1),
W {c(—l) = e(1),
or
a(_l) = _a(1)7
(i) {c(—l) = —¢(1).

It is readily been that (i) + (ii) [resp. (i) + (4i)] is tantamount to the first
[resp. second] condition stated in the lemma. The proof of lemma 2.3.6 is
concluded. ]

Lemma 2.3.7 The hypersurface p?, — 4pup1,—1 = 0 subdivides A_ into
two pathwise connected domains A_, and A__, where p2, > 4pup,-1 or
ply < 4pupi,—1 correspondingly. An analogous property is true for the hyper-
surface p2, o — 4p_11P-1,-1 = 0 and the corresponding domains Ay, Ay, and
As. [ |

Proof. The proof is easy and left to the reader. ]

Now we shall formulate all information about the general case in the next three
lemmas.

Lemma 2.3.8  For all non singular r.w. such that M, # 0, Y(z) has two
branch points T, and Ty (resp. T3 and z4) inside (resp. outside) the unit circle.
All these branch points lie on the real line.

* For the pair (z3,z4), the following classification holds:

1. If pro > 2,/P11pP1,-1, then x3 and x4 are positive;
2. If pro = 2,/p1ip1,-1, then one point is infinite and the other is posi-
tive;

3. If pro < 2,/P1P1,-1, then one point is positive and the other is nega-
tive.
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* Similarly, for the pair (z1,2,),

4. if p_10 > 24/P-11P-1,-1, then 1 and x2 are positive;
5. if p_10 = 2,/P_1,1P-1,-1, then one point is 0 and the second is posi-

tive,
6. if p-10 < 2,/P-11P-1,-1, then one point is positive and the other is
negative.

This lemma is true also for X(y), up to a proper symmetric change of the
parameters. [ ]

Proof.  Again let us connect an arbitrary point p € A_,, by a continuous path
£ C A_,, with some point py € A_, corresponding to a non degenerate simple
random walk.

Due to lemma 2.3.5, all zeros of the discriminant at the point po are real and
mutually different. Along £ they will be real and different if a liaison does
not occur (note that the zeros of the discriminant are two by two complex
conjugate). But this discriminant is equal to

D(z) = [b(z) — 2/a(z)c(z)][b(z) + 21/ a(z)c(z))].

At po, the points z3 and x4 are respectively zeros of the two equations

—2v/a(z)c(z) = 0 or b(z) + 2/ a(z)c(z) =

Along ¢, these zeros remain zeros of these different equations and cannot become
equal since otherwise

b(z) — 2v/a(z)c(z) = b(z) + 24/a( =0,

which is possible only for £ = 0 or £ = 00, but these cases have been considered
above.

Let us now consider .A__ and a point py € P, corresponding to a r.w. for which
pij # 0, if, and only if, |ij| = 1. The zeros of D(z) in this case satisfy

2 _ bi\/bﬁ’ 64p11p1,-1P-1,1P1, 1
8p11p1,-1

T

where
b=1-4pup_1,-1 —4p-11pP1,-1-
One can prove (see lemma 2.3.2) that, if either py; # p_1,-1 or p1,—1 # p-11,
then
b — 64p11p_11P1,-1P-1,-1 > 0.

Clearly, b+ /b — 64p11p1,-1p-1,1P-1,-1 > 0. Thus, two zeros of D(z) are pos-
itive and two are negative. The fact that two of them lie inside and two other
ones outside the unit circle follows from the fact (proven above) that, in an
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arbitrary neighborhood, there are points corresponding to non-degenerate r.w.
for which this is true. The rest of the proof is similar, with the simplification
that z3 and z4 cannot become equal, since one of them is > 1 and the other
< —1. The sets A, _ and A, could be handled in the same way. The proof of
lemma 2.3.8 is terminated. ]

Lemma 2.3.9  For all non singular r.w. such that M, = 0, one of the branch
points of Y(z) is equal to 1. In addition,

* if M, <0, then two other branch points have a modulus bigger than 1 and
the remaining one has a modulus less than 1;

* if M, > 0, then two branch points are less than 1 and the modulus of the
remaining one is bigger than 1.

Furthermore, the positivity conditions are the same as in lemma 2.3.8. [ ]

Proof. Consider the convex set A of the points p corresponding to a non-
generate random walk with M, = 0. The hypersurface defined by M, = 0 divides
this set into two convex sets for which, respectively, M, > 0 and M, < 0. The
point = = 1 is always a branch point of Y(z) and for a simple random walk the
assertion in question holds, by lemma 2.3.5. To conclude the proof, we proceed
exactly as in lemma 2.3.8. [ ]

Lemma 2.3.10  For all non singular random walks, S has genus 0 if, and
only if, one of the following relations takes place:

M, = M,=0, (2.3.5)
Po = pu=pa =0, (2.3.6)
P = P1,-1=po-1=0, (2.3.7)
P-10 = P-1-1=po-1=0, (2.3.8)
po1 = P-10=p-11=0. (2.3.9)

The singular random walks (c) and (e) on figure 2.8.1 correspond also to the
genus 0 case and (2.3.5) implies

To=z3=1 and y,=ys=1.

Proof. S has genus 0 if, and only if, the discriminant
D(z) = b%(z) — 4a(z)c(z) = dgz’ + dsz® + dpz® + diz + do

of the equation Q(z,y) = a(z)y®+b(z)y+c(z) = 0 has a multiple zero, possibly
infinite, where we have put
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do =p%0—4p-11P-11,

dy = 2p_10(poo — 1) — 4(p-1,1P0,-1 + P01P-1,-1) ,

d2 = (poo — 1)® + 2p1op-1,0 — 4[P11P-1,-1 + P1,-1P-1,1 + Por1Po,-1] »
ds = 2p1o(Poo — 1) — 4(P11Po,-1 + PorP1,-1) s

dy = Pfo —4pnp1,-1-

The point of the proof is that multiple roots can occur only at £ = 0, z = 1
or £ = 0o. To see this, we use the continuity of the roots with respect to the
points of P and the results of lemmas 2.3.8 and 2.3.9. Indeed, as A is convex,
any arbitrary point p can be connected by a direct line £ with a point py € A,
which corresponds to a non-degenerate simple random walk. The zeros of the
discriminant continuously depend on the point of £ and cannot intersect I": this
yields the first assertion of the lemma, when M, < 0. The case M, > 0 can be
treated in a similar way.

* There is a double root at z = 1 if, and only if, M; = M, = 0. To see this,
write

D(1) =(a(l)-c(1))*=M; =0,
D'(1) =—4a()FQ) +d'(1) + (1)) = —4a(1)M, = 0.

* There is a multiple zero at oo if, and only if, d3 = dy = 0. It is easy to see
that the system of equations b3 = by = 0, with respect to the p;;’s, has
admissible solutions if, and only if, (2.3.5) or (2.3.6) or the singular case
on figure 2.3.1c take place.

* Similarly D(z) has a multiple root at 0 if, and only if, (2.3.7) or (2.3.8)
or the singular case on figure 2.3.1e holds.

The proof of lemma 2.3.10 is concluded. ]

2.4 Galois Automorphisms and the Group of the
Random Walk

Choose an arbitrary non singular random walk. This means among other things
that Q(z,y), considered as a polynomial in y over the field C(z) of rational
functions of z, is irreducible over this field.

Consider also the vector space over C (z), generated by the constant 1 and one
zero y(z) of Q. This vector space is a field, which is the extension of order
2 of C(z) and will be denoted in the sequel by C(z)[y(z)]. Each element of
C (z)[y(z)] can be written in a unique way as u(z) + v(z)y(z), where v and v
are elements of C (). Then it is quite natural to identify C (z)[y(z)] with the
quotient field C (z)[T]/Q(z, T). Similarly, exchanging z and y, one can define

C(y)[z(y)] and C (y)[T]/Q(T,y).
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Let C (z,y) be the field of rational functions in (z, y) over C. Since Q is assumed
to be irreducible in the general case, the quotient ring of C(z,y) is in fact a
field, which will be denoted by Cg(z,y).

Proposition 2.4.1 The fields C(z)[T]/Q(z,T) and C(y)[T]/Q(T,y) are iso-
morphic to Cq(z,y)

Proof. Noting that Vp € Cq(z,y), 3 a unique pair u(z),v(z) of elements of
C (z), such that

p=u(z) +v(z)y, modQ.
Now the stated isomorphism is simply given by the mapping
: {u(z) + v(z)T} — {u(z) + v(z)y},

where the brackets stand for the adequate equivalence classes. Exchanging the
roles of z and y, there exists an isomorphism

iy : {uly) +v(y)T} - {uly) +v(y)z}
where u(y) and v(y) are elements of C (y). |

It is worth summarizing some of the above results by means of the following
chain of statements, where the symbol & means “ isomorphic to “:

Cq(z,y) = C(2)[T]/Qz,T) = C (y)[T]/Q(T,y) = C(z)[y(z)] = C (v)[=(y)] -

The Galois group of C (z)[y(z)] (resp. C (y)[z(y)]) is cyclic of order 2 and its
generic element will be denoted by £ (resp. 7), so that

E(u(z)) = u(z), Vu € C(z), (24.1)

__da) _ b2 ,
§(y(17)) - y(z)a(:c) - 0,(13) y( )! (241)
n(w(y)) =w(y), Vw € C(y), (24.2)
ne) = L = 20 _ ) (242)

z(y)a(y) a(y)

It is important to remember that £ [resp. 7] permutes the two roots in y [resp.
z] of Q(z,y) = 0.

In fact the above proposition means that there are two automorphisms E and 77
of Cy(z,y), given respectively by

£=i,0f0i;' and f=iyonoi’, (2.4.3)
where i, and ¢, have been defined in proposition 2.4.1. Up to a slight abuse in

the notation, we will write

&(f(z,9))

n(9(z,y))

f(z,€(y)) mod Q, Vf € C(z,y),
g(n(z),y) mod Q, Vge C(z,y).
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2.4.1 Construction of the Automorphisms € and 7 on S

We use theorem 2.1.13, taking X = P,, Y = S, n = 2. Then, by definition
2.1.10, propositions 2.1.12, 2.1.15, M(P,) = C(z) and M(S) is an extension of
degree 2 of C (z), so that it is Galois. Theorem 2.1.13 states the existence of an
automorphism €, belonging to Aut(S/P.), which is a cyclic group of order 2,
isomorphic to G(C (z)[y(z)]/C (z)). According to paragraph 2.2.3 and equation
(2.2.8), C(z) can be embedded into M(S) by the correspondence

f:8S > M(S), with f(s) % f(z(s)), VfeC(z),

so that, to avoid superfluous notation, we will identify M(S) with C (z)[y(z)].
Thus ¢, which is a generator of G(C (z)[y(z)]/C (z)) can be viewed as acting

on M(S) and £ is given by the relation
fof=¢Tof, VfeM(S)
Similarly,
fo=n""of, VfeM(S).
Letting I; be the identity operator, the following set of relations hold:
hgof=h, E=1I,, (2.4.4)
hyoi=h, A =1I4. (2.4.5)
The points s and £(s) [resp. /(s)] have the same projections onto P, [resp. P,].

In particular, the branch points of h, [resp. hy] are the fixed points of £ [resp.
7)), which read h=1(z;) [resp. A~} (%)}, i =1,... ,4.

Definition 2.4.2 The group of the random walk is the group H of auto-
morphisms of Cq(z,y) generated by §& and 7 (given in equation (2.4.3)), and
it depends only on the transition probabilities p;j, |i|, |7| < 1. This group is iso-
morphic to a subgroup of automorphisms of S generated by ¢ and 7.

Notation Whenever no ambiguity arises, the following conventions will take
place throughout the rest of this monograph:

o the composition of automorphisms will be written as an ordinary product;

e as far as global properties are concerned, one will simply write &, 7, 4,
without the symbols ~or “.

The next lemma gives the structure of all groups with generators £ and 7, such
that &2 =n? = I,.

Lemma 2.4.3 Define

Then H has a normal cyclic subgroup Hy = {0",n € Z}, which is finite or
infinite, and H/H, is a cyclic group of order 2. [ ]
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Proof. We want to show that zd"z~! € H,, for any z € H and any integer
n. But, since n =~! and ¢ = ¢, this is a direct consequence of the following
general result [43]. Let G be a group and H a subgroup of G of index 2; then H
is normal in G. Recalling that the index is the number of distinct left cosets,
i.e. subsets of G of the form zH, for all z € G (here z takes only the values ¢
or n). a

2.5 Reduction of the Main Equation to the Riemann
Torus

Here the Riemann surface is supposed to have genus 1 (which. excludes non
singular random walks) and we return to equations (2.2.8) and (2.2.9), first
studying the geometric properties of the domains h;'(D), h;'(D) and of their
boundaries h;*(I'), h;'(I'). For the sake of conciseness we shall only consider
here the cases

1. My <0, M;<0,
2. M, <0, M;>0,
3. My <0, M;=0.

The remaining patterns of interest are obtained by exchanging z and y in the
above inequalities. It is also worth noting that the case M; > 0, M, > 0, al-
though yielding a non-ergodic situation, can topologically be handled by means
of analogous arguments.

Since S has genus 1, h7!(D) is connected. To see this, it suffices to check that
h;1(D) is arcwise connected. We have seen in section 2.3.2 that there are two
branch points z; and z; inside D. Choose two arbitrary points u, v in AZ!(D) on
S and draw two arcs [h;(u),z1] and [z1, hz(v)] in D. The arcwise connectivity
follows now from proposition 2.1.5 and the fact that z; corresponds to the
unique point s; on S.

Of course, analogous properties hold for h;'(D) and h;'(D) N h;'(D) # 0,
since, by lemma 2.3.4, Y(z) and X (y) can simultaneously take on values inside
D. We will denote by Iy and I3, respectively, the connected components of the
boundary hZ1(I") of h;(D), such that

{roch— (N) N {s: ly(s)| < 1} = {|z(s)| = 1} N {ly(s)| < 1},
nchy(rn{s: |<s)|>1} {lz(s)] = 1} N {Jy(s)| > 1}.

Since by hypothesis M, # 0, the results of section 2.3 assert that Iy and I

are closed analytic curves without self-intersections. The curves Fo and I’l are
defined in an analogous way. For example, I"o Chy 1(I') and, on it, |y(s)| = 1,
lz(s)] < 1.
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Fig.2.5.1.

Let M, # 0. The fact that Iy and I are homotopically equivalent follows from
the construction of the Riemann surface S, after taking into account that, inside
and outside the unit circle I" in the complex plane, there are exactly two branch
points. This last property shows, in addition, that the homology class of Iy and
I is one of the normal homology bases on the torus (see [72]), the same being
true for T}; and T“I ~

Assume now for a while that e.g. I and I belong to different homology classes,
so that they would intersect. But, for M, < 0, it has been shown in lemma 2.3.4
that Iy N ?‘; = (). [Clearly, if one would have supposed M, > 0, by the same
argument, one could have written I3 N ﬁ] Hence, by transitivity, Iy, I, 7";,
T‘I are defined by the same homology class.

The case M; = 0 can be obtained by continuity, as mentioned in the next
lemma, where the situation is completely summarized.

Lemma 2.5.1 Define sy such that z(so) = y(so) = 1. The three following
possibilities exist.

Case 1 (Fig. 2.5.1)
M, <0, M;<0.

Then I NT; =0, and [oNTo = h;Y(T) Nh;1(I') consists of the single point
So.

Case 2 (Fig. 2.5.2)
M, <0, M;>0.

Then [y N T} = {so}.

Case 3 (Fig. 2.5.3)
M, <0, M,=0.

Then Iy and I do not intersect and one can define To= r;1(D) N h;1(T)
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and Ty = h;'(I') N (S\h;1(D)), so that any pair of curves belonging to the triple
(o, Io, IN) intersect at the point sy only.

The proof in Case 3 is just the same, by letting in Case 1 € — 0 in k' (I),
where I, = {z : |z| = 1+ €}. |

As already pointed out above, the case M; > 0, M, > 0, M; + M, > 0,
is not considered, since then the random walk is transient (see [29]), but the
construction is clearly of the same nature. It is a worthwhile exercise (left to
the reader) to draw the pictures corresponding to the random walks B and C,
introduced in lemma 2.3.2.

Thus the functions # and T are analytic in hZ1(D)Nh; (D). They admit a mero-
morphic continuation to the domains A (D) and h;*(D) respectively, provided
that in these domains they are defined by

_ 47 + Gomoo

2
, W= z

_ @7 + doToo

q q

T =

In Ay l(1?) [resp. h; I(D)]l the only possible poles of # [resp. 7] are the zeros of
g [resp. q], since § [resp. g] is a meromorphic function on S.

In other words, # and T are meromorphic in hZ}(D) U h;'(D) and in this
region equation (2.2.9) still holds. One can now reformulate lemma 2.2.1, for
non-degenerate random walks, as a problem set on the Riemann surface S.

Problem Find two meromorphic functions # and 7 in h;1(D) and h; (D)
respectively, such that the following relations hold:

#(s) = #(&(s),
w(s) = w@(s)),

when (s,£(s)) and (s,#(s)) belong to h;1(D)U h; (D). Now it is easy to prove
lemma 2.2.1. Assume for instance that Case 1 prevails, i.e. M; < 0, M, < 0.
Looking at the figure 2.5.1, one can see that # is also defined in a neighborhood
of I'y on S. Now, one lower back # onto C. From the very definition of all
unknown functions and the probabilistic context, # must have no pole on I"
and, consequently, in some neighborhood of I". But  is a function of the single
variable z. Since the function h;(s) has no branch point and is locally invertible
in a neighborhood of Iy, it follows also that 7(z), £ € Di4e, has no branch
point and is holomorphic in this region.

Cases 2 and 3 of lemma 2.5.1 would give rise to slightly more complicated argu-
ments and they will be considered later, in a more general context in chapters
3 and 5.

Remark 2.5.2 The case of genus 0, corresponding to the Riemann sphere can
be treated analogously, as was partially done in [56]. Indeed, it will be completely
worked out in the complex plane in chapter 6.



3. Analytic Continuation of the Unknown
Functions in the Genus 1 Case

In section 2.5, we have shown, using the Riemann surface S, that the functions =
and 7 could be analytically continued to Dj .. In this chapter, we shall propose
other methods of analytic continuation, which in a sense are more effective, since
they allow in fact a continuation to the whole complex plane. We consider only
parameter values ensuring the Riemann surface S to be of genus 1, according
to the study made in section 2.3.

3.1 Lifting the Fundamental Equation onto the
Universal Covering

We will use some properties, which are classical only for readers acquainted
with the theory of Riemann surfaces, and can be found either in Forster [34]
or in Hurwitz and Courant [38]. Since S is of genus 1, its covering manifold is
the complex plane C and its universal covering has the form (C, ), where, by
proposition 2.1.11, X is Galois and Aut(C /S) is isomorphic to the fundamental
group of S, which we denote by T. In addition, it is known that

T=Zw1@Zw2,

where w; and w; are two complex numbers, linearly independent on R, acting
as generators of T. Thus, any ¢ € T can be written in the form

t=muw +mowy, my,my€Z,
and, V7 € Aut(C/S), there exists a unique ¢ € T, with
Tw)=w+t, weC.

In the next section, we will calculate these periods explicitly (they are, in gen-
eral, defined up to some unimodular transformation, see e.g. [38]).

Along lines quite similar to those of section 2.2.4, any meromorphic function f
defined on S can be lifted onto the universal covering C by the mapping

fr=fo (3.1.1)
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Clearly, any such f* is meromorphic and satisfies the functional equation
f‘(w) = f‘(w + myw; + mng), VYm,,my € Z. (3.12)

Let us recall that a meromorphic function on C satisfying (3.1.2) is called an
elliptic function with periods wy,ws. Thus the field C(S) of meromorphic func-
tions on S is isomorphic, by (3.1.1), to the field of elliptic functions with the
corresponding periods.

In addition, the period parallelogram

H"’—if{alw1+a2w2 :0< o < 1},

provided that its opposite sides are identified, is isomorphic to S Then A[0, w;]
and A[0,w,) constitute an homology basis on the torus.

Let us fix the notation so that A{[0,w;]} be homologous to I and, therefore,
also to the curves I, I 0 T 1 and consider the domain

A= h}(D)UR (D) CS.

Its inverse image A~!(A) belongs to C and consists of a denumerable number
of curvilinear strips, which differ from each other by a translation of vector w,.
Any such strip is simply connected and invariant by translation of amplitude w .
Indeed, A is generated by a set of closed curves, say £(t),0 < ¢t < 1, homotopic
to Iy, as was shown in section 2.5 (see e.g. figure 2.5.1). Each curve £(t) has in
IT a preimage homologous to [0, w;[.

Denoting by A* the connected component of A=1(A) having a non empty in-
tersection with 7, one can use the mapping A to lift 7 and @ (which are mero-
morphic in A) onto A*, just setting

T =H%o)\, T =Tol

In addition, as quoted in section 2.2.4, the coefficients g, 2'1', do, are meromorphic
functions on S, which in turn can be lifted onto the universal covering and
satisfy equation (3.1.2).

Notation It is the right place to make here a notational convention: each
function, whatever its domain of definition may be, will be represented by the
same symbol with the adequate arguments, e.g. 7(s),w(w),q(s),q(w), ¢(z,v),
etc.

Hence m(w) and #(w) are well defined and meromorphic in A*, where, from
their single valuedness along Iy and I respectively, they satisfy the equations

T(w+w) =7w), 7T(w)=7(w+w), (3.1.3)

g(w)m(w) + g(w)T(w) + go(w)moo = 0. (3.1.4)
Note that it suffices to analyze equation (3.1.3) in the domain A* N IT.
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3.1.1 Lifting of the Branch Points

Starting from the branch points z;,y;, previously introduced in section 2.3.2,
let s;,5; € S be such that

hz(si) = T, hy(:;,) = Y, Vi = 1, . ,4.

Clearly, s; and 3; are uniquely defined by these relations and consequently there
exist unique points

e EX Y s)NI, b, EXNIE)NI, Yi=1,...,4.
Moreover,
e for i = 1,2, the points a; and b; belong to A*NII, since s;,5; € A4

o for i = 3,4, the points a; and b; belong to IT \ A*.

3.1.2 Lifting of the Automorphisms on the Universal Covering

The goal of this section is to compute explicitly the automorphisms on the
universal covering.
Let & be an arbitrary automorphism of S. The mapping

GoA:C—S
is holomorphic, so that, choosing in definition 2.1.4
X=S8, Y=2=C, h=A, f=ao),

we get a lifting of f with respect to A, which will be denoted by o* and, clearly,
does satisfy the relation f = A oa*. Since (C, A) is a cover of S without branch
point, it follows from proposition 2.1.6 that o* is also holomorphic. Taking now

€,
where é has been constructed in section 2.4.1, we get the corresponding auto-
morphism £* on C, which satisfies the relation

a

Aogr=£o (3.1.5)
Since )
Ma;) =si, E&(si)=si, Vi=1,...,4,

it follows that
A(as) = (€™ (as))-

Hence, there exist integers k ;, ko € Z with
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§"‘(a,-) =a; + kl,.-wl + kz,iwg, Vi= 1, e ,4.

Still using proposition 2.1.6, we know that £* is unique, provided that one of
its values is fixed. It is always possible to make a translation to make a; a fixed
point of £*, so that

€ (a1) = ar.

Equation (3.1.5) yields immediately
Zor=xog?,

whence, since the range of £*2 — I, belongs to Zw, @® Zw, and éz = I,

& -1 =K,
where K is a constant. Upon applying this last relation to the fixed point a;,
we get indeed K = 0. Thus we have just proved that £* is an ‘automorphism
satisfying

&2 = I
Obviously any automorphism ¢* of the complex plane has the form
Cw)=aw+p8, WweC.
Hence, discarding the trivial automorphism I, one obtains easily
€(w) = —w + 2a,. (3.1.6)
So one can write, Vi =1,... ,4,
€' (@) = —a; + 2a; = a; + ky jw; + kg0,

and, using (3.1.6),

_ ki + kpiwy

a —a; = -9

where ky;, k2; € {—1,0,1}, since all a;’s are located in II. Remembering (see
beginning of section 3.1) that A([0,w;]) was chosen to be homologous to Iy on
S, one concludes that the open curve A([a;, a;)) is homologous to one half of I.

Thus |a; — ag| = % and we will take
4y —ay = % (3.1.7)
Mutatis mutandis, one can prove along the same lines that it is possible to lift
7, to obtain an automorphism 7* of C, such that
n*(W) = —w+ 2b1, bz - b1 = % (318)

Setting
wy = 2(by — a3), (3.1.9)
we can write, in accordance with equation (2.4.6),
6" = (n€)" = "¢,
so that
0" (w) = w+ws. (3.1.10)
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3.2 Analytic Continuation

Theorem 3.2.1 7 and 7 can be continued as meromorphic functions to the
whole universal covering, where they satisfy equations (8.1.8), (8.1.4), together
with the relations

m(w) =7 (w)), 7T(w)=7(n"(w)), YweC. (3.2.1)
[ ]

Proof.  The region A* is simply connected. Moreover, A* N IT is bounded by
the curves A=1(I7) N IT and A~Y(I3) N I1. From the analysis made in sections
2.4 and 2.5, the following automorphy relationships on S hold:

&) =r, §n)=#l)cd, E&o)cd, (3.2.2)

using in particular the fact that n preserves z and I C {s, |z(s)| < 1}.

Fig.3.2.1. The case M, <0, M, <0

In figure 3.2.1, the symbol “ * ” has been used for all curves, to emphasize that
we are on the universal covering, and é* is a translation to the right of vector
w3 = 2(a; — by) in the system of coordinates (w2, w;), according to (3.1.10). The
detailed computation of wy,ws,ws is carried out in section 3.3. Lifting now the
relations in (3.2.2) onto the universal covering, one can write for instance

eOHn) NI =2 R, (A L) N ) =X (o),

whence
SN c A n, &YW YL)nO)c A NIl (3.2.3)
Thus the domain
A JoaY
is in fact simply connected and it follows by induction that
G " (AY) (3.2.4)

n=-oo
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covers the whole complex plane C. Moreover, since on C, = is a function of
z,V|z| < 1, we have

{w(w) =1(E' W), V(w € (W) € A,
Fw) = T W), V(wnW) e 4,

and this equality, by the principle of analytic continuation, holds indeed for all
w € C, so that (3.2.1) is proved.

Using now the fundamental equation (3.1.4) together with (3.2.1), we obtain
after some easy manipulations the following system:

9(§" (W))m(w) + (€ ()7 (€ (W) + qo(€"(W))m0 =0, V(w,{(w)) € A,
9(§* (w))m(w) + (€ ()7 (6*(w)) + go(€"(w))mo0 = 0,  V(w,d"(w)) € A".

Eliminating 7(w) in the above system, we obtain

. (3.2.5)
4 q( ( ) [_Qo(f (w))+qo(w)]7r00
W) [ a€w) = gw)

Equation (3.2.5) allows us to continue 7(w), first to the domain §*(A*), and
then, by induction, to the region introduced in (3.2.4). The proof of theorem
3.2.1 is concluded. [ ]

The next step consists in making the analytic continuation of 7(z) and 7(y) in
their respective complex planes C, and C,. To this end, we first go through an
intermediate step, namely the analytic continuation of 7 and 7 on the Riemann
surface S. This is the subject of the next theorem.

Theorem 3.2.2 The functions ™ and T can be continued to the whole Riemann
surface S. [ ]

Proof. Indeed, since the mapping A : C — S is holomorphic, 7 and 7 (which
by theorem 3.2.1 are known to be meromorphic functions on the universal cover-
ing C) can be projected onto S also as meromorphic, but possibly multi-valued
functions (since the torus S is not simply connected), according to the usual
procedure, as follows.

Any path £ on S, having its origin at s € A, can be lifted onto a path £*, which
is unique provided that the origin s* of £* is fixed in A~!(s), since A has no
branch point: it suffices to impose s* € A~!(s) N I1. This choice of s and s*
yields two functions on S, which coincide on A with = and 7, respectively, and
are defined by

moXTl(t), ToXTl(t), Viel (3.2.6)
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From the monodromy theorem, the continuation along any curve homotopic to
I'b leads to the same branch. In order to obtain the other branches of the two
above-mentioned functions, it suffices to make the analytic continuation along
some curve non homotopic to I. The proof of the theorem is concluded. W

The pragmatic problem mentioned above can be rephrased as follows: starting
with () defined for |z| < 1, we ask whether this function can be continued
outside the unit disk. The solution consists in projecting onto C, and C, re-
spectively the functions defined on S by (3.2.6) .

Let us draw a cut in C, along the real axis between the points z3 and z4. More
exactly, this cut is

[x3, 4], if z3<z4 <00,
[133, 00] U [—00, 124] s if z4<-1,

but in all cases we will write [z3, z4).

Theorem 3.2.3  Under the conditions of theorem 1.2.1, n(z) is a meromor-
phic function in the complex plane C, cut along [r3,z4]. A similar statement
holds for 7(y), with the corresponding cut [ys, ys] in C,. [ |

Proof. One can proceed exactly along the lines which were used above to
project m from C onto S. Choose a path ¢ in C, — D, not going through z;,
i = 3,4. Since above any u € £ there are exactly two points on S, h2!(¢) consists
of two curves and h(s) is locally one to one Vs # s;, by proposition 2.1.6.
Denoting one of these curves arbitrarily by £, we have h;1(¢) = LUE(L). On the
other hand, from section 2.5 and the construction presented above, it becomes
clear that X
n(s) = w(£(s)), Vse€S.

Thus, taking £ or £ (L) does not matter and this shows that the analytic con-
tinuation of 7 along any arbitrary path £ in C, — D is possible. Here again, the
continued function is a priori multi-valued. To render it single-valued, it suffices
to cut C, along [z3,z4]. Indeed, any simple closed curve £ in C,\{[z3, 4] UD}
is lifted onto S into a curve £, homotopic either to a single point or to I (de-
pending wether or not £ contains [z3, Z4] in its interior), but never to a latitude
circle on the torus, which would correspond to the segment [0,w,] on the uni-
versal covering. Besides, we know that = is single-valued on such L, since we
remain on the same branch. The proof of theorem 3.2.3 is concluded. [ ]

Corollary 3.2.4  Under the conditions of theorem 1.2.1, w(z) and 7(y) are
holomorphic in the neighborhood of the unit circle, in their respective complex
planes.

The proof is obvious since [r3,z4) C C, — D. [ ]

Corollary 3.2.5 The following conditions are equivalent:
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1. 7 is not rational;

2. T is not rational;

3. m (resp. T) is not meromorphic in C; (resp. C,);

4. 3 (resp. y3) is a non polar singularity of m (resp. T).

Proof. 4 — 3 — 1 is clear. To show 1 — 2, assume 7 is rational. Then, from
the basic functional equation (2.2.4), we have

#(y) = E(y) + Xo(y)F(y),

where E and F are rational functions of y. But 7 has to be holomorphic in the
unit disk, so that, necessarily, F(y) = 0, which says that 7 is then also rational.
For the induction 1 — 3 — 4, two cases have to be considered:

e 14 # 00. One sees easily, using analytic properties of the branches given in
sections 2.3 and 5.3, that z = 0o is either a regular point or a pole of 7. Thus it
remains to prove that, whenever z3 is not a branch point of 7, then this property
holds also for z4. But there exists no meromorphic function on C,\{z4}, having
T4 as a branch point.

e 1, = 00. Then, referring again to section 5.3, we have y; # 00, provided the
random walk is non singular, and we come to the preceding argument applied
to the function 7. ]

3.3 More about Uniformization

Our purpose here is to get explicit representations for A,w; and wsy, which will
be used, in particular, at the end of chapter 5.

First we will recall some classical facts about the Weierstrass elliptic function
o(w; wy, ws), admitting the periods mw; +nwa, m, n € Z, and usually denoted by
p(w). All this material can be found, for instance in [38] or [5]. p(w) is defined
by the series

1 1 1
P =5+ D [ 2 2] )
v (m,n)#(0,0) (w = mw; — nw,) (mwy + nw,)

which is uniformly and absolutely convergent for all w # mw; +nwz, m,n € Z.
At the points mw; + nw,, p(w) has poles of second order. The definition of
p(w;wy,w;) depends on the pair (w;,w.), up to a unimodular transform of the
type

wy = aw; + fwg, wh = yw; + dwy,

where a, 3,7, are integers satisfying

ad — By = %1




3.3 More about Uniformization 43

It is well known that p(w) satisfies the differential equation

9 (W) = 4p° (W) — g2p(w) — g5, (3.3.1)

where the so-called invariants g, and g3 are given by

1
9> = 60 Z (mw + nw,)?’

0,0
g 14c()m w% | 1 432
3 = 6"
(m.n)#(0 0) (muy + nug)®

Moreover, any elliptic function with periods wi,ws, is a rational function of p
and of its derivative ' and any even elliptic function is a rational function of
the sole p(u).

In section 2.3, we have introduced the polynomial
Q(z,y) = a(z)y* + b(z)y + c(z).
Setting temporarily, for the sake of shortness,

D(z) = b*(z) — 4a(z)c(z) = dyz* + d3z3 + dpz? + dyz + dy,
z = 2a(z)y + b(z),

with
dq = po — 4pup1,-1,
d3 = —[2p10(1 — poo) + 4P11P0-1 + Parp1-1) <0,
we know from chapter 2 that D(z) has four real zeros z;, 1 = 1,...,4. In

addition z; and z3 are always pesitive and we have

1<z <1< 13 <23 < 24, if ds >0,
T3 < -1<z1 <1< 15 <173, if dg<0,
Ty = 00, if d4=0.

Lemma 3.3.1  When S is of genus 1, the algebraic curve Q(z,y) = 0 admits
a uniformization given in terms of the Weierstrass p-function and its derivative
@' by the following formulas:

(1) If dy #0, then D'(z4) > 0 and

et DG
T - (633
Z(UJ) - Dl(x‘i)pl(w) o

2 (p() — 1D"(z))""
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(i) If dy = 0, then z4 = 0o and

)= (3.3.4)
__pW)
2(w) = - 2d;

In both cases, z(w) and p'(w) have the same sign.

In the above formulas any z; might have been chosen, but x4 is in some sense
the best candidate, since it depends on d4 in a very direct way. ]

Proof. The algebraic curve Q(z,y) = 0 can be rewritten in the slightly simpler
form

22 = D(z).
A classical way of uniformizing such curves, when D has degree 4 in z, consists
into a reduction to the Weierstrass domain, in which case D would be of degree
3. To achieve this, it suffices to send one of the zeros of D, e.g. x4, to infinity,
using a fractional linear transformation.

Consider next the following Taylor’s expansion

D(z) = (z — z4)D'(z4) + (I—Z?Q-D”(u)
(z -

3 V!

+___ﬂp(3)(x4) + (ix_“)p(‘i)(“),
3! 4!

where DU)(.) denotes the derivative of order j > 3, and let

we D'(:c4), 0= 2zD’(z4)’
T — T4 (z — z4)?

We have therefore

(4) / 2
v* = 4u® + 2D"(zq)u® + %"D“)(m)p'(u) + Ze DAzl (x“)f[;D @l
Setting now .
t=u+ 6D"($4),
yields the well known Weierstrass canonical form
v? = 4t® — gyt — gs. (3.3.5)

The case dy = 0 (and then d3 # 0, since the degree of D(z) must be > 3 to have
a curve of genus 1) is easier to handle, since it is then possible to eliminate the
coefficient of degree 2 in D, by the linear change of variables
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which yields at once (3.3.5). Now the Weierstrass domain formed by the pairs
(t,v) satisfying (3.3.5) is uniformized by setting directly, see [38],

t=pw), v=pW).

Hence, with these values for t,v,u, the asserted formulas (3.3.3) and (3.3.4)
hold and the lemma is proved. ]

It is well known that the periods w,ws of p(w), which appear in the uniformiza-
tion of (3.3.5), are uniquely defined in terms of gy, g3 by the formulas (3.3.3),
since the ratio wy/w; is assumed to be non real. Nonetheless these inversion
formulas are not easy to manipulate numerically. Indeed they involve elliptic
modular functions (see e.g. [5]). Thus, it seems useful to give a direct explicit
form for the periods wy,ws in terms of elliptic integrals.

Lemma 3.3.2 One can choose wy,wy so that w, be purely imaginary and
wy be real. Such a choice is unique, up to signs. Hence we shall take we > 0,
I'm wy > 0. Moreover, w; are given by the following integrals, taken on intervals
of the real axis:

2 / v_d= 2 / v _d (3.3.6)

wy =21 —_—, wy= —_—, 3.6
1 ‘\/ —D(I) z2 ‘\/ D(.’B)

where D(z) < 0, for z; < z < x4, and D(z) > 0, for z; < = < z3, and the

radical in the integrand is taken to be positive. [

Proof.  Let us note first, that if dy # 0, then D’'(z,4) > 0. Consequently, using
the definition of z(w) given in lemma 3.3.1, we show that, if d4 # 0, then p is
a decreasing function of z, by (3.3.3), separately on the intervals | — 00, z4[ and
|z4, +00[. If dg = 0, then p is a decreasing function of z on the whole real line
R, since d3 < 0. The zeros of y, where g(z) = 423 — g,z — g3, are usually denoted
by e1, e, e3 (see [5]). They are real and satisfy the following relationship

e1t+est+e3=0, >0, e3<0, e >e; >es.

Let (w1, ws) be a pair of primitive periods. It is known (see [38]) that

(%) e p(3) = #(252) =

Consider the mapping h = z — z in the complex plane. This homothetie trans-

forms the period parallelogram into another parallelogram, denoted by H. A
property of the Weierstrass function p(w) says that, when we describe H is the
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positive direction, starting from the point w = 0, p(w) decreases from +oco to
—o0. This yields immediately, from (3.3.3) and (3.3.4),

T (%) =1, T (wl ;w2) =I5 Z (%) =13, z(0)=z4. (3.3.7)

Let now the elliptic integral

s [ &

-0 v 9(t)
It is in fact more convenient to consider I(w) on the Riemann surface S, where
the integrand becomes a meromorphic function. But then I(w) is a multi-valued
function. Fix a value of the integrand at some point a and consider two paths
¢, and 43 on S, such that the homologous paths L; and L,, inside the period
parallelogram in C, join the points a to w. Then there exists integers m;, my,
such that

/—L=/ i+m1wl+m2w2.
le/g(—t) Lz\/m

Taking a = 00, w = p(w; w1, ws), we get

w= / % (3.3.8)
plwwiwe) V43 — gat — g3

where w, for any value of g, is defined modulo (w1, w2), noting that p(w) is single-
valued for all w. It is worth noting that in (3.3.8) the radical is supposed to have
a positive value for w €]0, £[ and, in fact, the integral should be considered on
the torus or, equivalently, in the period parallelogram. Thus at the point w = %,
one passes from one sheet to the other, which means that, for w €]%, ws[, the
radical is necessarily a negative real quantity.

Let us make now in (3.3.8) the change of variables

D'(.’L‘4) .
= ———— ifdy #£0
z T4+ _ %D"(l})’ 1 a4 # ’
-
r = d3 , if d4 =0.
Then @ gy

- m, mod (wl s (.U2),

so that a particular pair of periods (&;, ) is given by

z3
o =2 ,
T4 D(:B

1 dr
& = 2 / .
T4 D(x

&

3

3
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In fact, w; and W, depend on the choice of the path of integration. In particular,
it is always possible to take the path 35?94 instead of 334 on S. This means that
one can always take

o [T
wy = — >0,
z2 D(-T)

where the integration is taken over the real interval [z2,z3]. In addition, the
following inequalities hold:

4 dx

_ dr _t-i_a:_= . dzx
2 s VD@ Jia \/D(x)_/Ll VD(z) z/w, VD)’

up to the sign, which can be arbitrarily chosen. Since D(z) <0, for z € [z1, 2],
we get

2 dx
w =2 / —
a1 v/ —D(z)
as possible second primitive period, which is purely imaginary. Since the
pair (w;,ws) is given up to a unimodular substitution, it appears that the

above choice of (w;,ws) is unique, as asserted. The proof of lemma 3.3.2 is
concluded. ]

Lemma 3.3.3 We have

£31
w3=2/ &

X(n) V D(:L‘)’

with
0 <w;s <ws.

Proof. We shall use the formulae (3.3.7), together with

o(@m) =21, @==, z(b)=X(w)

2 1)
where the three equations above simply depict the correspondance between the
branch points z;, y; in the complex plane and their images a;, b;, 2 = 1,2 on the
universal covering.

The following properties of the function p will be needed (see figure 3.3.1):

(i) p is real on the sole intervals [0,ws|, [0, w1, [4,% + we[, [2,%2 + w1 ;

(ii) p decreases on [0,%2] from +00 to e;, increases on [4,w,[ from e, to
+00. More generally, (see [5]), p is real and monotone decreasing along
the circuit drawn in figure 3.3.1.
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Fig. 3.3.1.

Thus, for w € [0,%], the function z(w) (which is homographic of p(w)) is
increasing and takes its values in the following intervals:

|24, +00[ and | — 00, z1], if dg > 0;
[4,z1), if dg < O;
] — 00, z1[, if dg = 0.
One will see later on in chapter 5 that X (y:1) < 1, which implies first that b; is

real and also that b; €]0,ws[, by the earlier mentioned properties of the function
p(w). Hence only two cases can take place:

by=c, where ce€ [0,2], z(c)=X(w), or
b1 =wy —C.

To make the right choice, one must know the sign of p'(b;), since p decreases
on [0, %] and increases on [“2,w,]. By lemma 3.3.1, /(1) and z(b;) have the
same sign. Furthermore, from the very definition of z, we have

2(b1) = 2a(X (1)1 + b(X (11))-

Referring again to section 2.3 and to chapter 5, the branch Yp(z) of the algebraic
function y(z) satisfies y1 = Yo(X (¥1)). Thus

2(b1) = 2a(X(3))Yo(X(31)) + b(X (1))
= a(X()[Yo(X (1)) - Y1(X ()] = £V D(z(n)),
where we have used Yp(z) + Yi(z) = _alzg)

Taking now z; — ¢ < z < 1z, for some € > 0, we will show in chapter 5
Yo(z) > Yi(z). In addition, a(z;) > 0. This last inequality can be proved by
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noting that, as D(z) < 0 on ]z, z[, a(z) has no zero on [z;, ;). But 3 > 0
implies a(zx2) > 0, so that a(z;) > 0. Finally, the sign of the quantity

[Yo(z) - Ya(z)]a(z) = £v/D(z)

does not change on the intervals

Jza, z1], if 24 <O,
|z4, +00[U[—00, z4], if z4 > 0.

This shows that

[Yo(X (31)) = "a(X (3))]a(X (1)) > O,
which yields in turn
bl =wy —C.
Then
T4 dr

1 dz
w3=2(b1—a1)=w2—20=2/ — D —_—
2 VD(z) Xw) vV D(z)

Lemma 3.3.3 is proved. ]

Remark 3.3.4 The calculation of the periods can also be achieved by using
equations (9.9.2) and the modular functions [38].

Remark 3.3.5 All the derivations concerning the periods and the quantity ws
are connected with the fact that there exists a unique Abelian differential of the
first kind, up to a multiplicative constant,

dz
2a(z)y + b(z)’

This differential becomes dw when lifted onto the universal covering and \/%
T

when projected onto the complex plane C ..
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4. The Case of a Finite Group

In section 2.4, the group H of the random walk was shown to be of even order
2n,n = 2,...,00. Throughout this chapter, n is supposed to be finite and the
functions gq, g, go are polynomials. In this case, we are able to characterize com-
pletely the solutions of the basic functional equation, and also to give necessary
and sufficient conditions for these solutions to be rational or algebraic.

4.1 On the Conditions for H to be Finite

Finding the exact conditions in explicit form for n to be finite is a difficult
question, which has many connections with some classical problems in algebraic
geometry.

Recalling that H is generated by the elements £ and 7, we have the identity
(homomorphism)

h(R(z,9)) = R(h(z), h(y)), Vh € H, YR € Cq(z,y).
Clearly, 2 elements h;, hy of H are identical if, and only if,
hai(z) = ha(x), ha(y) = ha(y)-

In addition, for any R € Cg(z,y), the following important equivalences hold:

{g(R)=R<=> ReC(z), @i

n(R)=R<+= ReC(y),

so that C (z) (resp. C (y) are the elements of C g(z, y) invariant with respect to
€ (resp. ). Indeed, let

- PO(I’ y)
P1(13, y),

where Py(z,y), Po(z,y) are polynomials in z,y. Since

p(z,y) (4.1.2)

Q(z,y) = a(z)y® + b(z)y + c(z),
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(4.1.2) yields
_ Ai(z)y + Ao(z)
p(x7 y) - B](I)y+ Bo(l’) mOd Q(IB, y)
When 7 is supposed to be invariant with respect to &, it follows that

Ay + Aslz) _ M@+ Ao)
Bi(z)y + Bo(z) Bi(x)ye + Bo(z)

As y # y¢, we obtain from (4.1.3)
Al(l‘)Bo(x) = Ao(l‘)Bl(IB),

mod Q(z,y). (4.1.3)

which yields immediately

1‘;—%, if By #£0,
p(z) = Ag (z) . (4.1.4)
Bi(2) otherwise.
Thus we have proved (4.1.1).
‘We shall now derive conditions for the order to be 4 or 6.
4.1.1 Explicit Conditions for Groups of Order 4 or 6
Lemma 4.1.1 The order of H is 4 if, and only if,
Pu P1o P11
Po1 Poo — 1 Po,-1 =0. (415)
P-11 P-10 P-1,-1
n

Proof. Recalling that & = ¢, the equality 62 = I, writes

én(z) = n(z),
né(y) = €(y),

where we have used £(z) = z and n(y) = y. Thus n(z) [resp. &(y)] is left
invariant by £ [resp. 7], so that

n(z) € C(z) and £(y) € C(y).

Hence, 7 and { are conformal automorphisms on C, and C, respectively, and
are thus necessarily fractional linear transforms of the form (since ¢2 = n% = 1),

&n =n€, which is equivalent to {

T+ 8 _Ty+5
tx_r) g(y)_?y_.,,

n(z) =
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where all coefficients belong to C. The following chain of equivalences holds:

T+ S
tr —r

n(z) = & tzn(z) =r(z+n(z)) +s

& 1, z+n(z), zn(z) are linearly dependent on C

& 1, ——g(y—) @ are linearly dependent on C

a(y)’ a(y)

< a(y),b(y), c(y) are also linearly dependent on C,

where we have used equation (2.3.1)

Q(z,y) = A(y)z® + b(y)z + y)
and the results of section 2.4. The proof of lemma 4.1.1 is concluded. ]
Lemma 4.1.2  'H has order 6 iff

Ay Az Ay Az
Az —Ags Ay —Ap
Ay An An  Axy
A Ay An -4y

=0, (4.1.6)

where A;; denotes the determinant obtained from 4.1.5 by suppressing the i-th
line and the j-th column. |

Proof. In this case (én)® = I, which is equivalent to

nén = &né. (4.1.7)

Applying (4.1.7) for instance to z, we get
én(z) = nén(z),

which shows that £7(z) is invariant with respect to 7 and consequently is a
rational function of y, remembering one is dealing with the field of rational
functions. Similarly, né(y), invariant with respect to £, is a rational function of
x. Hence (4.1.7) is plainly equivalent to

{ﬁﬂ(w) = P(y),
né(y) = R(z),
where P and R are rational. Then

y = R(én(z)) = Ro P(y),
or, equivalently,

RoP=1I, (4.1.8)
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so that P and R are linear partial fractions. Thus (4.1.8) yields the relation

£( )_m(x)+q

= (4.1.9)

which imposes a linear dependence on C between the four elements 1, £(y), n(z),
&(y)n(z). Moreover a simple but tedious computation leads to the following
general relations, valid on the algebraic curve Q(z,y) =0,

_ zu(y) +v(y)
1) = )+ u)
(4.1.10)
_ yu(z) + v(z) ~
£) yw(zr) + u(z)’
with
u(y) = Agy + YA, U(z) = Agy + T3,
v(y) = A+ yA13, 17(.’1:) = Ay + A3,
w(y) = Asz + yAss, w(r) = Aoz + TAs3.

Combining (4.1.9) and (4.1.10) leads to the condition (4.1.6) (the details of the
calculus are omitted). The proof of lemma 4.1.2 is terminated. |

Examples where H is of order 4.

1. The product of 2 independent random walks inside the quarter plane, so
that '
> pyz'y = p(z)By).
i.j
2. The simple random walk where Y pijz'y’ = p(z) + p(y). Thus, in the
interior of the quarter plane, p;; # 0 if, and only if, 7 or j is zero.

3. The case (a) in figure 4.1.1, which can be viewed as a simple queueing
network with parallel arrivals and internal transfers.

Examples where H is of order 6. Among these are the cases studied in [22],
[6] and [31], which are represented in figure 4.1.1 (b), (c) respectively, where, as
before, only jumps inside the quarter plane have been drawn.

4.1.2 The General Case

As quoted at the beginning of this chapter, the general question of finiteness
of the group has indeed intimate links with problems encountered in geometry
during the last century. Among them one can cite
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0 (a) 0 () 0 (c)

Fig.4.1.1.

1. The problem of abelian integrals;

2. Poncelet’s problem, pointed out in private discussions with the authors
by L. Flatto.

We shall consider the first problem in more details. First, let us note that the
group H is of order 2n if, and only if,

w3 = 0 mod (wl)w2)a
or, since wjs is real,
nws =0 mod (wy), (4.1.11)

where n is the minimal positive integer with this property.

It is convenient to recall hereafter some fundamental notions and theorems
pertaining to compact Riemann surfaces. This material can be found e.g. in
[72].

Let us take two arbitrary points u;, uz on the universal covering, such that
U — Uy = Ws,

and let
Py = ANw), P2= Aug),

their corresponding images on S. Then, from theorem 2.1.17, one can choose
on S a unique (up to a multiplicative constant) abelian differential of the first
kind dw, satisfying

Py

dw = ws. (4.1.12)
P

n

It follows from (4.1.11), (4.1.12) and Abel’s theorem 2.1.18, that the divisor %
is principal. In other words, there exists a meromorphic function ¢ on S, wit2h
a unique zero (resp. pole) of n-th order at P; (resp. P2). Clearly, the quantity
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d(logy) = —

is an abelian differential of the third kind, with poles of first order at P, and
P,.

Lemma 4.1.3 Condition (4.1.11) holds if, and only if, there exists an
abelian integral of the third kind, having logarithmic singularities at the points

Py, P; and represented as the logarithm of an algebraic function ¢, which belongs
to C(8). [

Proof. 'The necessary condition has been proved above. Let us now assume
this integral does exist and denote it by wp, p,. Setting

Y = exXp wtltz:

and using again Abel’s theorem, we come to (4.1.11). Moreover, the correspond-
Pﬂ
ing divisor is equal to -pln- and this n is the one we need. In other words, lemma

2
4.1.3 reduces the calculation of H to the following question: when is it possible
to integrate a given abelian integral of the third kind in terms of logarithms ?
Abel and Chebyshev have studied the latter problem. Its solution for integrals

of the form p
/(Z + C)—z )
D(z)

where D(z) is the 4% order polynomial with real (coefficients, was obtained by
E.L. Zolotarev in 1874 [73]. Our situation reduces to integrals of exactly this
kind. We shall see in section 4.2 that the group is finite if, and only if, the set
C (z) N C(y) is non trivial.

4.2 Rational Solutions

Let the group H be finite of order 2n. We shall obtain, by strictly algebraic
manipulations, rational solutions of the fundamental equation. These solutions
have in general no probabilistic meaning, but they allow to reduce the problem
to finding the solution of an homogeneous equation, i.e. when go(z,y) =

To find rational solutions, one can simply consider the main equation

=Q(z,y)n(z,y) = n(z)q(=z,y) + 7(¥)a(z, y) + moogo(z, y),
in Cg(z,y). In other words, all calculations will be made modulo Q.

Notation One will write f, = a(f), for all automorphisms a and all functions
f belonging to Cg(z, y).

Then we have
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gm +qm + gomeo =0, (4.2.1)
T =g, (4.2.2)
7 o=7, (4.2.3)

Applying 7 to (4.2.1), we get

L ) S (4.2.4)
an an

Eliminating now 7 from (4.2.1) and (4.2.4) yields

-g—"w,,—g:/r+ (@—q—f) meo = 0,
an q Gn q

or, since Ty, = Mpe = T,

w5 — fm =1, (4.2.5)
where
( q 4 i 4
== f = =
¥ q Pn ¥
r= Too90 F= Toodo
] q 9 _ (4.2.6)
r—r T—T¢
1/) = ',) ¢ = y
_ ¥n 43
(6= 61 =¢p

Upon applying now 4 repeatedly in (4.2.5), 7 satisfies the following system:

7T5—f7'l' =¢1

g2 — fsms = s, (4.2.7)

Ton — f&n—lﬂ'&n—l = '(p&n-l.

‘H being of order 2n, we have §" = I; and the system (4.2.7) is closed. Indeed,
referring to section 2.4, since ex hypothesis 7 is sought in C g(z,y), we have

Ten = M.
Of course analogous relationships could be written for 7, using the automor-

phism 4 and the functions f,%. There are two deeply different situations, which

will be analyzed in the next subsections. For this purpose, it is necessary to
introduce some definitions, taken from algebra, with the notation employed in
Lang [43].
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Let us denote by C;(z,y), the subfield formed by the elements of Cgo(z,y)
which are invariant with respect to 4. Recalling that n is the order of the cyclic
group Ho = {6%, k > 0} introduced in lemma 2.4.3, one can define, for any
f € Cq(z,y), respectively a trace and a norm as follows:

{Tr(f) = T’”g,,o(f) E Yaery fa=F+fs+ o+ fynou,

N(f) = N2(f) ¥ Taer fa = Fo-- fonmr.

It is worth noting that T'r(f) and N(f) are elements of C 5(z, y), invariant with
respect to 6.

4.2.1 The Case N(f) #1

Under the assumption

N(f) #1, (4:28)
the linear sytem (4.2.7) yields directly a rational solution p, with

n-1 n-1
> ovs [ o

_ i=0 k=i+1
P=—TN NG (4.2.9)

with the usual convention that the empty product is equal to 1.

Similarly, under the condition

N(f) #1, (4.2.10)
where N (f)is computed with the automorphism X, we obtain
n-1 . n-1 ~
> s [ fa
~ =0  k=i+l
p=—————= (4.2.11)
1-N(f)

As the reader might have guessed, conditions (4.2.8) and (4.2.10) are in fact
equivalent. To prove this property, it suffices to show that

N(HN(f)=1. (4.2.12)
Since, by (4.2.6),

NG = s md NP = T,

one must simply check N(p¢) = N(gy,). But
N(pe) = [N(9)le = [N(¢)ly = N(¢y),

where the intermediate equality is easy to derive. Hence (4.2.12) is proved.
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Theorem 4.2.1  Let the order of H be 2n and assume condition (4.2.8) or
(4.2.10) holds. Then the system formed by (4.2.1), (4.2.2), (4.2.3) admits a
unique rational solution, p, p, given by (4.2.9) and (4.2.11) respectively. ]

Proof. We have just proved uniqueness. To establish existence, one has only
to show the equality p = p¢. Using the relations

ffa=1, g f, g =Gy,

n

we get
Vein—s = Y, = — P22
(3] &+1p f35+1 )
fegn-sr1 = (f5) 7 = (fon-e) 7,
whence
n [ n i
(Z 'lp&u—i H f&u—k+1) p— z "bﬂ H i
i=1 k=2 I3 i=1 f§i+1 k=2 fg"
pe = — = — =p. (4.2.13)
1 1
1-1]|—+— 1-11—=
g fos g fo
The proof of theorem 4.2.1 is concluded. |

Remark 4.2.2  We have obtained the unique rational solution, which is non-
zero if, and only if, go # 0. Moreover whenever this solution has poles inside
the unit circle, one can infer that the generating functions of the stationary
probabilities cannot be rational.

4.2.2 The Case N(f) =1

Before proceeding to the detailed analysis, we quote in the forthcoming remark
three properties, useful in the applications to avoid intricate computations, and
can be derived along the lines which produced (4.2.12).

Remark 4.2.3  The following equivalences hold:

Nf)=1l<=
N(p) eC(z)NC(y) &=
N(p) = [N(@)le = [N(9)]n-

In section 4.2.1, it was shown that, whenever condition (4.2.8) takes place,

T =w+p, (4.2.14)
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where p € C(z) is given by theorem 4.2.1 and w satisfies the homogeneous
equation

ws — fw =0. (4.2.15)

Now, whenever

it will be proved that
T = cu,

where ¢ € C(z) is rational and u satisfies the equation
Us —uU= C&’(/).

En passant we shall also find all possible rational solutions.

Notation Let F be an arbitrary field, h an automorphism of F. Then Fj
will denote the subfield of elements of F’ which are invariant with respect to h.

Lemma 4.2.4 Let F,,, F be two fields such that
(i) F is a finite Galois extension of Fj;

(it) The Galois group G(F/F), (i.e. the set of automorphisms of F leaving
F}, invariant — see section 2.1.8) is cyclic and generated by h.

Then, for any @, ¥ € F, such that

n-1

Ni‘,,(‘ﬁ) o H‘ph" =1,
“

Trg;. (1/)) f_:! Z d)h" = 0)

i=0

there exist a, b € F, satisfying respectively
_a
SO - ah,
P =>b-— b

Proof. The result follows directly from the multiplicative and additive forms
of Hilbert’s theorem 90, which we quote now for the sake of completeness (the
proofs can be found e.g [43]).

Theorem 4.2.5 (Hilbert’s theorem 90) Let K C L two arbitrary fields such
that the Galois group G(L/K) be cyclic of degree n. Let o a generator of G. Let
B € L.




4.2 Rational Solutions 61

(Multiplicative form) The norm NE(G) is equal to 1 if, and only if,
there exists an element a # 0 in L such that 8 = a/a,.

(Additive form) The trace Tr%(B) is equal to 0 if, and only if, there
exists an element b in L such that = b— b,. ]

Here we shall choose L = F and K = Fj,. The proof of the multiplicative form
of Hilbert’s theorem ensures, in a constructive manner, the existence of § € F,
such that

a =0+ @0+ 0optpz + - + Qpp - - - Ppn-20pa-1 # 0.

Such an a is admissible.

Similarly, for any v € F with Trf, (7) # 0, an admissible b is given by

= ToF ( [¢’Y+ W+ Yn)mme -+ (W + - Pun-2) 2],

Note that v above does exist since, Vy € F;, — {0},
Trf, () =ny #0.
This concludes the proof of lemma 4.2.4. |

Lemma 4.2.6 (Multiplicative decomposition) Assume now a and 3 are
two automorphisms of F, satisfyinga® = %> = I;. Let h = af and f € F, such

that
NE(H) =1,
NE() = ffa=1.
Then there exists ¢ € Fg, satisfying

c
I=—
]
Proof. From lemma 4.2.4, we know that there exists a € F, with
a
f= P
Hence
fo=la_l_a
[+ aﬂ f a y
which yields in turn
Za 28 (4.2.16)

ap a
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a _(a
an  \ag/,’

‘equation (4.2.16) can be rewritten as

@)-G). = G5

Introduce the sub-field

Since

Fpo=F3NF,.

We shall prove now that Fj, is an algebraic extension of degree 2 of Fj o, gener-
ated by g (resp. a) with a group of automorphisms (1, 3) (resp. (1,0)).

o First, if z € Fg N Fy, then z = 25 = 2,, so that 2 = z;, i.e. F, D FgN Fy.

o Let now 2 € F,, i.e. z = 2z, or, equivalently, z, = z3. Then 2 + 23 € F3 and
z+23=2+4+2,€ F,,s0that z+23€ F3N F,.

o Similarly, zz5 € FgN F,.

One has thus shown that that z is a zero of an equation of order 2, with coeffi-
cients in Fg . Moreover, fixing z € Fy, ¢ ¢ Fp o, we obtain, for any z € Fj,

z =u+ vz,
where
1?20,—.‘120,2 z — Z,
u=——— and v= =,
T —Tq T =T

It is easy to check that u,v € Fj,. Consequently, F}, is an extention of order 2
of F, Ba-

Since N, :{;‘a (ga‘?-) = 1, we can apply lemma 4.2.4 to the function 9&2 with h = a.
Hence, there exists b € F}, such that

b _a

b

which implies ab € Fj. Putting ¢ = ab, we get

c_@ _eo_;
ch  anbn  an
The proof of lemma 4.2.6 is concluded. ]

Remark 4.2.7 It is also worth noting that, by construction, the element c
found in lemma 4.2.6 has the form

n-1 i-1
c=) O[] fw,
=0

i 3=0
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with

0 = 05.
Simpler constructions exist for n = 2, 3.
o Whenn=2 and f # —1, we put

c=14+f, since = f.

e Forn =2 and f = —1, we can take
C=1T — Tp.
e For n =3, we can choose c equal to one of the following elements

1 +f + fh’
T+ zhf + Th2 fn,

Lemma 4.2.8 (Additive decomposition) Let a, 8, h be as in lemma 4.2.6.
Setting e = +1, let u € F such that

{Trﬁh (u) =0,

u+ euy = 0.
Then there exists v € F satisfying u =y — v, with v = eys. ]
Proof. It is sufficient to find a solution V' of the equation

V-V =u,
which corresponds to an additive problem in lemma 4.2.4, and to put

v= %(V +eVp).
Then clearly v = e+, and
T =2 (V- Vate(Vp—Va) = 5 (V= Vet V= Wi) =1,
since the condition u + eu, = 0 implies, instantiating u = V — V;, that
V—Va+e(Va—Vp) =0

The case € = —1 will be used only at the end of section 4.3. L]
In the applications of lemmas 4.2.6 and 4.2.8, one will take

a=1n, B=§ h=94 F=Cq(r,y),

whence F; = C(z), F,, = C(y). Now we are in a position to formulate the final
result of this section.
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Theorem 4.2.9  Let N(f) = 1. Then equation (4.2.5) has a rational solution
if, and only if,

n-1 n-1
> e [ fo=0 (4.2.17)
k=0 i=k+1

Moreover, under this condition, the solution is unique up to rational solutions
of the system

Ug = Uy = U. (4.2.18)
[ ]

Proof. Coming back to the basic equation (4.2.5), we get from‘ lemma 4.2.6
(em)s — e = cst), (4.2.19)

where ¢ € C(z) and cs9 € Cg(z,y). Setting w = e, (4.2.5) finally reduces to
ws — w = CsY. (4.2.20)

From the additive form of Hilbert’s theorem, equation (4.2.20) has a solution
in Cg if, and only if, Tr(cs¥) = 0. With ¢ = fcs, we have

n-1

n-1
Tr(csyp) = Z(Cglﬁ);k = thgkCgk-n
k=0 k=0

_ = ( Pst )
=c T s
k=0 Hi:o f &

so that, using N(f) = 1, (4.2.17) is plainly equivalent to T'r(cs1)) = 0, which
will be in force in the rest of the proof. Then lemma 4.2.8, with ¢ = 1 ensures
the existence of y € C (z), where

s =7 —"s

provided that csy satisfies the second condition of lemma 4.2.8, which is tanta-
mount to checking

csY + (cs9)n = 0.
But, from the definitions given in (4.2.6), we obtain precisely

T—ry  @ryp—T\ _
cs¥ + (csv =c.s( 14 = ):0.
(et = o (24 210

Now equation (4.2.20) becomes

W5 — W=7~ Vs
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or
(w+7)s=w+7.
Hence
w=-—y+u,

where u satisfies us = u. It follows that the rational solutions of (4.2.19) have
the form

f= -+ u,
c
where u is itself a rational solution of the system of equations (4.2.18). The
proof of theorem 4.2.9 is terminated. ]

One of the main results of section 4.2 is that we could reduce the solution of the
non homogeneous equation to that of a homogeneous one. This is summarized
in the next theorem.

Theorem 4.2.10  All rational solutions of the fundamental equations (4.2.1)-
(4.2.8) can be classified as follows.

(i) If N(f) # 1, then there ezists a unique rational solution p, which is given
by (4.2.9).

(i) If N(f) = 1, there are two cases:

- if condition (4.2.17) is not satisfied, then equation (4.2.5) has no rational
solution;

— if condition (4.2.17) holds, then any rational solution of (4.2.5) writes

u
ﬂ==to+'—,
c

where ¢ is rational, given by lemma 4.2.6 and remark 4.2.3, ty is the
particular rational solution of (4.2.5) given by

n-1 n-1 n-1
to = i ;(i -n) L[=I fota-r + (E fm/»a--l)é] , (4.2.21)
and u is an arbitrary rational function of the composed function

A™ o A,
where A is the fractional linear transform defined by (8.8.4), and

j=n-1

H (a: - ple+ j%;wl,wg))

A)(g) & 30

, (4.2.22)

j=n-1

H (33 - P(j%;whwz))

j=1
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denoting by P
et S i}
¢ 2 + 2n

a zero of p(w;wi, 22), with o, B €]0,1] and either o or (8 is equal to 1. W

Proof. Assuming N(f) = 1 and condition 4.2.17, it is possible by lemma, 4.2.8

to look for ¢y of the form

V+Ve

to=— 2 )
c

where, instantiating v = 1 in lemma 4.2.4, one chooses

= %[(n = 1)estp + (n — 2)cphs + -« + Can-1Pgn—2]

1 n-1
=

n 2 (n — t)csitpsi-1.
Iterating the relation ¢ = fcs, the above choice of V' yields easily (4.2.21).

As for u, it follows by condition (4.2.18), since u € C g, that, on the universal
covering Cw, u(w) is an elliptic function with periods w;,w,, satisfying

{u = u = u(w) = u(-w)

u = us = u(w) = u(w + ws).

k
From chapter 3 and section 4.1, we know that w3 = —w,, where k and n are
relatively prime numbers. There exists an integer &, such that

kk'=1 modn,
and hence u is elliptic with periods w; and % Since u is even, we know (see
e.g. [5]) that
- ]
U(UJ) - AO °p (w)wly n) ’
where A, is an unspecified rational function. Also, using some by the basic
properties of the Weierstrass p-function (see [5]), we can write
w
p (wion, 72) = A" o p(w; w1, wy),
where A(™ is given by (4.2.22). Since from the uniformisation (3.3.4) p is a
fractional linear transform of z, the proof of the theorem is concluded. [ ]
Corollary 4.2.11 The group H is of finite order n if, and only if,
C(z)NC(y) #C.
]

Proof. Indeed if n is finite, the set C(z) NC (y) # C does coincide with the
set of rational solutions of (4.2.18). On the other hand, if n = 00, then w;, ws, w3
are linearly independant on Z and (4.2.18 admits only constant solutions. W
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4.3 Algebraic Solutions

The general and standard notion of algebraic function was recalled in section
2.1.2. Consider the equation

ts — ft =1, (4.3.1)
where ¢ is subject to the constraint .
t=c¢t;, e==1. (4.3.2)

Since by (4.2.6) ff, = 1, and by (4.3.2) t; = et,, a necessary condition for
(4.3.1) to be solvable is

Y+eg,f =0. (4.3.3)
In this section one will assume (4.3.3). The reason for condition (4.3.2) with
€ = —1 will appear at the end of subsection 4.3.2. As before, one must separate

the cases

N(f)=1 and N(f)#1.

4.3.1 The Case N(f) =1

Recall that by lemma 4.2.6 there exists ¢ € C (z), such that f = _Cc_&_

Theorem 4.3.1  Equations (4.9.1) and (4.3.2) have a non-zero algebraic so-

lution if, and only if,
n-1 n-1
> vs [ =0,

k=0 i=k+1

which is nothing else but condition (4.2.17). Indeed, when (4.2.17) holds, all
solutions are algebraic and have the form

t=t + =,
c

where t; € Cq is given by

n

b= o ;u —n) l]‘[ forthsos + e(l'[ fort )J , (434)

Jj=i j=i
and w s an algebraic solution of the system

w5 = EWg = W.
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Proof.  Setting w = ct and substituting ¢ = fc;, equations (4.3.1) and (4.3.2)
rewrite
ws — w = csY.

Define

Y =

1

i = - ~Tr(csw),

Then all solutions of (4.3.1), (4.3.2) have the form
w=w +wy+ U, ‘ (4.3.5)

where

e The function w;, ¢ = 1,2, is a particular solution of the system

{wé_w=¢i’ i=1727

we = Ew.

In addition, from lemma 4.2.8 and lemma 4.3.2 to be proved below, w;
exists in C g since

Tr(¢h) =0, ¢ +e(th), =0.
The computation of w, will be carried out after the proof of lemma 4.3.5.
e The function U satisfies the homogeneous equation
Us =eU; = U.

In fact, U is algebraic and completely characterized by means of lemma
4.3.3.

Lemma 4.3.2 We have

i +e(i)y =0, i=1,2

Proof. There exists g such that
CsY = gn — £9.

Indeed, using ¢ = fc; = c¢, we get by (4.3.3) e(csv), + cs1 = 0, and one can
simply choose
_ csth —e(cs)y _ —ecs
I=7¢ T2
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Then ) )
Py = ;L-Tr(g,,) - €'TZTT(9)‘

Since, from an earlier derivation, T7(g,) = (Tr(g))s, one can write

%2 = ~{Tr(g)y ~ <Tr(g)

and

P + 5(1[)2),, =0.

The proof of the lemma is concluded, just remembering that, by definition,

P1 = 59 — Pa.
|

Lemma 4.3.3 On the universal covering C,,, let us consider the field of mero-
morphic functions with period wy,. Then, in this field, any solution of the equa-
tion

w=w;s (4.3.6)

is an algebraic function of . [ ]
Proof. On C,, (4.3.6) becomes
w(w) = w(w + ws).
Thus w is a function with periods w;,ws, so that
w(w) = Ag(p(w;wr,ws)) + p'(w; w1, ws) A (p(w; wi, ws)),

where Ay, A; are rational functions. Since nw; = kws, using the functions A™
introduced in the proof of theorem 4.2.10, we have

p(“-); W1,UJ3) = A(n) o P(UJ; wi, kwg),
p(w; w1, wy) = A®) o p(w; wy, kwy).

Since g’ is given.by relation (3.3.1) (with the convenient arguments), and z is
a homographic function of p, lemma 4.3.3 is proved. [ ]

Corollary 4.3.4 There is en effective construction of the algebraic solutions of
(4.2.18) [ ]
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Proof. Let

{u‘(w) =u (w + %) ,

z*(w) =x(w+f23).

Then, by (4.2.18), u* is even, elliptic with periods w;,ws and there exists Ay
rational, such that

v (w) = Ao(p(w; wr, ws)).
Consequently

u(w) = Apop (w - %;wl,ws) .

With s & 0 (w - %;wl,kwg), and using the functions A®, A® introduced
lemma 4.3.3, we have

u(w) = 4g 0 Al(s),
T*(w) = Ay 0 AW(s),

where A; is the fractional linear transform given by (3.3.3). Then (see e.g [5])
there exists a fractional linear transform Aj;, such that
w
p(wjwy,wy) = Az 0 50( - —22,';“)1,‘-‘-’2) :
Finally

w(w) = Ag 0 AM(s),
z(w) = Ay 0 Az 0 AK)(s).
It is interesting to remark that, when k = 1, any solution u of (4.2.17) are in

fact rational functions of z, since A is the identity. |

Continuing with the proof of theorem 4.3.1, note that, whenever ¢, = 0 (which
corresponds to the condition of the theorem), it suffices to take wy = 0.

It remains to prove that, for ¥, # 0, (4.3.1) and (4.3.2) have no algebraic
solution. To this end, let us first find the function w; in considering the equations

ws —w =13, W= Ew,
on the universal covering C,. We shall show that
wa(w) £ (w)(w)
is non-algebraic, where
o W W, (W ~ w
P(w) = ﬁC(W;wl,‘%) - ZT;C (?l;wl,w:i) =9 (w + -23) , (4.3.7)

and {(w) denotes the classical Weierstrass {-function (see [38]). An intermediate
lemma is needed.
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Lemma 4.3.5 The function &(w) given by (4.3.7) is meromorphic in C,,
odd, periodic with period wy, and satisfies

P(w + ws) = P(w) + 1.
a

Proof. & is meromorphic and odd since ¢ has both these properties. To prove
that @ has period w; and satisfies the equation of the lemma, it suffices to use

(see e.g. [5]) o
(wtw) = (@) +2(F), €13},

tc;gether with Legendre’s identity

() o () =

Lemma 4.3.5 is proved. [ ]

From the latter two lemmas, it follows that the product 1/125 is meromorphic,
periodic with period w,, and

(wa)s = Ya(w)P(w + ws) = wa(w) + Pa(w),

(wo)e = Wa(w))e® (%2 - w) = ~(ha(w))eBw) = ewalw),

where we have used (12)¢ = (12), and lemma 4.3.2. Finally, w; is a solution of
the equation

w5 —w = Yy,
subject to the constraint w,; = €(w;)e. On the other hand, in (4.3.5), wy and U
are algebraic, so that w is algebraic if, and only if, w, is algebraic. Consequently,
as 1, is rational, it remains to show that $(w — we/2) is not algebraic in z(w).
To that end, we exploit the fact that & has a linear growth in the ws-direction.
Recalling that nw; = kws,, define, for all m € Z, the quantities

Qg = mkws = mnws.

Then, by lemma 4.3.5, we get, since z(w) is elliptic with periods w;,ws,

{x(w) = z(w + am),

P(w+ ap) =P(w)+mn, Vme Z,.

Thus, for a fixed z, ¢ takes an infinite number of values, and therefore cannot
be algebraic in z. The proof of theorem 4.3.1 is terminated. ]
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4.3.2 The Case N(f) #1

Theorem 4.3.6  Equations (4.2.2), (4.2.5) have an algebraic non-rational
solution if, and only if,

N(f) = -1.
The solution has the form
u
T=p+ pe
where p is given by (4.2.9), u is an algebraic solution of equation (4.9.6), and
¢ is algebraic given by

n-1 i=1
c= 2(05-' - 055+n) H fgi, ' (438)

=0 j=0

where 0 € F¢ is chosen to ensure ¢ # 0 (in particular, 6 ¢ Co(z,y)), F being
an algebraic extension of Cq(z,y) to be precisely stated in the course of the
proof. ]

Proof. Since N(f) # 1, then (4.2.2), (4.2.5) have a rational solution. Hence,
we can consider only the homogeneous equation of the type (4.2.15). Let us
suppose that the system

ts = ft,
¢ =1 (4.3.9)
tf = t,
where f satisfies
f fn =1,

have an algebraic solution, i.e. P(t,z) = 0 for some polynomial P. The purpose
is to find, on the universal covering C,,, meromorphic solutions of (4.3.9), with
period w;.

Notation For any function g : z +— g(2), one will write g, = % for the
derivative of g with respect to z, or simply ¢’ if there is no ambiguity.
By derivation of P(t, z) = 0 with respect to z, we see that ¢, is rational of ¢ and
z, and hence the ratio t is algebraic in z. Moreover, since z(w) is an elliptic
function of w, z, is also elliptic with the same periods, and is therefore algebraic
in z. Using then the elementary equality

by _ Tty

t t’

!
we deduce also that tT“’ is algebraic in z. Introducing the following logarithmic

derivatives
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t fo

=% and v=12
u : an v

f’
we get from (4.3.9) that u is an algebraic solution of
us —u =",
ue +u=0, (4.3.10)
v, —v=0.

Putting in (4.3.1), (4.3.2), f =1, ¥ = v, € = —1, one can apply theorem 4.3.1,
just replacing in its statement f by 1 and ¢ by v. This yields

Tr(v) =

Tr(v)=Tr (le) = %(%,

But

since
(W) = w + kws,
which in turn implies
dé*(w)
dw

Then Tr(v) = 0 implies N(f) = K, where K is some constant and we have the
following chain of equalities

=1L

fh=1= N(HON(f) =12 N)(N(f)g=1= K* =1 K = -1,

since K # 1 and this proves the if assertion of the theorem.

Now, let us consider the homogeneous equation, with N(f) = —1. We intend
to prove that this equation has an algebraic solution. For this, let us note that

2ﬁ f = (II fa.) = (N(f))?

i =0 =0
as f € Co(z,y) and 0" = I,.
We would like to get a kind of Hilbert'’s factorization of f. To this end, consider
the field F of elliptic functions with periods w; and 2nws;. Since nws = kws,

Cq(z,y) can be con51dered as a subfield of this field. For any u € F, ¢ is then
defined by

us(w) = w(w + ws).

The cyclic group generated by ¢ on F is finite of order 2n. Clearly, f € F' and
moreover

NE(f) =1,
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where Fj is the subfield of elliptic functions with periods w; and w3. By lemma
4.2.6, since

Ng,,(f) =ffa=1,

there exists ¢ € F;, where F; is the subfield of elements of F' invariant with
respect to £, such that

jo

Cs
Then system (4.3.9) becomes

(te)s = te,

(tC)E = tc,
so that tc is elliptic with periods w;,ws, and, applying lemma 4.3.3 with e = 1,
algebraic with respect to z.

The last point is to show that c is also algebraic . But this follows directly from
the two following properties:

— c is an elliptic function with periods w; and 2nw; = 2kw, which can be
obtained as in remark 4.2.7 and has the form (4.3.8).

— z is an elliptic function with primitive periods w; and w,.

The proof of theorem 4.3.6 is concluded. |

4.4 Final Form of the General Solution

In section 4.3, we proved en passant the following theorem which gives the
general solution when N(f) = 1.

Theorem 4.4.1 If N(f) = 1, then the general solution of the fundamental
equations (4.2.2), (4.2.5) has the form

7T=’UJ1+’(U2+%, (441)

where
- the function c is defined by lemma 4.2.6;
- the function w; is given by formula (4.2.21) in which 1 is replaced by

15 (e )
ng(n:;lf&‘ ’

— the function ws is given by
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1 n-1 "/J " -
wa(w) = = Z ( ad ) (w) P(w). (44.2)
k=0 i=1 f&‘
= the function w is an algebraic function satisfying w = we = w;. n

Now we shall deal with the case N (f) # 1, proceeding along similar patterns.
First let us find the solutions of the homogeneous equation

ts = ft, with t(w) =t(-w+w,), YweC,. (4.4.3)

For convenience, we shall put

(o

’
pCA
t
Then u satisfies (take the logarithm in (4.4.4) and differentiate)

=u. (44.9)

’
Us —u = T“’ =X, u=-—u, (4.4.5)

with

X = Xn- (4.4.6)

Remembering that
Nw) = w; + w3 — w,

equation (4.4.6) is a consequence of the following the chain of equivalences (see
lemma 4.2.8 with € = —1):

ffq=lﬁf(w)f(wz+wa—w)=léx(w)=x(w2+w3—w)®x—xn=0-

We put now, as in section 4.2,
1 -~
u= ;Tr(x)d’ +a (4.4.7)

where & is given in (4.3.7) and a is such that

(4.4.8)

1 v
@ —a=x-=Tr(x) ¥y,
a¢ = —aq. v

The function a exists, just putting into lemma 4.2.8, with ¢ = -1,

u=X and a= —v.

Then, as before, we obtain
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ug = —u. (4.4.9)

The solution t of equation (4.4.4) is meromorphic if, and only if, all residues of
the meromorphic function u are integers. This can be checked by choosing

= —ka‘;k.

k=0

On the other hand,

so that a can be rewritten as

15 (-2 (5),

The general solution of (4.4.5) is of the form
u= %Tr(x)ii' +a-R, (4.4.10)
where R is a solution of the homogeneous system
Rs=R < R(w +w3) = R(w),
Re =-R < R(—w +LU2) = -R(UJ)
One will choose R so that the residues become integer-valued.

Lemma 4.4.2  There exists an elliptic function R, with periods wq,ws, such
that
R(—w + ws) = —R(w),

and all residues of u in (4.4.10) are integer-valued. [ ]

Proof. Let us consider the fundamental rectangle IT with vertices b, b + w,
b+ ws, b+ w + w3, where b will be fixed later on. We shall proceed in steps.

o First, one will show that the difference of residues at the points z and z + ws,
for any z, is an integer. Let A be a small circle around z. Then

/udw—/u
5A A

/ (Tr(x))(® + 1)dw — / (Tr(x))Pdw + /(a; — a)dw

/ —(Tr(x )dw+/xdw /xdw /—dw—2'LK7r

where | K| is the multiplicity of the zero or of the pole.

o Secondly, one must prove the sum of residues of (4.4.7) inside IT is an integer.
Take now
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. w3 wr w3
h - [_ - — =
Then, setting L = 2 23

+ -a—;l], we have (since the sum of the integrals
along imaginary directions cancel) '

/ udw = /udw —/ dw = xdw = 2mi [arg(f)]s-1, = 2mi [arg(fs-1)]L,
m L 6-1L 5-1L

where [arg(z)]. denotes the variation of the argument of z in traversing the
contour L in the positive direction. The image of L (which is invariant w.r.t. )
under the projection -z(A(w)) onto C is a closed curve, coinciding with the cut
[¥1,¥2). Thus the right hand-side above is an integer.

o Thirdly, it is necessary to show that R exits with R(—w + w2) = —R(w). But
this is clear from (4.4.9) and proof of lemma 4.4.2 is complete. |
In fact we want to give a somehow more explicit construction of R, noting that

k
u in (4.4.7) is periodic with periods wy, kws, provided that ws = —ws,. To this

end, let us introduce two families a;, b;, 1 < 4 < r, which are respectively the
poles and the zeros of f in the rectangle IT =]0,w;[X]0,ws[, and consider the
points

a; +flw; modws, and b;+fw; modws;, V1<i<r, 1<{£<k-1.

We choose these points to be poles and zeros of f respectively, and having in
addition their real component on the segment ]0, @ [ Then the residues of R
at an arbitrary point « are given by the formula

K [~ n—1
ResaR—Ka%-; (Q(a) - T) ,

where
= —1 if ais a pole of f,
1 if  is a zero of f,
R8805= 'u{—l,
2im

ResoR = ————ReZ°¢ [—(JIVV’})']

Rw) ¥R (w - —)
Above, a takes one of the values
a; +bwy, by +Llwy, i=1,...,7; £=0,... k-1,

and the integers K, are chosen to have
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{2(2 Ki; + Zj?,-j) = [arg(f5-1)),
YK+ X Ky —[arg(we)],

where

Kij = Ka, for a= a; +jUJ2,
I?ij =K,, for a=b;+ jws,

and the variation of the argument is taken along the cut |y, y2[ in the direction
corresponding to the direction on L. Note that one could get rid of the K,’s,
i.e. one could put K, = 0 by introducing at the very begmnmg, in place of f
and ¢, the following functions:

b(z) = pla)eved, f= 2.
¥n

Then it is convenient to write R in the integral form

é(w)=ﬁ[/ﬂw())% e )]

where g, ( are the well known Weierstrass functions with periods w;,ws. This
yields the more explicit formula

Ro) = B e (K 5 @0+ o) - 25

- p R, + L(3(a; + jun) — =L
25 p(m+jw)(K"+n(¢('+’“’) )
_ [(Nf)] w1 80( )

Nf |u027rzgo(w)

Hence we come to the following result, similar to the one previously obtained
in theorem 4.4.1.

Theorem 4.4.3 If N(f) # 1 then the general solution of the fundamental
equations (4.8.1), (4.3.2) has the form

m=p+6exp (/ (%Tr(x)ﬁ— I:'[’) dw) ,

where p € C(z) was found in section 4.2, X, 5, R are defined above and 6 is
an algebraic function satisfying

0 =06, =0,
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4.5 The Problem of the Poles and Examples

In sections 4.2 - 4.4, we have completely described the structure of the solutions
of the fundamental equation in the case of a finite group. However the problem
of specifying a unique probabilistic solution was left opened. In other words, we
must choose solutions 7, 7 without poles in the unit circle.

Consider first the case N(f) = 1 (see theorem 4.4.1), and assume for a while
the functions ¢, w;, we have already been computed. Then we must choose U,
so that both functions

_ g7 + goToo
‘7 )

have no poles in the unit circle. We know that this is possible if, and only if, the
system is ergodic (see chapter 1). In our opinion, the problem of explicit finding
the poles of U is of a computational nature. It is not excluded there might be
deeper insights into the problem of poles, as can be guessed from the examples
presentedbelow.

v _
1r=w1+w2+?, ™=

Similarly, when N(f) # 1, one must find the function 6 introduced in theorem
theorem 4.4.3.

4.5.1 Rational Solutions

Here one will analyze miscellaneous random walks, which have been encountered
in several studies related to computer models.

4.5.1.1 Reversible Random Walks Take an ergodic random walk, satisfy-
ing the following reversibility conditions [40]

TaPap = TP, VY, 0 € Z_Z'_. (4.5.1)

It is easy to prove, using (4.5.1), that the generating functions are rational. For
instance, if p_; o # O then
i
mio =C (-’;’11) .
P

4.5.1.2 Simple Examples of Nonreversible Random Walks Suppose
that g and g can be expressed as

{daw=xdawm@hﬂw mod Q(z,y), (4.5.2)

q(z,y) = ya(z,y)a1(2)az(y) mod Q(z,y),

for some rational functions a, a;, @;. Then, putting
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n(e) = TOAE, 5) - ELEY),
the fundamental equation takes the form
m(z) + m(y) + P(z,y) =0, (4.5.3)
R (x)as(y)
P(z,y) = mooo(z, y)_la(x_,z_)_’

Eliminating 7 in (4.5.3), we obtain
(m)s—m=P-P,

Let us suppose hereafter the group is of order 4. Since f =1 = N(f), the latter
equation admits one rational solution if, and only if,

0=Tr(P-P)=P-P,+PF— P,

i.e. P+ Ps € C(z) N C(y). When the latter condition holds, it also occurs
frequently that P has the additive representation

P(z,y) = s(z) +5(y),
in which case (4.5.3) yields

m(z) = —s(z) + u(z),
m(y) = —3(y) — u(y),

where u satisfies (4.2.18), i.e. u € C (z)NC (y), so that u(z) = %(y) mod Q(z, y).
Then

a,(z)
zay(z)’
Eg (.’E)
yaa(y) .

m(z) = [-s(z) + u(z)]

7(y) = — [3(y) + u(y)]

When they exist, the functions u, & are unique and, in this case, 7 and 7 must
have no pole inside the unit disk.

It is not difficult to construct random walks fitting (4.5.2), with jumps from the
boundaries not exceeding 2, and which are not reversible but have a rational
w(z). For instance, consider the random walk shown on figure 4.5.1, where

Q(z, y) = P-—l,ly2 + (I’loiL‘2 —ZT+p_10)Y+ P11
o(z,y) = zgo(z,y) = (y¥*pgs + ypg1 — 1),
?1'(13, y) = y(x - 1)

3
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Fig.4.5.1.

and we have _
zr(z)  yr(y) . Mo _
z-1 r(y) =z-1

so that, setting

mz) =TT L PO
we get

1l'1(.’L‘) + ﬂz(y) =0. (4.54)

In (4.5.4), we have clearly N(f) = 1 and the trace is identically 0. Since one
checks the group is of order 4, i.e w3 = ﬂ, the remark made at the end of the
proof of corollary 4.3.4 implies directly that

zm(z) + oo
z—1

€ C(z)NC(y).

In addition, the expression of @ shows that C(z) N C(y) is generated by the

P-1,-1

element yp_;; + , or equivalently by z(1 — pjoz). Hence

:c7r(:c) + Moo _ y7(y)
-1 (1 —y)(ypde +1)

where R denotes a rational function, which will be exactly determined. To this
end, we must refer to some properties concerning the branch Y(z) and the
analytic continuation of the functions 7, 7 (see sections 2.3.1, 5.3 and also [26]).
It emerges in particular that the curve £ and M (introduced in section 5.3) are
respectively a circle and a straight line, and also that

= R(:c(l - Ploz)),

zm(z) + 7o
z-1
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cannot have more than one pole, which shows that R is in fact a fractional
linear transform of the form

Rit) = —%¥b
t+ppo—1

Straightforward calculations yield
TooP10
1 — p1o — proz’
_ 0
%(y) - 7['00(1 plo)(yp02 + 1) .
P-1,-1 — P-11Y

w(z) =

In fact (4.5.2) gives the simplest example allowing reduce the problem to the
case f = 1. To find less evident cases (for groups of order 4), when

N(f) = ff6 = 11
one must check that
A= A, with A=38 (4.5.5)
q4q
But A can be rewritten as
_ a(r)y + b(x)
- c(a:)y+d(a:) mOd Q(l‘, y)’

for some a,b,c,d € C, and we get the following necessary and sufficient condi-
tion for (4.5.5) to hold:

a(z)d(z) — b(z)c(z) = 0.

It is immediate to see that this condition yields a set of polynomial equations in
the parameters. A particular case arises when ggs = (ggs)¢, which means that

a(z) = 0.

The number of corresponding equations is then exactly 3. Setting o0 = zn(z),
we have

/ / — ! 7
P11P_10 = P10P-1,1

pinl;'-l,o = g — Pl (4.5.6)

. anp'loa - pl—l,l = P'-1,0P61 - pha.
Similar equations can be obtained when
33 = (7%)e-
We see that polynomial equations even more complicated than (4.5.6) appear
and it is not the right way of tackling the problem.
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4.5.1.3 One Parameter Families A more interesting example was found in
[26]. Let us consider, in continuous time, a simple random walk such that

(Q(z,y) 1 1
=\L,Y) _ _ _ o(1-= 1=z
7y p1o(1 — z) + por(1 — y) + p-10 p + Po,-1 v)’

a3 ) oma 1)
().

We note that the equations

_ _ po1z(l —y)
g=0&t= y(l—(a:) ,)
~ _ _ppB(z—a
w0 T -y

where

a=zn(z), B=uyiW),
provide a parametrization of the curve Q(z,y) = 0 by means of the parameter
t. Indeed the following equivalence holds

Po,—lfv(1 - ) _ p-100(z — )
y(1-1) o8 - y)

Here N(f) = ffs = 1. Thus exists ¢ € C(z), such that ¢ = fcs. On the other
hand, if condition (4.2.17) holds, which writes

& Q(z,y) =0.

¢f6 + ’(/)5 = 07
then the generating functions 7 and 7 are rational, and given by
r(e) = O ) = 2O (45.7)
1-piz 1 - pay

where p; and ps are the positive roots of second degree equations in the param-
eter space.

4.5.1.4 Two Typical Situations Here we want to show that the above ex-
amples are typical in the following sense: a very large number of reasonably
simple many-parameter families of rational probabilistic solutions exist, in the
case N(f) = 1, but there is only a finite number of one-parameter families for
which N(f) # 1. First of all, we shall give immediate necessary conditions for
rationality, when w and 7 have no poles in the unit disk.

Definition 4.5.1 Let a set X and a group G of its one-to-one mappings g :
X — X. For an arbitrary but fired x € X, the set of all g(z), g € G, is called
the orbit of  under G.
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Lemma 4.5.2 Consider a simple random walk and let H < {1,¢&,n,6}.
Then, for @, T to be rational, it is necessary that there ezists a point sy € S,
such that z(s) and y(s) be real at all points s € Hso = {hso : h € H}, the orbit
of S0, and that at least one of the following conditions be satisfied:

1. g(h1so) = q(h2So), for some hy # hy, hy,ho € H ;
q(h150) = q(haso), for some hy # hy, hy,ho € H ;

g(h150) = q(haso), for some hy, hy € H;

e

one of the functions q or q vanishes at a point s € Hsy, which is a fized
point of € or 1.

Before proving this lemma, we shall give hereafter some properties of the orbits
and also prove two auxiliary lemmas 4.5.3, 4.5.4. Two cases will be of special
interest:

X=8, G=H, and
X=0, G=H, thelifting of H onto £2.

In the second case, it will be convenient to deal with £2/(,,}, since all functions
have the period to w;.

We are now in a position to quote three useful properties R1, R2, R3.

R1 The group H, is finite if, and only if, all the orbits Hs, s € S, are finite.
R2  Setting I = h;(D) N h; (D), there are situations where

In¢I=Tnnl =49, (4.5.8)

e.g. for the groups of order 6 shown in figure 4.5.2, when M; < 0, M < 0. In

- |

0 (a) 0 (b)

Fig.4.5.2.

fact, if e.g. TNyl # @, then Iy and 7(1p), have a non empty intersection. But
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on Iy, |z| = |y] = 1 and we get a contradiction, since, for instance in figure
4.5.2-(b)
lﬂzl = p—l,O p—lO > 1.
pnzy P
Suppose that (4.5.8) holds. Then, for any w € Ay, nén(w) & Ay,
Ené(w) & Qo

R3 Any orbit Hw in 2 can be mapped in a one-to-one manner onto the
set Z . More exactly we can order Hw in the following way:

- <€nw) <n(w) <w <§(w) <né(w) < Enfw) <---,

where the element w has number 0 and, in case of equalities, we consider e.g. a
and £(a) are formally different. Thus we can call interval of the orbit any inverse
of some interval [m,n] € Z, and the notion of interval does not depend on the
choice of the point w on the orbit.

Lemma 4.5.3  For any w, the intersection {Hw} N Ay is an interval, both
ends of which belong to Ao\I. All other points of this interval (if there are some)
belong to I. |

Proof. Let w € T. Then {(w) € Dy C Ao If now {w) € Di\I, then
né(w), &né(w), ... do not belong to Ay, as w,n(w) € 4y if, and only if,
w,nw) € {w : lyw)| € 1} N A, If {(w) € T, then similar arguments hold
for wy = €(w), n(w), etc. |

From lemma 4.5.3, one can derive similar properties for the orbit
{How} = {w + rws}.

In section 4.6, it will be shown, for the group of order 6 corresponding to figure

4.5.2-(b), that

w—2
3—30)2.

4.5.1.5 Ergodicity Conditions We can explain in an elementary way the
analytical nature of the ergodicity conditions. The functions ¢(z,y) and §(z, y)
are supposed both to have a zero at the point s € S, z(s) = y(s) = 1.

Lemma 4.5.4  The function q(z,y) [resp. §(z,y)] has at the point s € S,
z(s) = y(s) = 1, a zero of at least second order if, and only if,

MM, = M,M, (4.5.9)

[resp. MyM, = M, M, (4.5.10)
a
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Proof. Let M, # 0. Then z(s) — 1 has a zero of first order at the point
(1,1) € S, so that g has, at the same point, a zero of order not less than two if,
and only if,

dp'(z, y)
i KA =0. 4.5.
d:l: |1‘=y=l ( 5 11)
But,forz =y =1,
dy _ p(zy) M,

dz —  p,(z,y) M,

and
dp(z,y) _ dp(z,y)dy  dp(zy) _ . Me
& - &t od - Mg, M
which shows that (4.5.11) is equivalent to (4.5.9), remembering that the func-

tions p(z,y), p'(z,y), p"(z,y) have been defined in chapter 1.

In the case My = 0, M, # 0, one should also take into account the quantity Z—z

It will be shown now that, under conditions (4.5.9) or (4.5.10), the system can
never be ergodic. In fact, the left hand side of the fundamental equation

qm + g7 = —qoToo,

does have zero of at least order two at the point (1,1). But it is always possible
to choose go (which has no effect on the ergodicity) with a zero of first order at
(1,1). The proof of lemma 4.5.4 is concluded. [

The non ergodicity in the other cases can be proved along the same lines. In
fact, there is one travelling zero of ¢, which coincides with (1,1) when (4.5.9)
holds (a similar travelling zero exists for g, up to a change of parameters) and
influences the ergodicity conditiond. But it is necessary to have information
about other zeros, to make sure that 7 and 7 have no poles in the unit circle.

4.5.1.6 Proof of Lemma 4.5.2 The power series representing n(z) has pos-
itive coefficients. Thus if 7(z) is rational, then it has a positive pole at some
point zo > 1, by the Hadamard-Pringsheim theorem.

Taking a point sp € S such that z(so) = zo, we shall first show that the orbit
‘Hsp is real, i.e. all values £ and y on this orbit are real. For this it is sufficient
to prove that when y(so) and y(£(so)) are complex conjugate (not real) leads to
contradiction. Since any orbit contains not more than 4 points and intersects
with A, then either

(8) ly(so)l <1 or (b) [z(n(s0))| <1. (4.5.12)

As for (a), one must have g(so) = 0, since otherwise 7(sg) = oo, which is
impossible. But g is of first degree in y and cannot be zero for non real y.

In case (b), again g(so) # 0. Hence T has a pole at sq, so that
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d(n€(zo)) = q(n(s0)) = 0.

But g is equal mod @ to a polynomial of first degree in y. Hence the case (b)
is again impossible since z(n(sp)) > 0.

Continuing with the puzzle, assume now first |y(n(se)) < 1, for some n € H.
We have y(n(so)) = y(so) and y(né(s0)) = y(£(s0))- Hence, either |y(so)| < 1
or |y(£(so))| < 1. But since m (and also 7) is rational, any of these points is
suitable for our purpose. Take for instance |y(sp)| < 1. But then g(sp) = 0,
because otherwise ™ would have a pole. Hence we are left with two possible
situations:

(®) lz(n(so))l <1 or (ii) [|z(n(s0))| > 1. (4.5.13)

If (i) takes place together with y(£(so)) # O, then 7 has a pole at s = £(sp)
and consequently g(n€(so)) = 0, since otherwise m would have a pole at £n(so),
which is impossible due to the inequality |z(¢n(so))| < 1.

In the case (ii), it can be shown along the sames lines that, if g(é(so)) # 0 and
d(m€(so)) # 0, then 7 must have a pole at the point £n(sp). Then g(n(sp)) = 0,
since otherwise T(7(so)) = oo.

Let |y(s)| > 1, for all points s of the orbit. Then |z(n(s))| < 1, as any orbit
intersects with A. If both g(sp) # 0 and g(£(so)) # 0, then 7 has poles at sp and
£(s0). Thus g(n(so)) = §(n€(so)) = 0, still by the same arguments. If only one of
the quantities g(sp) or g(£(so)) vanishes, then 7 has a pole at the corresponding
point and then g(hs) = 0.

Assume now that in Hsg there exists a fixed point of £ or 7. It is then easy to
show that Hs, consists of exactly two points, one being a fixed point of £, the
other one a fixed point of 7. If for instance so = £(So), then either g(so) =0 or
q(so) = 0. Otherwise, either 7(z) has a pole at the second point of the orbit, or
7(s0) = 0o. But this is impossible since (Hsp) N A # 0.
Take now the orbit of the point y(s) = z(s) = 1 and let

ﬂ (P—l,o) -5 (Po,—x) = o0,
Do Po1

P-1,0 ~ Po,—1
1) = 1,—— )} =0.
q( Pio ' ) q( Po1 )
P-1,0

But, if 7 (——) is finite, then m must have a pole at the automorphic point,

so that

P /.
and similarly for 7. Therefore the above arguments could be used and the proof
of lemma 4.5.1 is concluded. ]

Corollary 4.5.5  For given p;;’s, the set of parameters {pi;, pj;} which pro-
duce rational m and T belong to a hypersurface in the space of the parameters.
Incidentally, it is worth noting that this result can be proved in several different
ways.
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From lemma 4.5.2, one sees that two situations prevail:

(i) g=gqn or §= gy or q = g, for some h € H.

This case includes, in particular, reversibility and also (4.5.2). Here many-
parameter families exist which produce rational solutions.

(i) There is a one-parameter algebraic family g(z,y;c), g(z,y;c) [with a
clear notational device], such that e.g. g, and g, have a common zero
(z(c), y(c)), for any value of the parameter c. Then after eliminating c from
the two equations g, = g, = 0, we get an algebraic curve, which either
coincides with @ or is a degenerate one-point set. The dependency with
respect to another parameter (if any) can be only trivial. As remarked
earlier, more sophisticated methods might well exists for:this problem,
which seems to be of a computational nature.

4.6 An Example of Algebraic Solution by Flatto and
Hahn

This is the first example of algebraic non rational solution, which was encoun-
tered and explicitly solved. Moreover it corresponds to a very natural Markovian
queueing model, with two servers supplied with parallel arrivals. The analysis of
this model gives rise to a random walk in Z2, shown in figure 4.6.1 and having
the following parameters:

'Q(z W = [#%? — (1 + a + B)zy + Bz + oy
’ 1+a+p8 ’
_yP—(a+)z+a
{q - 1+a ’
7 _w - (B+y+8
1+ ’
%0 =zy-L

e fon(2) + ) 470) + o
_ Bzfzm(z) + o0 ~ .\ oylym(y) + moo
the fundamental equation takes the form
m(z) +m(y) =0, on Q(z,y)=0. (4.6.1)

From section 4.3, it appears that the solution of (4.6.1) (when it exists) is
necessarily algebraic, since one can easily check that all conditions of theorem
4.3.1 are satisfied. To find this solution, we shall proceed in constructing the
algebraic extension I of Cg(z,y), which is defined by the equation
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; 1
p a<_(
1 fij ]
‘—/ >
0 a
Fig.4.6.1.
v? =123 — 1, (4.6.2)

where z3 is the branch point of y(z) outside the unit circle (here 4 = 00). The
group H is of order 6 and, in addition, m; and 7; belong to

Ca,g = C,s,,, =C; ﬂCE cCsCF,.

Lemma 4.6.1 For the random walk shown in figure 4.6.1, we have

ws = % (4.6.3)

Proof. Here
0<z1<7T3<1<1x3, T4=00,
a<z3<0<ys, yj=g§, 1<j5<3

We note immediately that w; € {wz —2} According to the uniformization

3’3
(3.3.4), we have
z(0) =00, y(0)=0, nw)=ws+ws—w, YweC,.
Writing for any automorphism & : (z(w),y(w)) — (z(h(w)), y(h(w))), we obtain
n(00,0) = (0,0),
and, still by (3.3.3),
z(n(0)) = 2(w2 + w3) = a >0,

which implies p'(ws + w3) > 0. Using standard properties of the Weierstrass
function p, it follows that ws < 2w; and (4.6.3) holds. The proof of the lemma
is complete. [ ]
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Lemma 4.6.2

e F 2. (464)

Proof. On C,, m is elliptic, with periods w;,ws, and satisfies
(m)e =m, or m(wz—w)=mw).

Moreover, by (4.6.3), m; admits also the period 2w,. Consider now the function
v, defined by (4.6.2), which is algebraic of z, elliptic with periods w;, 2w;, and
enjoys the following properties:

— 2 simple poles at w = 0, w = w,, with respective residues 1 and —1;

. wh w1
— 2 simple zeros at w = —, w = 2

) + wy, since 3 is a branch-point.

The residues at 0 and wy having opposite signs, v does not have the period ws.

Upon setting for a while 7*(w) = m (w + w,/2), one sees immediately that 7* is
an even function, elliptic with periods w;, 2w,. Consequently, 7*(w) is a rational
function of p(w;wi, 2ws).

Exactly the same is true for the function v*(w) = v(w+w;/2). In addition, v* is
of order 2, since it has 2 poles and 2 zeros in the parallelogram [0, 2w, [x [0, w; .
Thus v*(w) is fractional linear transform of p(w;wi,2ws;), and hence m; (and
consequently 7) is also a rational function of v. The proof of the lemma is
terminated. |

In fact we have proved that 7 belongs to the extension of C (z), of which v is a
generator. This extension is nothing else, but C (v).

The final step is to find the rational function mentioned in the proof of lemma
4.6.2. At that moment, we could proceed as done in [31]. Instead, we will use
the general machinery developped in this chapter.

First some properties of the branches shown in section 5.3 ensure that

m(z) ~C/Vz3—z, forz — oc0.

Using now (4.6.2), corollary 4.3.4 with k£ = 2, n = 3, we deduce easily that Ay
(coming in this corollary) is in fact a fractional linear transform. The function
A, is precisely computed from its values at 3 specific points, since

m(0) = m(00) =0, m(l)= oo.

This yields

~—

zmw(z) + Too = %&,

9(1

~—
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with
o(z) = VIz—z++z3-1 .
(Vzs—z + x5 — a/B) (Vs — = — V75 — Q)
Similarly 15)
~ a—-13(y
y”(?/)+7foo= o m,
with

~(y) - Vs - y+Vys—1 .
(Vys—y+ Vs — B/e)(Vys —y + Vs — B)

For further computational details, the reader can consult [30, 31].

4.7 Two Queues in Tandem

This random walk is shown in figure 4.5.2-(b). In the simplest case, when the
parameters are continuous on the boundaries, the stationary distribution is
given by the famous product form of Jackson’s networks, analogous to (4.5.7),
which involves very simple rational generating functions. We want to emphasize
that rational solutions can exist even when the group for these networks is
infinite, although we could not exactly immerse this phenomenon in the theory
proposed in this book.

The time-dependent behaviour of this system, analyzed by Blanc [7], is much
less elementary. It reduces, up to an additional Laplace tranform, to the analysis
of our fundamental functional equation. The group H is still of order 6, with
N(f) = 1, but the corresponding trace is not zero: this shows immediately that
the solution cannot be algebraic.



TEm oI e e e emmmmem———yy T e e s

5. Solution in the Case of an Arbitrary Group

In chapter 4, the analysis was based on specific derivations (a closure property
in some sense) rendered possible by the finiteness of the order of the group.
Hereafter, we shall obtain the complete solution when the order of the group
of the random walk is arbitrary, i.e. possibly infinite. The main idea consists
in the reduction to a factorization problem on a curve in the complex plane.
Generally one comes up first with integral equations and, in a second step, with
explicit integral forms by means of Weierstrass functions.

In theorem 3.2.2, it has been proved that 7 [resp. 7] can be continued as a mero-
morphic function to the whole complex plane, cut along [z3z4] (resp. [ysya))-
This result was presented as a consequence of analytic continuations on the
Riemann surface S and on the universal covering, by projection and lifting oper-
ations. The derivation of theorem 3.2.2 was heavily relying on specific properties
of the algebraic curve Q(z,y) = 0, given in lemma 2.3.4.

In this chapter, closed form solutions for the functions m and 7 will be produced,
by reduction to boundary value problem (BVP) of Riemann-Hilbert type in the
complex plane, following the approach originally proposed in [26].

5.1 Informal Reduction to a Riemann-Hilbert-Carleman
BVP

We shall in fact solve the problem under conditions slightly more general than
the ones which produced equation (1.3.6). Referring to equation (1.3.4) for the
stationary probabilities of a piecewise homogeneous random walk, and using
the notation of section 1.3, we suppose that the two-dimensional lattice is par-

M+L+2
titioned into M + L + 2 classes S,, such that U S, = Z’i and
r=1
S; = {0}, i=1,...,L-1
S = {(s,0), i > L},
S_. S;I = {(01])}1 .7=17)M-1
") S = {(0,4), i > M},
S = {(@34);421,j2>1}
So = {(0,0)}.
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Incidentally, the generating functions P, of the jumps in the region r will be, for
convenience, denoted by P, for (k,£) € S,, and they depend only on r. Then
equation (1.3.4) becomes

|-Q(z,y)7(z,y) = g(z, y)n(2) + 3z, 9)7(y) + mo(z, ), (5.1.1)
where
'W(J,‘, y) = Z Trijzi-lyi-l:
i,j>1
n(z) =Y moz'™t, F(y) =) mou’ M,
2L =M
q(z7y) = "EL ( z p:]z'yj - 1) = zL(}:)Lﬂ(x:y) - 1))
1 i2=Lj20 (5.1.2)

q(z,y) =y ( S Pty - l) = yM(Pom(z,y) - 1),

i20,5>-M

L-1 M-1
mo(z,y) = Zmozi(}’io(%y) -1+ Z WOjllj(Po;‘(m, y)—1)

i=1 j=1
L +7|'00(P00($, y) - l)a

Q(z,y) being given in (1.3.5).

The reader will have noticed that the above partitioning implies that no as-
sumption is made about the boundedness of the upward jumps on the axes,
neither at (0,0). In addition, the downward jumps on the z [resp. y] axis are
bounded by L [resp. M], where L and M are arbitrary finite integers.

-According to sections 2.2 and 2.3, the fundamental equation (5.1.1) can be
restricted to the algebraic curve A defined by Q(z,y) = 0, (z,y) € C2. With
the notations of chapter 2, this yields

2(Xo(y), ¥)m(Xo(y)) + 7 Xo(¥), y)7(y) + mo(Xo(v),4) =0, y€ C.  (5.1.3)

We make the additional assumption that the given generating functions Pjg
and Py, in (5.1.2) have suitable analytic continuations, in a sense which will be
rendered more precise in section 5.4.

Letting now y tend successively to the upper and lower edge of the slit [y132),
using the fact that 7 is holomorphic in D and in particular on [y;y,], we can
eliminate 7 in (5.1.3) to get

7(Xo(¥))f(Xo(y),¥) — 7(X1(9)) f(Xa(¥),y) = h(y), fory € [n1ys], (5.1.4)

or, anticipating slightly on the results of section 5.3 about the functions Xy(y)
and Yo(z),
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[T(t)A(t) — m(a(t)Aa(t) = g(t), teM, (5.1.5)

where

_ (=) o) = f(z
f(z,y) a’(m,y)) A( )_f( 7),0(‘1"))1

mo(X1(¥),y) _ mo(Xo(y),v)
a(X:(y),y)  a(Xo(y)y)’

hw) (5.1.6)

afx)

and M is a simple closed contour Xo[y1y2]. It turns out that the determination
of m, meromorphic in the interior of the domain bounded by M, is possible and is
equivalent to solving a BVP of Riemann-Hilbert-Carleman type, on the coutour
M in the complex plane. Obviously, as aforementioned, we have supposed that
the given functions P, have meromorphic continuations in the domain bounded
by M.

The next section is devoted to a general survey of the basic theoretical results
for BVP’s in C.

9(z) = h(Yo()),

5.2 Introduction to BVP in the Complex Plane

5.2.1 A Bit of History

These last fifty years, a huge literature, mainly originating from the still so-
called soviet school, has been devoted to the extensive study of BVP such they
arise in the theory of elasticity, hydromechanics and other fields of mathematical
physics.

In fact, these problems appeared in embryo at the end of the last century. At
that time important results were obtained in two directions:

o First, the interpretation of the real and imaginary parts of Cauchy-type
integrals as the potential of simple and double layers, respectively (Har-
nack, e.g. [61]).

e Secondly, the characterization of the limiting values of Cauchy-type inte-
grals on the contour of integration (Sokhotski and Plemelj, e.g. [67, 61]),
involving the so-called principal value of singular integrals.

Nevertheless, B. Riemann was probably the first in his dissertation to have
mentioned the following general problem:

Find a function which is holomorphic in some domain D and continuous on the
boundary of D, for a given relation between the limiting values of its real and
imaginary parts.
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This problem was studied by Hilbert in 1905, who gave a partial answer, by
reduction to integral equations. Then H. Poincaré in his Legons de Mécanique
Céleste [68] came up with a boundary value problem for harmonic functions,
which led him to study singular integral equations in more details.

In this overall presentation, we follow essentially Muskhelischvili [61], Gakhov
[35] and Litvintchuk [44].

Let £ be a simple smooth line or curve in the complex plane, i.e. an arc (open
or closed) with a continuously varying tangent (see [61]). A function f will be
said to satisfy the Holder condition on the curve L if, for any two points ¢, 3
of L,

|f(t2) = f(t1)| < Alta — ", (5.2.1)

where A and p are positive constants. Clearly for ¢ > 1 the above condition
(5.2.1) implies f = constant. Hence we only consider the interesting situation
O<p<l

When (5.2.1) holds, we shall write, according to a well established tradition,
¢ € H,(L), for all ¢ bounded on L. It is also important to note that H,(L)
can be endowed with the norm

le(s) = o(®)]

= su t)| + su
liell = sup l(#)] U T

5.2.2 The Sokhotski-Plemelj Formulae

These formulae were apparently firstly discovered by Sokhotski in 1873 (al-
though not completely rigourously proved, as claimed in Gakhov [35]), who
investigated the limiting behavior of Cauchy-type integrals on the contour L.
Nevertheless, Muskhelishvili refers to them as Plemelj formulae, from the work
of Plemelj [67] in 1908, since the arguments were sufficiently rigourous.

Let ¢ € H,(L). We assume that a positive direction has been chosen on £ (in
the case of a closed contour, positive means counter-clockwise). The contour £
is not necessarily bounded. Then the following classical theorem holds (see for
example [61], [35]):

Theorem 5.2.1  The function

&(z) = 1 [ p(t)dt

T 2m Jyt—2

2 ¢ L. (5.2.2)

is continuous on L from the left and from the right, with the exception of the
ends. Moreover the corresponding limiting values, denoted respectively by &+
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and ®~, are in the class H,(L), and they satisfy the so-called Sokhotski-Plemelj
formulae, fort € L,

() = golt)+ 5 [ L2,
) 1‘3 o(s)ds (5.2.3)
¢_(t) = —§<p(t)+%\/c s—1°

where the integrals are understood in the sense of Cauchy-principal value. Sub-
stracting and adding formulae (5.2.3), one obtains two other equivalent and
fundamental formulae, for t € L, namely

*t) -2 (t) = (), (5.2.4)
&H(t) + 0 (t) = % /L %. (5.2.5)

In fact, (5.2.4) can be shown to be valid for ¢(t) simply continuous on L, pro-
vided some restriction are put on the way of approaching L (which should not be,
roughly said, too tangential); on the other hand, cusp points and corner points,
when they ezist, compel to modify (5.2.3) (see e.g. [61]). [ |

5.2.3 The Riemann Boundary Value Problem for a Closed Contour

Let £ be now a closed contour without self-intersection. It does divide the
complex plane into two parts: the interior domain within £, denoted by £* and
the exterior domain (the complementary of £*) denoted by £~ (when traversing
L in the positive direction, £ remains on the left).

We shall say that a function & is sectionally holomorphic if ¢ is holomorphic in
every finite region of the plan, except on £ where it has left and right limits &+
and ¢~. Moreover this function @ will be said to have a finite degree at infinity,
if the only singularity at infinity is a pole of finite order. It will be convenient
to call @ sectionally holomorphic, whenever #(o0) = Constant.

The Riemann BVP can be stated as follows: Find a sectionally holomorphic
function & of finite degree at infinity, under the boundary condition on L

|2*(t) = G(t)P~(t) + (), teL,] (5.2.6)

where G € C(L), the space of continuous functions on £, and g € L,(£). A
priori g and G are only defined on L.

For our purpose, we shall only consider the problem for G, g € H (L) and also
assume that G does not vanish on L.

Notation Introduce the following important quantity
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1 1
X= Ind[G]L = ﬂ[argG]c = %r-[logG]c, (527)
which will be called the index and does represent the variation of the argument
of G(t), as t moves along the contour L in the positive direction.

Without restricting the generality, we shall suppose that the origin of the coor-
dinate system lies in the domain £*. Then the function

log[t™*G(t)], teL,

has zero index, is single-valued and satisfies a Holder condition.

Let

1 [ log(t-*G(t))dt

Ik = 2i7r/£ t—z » 284 )
(5.2.8)

Xt(z) = @, zecLt

X~(z) = z7%f®, zecL.

The functions X* and X~ are usually referred to as the canonical functions of
the BVP. Thus G(t) admits the following factorization by (5.2.4)

X*tt)=G@t)X"(t), teL, (5.2.9)
which gives, en passant, a solution of the homogeneous BVP (i.e. when g(t) = 0)

having order —y at infinity (i.e. behaving as z7X). Putting (5.2.9) into (5.2.6),
we get

&
0 X0 T X teL. (5.2.10)

Since —— X € H (L), see [61], we can write, using the Sokhotski-Plemelj formula
(5.2.4),

W00 = s el

where

=5 / X+g(s)ds 2¢ L. (5.2.11)

)(s—2)
Thus (5.2.10) can be rewritten as

o) e
X+ VY= x

))—¢ (t), teclL.

Two cases now must be distinguished:
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(a) x = 0. From the principle of analytic continuation and Liouville’s theorem,
we obtain

D(z) = X(2)¢(2) + X(2)Py(z), Vz¢ L, (5.2.12)

where X (z) and 9(z) are given by (5.2.8) and (5.2.11), and P, is an arbitrary
polynomial of degree x. Thus one sees that, in the case of a closed contour L,
the solutions belonging to the class of functions bounded at infinity depend on
x + 1 arbitrary complex constants. The second term in the right member of
(5.2.12) does represent the general solution of the homogeneous Riemann BVP.

¢—
(b) x < 0. In this case, the ratio %= vanishes at infinity, so that P, = 0, from

Liouville’s theorem and
P(2) = X(2)y(2). (5.2.12bis)

But ¢, in view of (5.2.8), has a pole of order —x — 1 at infinity. In order & to
be holomorphic at infinity (in particular bounded), it is necessary and sufficient
that 1 has a zero of order not smaller than —y — 1.

By expanding the Cauchy-type integral representing v (see (5.2.11)) in power
series of z around the point at infinity, we get the following conditions of solu-
bility

g(t)tk?
dt=0, k=1,2,...,—x— L 5.2.13
/L X+ X ( )

One can state the following

‘Theorem 5.2.2  The number of linearly independent (non trivial) solutions

of the homogeneous (i.e. g =0) Riemann BVP (5.2.6) is given by

— maX(O,X‘i'l), X # -1,
L= { 1, X =-1, (5.2.14)

and the number of conditions of solubility is

p = max(0, —x — 1). (5.2.15)
[ ]
e For x = —1, the non homogeneous problem is always soluble and has a

unique solution.

o For x < —1, the non homogeneous problem has in general no solution. It
has exactly one if, and only if, the free term g does satisfy p = —x — 1
conditions given in (5.2.13).
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Let us emphasize that the Riemann BVP (5.2.6) for a closed contour requires in
fact to find two functions #* and ¢~, which are continuous up the boundary L.
Furthermore, it can be shown easily that, if we were to admit solution functions
taking infinite values of integrable order on the contour, the class of solutions
would in fact not be extended (see [35], p. 41). This assertion is no more true
for open contours, as will be shown in the next section, since the behaviour of a
Cauchy type integral around the ends of an arc is in general more complicated
(see e.g. [35], [61]).

5.2.4 The Riemann BVP for an Open Contour

Here we will quote the material directly used to solve the main functional equa-
tion (5.1.1).

Let £ denote a smooth non self-intersecting arc with ends a and b, which can
be supposed finite. The positive direction is chosen from a to b. From now on, ¢
will stand for either a or b. The assumptions on G and g and the statement of
the BVP are as in section 5.2.3. Since the complex plane cut along £ (the arc
[ab]) is & simply connected domain, it is important to note that here the BVP
is tantamount to finding only one function @, holomorphic in the cut plane and
having L as a line of discontinuity, when in the case of a closed contour we had
to determine two different holomorphic functions #* and ¢~

The function ¢ will be sought in the class of functions holomorphic at infinity,
continuous on £ from the left and from the right, with the possible exceptions
of the end ¢, where locally the estimate

A
+ — <
|2=(t)| < Tt 0<ax<l, (5.2.16)
is to hold. Then the Cauchy-type integral
_ 1 p(t)dt
2(z) = 2z'1r/c t—=z’ zeC,

with ¢ € H (L), has limiting values when z approaches £ from the left or
from the right, given from the formulae (5.2.4) and (5.2.5), for all points not
coinciding with an end ¢ at which ¢(c) # 0.

It can be shown, see e.g. [61] that £2 admits the following representation, in the
vicinities of the ends

2(z) = eeplc) log(z — ) + £2:(2), (5.2.17)
a7
where

e = -1, ifc=a,
ST 41, ifc=b,
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and §2(2) is a function holomorphic in a neighbourhood of ¢ and continuous at
c.

Returning to the Riemann BVP, let
I(2) = 1 / log(G(t))dt
c

%m t—=z

= , (5.2.18)

where log G(t) stands for any value of this multi-valued function, which varies
continuously over L. Let

G(a) = pye'da,
A = [arg G]c,
logG(t) =log|G(t)| +iargG(t),

so that
argG(a) =0, and argG(b) =4, + A. (5.2.19)
According to (5.2.17), we have at each end ¢, where ¢ = a or b,

log G(c)
2T

I'(z) =« log(z — ¢) + I,(2),

where log G(c) is given from (5.2.19). Hence

@ = (z — ¢)e®®, (5.2.20)
with

Ae = ;f+ﬂ%#3 (5.2.21)

X = ﬁ%é—ﬂﬁﬂ. (5.2.22)

Coming back to the homogeneous BVP (5.2.6) and taking into account condition
(5.2.16), one can state the following result:

21 <0,<0 =¢e® isbounded at a;
0 <0,<2r =@ isunbounded at a.

Assume we are looking for a solution bounded at a. This will be the situation
encountered in chapters 5 and 6, in particular when G(a) is a real positive
quantity, in which case one shall speak of automatic boundedness at a. Let

xgl%+AJ- (5.2.23)

2

Then the function
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X(2) = (z = b)™%eM@ (5.2.24)

is bounded at b. The indez of the homogeneous BVP (5.2.6) is, by definition,
the quantity x given in 5.2.23.

If solutions with integrable singularities around the point b were to be admit-
ted, then the index would be x + 1, with the corresponding solution of the
homogeneous BVP

X(2) = (z=b)x" 1l (5.2.25)

where I'(z) is given by (5.2.18).

Proceeding as in the case of a closed contour, the following result can be es-
tablished, based on the fact that X, given in (5.2.22), represents a particular
solution of the homogeneous BVP, which has order —x at infinity, so that

In all cases, lim 2XX(2) = 1. The following general result holds.
Z—00

Theorem 5.2.3  The general solution of the Riemann BVP (5.2.6), set on
a smooth open arc without self-intersection, (in the class of functions bounded
at infinity and having possibly singularities of integrable order at the ends), is
given by formulae (5.2.12) or (5.2.12bis) and theorem 5.2.2. Here X is taken
from (5.2.24) or (5.2.25) and the index x is defined in (5.2.28).

Assuming X given by (5.2.24), then (5.2.12) or (5.2.12bis) hold, where v has
the integral form (5.2.11) in which

X*(t) = (t —b)xe"®, (5.2.26)
with, from the Sokhotski-Plemelj formulae,

1 log(G(s))ds

-25[' g 5 — 1t , teL. (5.2.27)

rt(t) = %logG(t) +

5.2.5 The Riemann-Carleman Problem with a Shift

We shall need the solution of a generalized BVP, sometimes referred to as the
Carleman problem, see [35] [44], hereafter presented under the name Riemann-
Carleman problem.

Let £ be a simple smooth closed contour. The Riemann-Carleman BVP has the
following formulation:

Find a function &+ holomorphic in L, the limiting values of which on the
contour are continuous and satisfy the relation

|2+ (a(t) = G()B*(t) +9(t), te L, (5.2.28)

where
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(i) 9,Ge H (L), G(t) #0, VteL;

(i) a(t), referred to as the shift in the sequel, is a function establishing a one
to one mapping of the contour £ onto itself, such that the direction of
traversing L is changed and

da(t)

o(t) = €H,(L), o(t)#0, VteL.

Most of the time, we shall encounter the so-called Carleman’s condition
ala(t))=t, VteLl. (5.2.29)

Whenever needed, this condition will be explicitly mentioned. It is worth re-
marking now that our situation corresponds to a(t) = t,Vt € L (see equation
(5.1.3)). -

The BVP (5.2.28) amounts in fact to (5.2.6) and allows thus to get an integral
representation for the solution functions. But the complexity is now increased,
because the density of the Cauchy-type integral solution satisfies a Fredholm
integral equation of second kind. We follow in this section the method given in
Litvinchuk [44]. The main ideas are presented in the next three theorems.

First, one can easily show that, when (5.2.29) holds, a necessary condition of
solubility of (5.2.28) is constituted by one of the two following conditions:

1.

is the boundary value of a function holomorphic in £*, in which case one

has simply . o(t)dt
() = — | g\Ljat +
¢(z)_2i1r/t—z’ ze L.

Gt)G(a(t) =1 and g(t) + g(a(t))G(t) = 0. (5.2.30)

The latter condition (5.2.30) corresponds in fact to a much richer situa-
tion, which we shall encounter. Hence, (5.2.30) will be assumed to hold
throughout the sequel of this BVP overview.

Lemma 5.2.4  The homogeneous Riemann-Carleman BVP
o (a(t)) - P5(t) =0, tecL, (5.2.31)

has no solution, but arbitrary constants. |
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Proof. From the Sokhotski Plemelj formulae (5.2.3), the conditions for the
analyticity of & take the form

1 [ of(s)ds _

), tos =0 teL (5.2.32)

1
287 () -

Substituting ¢ by a(t) aand s by a(s) in (5.2.32), we have

1 [ 27 (afs))c(s)ds _

1
§¢-1"(a(t)) + —2; c a(s) _ a(t) - 01

or, using (5.2.31),

2050 + 2—:; /‘ %((:))—fiaf%gﬁ "y (5.2.33)

Replacing #; by ¥, in (5.2.31) and summing with (5.2.33), we get precisely

& () + %7; / [a (s‘)’"fsl(t) -- i t] Ff(s)ds=0, teLl.  (5.2.34)

As can be easily checked, the kernel of (5.2.34) has for t = s a singularity of order
less than one, which is consequently integrable, so that the integral operator is
compact. It follows that (5.2.34) is a Fredholm integral equation of second kind
which thus admits only a finite number of linearly independent solutions.

Assume that ($;, ;) is a pair of non trivial solutions of (5.2.31). Then (%, $%)
form also a solution for any arbitrary positive integer k. But then &% does
also satisfy the integral equation (5.2.34), which, since k is arbitrary, would
admit an infinite number of independent solutions, contradicting the Fredholm
alternative. Thus (5.2.31) admits only the solutions $; = ¢ = Constant. Lemma
5.2.4 is proved. [ ]

Let us introduce the operator B,

(Bo)(t) = (t) + o /L [si - a(s‘)"'fsl(t) o(s)ds. (5.2.35)
Then the following lemma holds.
Lemma 5.2.5  The Fredholm integral equation
(Bp)(t) =0 (5.2.36)
admits only the trivial solution ¢ = 0. ]

Proof. Let ¢(t) be a solution of (5.2.36) and set G(t) = a*(t), the inverse
mapping. We follows [44]. Consider the two functions
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Q‘l*’(z) —LAM’ ze LY,

T 2w

S§—z
-1 s)ds
¢;(Z) = EF\/L;%(—)_z, FAS £+.

It follows from (5.2.4) and (5.2.5) that
(Bp)(t) = 21 (a(t)) - B3 (t) =0, teL,

whence, using lemma 5.2.4,
o =oF =C,
where C is an arbitrary constant. Thus
[ 2L [y e
2ir J, s—z 2m J, s—z
so that, by Cauchy’s theorem,

PB)-C = ¥i@®), teL,
p)+C = ¥;(t), teL,

where 9); (t) is holomorphic in £~, with the condition ; (00) =0, ¢ =1,2.
Moreover, we have

Wi (aft)) = W5 (t), teL,
with

Wl— = 1/)1_ + C,
Wi =97 -C.

Clearly it can be shown as in lemma 5.2.4, that the exterior problem (5.2.31)
(in £7) has only trivial solutions

Wi (2) = W; (2) = Ch.

Hence, using the conditions 1 (00) = ¥(00) = 0, we obtain C = C; = —C.
Consequently, C; = C = 0 = ¢;(2) = ¢(t). Lemma 5.2.5 is proved. [ ]

Sometimes it happens that, for special relationships between the parameter
values of the random walk (see for example [26, 27]), one has to solve problem
(5.2.28) for G(t) = 1, which belongs then to the so-called Dirichlet-Carleman
class described thereafter.

Theorem 5.2.6  The Carleman-Dirichlet problem
ot (a(t)) — D*(t) = g(t), teL, (56.2.37)

where g € H (L) satisfies the relation
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9(t) + g(a(t)) = 0,

has a unique solution given up to an arbitrary additive constant by

&+ () = /L plo(shds | (5.2.38)

2 s—2z

where C is an arbitrary constant and ¢(t) is the unique solution of the integral

equation
(Bo)(t) = g(t),
B being the operator defined in (5.2.35).

Proof. It is a direct consequence of lemmas 5.2.4 and 5.2.5 and of the Fredholm
alternative. |

We return now to the general problem (5.2.28), which corresponds to the main
equation (5.1.3). There are several ways to produce a solution having an integral
representation. The most direct one (which we will choose) is proposed in [44],
and relies on the following theorem of intrinsic interest about conformal gluing.

Theorem 5.2.7  Let a(t) be a Carleman automorphism of the curve L. Then
there exists a function w, holomorphic in L, except at one point z = z9 € LT,
where w has a simple pole, such that

w(a(t)) —w(t) =0, teL. (5.2.39)

Moreover w establishes a conformal mapping of the domain L* onto the domain
A, which consists of the plane cut along an open smooth arc U.

_Proof.  The proof of this theorem can be found in [44]. [ ]

From theorem 5.2.7, one can write

1 +
w(z) = s + ¥ (2)

where 1% (2) is holomorphic in £* and satisfies the condition

WHaO) -0 = ;=5 — s 90, teL

Here (5.2.30) is fulfilled, so that ¢* is given by the formula (5.2.38).

It can be shown see [44] that a has two fixed points. In the situation we shall
encounter, they are simply the intersection points of £ with the real axis (by
symmetry arguments) denoted by A and B as in figure 5.2.1.

We denote by £, (resp. Lg) the upper part (resp. lower) of £ described in
positive direction, i.e. the one which, on traversing the boundary, leaves the
domain L* on the left. The respective ends of U are denoted by a and b.
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> b — /" a
B\_/A =TTt
} o+ w)
Fig.5.2.1.

From theorem 5.2.7, it follows that the function w, see (5.2.39), has an inverse
denoted by z, satisfying

{ z*(w)

z~(w)

, forw€Uandt € Ly,

a(t)
t

w(z)
On L,, one must exchange z* and z~ and £ = U.

z(w)

Now the boundary condition (5.2.28) can be rewritten as
&t 2T (w)] = Gz~ ()@t [z~ (w)] + 9(z~ (w)], we€eU. (5.2.40)
Introduce the function § = ¢* o z,
(w) = &*[z(w)], weC,
the limiting values of which, for w approaching U, satisfy
0*(w) = &*[z*(w)),
{0‘(w) = ¢t [z7(w)].

Then the BVP (5.2.28) on the closed contour £ has been reduced to a Riemann
BVP on the arc U (analyzed in section 5.2.4), with the boundary condition

‘ 6% (w) = Gz~ (w))0~ (w) + g[z~(w)], weU. (5.2.41)

Keeping in mind that we are interested by solutions of (5.2.40) which are
bounded at both ends, we shall compute the index of the problem solely in this
case.

When w describes U from a to b in the positive direction, as shown on figure
5.2.1, the point 2~ (w) describes the arc £, in the negative direction. Thus

[arg G o 27}y = —[arg G,
On the other hand,
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0 = [arg G, + [arg G 0 0, = [arg G, — [arg G)¢.,,
so that
[arg Gc, = [arg Glc...
Setting, as in (5.2.7),

1
x = 5-lre Gle,

we have
[arg Gl = [argGlc, + [arg Glc,
= 2[arg G|,
whence
i[argG 0z |y = =X ‘ (5.2.42)
27 2

Note that x is even and, in the situation considered above,
G(ta) =G(ts) =1,
where t4 and tp are the affixes of A and B respectively. Moreover
[arg G]c, = arg G(ts) — arg G(ta) = 2km.
On the other hand, the index ¥ of the problem (5.2.41) has been given in (5.2.23)

X = o“;;rA = % (since 8, = 0),
with
A = [arg G(z™ (w))|u = —x.
Thus

X= _TX (5.2.43)
and we can state the final following result.
Theorem 5.2.8

(i) If X = 0, then the BVP (5.2.28) has £ = 1 + X linearly independent
solutions bounded at both ends.

(i) If X <O, then the homogeneous problem (5.2.28) has no solution and the
non homogeneous problem is soluble if, and only if, p = —X — 1 conditions
of the form (5.2.13) are fulfilled. In this case, using (5.2.12bis), the solu-
tion of the BVP (5.2.28), which has been reduced to the BVP (5.2.41), is

given by
+(o) = _ X(w(2) 9(z"(s))ds
PH(2) =0(w(z)) = =57 o X6 — 0() (5.2.44)
—X(w(2) w'(t)g(t)dt

VzeLt.

1

2im Jo, Xt (w(®)(w(t) - w(2))’
a
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5.3 Further Properties of the Branches Defined by
Q(xz,y) =0

With the notation of section 2.3 of chapter 2, let us recall that

Q(z,y) = zy[P(z,y) — 1] = a(z)y® + b(z)y + c(z) = a(y)2? + b(y)z + &(y).

Here we shall analyze more completely the branches Yp(z) and Y;(z) of the
algebraic function Y (z).

It will be assumed, unless otherwise mentioned, that Q(z,y) is irreducible of
degree 2 with respect to z and y, that the Riemann surface has genus 1 and
also that there are no branch points on the unit circle I". The case of genus 0
will be the subject of chapter 6.

Lemma 5.3.1  The equation Q(z,y) = 0 has two roots Yo(z) and Y;(z), such
that, for |z| =1,

Yo(z)| < 1,
{}Yfgzﬁ > 1, (5.3.1)

with strict inequalities, except for x = 1, where we have

Yo(1) = min (1, %ﬂp_) ,

Yi(1) = max (12#)

(5.3.2)

Proof. Let |z| =1, z # 1. Then R[-1 + P(z,y)] < 0, Vy such that |y| = 1,
where R([z] denotes the real part of the complex number z, whence

[arg(~1+ P(z,.))lr = 0, (5.3.3)

where I is the unit circle in the complex plane C,. From the main assumptions
made at the beginning of this section, Zpu > 0. Since P(z,y) has a simple

1
pole at y = 0, the principle of the argument in (5.3.3) shows that the equation
Q(z,y) =0, |z| = 1, z # 1 has exactly one root y = Yp(z) inside the unit disk
D. For z = 1, one distorts I" by making a small indentation to the left [resp.
right] of the point y = 1 inside [resp. outside] I", when M, > 0 [resp. M, < 0],
so that (5.3.3) still holds on this new contour, say I". This proves (5.3.2) and
lemma 5.3.1. .

As an immediate consequence, we have the following:
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Corollary 5.3.2
(a) When Z pin =0, Q(z,y) is of first degree in y and the root Yo(z) satisfies
i
(5.8.1) with Yo(1) = 1.

(b) When Zp,-,_l =0, then ¢(z) =0 and

Q(z,y) = a(z)y’ + b(z)y = yla(z) + b(z)).

The algebraic curve would then be decomposed, with one trivial root Yp(z) =0,
Vz. The other root Y; does satisfy (5.8.1) and Y1(1) = 1.

In the next lemmas, specific properties of the functions Y(z) and Yi(z) will.
be given. In particular, one will study the transforms Y;[z,z,] and Y;[z3z4),
i = 1,2, of the real slits [z1z2] and [z3z4), which will be shown to be two simple
non intersecting closed curves in the complex plan C,,.

Notation

1. From now on, C; [resp. C,], cut along [z125] U [z3z4] [resp. [y192] U [y3y4]]
will be denoted by C, [resp. C,,] Also, quite naturally, we shall write
Y (z), whenever z = z;,i =1,... ,4.

2. Occasionally, the following convention will be ad libitum employed: @
will stand for the contour [z,z,)], traversed from z, to z, along the upper
edge of the slit [r;72] and then back to z;, along the lower edge of the
slit. Similarly, @ is defined by exchanging “upper” and “lower”.

3.
Low = Yo|FaTi) = YalEzg),
M = Xolgm) = Xulimm),
Moy = XO[@] =X [{@]

4. For any arbitrary simple closed curve U, Gy [resp. G£] will denote the
interior [resp. exterior] domain bounded by Y, i.e. the domain remaining
on the lefthand side when U is traversed in the positive (counter clockwise)
direction. This definition remains valid for the case when U is unbounded
but closed at infinity.

Theorem 5.3.3  The following topological and algebraic properties hold.
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(i) The curves L and L.y (resp. M and Mgy:) are simple, closed and sym-

(i)

(iii)

metrical about the real azis in the C, [resp. C.] plane. They do not in-
tersect if the group of the random walk is not of order 4. When this group
is of order 4, L and Loy [resp. M and M.y] coincide and form a circle
possibly degenerating into a straight line. In the general case they build
the two components (possibly identical and then the circle must be counted
twice) of a quartic curve. Moreover, setting

P Pio P1,-1
A=|pn Po-1 Po-1]|,
P-11 P-10 P-1,-1

we have the following topological invariants:
- If A>0, then

[1112) € Gr C Ge,,, and [ysys] C GZ..is
-If A<O, then
[1192] C Gr,.. CGr and [ysys C Gg.

- If A = 0, then we already know from chapter 4 that G is a circular
domain, and in fact

[%1y2] C G =Ge,,, and [ysys C GE.
Entirely similar results hold for M, Meg, [T122] and [z3z4).

The functions Y; [resp. X;], ¢ = 0,1, are meromorphic in the cut plane C ,
[resp. C,). In addition,

o Y; [resp. Xo] has two zeros and no poles.
o Y [resp. Xi] has two poles and no zeros.

o |Yo(z)| < |Yi(z)| [resp. | Xo(¥)| < |X1()], in the whole cut complex
plane. Equality takes place only on the cuts.

The function Yy can become infinite at a point  if, and only if,
pin=pw0=0, andthen T =1x4=00,

or
p-11=p-10=0, andthen z=1z,=0.

In addition, most of the properties cited in (ii) and (iii) hold in the genus zero

case.
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Proof of (i) . We have seen in chapter 2 that Y (z) has 4 real branch points,
which satisfy either of the following inequalities

-1<21<23<1 <23 <y, (5.3.4)
< -1<z <zT2<1<23 (5.3.5)

It is important to recall that zo and z; are always positive. When (5.3.4) holds,
the C, plane is cut along [r172] and [z3z4). On the other hand, in the instance
(5.3.5), the cut [z3z4] does include the real point at infinity.

As soon as we will have proved that £ U L., is a quartic, the fact that £ and
L.y are simple curves will become immediate. That they do not intersect in
the C, plane is less obvious and follows from general properties concerning
the existence of double points of quartic curves (see e.g. Hartshorne [37] or
Kendig [41]). For the sake of completeness we shall give now a direct analytical
demonstration of part (i) for the curves £ and L.

Let y = u + %v a point in the complex plane C,. For z € [z,z,] U [z3z4), Yo(z)
and Yi(z) are complex conjugate. Thus

Yo(z)Ya(z) = -z—g(% =u? + 17
—b(z)

a(z)

= 2u.

Yo(z) + Ya(2) =

Hence, we get

{(u2 +v?)a(z) - c(z) =0, (5.3.6)

2ua(z) + b(z) = 0.

The two polynomial equations of second degree in system (5.3.6) must have a
common root. Recall briefly that two equations in ¢, say

at’+ it +m =0,
ast? + Bat +v2 =0,

have a common root if, and only if, their coefficients satisfy the relation

(e172 — aam)? + (12 — 2B1) (11 B2 — Y21) = 0.

We apply this relation to (5.3.6), instantiating

ap = (u2 +v¥)pn — p1,-1, az = 2upn + p1o,
B = (u® + v*)po1 — po,-1, B2 = 2upor + (Poo — 1),
m= (u2 + vz)p—l,l = P-1,-1, Y2 = 2'“])-1,1 + P—1,0~

Then the equation of the quartic curve in the C,, plane, with coordinates (u,v),
reads




5.3 Further Properties of the Branches Defined by Q(z,y) =0 113

R’ + ST =0, (5.3.7)
where

R = (u® + v*)(p11p-10 — P-1,1P10)
+ 2u(p11p-1,-1 — P1,-1P-1,1) + P1oP-1,-1 — P-1,0P1,-1,

S = (4 + v*)(p11(poo — 1) — Porp10)
+ 2u(p11Po,-1 — P1,-1P01) + P1oPo,-1 + (1 = Poo)P1-1,

T = (u? + v*)(p-1,1(poo — 1) — PorP-1,0)
+ 2u(p-1,1P0,-1 — P-1,-1) + P-1,0P0,-1 + (1 — Poo)P-1,1-

As mentionned earlier it is possible, from (5.3.7), to write conditions for this
quartic to have no double points. Nevertheless we shall present thereafter a mild
force argument proving directly this assertion.

The curves £ and L,,; are symmetrical about the real axis. Assume for a while
that they have an intersection or a common vertical tangent at a point of the
real axis. Then system (5.3.6) holds for two distinct values of z, say z’ and z”,
but for one and the same pair (u, |v|). Furthermore, one can always find a triple
of complex numbers (o, 8,7) # (0,0,0), such that the polynomial

F(z) = aa(z) + Bb(z) + yc(z)

has zeros at =’ and at an arbitrary fixed point zo # z’,z". But then F(z) also
b(z')  b(z") c(z’) c(z") .
@) ~ a(@) an @) ~ a@) using (5.3.6)

But then, the equation F(z) = 0 would have three distinct roots, which is

has a zero at z”, since

‘impossible, since F(z) is a polynomial of second degree in z, unless F(z) = 0,

which means that a(z), b(z) and ¢(z) are linearly dependant. Consequently the
group of the random walk is of order 4, as shown in lemma 4.4.2 of chapter 4
and, in this case, the curves £ and L., coincide to form a circle (the quartic is
then a circle counted twice).

To prove the last point of (i) and (%) in theorem 5.3.3, it is necessary to know
the sign of the quantities Y (z;), i =1,... ,4. In C,, Y(z), ¢ = 0,1, are mero-
morphic. Since, by (5.3.4), (5.3.5), there are no branch points on the real interval
|22, z3[ and Yo(1) < Y3(1), we have

Yo(z) < Ya(z), Vz €]z, 75[, (5.3.8)

remembering that Yy and Y; are real on ]z,,z3]. Moreover, Y, and Y; have no
zeros and no poles on |z, 73], since otherwise either a(z) or ¢(z) would vanish for
positive values of z, which is impossible. This argument shows that Y;, i =0, 1,
does not vanish on R* — {0 U oco}. Thus the quantities Y;(z;) and Y;(z3) have
the same sign, which is the one of Y;(1), i.e. positive, and they are finite.
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e Sign of Y(z,) First, we observe that b(z) = p1ox? + (poo — 1)z + p_10 has two
real positive roots (one being rejected at infinity for pyp = 0). This follows from

b(0) >0, b(1) <0, b(+00) = +oo.

Moreover, since b(z) = 0 = b%(z) — 4a(z)c(z) < 0, one root belongs to the
interval |z;z,[ and the second one is on |z3z4[, noting that z4 = oo if pyp = 0.
—b(il)l)

Thus Y =

us Y(z;) 2a(z))
is at one and the same time a root of b(z) and of ¢(z). This implies z; = 0 and
P-10 =P-1,-1 =0.
An other special situation arises when a(z;) = b(z;) = 0, yielding necessarily
z, =0 and also p_1; = p-10 = 0. Then Y(z;) = 0o and we have -

< 0. The borderline case Y(z;) = 0 is obtained when z,

R(Y(0)) = lz‘pzm >0,

together with
LEL [P
vV Pn’

when z — 0., and the curve £ is unbounded.

S(Y(2))

o Sign of Y (z4) The arguments are quite similar. Now we have

red- 35

-If 1 < z4 < 00, then we get Y(z4) < 0, since b(z4) > 0 and a(z4) > 0, using
the fact that the possible real zeros of b are necessarily located on the cuts.

—If —00 < z4 < —1, then the point at infinity on the real line belongs to the
cut [z3z4) (using the convention made at the beginning of this section), so that

Yo(00) = Y3 (o0

~—

Thus, provided that pio + p11 # 0,

R(Y (c0)) =

which yields again
The limiting case z4 = 0o implies necessarily y4 < 0o, together with
po=pn=0 or pio=p,1=0,

which we analyze separately.
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® pio = pi1 = 0. Then z4 = 0o is a common root of a(z) = b(z) = 0 and
Y (z4) = 0o, which says that the curve L., is unbounded. More precisely

1-—

R(Y (z4)) = 270

giving a vertical asymptote of L.,

(Y (z)) ~ %-1—, as T — T4 = 00.
Po1

® p1o = p1,-1 = 0. Then z4 = 00 is a common root of b(z) = ¢(z) = 0 and
in this case Y(z4) = 0. The behaviour of Y(z) can be obtained exactly as
above, and details will be left aside.

It might be useful to recall that we omit all singular random walks introduced
in section 2.3, which- occur e.g. when
P11 =Pwo=p1,-1 =0.

Note also the amusing case

P11 = P10 = P-10 = P-11,
yielding a group of order 4, for which £ = L, is simply the vertical line of
— Poo
2po1

Now it is the right moment to deal with statement (%) of the theorem, since it
overlaps what has been done just above.

abscissa

Proof of (i11).  Assume there exists z with |Yp(z)| = oo. Then, anticipating
slightly the results of (ii), it follows that |Y;(z)| = co. Since

Yo(z) + Yi(e) = %S’ and  Yo(z)Yi(z) = %

we must have a(z) = b(z) = 0, so that either z = z; or z = z4, because the
roots of a (resp. b) cannot be positive (resp. negative).

e a(z;) = b(z1) = 0. Then p_1; = p_10 = 0 and the curve L is unbounded.

o a(z4) = b(z4) = 0. Then p;; = p1o = 0. This case was encountered above,
implying x4 = 0o and the curve L,;; unbounded.

This result will be used in chapter 6 for the genus 0 case.

We continue with the last part of assertion (i) in the theorem, by using argu-
ments similar to those of section 2.3, namely the continuity with respect to the
parameters p;;. First let us denote by A the set of points in the simplex P for
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which M, = M, = 0. This set A does subdivide g into 4 convex sets A,;, for
1,7 = 0, 1. Now consider the hypersurface H

y41 P1o P1,-1
A=|pn Po—-1 po-1|=0.
P11 P-10 P-1,-1

H divides each A;; into two pathwise connected subsets A;; and A;;, for which
A >0 and A < 0, respectively.

It suffices to check now 3 special cases for which, respectively, A =0, A > 0
and A <0:

(a) The usually called simple random walk. Here we know that A = 0. More-
over L = L, is the circle centered at the origin, with radius ’%’.ﬁl It

is not difficult to check that the slit [y1y2] (resp. [ysy4]) lies always in-
side (resp. outside) this circle, whenever M, ad M, do not simultaneously
vanish.

(b)

\v_)

0

This random walk can depict two M/M/1 queues in tandem and its cor-
responding group is of order 6. Then

0 po O
A=| 0 -1 po_1| =p-11P10Po-1 > 0.
p-u O 0

Assuming M, or M, different from zero (i.e. genus 1), the curves £, L.y,
are shown in figure 5.3.1 G C Gc..,. Here [thy2] C G and [y3,00] C
%...- Analogous results hold for M and M.z, in the complex plane C .

(o)

<_(

—
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pu O 0
Here A={0 -1 po_1|= —P1Po,-1P-10 < 0.
0 po O

This random walk was already presented in section 4.7 and has also a
group of order 6. Here we have p;p = p;_; = 0, so that, from the preceding
analysis, 4 = 0o and Y (z4) = 0, assuming again M, # 0 or M, # 0. As
shown in figure 5.3.1, G¢,., C G¢, [y1y2] C Ge.., and [ysys] C G&.

vA
Ace:ct
L
Uq 0~ Y2 \us v
2! Ys Y4 = 00
A
Mezt
as s/2x 9

z3 Ty

Fig.5.3.1.

Returning to the general random walk, we note that any point p € A;'; can be
connected along a continuous path £ C A,*J' to some point gy € .A:'j corresponding
to the particular random walk (b). But the respective positions of the curves
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and the slits can be derived from the principle of the argument applied to the
function

D(y) = b*(y) — 4a(y)ely)

along the curve L.g. Since [arg 13(y)]cat is a continuous function of the p;;’s,

taking discrete values in the region A, we conclude that, whenever A > 0 (in

ij
the genus 1 case), [y132] C G C G.., and [ysys] C GZ_,.
The case A < 0, using the regions A;; and the random walk (c) can be treated

in a similar way. This concludes the part (i) of theorem 5.3.3.

Remark 5.3.4 As shown in section 2.5, the curves L, L.y, @ and &_&i
belong to the same homotopy class on the Riemann surface S. This indicates a
priori that the curves L or L.y contains in their interior at most one slit.

Proof of (i)  We have already shown in the proof of (i) that Y (z;) is positive.
Owing to (5.3.8), it follows that Y[Z1Z3] is the curve L traversed in the positive
direction. Since on [z,%5], Yi(x) is the conjugate of Yo(z), Y [Z1Z3] is the curve
L traversed in the negative (clockwise) direction. Similar conclusions hold for
the curve L. It follows that

{Ind[%(w)]{muwl =2,

(5.3.9)
Ind V(o)) zmuzm) = —2

The functions Y;(z), ¢ = 1,2, are meromorphic in the cut plane and their poles
and zeros are the zeros of a(z) and ¢(z). Thus it follows from (5.3.9) that Yy(z)
has two zeros and no pole and, conversely, that Y;(z) has two poles and no zero.
On the other hand, from the proof of part (i), lemma 5.3.1 and the fact that

Yo(z) <1, =z €1, used in particular at z =1and z = —1,
Yi(z)
we have v
zh—»IEo Y(: Ezg <1, with equality only if z4, = oo.

Applying now the maximum modulus principle to the function %%, which is

holomorphic in the complex plane cut along [z1z2] U [z3z4], we get immediately
the last assertion of (%). The proof of theorem 5.3.3 is concluded. |

Corollary 5.3.5 1. Gup — [1122] .%(_i)"r G — [y1y2] and the mappings are
conformal.

2. The values of Y, belong to G |JGc....
8. The values of Y, belong to Gz |JG%,_,.
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4. The singular curves of the composed functions X;oY; are listed thereafter:
XooYy : M | lmszdl,
Xl o )/0 : M U [1‘1.’132],
XooYy : Moy | (2524,
X107 1 Mg U [ﬁtl,IBQ].

Moreover, when Gypq C Gu,,,, the following automorphy relationships
hold.

Xo 0 Yo(t) #t, if t€GS,. Then Xoo Yo(GS,) =Gm.

{ t if t€Gum,
- t, if t€Giy,
Xio¥o(t) = { £t, if t€Grn Then XioYo(Ga) =Gy
t, Zf te GM::M)
#t, if t€GS,,, Then Xo0Yi1(Giy,.) = GM.

XooYi(t)

— t’ Zf te G?‘Aezt’
Xl O}ll(t) - { ;ét Zf te GMezt' Then Xl O},].(GMgzt) = fﬂut'

Proof. Assertion 1 follows directly from theorem 5.2.3 and so do 2 and 3, by

1
Yy (z)
respectively. The last assertion can be checked up to some tedious verifications
which will be omitted. The proof of the corollary is terminated. |

application of the maximum modulus principle to the functions Yp(z) and

Clearly, corollary 5.3.5 enables us to make the analytic continuation of the
functions 7 and 7. This yields another derivation of theorem 3.2.2, starting
from equation (5.1.2).

5.4 Index and Solution of the BVP (5.1.5)

As it emerges from section 5.2, a fundamental quantity in the solution of BVP’s
is the indez. Problem (5.1.5) has been obtained from (5.1.3) and we have to
combine the two basic constraints imposed on 7 and 7, i.e. they must be holo-
morphic inside their respective unit disk D and continuous on the boundary
I (the unit circle). This is to say that in (5.1.5) 7 might be meromorphic in
Gum\D (see section 5.3 for the notation Gy). This leads to the notion of re-
duced indez, which is the index of (5.1.5) subject to the constraints on m and 7
simultaneously. We shall proceed in three steps.

Notation All parameters have to be taken from (5.1.2). For any continuous non
vanishing function f(t) given on a contour C, let Nz[f,G] denote the number
of zeros of f(t) in the open domain G having C as its boundary.
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Theorem 5.4.1 Let us introduce the two following quantities:

0, if Yo(1) < 1 or {m(1)=1andM 1>o},

dIC |$=
S (5.4.1)
1, if Yo(1) =1 and da(z, Yo(z)) <0.
d:l: |z=1
0, if Xo(1) < 1or { Xo(1) = 1 and i"w > o} ,
Y —_— Yy ooowm (5.4.2)
1, if Xo(1) = 1 and AXe®Y)
dy ly=1

Then the functional equation (5.1.4), with boundary condition (5.1.5), reduces
to the BVP (5.4.19), the index of which is given by

X = -Ind[K()lm = —L = M +8+8 - Lxom=150)=1)- (5.4.3)
Moreover, (5.1.1) admits a probabilistic solution if, and only if,
§+8 = Lixg@y=,%(=1} + 1. (5.4.4)
]
Lemma 5.4.2

~  def

X1

—Ind[A(t)lm = —Indlg(z, Yo(z))m + Ind[@( Xo(y), ¥)]igm)
= §+06—L- M — Nzq(z,Yo(z)), Gm] + Nz[g(z, Yo(z)), D]
+Nz[q(Xo(y),¥), D), (5.4.5)

Proof. As announced in the beginning of section 5.3, the given functions
g(z,y) and g(z,y) are supposed to have suitable analytic continuations with
respect to z [resp. y] in the domains G [resp. G.|. Then the first equality in
(5.4.5) is a direct consequence of the definition of A(t) and of the first auto-
morphy property given in corollary 5.3.5. To establish (5.4.5) we shall compute
separately the two terms coming in the right-hand side member, mainly using
the principle of the argument. We have

Ind[(Xo(y), v)ligm) = —M + Nz[g@(Xo(v), ), D] + 3, (5.4.6)

where & has been defined in (5.4.2). Equation (5.4.6) follows from the principle
of the argument and from the properties of Xo(y).
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e When § = 0, the same argument shows that, for ¢ > 0 sufficiently small,

Nz[g(Xo(y),y), D] = Nz[g(Xo(y),y), D1-e] = M,

because on I'_,, which denotes here the unit circle with a small indenta-
tion to the left of the point y = 1, we have

e When § = 1, the same argument shows that

NZ[&(XO(y)) y)aD] = NZ[E(XO(y)iy): Dl+€] -1=M- l,

using now the circle I'i4¢, having an indentation to the right of the point
y=1

Thus (5.4.6) is proved.

Continuing with the proof of (5.4.5), we have

Indlg(z, Yo(z))lm + Indlg(z, Yo(z))igm = Nzla(z, Yo(2)),Gm].  (5.4.7)
Up to an exchange of the variables in (5.4.6), we can also write
Indlg(z, Yo(z)))igz) = —L + Nzlg(z, Yo(x)), D] + 4, (5.4.8)
where J has been defined in (5.4.1). Putting together (5.4.6) , (5.4.7) and (5.4.8)
we obtain (5.4.5) and the proof of lemma 5.4.2 is terminated. ]
The function 7 is sought to be holomorphic in D and continuous in D, but
might have poles in G N (D)°. From corollary 5.3.5, we know that
[Yo(z)| < 1, for z € Gy N (D)S,

this being a consequence of the maximum modulus principle. Hence, rewriting
(5.1.3) as

q(;;, Yo(z))(z) + 4z, Yo(x))7 (Yo(x)) + mo(, Yo(z)) =0,

one sees that the possible poles of 7(z) in Gaq N (D) are necessarily zeros of
q(z,Yo(z)) in this region, as 7(y) is holomorphic in D and continuous in D.
Setting

S(z) = II @-m),
r;€GmN(D)°
;(x) ( Az) (5.4.9)

m(z) = 3@)’ G(z)'—'%,
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where the r;’s stand for all the zeros of g(z, Y5(z)) in Gaq N (D)°, the BVP
(5.1.5) takes the form

P(t)G(t) — B(a(t))G(a(t) = g(t), teM (5.4.10)
where now &(z) is required to be holomorphic in G4. Since
Ind[G(z))m = Ind[A(z)]m — Nzla(z, Yo(z)), Gm N (D)7,
the index of (5.4.10) writes, according to (5.2.43) and (5.4.5),

~ def

X2 ¥ —Ind[G(z)lm =46+ — L— M — Lpeapyo)=1)

+Nz[q(z, Yo(z)), D N (GR)] + Nz(a(Xo(y),y),D].  (5.4.11)
To proceed further with the reduction of the index, we must introduce two.
additional informations:

(i) First, whenever _
3(Xo(y),y) =0, yeD,

the product g(Xo(y),y)7(y) taking place in (5.1.3) does vanish. Therefore, in-
troducing

_ (@) — m(Xo(ur))
i(z) = ; P AR (5.4.12)

where the summation is taken over the k’s such that
&'(Xo(uk),uk) = 0, Ur € D,

(with the correct multiplicities), ¥, (z) is clearly holomorphic in the neighbour-

hood of £ = Xo(ux). Moreover in (5.4.12) we have from (5.1.3),

—mo(Xo(u), u)
9(Xo(uk), ux) ’

which gives the m(Xo(ux)) in terms of the mo(Xo(uk),ux), i.e. linearly with
respect to the L + M — 1 constants defining mo(z, y) [see equation (5.1.2)].

m(Xo(uk)) = (5.4.13)

(i1) Secondly, to take into account the zeros of g(z, Yo(z)) in the region DNGS,,
one can start from (5.1.4), which, by analytic continuation, is indeed valid for
all y in the complex plane. In particuler, it is possible to replace in (5.1.4) y by
Yo(z), so that (5.1.4) takes the form

7(Xo 0 Yo(z))A(Xo 0 Yo(z)) — 7(z)A(z) = g(z), forz € DNGS,. (5.4.14)

To obtain (5.4.14) we have replaced in (5.1.4) y by Yp(z) and have taken into
account the automorphy relation of corollary 5.3.5 X o Yp(z) = z, for z € G5,.
Thus, since
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q(z, Yo(z))
A(z) = =———%,
@)= 2 v@)
we get from (5.4.14) the additional relationships

m(Xo o Yo(ve)) = Mfi_tg(tm)j’ (5.4.15)

for any vy € D N GS,, such that g(vk, Yo(vk)) = 0. Then, proceeding as in
(5.4.12), we set

_ m(z) — m(Xo o Yo(ve))
v = 2; = = Xo o Yo(v) (5.4.16)
_ m(z) — m(Xo(ux)) m(z) — m(Xo o Yo(ve)) o
- Z z — Xo(uk) + Xk: z—XooYo(ve))

k

Inverting now (5.4.16) yields

m(z) = Y(z) :,((Z)) +T(z), (5.4.17)

where, using (5.4.13) and (5.4.15),

R(z) = [J (& = Xo(w))(z - Xo o Yo(ve)),

ke
_ R(=) g(ve) mo(Xo(ux), uk)
" R(z) Z (z = Xo 0 Yo(ve)) A(Xo o Yo(ve)) Z q(Xo(u),ue) |

(5.4.18)

Joining together (5.4.9), (5.4.10), (5.4.17) and (5.4.18), one does obtain the final
reduced BVP

[PB)K() - pla() K (a(t)) = k(t), teM,] (5.4.19)

with

_ 2()R() _ GOR@)
k() = g(t) + T(a(t))A(a(?)) - T()A®),
at) = &

(5.4.20)

In (5.4.19), p is sought to be holomorphic in G4, and all the assumptions
concerning 7 and 7 have been used. This explains the expression final reduced
index employed above.

Existence and uniqueness of a solution of (5.4.19) are strictly equivalent to the
ergodicity of the random walk defined in chapter 1, the invariant measure of
which satisfies (5.1.1). According to (5.2.43), the index of (5.4.19) is given by
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Ind[K (t)m = Ind[G(t)lm + Nz[R(z), Gm
= Ind[G(t)lm + Nzlg(z, Yo(x)), D N Gi) + Nz[q(Xo(v), v), D,

which, using (5.4.11), is exactly the value announced in (5.4.3). The first part
of theorem 5.4.1 is proved.

To derive (5.4.4), note first that, since L, M > 1, (5.4.3) ensures X < —1. Thus,
by theorem 5.2.8, a solution of (5.4.19) exists and is unique if, and only if,

L+M-6-06+ 1(xo(1)=1,Yo(1)=1} — 1

conditions of the form (5.2.13) are satisfied. These conditions are linear and
involve only the L + M — 1 unknowns coming in the definition of mo(z,y).
Remarking that the existence (or non-existence) of an invariant measure for
a Markov chain is not subject to the modification of a finite number of pa-
rameters (e.g. transition probabilities) of the chain, one can always assume
that the conditions are independent. Taking also into account the normalizing
condition, (which says that the invariant distribution is proper), we will get a
non-homogeneous linear system of L + M — 1 equations with L + M — 1 un-
knowns, if, and only if, equation (5.4.4) holds. Moreover, lemma 2.2.1 applies.
The proof of theorem 5.4.1 is concluded. [ ]

Theorem 5.4.3 Under the condition (5.4.4), the function 7 is given by
R'(z)H(z) k(t)w'(t)dt

= v . 4.
(z) 2% R(2)5@) S, FFOKQ)@E) —w(@)’ Gum.  (5.4.21)
where
(i) My denotes the portion of the curve M located in the lower half-plane
[z <0;

(ii) k and K have been introduced in (5.4.20);
(ili) w is solution of the BVP (5.2.89) on the curve M (see theorem 5.2.7);

(iv)

H(t) (w(t) = Xo(y2)) Xe™®, t € Gu,

1 K(3) w'(s)ds
() m/ o8 2(5) w(s) —w(t)’ £ € EM

H* (1)

+ 1. K@ K(3E) w'(s)ds
IO = gloeggtam /10 R 5Ty £ M-

Proof.  Just a direct consequence of (5.2.44). [ |

(w(t) — Xo(y2)) Xe™®, t € My,
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5.5 Complements

5.5.1 Analytic Continuation

In fact the functional equation (5.1.5) can in turn be used to make the analytic
continuation of , in a finite number of steps, to the whole complex plane cut
along [z3z4]. Without going into details, remark just that the process consists
in making use of the automorphy relationships established in corollary 5.3.5.
Consequently, it is also possible to set a BVP on the curve M.y, provided that
the generating functions of the jumps on the axes have suitable continuations.
An example of this possibility is given in [27].

5.5.2 Computation of w

There are three main possible ways to obtain the function w, which realizes the
conformal mapping of G4 onto the complex plane cut along an arc.

5.5.2.1 An Explicit Form via the Weierstrass gp-Function. Any couple
(z,y) solution of the algebraic equation Q(z,y) = 0 corresponds to exactly one
point s on the Riemann surface S. This mapping will be denoted by (z(s), y(s)).
We refer indeed to the uniformization of the algebraic curve, proposed in chap-
ter 3. It turns out that the surface S can be viewed as a semi-open rectangle
[0, wa[x [0, w;[, representing the algebraic function Y(x) and shown in figure
5.5.1.

A
w1

memmm oo
T; T |
ﬂ - a a :
2 3 2 2:
[}
ay ay bl:

0 ﬁ Wa

2
Fig.5.5.1.
The affixes of a;,b;,7 = 1,... ,4 have been determined in chapter 3: they corre-

spond to (3.1.7), (3.1.8), (3.1.9), and we know that

w3 = 2(b1 - a;).
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The sheet T in figure 5.5.1 is that of the branch Y5(z), since it contains the
point b;, which on S corresponds to (X (y1), Yo(X(y1))), since

%(X(yt)) = Yi 1= 1,2°

We are looking for the function w (coming in the solution of the BVP presented
in the preceding sections), which is defined in the complex plane C ,, holomor-
phic inside G u4, except at one point where it has a simple pole, and subject to
the gluing condition

w(r) =w(Z), VzeM. (5.5.1)

For z = z(w), the homographic function of p in (3.3.3), we shall write woz & @.
The problem for w can be stated as follows. Find a function W holomorphic
in the shaded area represented in figure 5.5.1, in the interior of T1, having one
pole (which can be chosen arbitrary, but not on the segment [by, by +w,[), and
satisfying the next two conditions:

(i) For w € [by, by +wi[, W glues the two edges of the cut [y1, yo], which reads
7 “1 =@ “_ _Y @
w(b1+—é—+u)—w(bl+2 u), ue] 2,2[ (5.5.2)

and is nothing else but (5.5.1);

(i) W also glues the edges of the cut [r;,z;], which is located inside G in
C ;. Thus

wt(z) = w(z), Vz€ [z1,79],

or, equivalently,

W(ay +u) = Wla; —u), u€ ]—%, %[ (5.5.3)

Let 9(w) = @(ag +w). Since by + % =ay+ %, the two conditions (5.5.2) and

(5.5.3) can be rewritten as

Yw) = P(-w), (5.5.4)
" (w + %) = 9 (—w + %) , (5.5.5)

where 1 has to be holomorphic in | —_—2“—)-1-, %l- [x o, % [ Equation (5.5.4) permits

- —Ww . .
to continue 9 to the rectangle | %, % [x [Ts, 0] , as a meromorphic function,
wy —Wws3
[ 28
symmetric with respect to the origin. Hence, using (5.5.5), we can write

»

—w w
so that 9 is even in ]——l, ,—3[, where it has two simple poles
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Y =plutw) =Yutw), Vue] THLR[x[Z2D[ (656

Now the relations given in (5.5.6) allow to continue 9 to the whole complex
plane C, as a doubly-periodic meromorphic function (u), with periods w; and
ws. Moreover, in each rectangle, the two poles can be taken to coincide at the
center © = 0 of such rectangle. Finally, we have proved that an admissible choice
for 9 is simply

Y(u) = p(u;wr,ws) -

5.5.2.2 A Differential Equation. The results obtained in the preceding sub-
section yield directly

dw , w_wl-i-wg‘w w
dw Y g WnLWs

V(@(w) = e1)(@(w) = e2)(W(w) — es),

where

wy wp +ws w1 +wy +ws
6= ?,UJ],W3 y€2 = 9 Wi, ws |, €3 = P —5—_:“-’17“)3 .

Also,

dz C

Voo

where D(z) is the discriminant in the uniformization formulas (see chapter 3),
so that, choosing C = 1, w satisfies the differential equation

do_ = e)w—e)(-eg)
dz V/D@)

5.5.2.3 An Integral Equation. According to theorem 5.2.7, we know that
w is given by a Cauchy type integral (5.2.38), the density of which satisfies the
quasi-Fredholm integral equation (5.2.35). The derivative o/(t), which comes in
the kernel of (5.2.35), can be expressed explicitly, noting that

at) = X, o Yo(t), te M.

Skipping over the details, we obtain

(1) gigdi_t) = ¢ilr — arg(B*(t) — 4a(t)e(®))] ;e M,

where the functions a, b and c are the second degree polynomials of section 5.3.



6. The Genus 0 Case

This chapter is devoted to the case when the algebraic curve defined by the
equation Q(z,y) = 0 has genus 0. The corresponding classification was made
in Chapter 2 and exactly five situations have been found, described by the
relations (2.3.5) to (2.3.8). In fact, since (2.3.6) and (2.3.8) are equivalent up
to a permutation of the variables z and y, we are left with four significantly
different cases, which will be treated separately.

In some sense, genus 0 can be viewed, in the complex plane, as a degenerate
limiting case of genus 1. Thus many results established in section 5.3 about the
branches of the algebraic functions X and Y still hold, in particular most of
the properties state i, (%) and (iii) of theorem 5.3.3. It is worth recalling (see
remark 2.5.2) that the analytic continuation process could also be carried out
on the Riemann sphere, as was done in chapter 2 on the torus in the genus
1 case. Nevertheless, as a matter of continuity with respect to chapter 5, we
choose to make the complete analysis in the complex plane, since it presents

some new interesting features pertaining in particular to automorphic functions
[33).

‘6.1 Properties of the Branches

The main properties are summarized in the next theorem.

Theorem 6.1.1
(i) The algebraic curve defined by Q(z,y) = O has genus 0 in the following
cases. ~

. X-plane Y-plane
1 T3 =2T3=0 r I
. Y3 = Yq = OO. —
. T3 T4
X-plane Y-plane

p Jn=10=0 L L
T3 = T4 = 00. %” —
Ys Ys
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X-plane Y-plane
r
T3 =Ty = OO
9 3 4
Ys = ys =00 ﬁ\
X-plane Y-plane
T =2Z2=0 I L
Nh=Y= 0 [S— ‘\g —
3 T4 Y3 Y4
X-plane Y-plane

To=1x3=1 I
5.
v2=ys=1 ! 1
T4 Ya

In addition =3 and y; are always positive, but £, and y4 need not be positive. If
for instance z4 < 0, then the plane is cut along [—00, 4] U [z3,+00].

—00 g -1 3 1 400
(11) The cases listed in (i) above correspond respectively to the relations (2.8.9),

(2.3.7), (2.8.6), (2.8.8) and (2.8.5) and the following more precise properties
hold.

e The branches X; and Y;, ¢ = 1,2, are meromorphic in their respective
complex plane cut along a single slit as shown in part (i) of the theorem.

o | Xo(y)| < |X1(y)| [resp. |Yo(z)| < |Yi(z)|] in the whole complez plane
properly cut. Equalities can take place only at 0,00 or on the cuts.

o In case 1, Yo, Y; [resp. Xo, X1] have a common pole [resp. zero] at z =0
[resp. y = o] and X, is bounded.

o In case 2, Yo, Y) [resp. Xo, X1] have a common zero [resp. pole] at z = 0o
[resp. y = 0] and Y, is bounded.

o In case 8, Yo,Y: [resp. Xo,X1] have a common pole at z = oo [resp.
y = 00].

e In case 4, Yo,Y; [resp. Xo, X1] have a common zero at z = 0 [resp. y = 0.
The functions Xy and Yy are bounded, but X, and Y; have two poles.

o In case 5, Y, [resp. Xo] is holomorphic in the plane cut along [z1z4] (resp.
[11y4]). The branches Y, and X; have two poles.
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Proof. Al statements of part (i) follow directly from section 2.3. The sharper
results of (ii) can be derived exactly (even in a simpler way) along the lines of
lemma, 5.3.1 and theorem 5.4.1, using the separation of the branches on the unit
circle, together with the principle of the argument and the maximum modulus
theorem. The details are omitted. ]

Now we shall analyze in detail the various possibilities listed above. To avoid
uninteresting technicalities, the functions 7y, ¢ and §'in (5.1.2) will be supposed
to be polynomials with respect to the two variables (z,y). This amounts to say
that the jumps of the random walk on the axes are bounded. On the other
hand, the ergodicity conditions are again given by condition (5.4.4), by direct
continuity with respect to the parameters {p;;}, except perhaps for the case 5.

6.2 Case 1: DPo1 = P-1,0 = P-1,1 = 0

Theorem 6.2.1 Under the above conditions, the functions m and T exist if,
and only if, (5.4.4) holds. In this case the following situation holds:

® T is a rational function and its poles in the complez plane are the zeros of
q(Xo(y),y) located in G% (i.e. outside the unit disc).

o 7 has the form
n(z) = U(z)Yo(z) + V(2),
where U and V are rational functions. ]

Proof.  Asin chapter 5, it is possible to state a BVP of the form (5.1.5), for the
function 7, on a curve which was denoted M in section 5.3. The computation
of the index of this BVP can be derived exactly as in theorem 5.4.1 and the
ergodicity conditions are still given by (5.4.4). When they hold, it is however
not necessary to solve this BVP, as there is a much more direct way to obtain
the solution. In fact, writing

#(y) = —2Xo(®), )7 Xo(y)) = mo(Xo(y), )
3(Xo(y),v)
we get immediately the analytic continuation of 7 to the region G%, since from
the maximum modulus principle and by theorem 6.1.1, we have

IXo(y)l <1, Yy € Gt.
Moreover, Vy € G§ the functions ¢(Xo(y),y), d(Xo(y),y) and mo(X (y),y) are
analytic and of finite degree at infinity, so that the only singularities of 7 in
the whole complex plane are the potential zeros of g(Xo(y),y) in G§ and 7 is

rational.
When y — oo, 7(y) = O(y*) where t = max(r, s), with

9(Xo(y), y) r mo(Xo(y), y) .
=~ Vv i, = 0 ’ v A = O .
7(Xo(v), ) W) 3(Xo(v), ) W)

The proof of the theorem is concluded. ]

, Yy € G},
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6.3 Case 3: p11 = p1o =po1 =0

Theorem 6.3.1 Under the above conditions, the functions m and T exist if,
and only if, (5.4.4) holds, in which case they can be continued as meromorphic
functions, to the whole complex plane. In the domain Gaq, ™ has the integral
representation given by (5.4.21), where M is an ellipse, which in the z-plane is
given by the equation
(u—1up)?  o? . )
T—l—ﬁ:l’ with z =wu+v.
The function w, appearing in (5.4.21) and solution of (5.2.89), can be chosen
as .

w(z) = % (h(z) + ﬁ) , Vz€Gpm, (6.3.1).
where
h(z) = Vk(p) sn (2Km5i:(z — ) m) , with p= (Z;:)z

represents the conformal mapping of the interior of the above ellipse onto the
unit disc, k(.) and K being respectively the modulus and the real quarter period
of the Jacobi elliptic function sn (z; k). Similar conclusions hold for 7. [ |

Proof. To show the first and third claims of the theorem, it suffices to note that
the general analysis of chapter 5 applies verbatim, the verification that £ and
M are ellipses being elementary. From this integral formula, it is in fact possible
to get the analytic continuation of 7 to the whole complex plane. Nonetheless,
it is instrumental to prove the second point of the theorem directly from the
functional equations (5.1.3) or (5.1.5), using some properties of the branches Y,
and Y; given in the next lemma, which is the analogue of corollary 5.3.5.

Lemma 6.3.2

x> MO gy > MO

XooYi(t) = t and |XyoYi(t)] > ||, Vt.
_ t, if t€Gpm,

XooXo(t) = {;ét, if teG, and XooYo(Giy)=Gm.
[t if teGs,

XioYo(t) = {;ﬁt, if t€Gpm and X10Y(Gum) =G5y

Proof. It relies on standard applications of the maximum modulus principle.
The details are omitted. ]
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Lemma 6.3.3 Let A, the sequence of ring-shaped domains constructed recur-
sively as follows:

An+l = Xl o Yl(An),Vn 2 0, (632)

where Ay is the doubly connected domain, with boundary the slit [z,z,] and the
closed curve X, o Yy([z1z2]). Thus

Ao = Gxyov; ([z122)) — [2122]-
Let Dy £ Uy, An. Then
(i) D1 =—‘D,, @ Any1, where @ denotes the direct sum of sets;
(ii) Jil]olopn =C — [z129).

Proof. By induction. Let [G] denote the boundary of an arbitrary domain G.
Assume (i) holds up to some n > 0, but not for n + 1. Remark first that the
internal boundary of A,,; coincides with the erfernal boundary of A,. From
the principle of correspondence of the boundaries for conformal mappings, there
exist 3 points z,_1, 2n, ta, such that

Zy, = Xloyl(tn)y Zn,t,,G[Dn],
2y = Xloyl(zn-l); Zn—l’e[Dn-1]~

But in this case, it follows from lemma 6.3.2 that necessarily ¢, = 2,1, which
contradicts Dp—; C Dy. So, to prove (i), it suffices to check the initial step,
which is indeed straightforward. The point (ii) is also immediate by the first
two properties of the branches listed in lemma 6.3.2. [ ]

Rewriting for the sake of completeness the basic twin equations

9(Xo(y), y)m(Xo(y)) + 2(Xo(¥), ¥)7(y) + mo(Xo(v),y) =0, Vy € C,  (6.3.3)
q(z, Yo(z))m(z) + q(z, Yo(2))7 (Yo(z)) + mo(z, Yo(z)) =0, Vz e C, (6.3.4)
we can proceed by induction, in a flip-flop way as follows.

Assumption: 7 is meromorphic in D,.
Conclusion: *

1. 7 is meromorphic in Y;(Dy);

2. 7 has a meromorphic continuation to D, ;.

Assertion 1 of the conclusion is obtained from equation (6.3.3), since the func-
tions Y; and Y; are analytic outside the unit disk, except at y = oo, where they
have a single pole; assertion 2 follows by exploiting (6.3.4) and lemma 6.3.3.

The recursive computation of the poles rely on the forthcoming lemma, which
is also another way of getting the meromorphic continuation of the various
functions.
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Lemma 6.3.4 Equation (5.1.5) or its reduced form (5.4.19) can be expressed
as
m(u) f(u, Yi(w)) — m(X1 0 Yi(u)) f(X1 0 Yi(u), Yi(u)) = g(u), u € [z11,)],
' (6.3.5)
which gives the meromorphic continuation of w to the whole complez plane.

Proof. From the analysis carried out in the preceding chapter, equation (5.1.4)

7(Xo(¥)) f(Xo(y),¥) — 7(X1(y)) f(X1(¥), ) = h(y), Yy € [n112],

can be continued to C. Writing it in particular for y € L, it is permitted, using
lemma 6.3.2, to make the change of variables y = Y;(u), which implies exactly
(6.3.5). ]
Let '

ng = mm{q v, Y¥5(v)) (v, Y1 (v)) # 0, Vv € DS},

and of, k = 1,... ,m, be the poles of 7 in D,,. Note that ny is finite, since we
have assumed that ¢ and ¢ are polynomials. Then the possible poles of 7 can
be recursively computed from the sequences {af, 1 < k < m, n > 1}, where

gy = X1 0 Yi(ap).

Similar results hold for 7, up to an exchange of parameters. ]

6.4 Case 4: p_10 = Po,-1 = P-1,-1 =0

Due to the position of the slit [z3, 4], the problem here is of a slightly different
nature and is connected with the automorphic functions (see [33]), as enlighted
in the next theorem.

Theorem 6.4.1 The functional equation
7(Xo 0 Yo()) f (Xo o Yo(2), Yo(t)) — (t) f (¢, Yo(t)) = g(t) (6.4.1)

is valid for allt € C and provides the analytic continuation of © as a meromor-
phic function (the number of poles being finite) to the whole complez plane cut
along [z3 4). [ ]

Proof. By an informal topological argument, one can say that the cut [y1y,]
has in some sense shrunk into a single point, the origin, where the algebraic
function Y (z) has a double zero. Hence, equation (5.1.4)

m(Xo(¥))f (Xo(¥), ¥) — (X1 () f(X1(y), ) = h(v),

obtained by elimination of 7, holds in a neighborhood of the origin in the Y-
plane. The result of the theorem follows from the properties of the branches
X;,Y;, listed in theorem 6.1.1. |

At once, it is important to note that (5.1.4), quoted above, cannot be continued
to [ys, ya], so that we do not have a BVP on a single curve, but on two curves.
In the rest of this section, several methods are proposed to solve (6.4.1).
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6.4.1 Integral Equation

We write w in the form

m(z) = i/ w(t)dt + R(2), VzeC — [z3z4], (6.4.2)

27 [esza) E— 2

where R is rational fraction having the same poles and residues as . Letting
now z go to the slit [z3z4] and using formula (5.2.4) in (6.4.1), we get

w(t) - l/ [uKy(t) + K(t)lw(u)du _ Kslt),
[waz4]

T lu —Xpo0 Yo(t)lz (6.4.3)

where K;,¢ = 1,2,3, are real functions, given in terms of f and g, their ex-
plicit expression being omitted. Conspicuously, the operator (6.4.3) is strongly
contractant and can thus lead to an efficient numerical evaluation, all the more
because the unknown density w(t) is real.

6.4.2 Series Representation
It follows from the maximum modulus principle that the function Xy0Yj satisfies

XooYo(®)l < |t], VteC,
| Xo o Yo(t)| < [t], VEe€D,

and admits 0 and 1 as fixed points. Thus, denoting by X o Y;,(") the n-th iterate
of Xg oYy, we have

lim X0 Y™(t)=0, VteD.

n—oo

Consequently, by (6.4.1), w(z) can be expressed as a series, for z € D, the terms
of which are finite products of analytic functions.

6.4.3 Uniforinization

The algebraic curve Q(z,y) = 0 is of genus 0 and, consequently, admits a
rational uniformization, which will be expressed as

- 1
z(s) =x3;z4+x44z3 (s+;),

y(w) = ys-2i-y4 LU - Ys (n(S) + %)

(6.4.4)

where the automorphisms &, 7, d, introduced in chapter 3, take the form
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- 1
6(3) - ;: b
as +
"7(3) - cs — aa
bs+a
8(s) = —as+c

The function X, o Yy coming in equation (6.4.1) is, up to the above uniformiza-
tion, strongly related to 6 = no§.'More information in given in the next lemma.

Lemma 6.4.2 Let uy, uy be the two fized points of §(s) in the s-plane. According
to [33], we have the following classification:

(1)  Ifp}y— 4pup1,—1 # 0, then

os)—w _ s—w
8(s) —uy s—up’

where uy, uy are the two roots of the equation
(74 — T3)u® + 2(T4 + T3)u + 14 — T3 = 0,
with uyuy = 1, and the multiplier K is given by

_ 77(0) - U
K= —w

(1.a) If p}y — 4pup1,-1 > 0, then x4 is positive and
U < -1 <u; <0.

Moreover,
o ifys > 0, then K is real, |K| # 1, so that §(s) is of hyperbolic
type;
o if ys <0, then K is complex, |K| # 1, so that é(s) is of loxo-
dromic type.

(1.) If p}y — 4p1ip1,-1 < 0, then x4 is negative, Uy, up are complex conju-
gate and located on the unit circle. In addition,
o ifys > 0, then K is complez, |K| = 1, so that §(s) is of elliptic
type;
o ifys <0, then K is complex, |K| # 1, so that §(s) is again of
loxodromic type.
(2) If p}y — dpupr,-1 = 0, then x4 = 0o. The two fized points coincide,
with u; = uy = —1, and the uniformization of z(s) in (6.4.2) becomes

z(s) = z3 — 5%
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The transformation 8(s) is of parabolic type, and

1 1
o+l s+1T ¢
]
Proof. The classification in the lemma relies on classical properties of the
group generated by fractional linear transforms. [ ]

The above uniformization gives a representation of 7 as a series of meromorphic
functions, the form of which depends on the type of 4, as defined in lemma 6.4.2.

6.4.4 Boundary Value Problem

Via (5.4.6), the slit [z3z4] in the X-plane is mapped onto the unit circle I" in
the z-plane. Similarly, the curve Xj o Yo([zs 1:4]) corresponds to two circles in
the z-plane, one of them, say C, is located inside I". It is now possible to pose a
problem of Carleman (see 5) for 7 in the annulus between C and I'. Moreover,
explicit expression do exist for the conformal mapping of this annulus onto
simpler regions, allowing to transform the Carleman BVP into a Riemann BVP,
and to obtain an integral form solution for 7. We will not go more deeply into
the analysis, which does not contain theoretical difficulty.

6.5 Case 5: M, =M, =0

This is the limiting case where z3 = z3 =1 and y, = y3 = 1.

Lemma 6.5.1 The branches Xo and X, of the algebraic function X are, re-
spectively, holomorphic and meromorphic in the complex plane C, cuts along
[v1y4]. The image of the cut by X (y) consists of two simple closed curves M,
and Ms, with
Mi=X[gdl,  Mz= XLy,

which are symmetrical with respect to the horizontal azis, and smooth (i.e. the
direction of the tangent varies continuously), except at the point x = 1, which
is a corner point if, and only if, the correlation coefficient r of the random walk
in the interior of the quarter plane is not zero. The following situation holds:

o Ifr #0, then

MinMp={1}, MinT={1}, i=1,2, (6.5.1)
M, Cﬁ, . M, cC-D,
0, and hd 0.
{Mzcc-p,”r< an {Mch, ifr>
(6.5.2)

In addition,
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[Xo(y)l <1 and |Xi(y)|>1, Vyel —{1}.

o Ifr =0, then
MicDcM;cC-D.
Moreover the curves M, M, are tangent at £ = 1. They can be identical
if, and only if, the group is of order 4 (see condition (4.1.5)), in which

case they coincide with the unit circle I'. This is in particular always the
case for the simple random walk.

In figure 6.5.1 the dotted curve is the unit circle, and one has drawn the contour
MU My, which has a self-intersection and is the image of the cut [gigi] by the

mapping y — X (y), remembering that Xo[@] =X, [@]

Fig.6.5.1. The contour M; U My, for r < 0.

Similar properties hold for the algebraic function Y (z), with the corresponding
curves L, and L. [ |

Proof. To show (6.5.1), remark that if there exists € M; N T, z # 1, then
there exists 6, 6 €]0, 27|, such that the couples (e, Yy(e5?)) and (e, Y; (e5i%)),
€ = =1, are solution of the fundamental equation Q(z,y) = 0. In addition,
Yo(e®) € [y1,1] and Yi(e?) > 1, since |Yo(z)| <1,Vz € I' - {1}.

Setting now Yj(e”?) = z;, j = 1,2, we obtain a system of equations, with respect
to the variable z,

a(z)z? + b(z)z; + c(z) =0,
a(z)z2 +b(z)z +c(z) =0.




6.5 Case 5: M, = M, =0 139

But this system admits only the real solution = = €%, because all its coefficients
are real. Thus § = 0 and (6.5.1) is proved.

As for (6.5.2), it suffices to analyze the ratio ﬂ, y €]1 — ¢, 1], since on the

a(y)

cut [y1,1], Xo and X; are complex conjugate functions. We have
W) _ @O -20)E-1)+0m-1)
a(y) a(y)

Now, using M, = 0 and letting R denote the covariance of the random walk in
the interior of the quarter-plane, one checks easily the following equivalence

RE@(1) - &(1) =pu+p-11 —p-n —pr1 <=1 <0,

which corresponds exactly to (6.5.2).

The claim of the lemma that M, has a corner point at z = 1 can be shown by
differentiating twice with respect to y at y = 1 the equation

AW)X*() +by)X () + ) =0.
After an easy manipulation, it appears that the derivative

PETS dXo(y)

dy ly=1

of the branch Xj, in the cut plane C - [¥1, ¥2), is one of the roots of the second
degree equation

a(1)t*+ Rt +a(1) = 0. (6.5.3)
Since M; = M, = 0, we also have

b(1) = —2a(1), B(1) = —2a(1).

Hence, the discriminant A of equation (6.5.3) is given by

~

A = R? —4a(1)a(1) = R® — b(1)b(1).

But |R| < min (|b(1)], [5(1)] ), so that A is negative and the roots of (6.5.3) are

finite and complex conjugate. Thus M; has a corner point if, and only if, r # 0.

def dYO(:z:)

In a similar way, the derivative s = satisfies the equation

|lz=1
a(1)s* + Rs+a(1) = 0.
The assertions of the lemma concerning the case » = 0 and the group of order 4

can easily be achieved by continuity arguments with respect to the parameters,
like in chapter 5. The proof of lemma 6.5.1 is concluded. [ ]
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Theorem 6.5.2

(i) If r < 0, then © [resp. 7] is a holomorphic solution of the Riemann-
Carleman problem

m(t)A(t) — m(a(t))Ale(t)) = g(t), te My, (6.5.4)
where the functions A and g are defined in (5.1.6).

(ii) If r > 0, then m [resp. 7] can be continued as a meromorphic function
in the region G, [resp. Gg,]. The poles of m in Gp, — D [resp. T in
G, — D] are the eventual zeros of q [resp. q].

(i) The function m and T cannot be analytically continued to a region en-
compassing the point 1, and hence the conditions of lemma 2.2.1 are not
satisfied. (]

Proof. One proceeds exactly as in chapter 5, eliminating ™ which must be
continuous on the two edges of the slit [y;, 1]. This yields (6.5.4), exactly as was
obtained (5.1.5), and the point (iii) is clear. The technical novelty is that the
BVP (6.5.4) belongs to the class of generalized problems (see [35, 61]), since
the contour M; has a corner point. We will return to this fact later, when
computing the index. [

From now on, one will assume r < 0. The reader will convince himself that
the forthcoming proofs can easily be transposed to the case r > 0, up to some
technicalities arising from possible poles in the domain G4, which then contains
the unit circle as shown in (6.5.2). Moreover, probabilistic arguments show that
the random walk is never ergodic for 7 > 0. In fact, the mean first entrance
time of the random walk into the axes, when starting from some arbitrary point
with strictly positive coordinates, is infinite for any r > 0 (see [29]).

As in theorem 5.4.1 for the case of genus 1, we will derive the conditions for
the functions 7 and 7 to be analytic in the open disc D and continuous on its
boundary I'. The argument will mimic those of section 5.4, and all the drifts
coming into the computations have been defined in (1.2.3).

Lemma 6.5.3 Let

(e 23 %y =2(1), N2 5%y = 2a(1),
ij )
)yu do(, Yo(@)) _ o _ EMy M4l 4 pe® (6.5.5)
dz [z=1 N Ay ’ .
= aw W@ Xo®).y)  _ 0 BMy  MpVIAl 4
oY =M, - -1 = pe”.
\ dy ly=1 Az Az

The BVP corresponding to (6.5.4) has a reduced form corresponding to (5.4.19),
the index of which is given by
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x=—-L-M+

lo +0+ a;ccos(—"”) _ 1J _ (6.5.6)

Moreover, m and T correspond to probabilistic distributions if, and only if,

lo +6+ a;ccOS(—r) _ IJ -1 (6.5.7)

Proof. We follow the method and the notation proposed in lemma, 5.4.2. The
main discrepancy with respect to chapter 5 comes from the discontinuity of the
derivative of Xo(y) [resp. Yo(z)] at y = 1 [resp. z = 1], which renders slightly
sharper the calculation of the reduced indez. Following (5.4.5), the basic step is
to estimate the quantity

X1 ¥ ~Ind[A()wy = ¢+,

with
¢ ¥ ~Indlg(z, Yo, ¢ = Indd(Xo(v), v)lme

Letting now

i: Ind[g(z, Yo(x))]l” ’ (6.5.8)
6 = Ind[g(Xo(y),v)Ir,
we can write
¢ = Nzla(e, Yo(2)), D] = Nela(=, Yo(@)), Gan] ~L =6 +1- =
" (6.5.9)

$= Nala(Xo(w),), D) - M~ 5+ 3,

where 0 < a < 7 denotes the angle between the two tangents of the curves M,
and I" at the point 1. The derivation of (6.5.9) deserves some explanation. We
consider the domain between the curve M; and I". Then the famous principle
of the argument for the functions g, on the boundary of this domain, does
not apply without precaution, since g is discontinuous at the a corner point 1.
Indeed the variation has to be taken as a Stieltjes integral in principal value,
and requires the generalized form of the Sokhotski-Plemelj formulae (see section
5.2.2 and e.g. [61]):

M) = (1——) wlt) + 27,7r/,; s(s—)‘is

O =-gotre [

where 0 < a < 27 is the angle between the two half-tangents at the corner
point. We apply these remarks to calculate § and § defined by (6.5.8).
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Choosing the argument of an arbitrary complex number to take its values on
the interval [0, 27|, we get

s,
T
5=1-2
T
whence
S+6= 2—9-16—'
T

For the last point of the lemma concerning probabilistic solutions, we use the
result derived in section 5.4 (which still holds, provided the index be properly
defined, since M is not a smooth Lyapounov contour, see e.g. [35]). Hence, for
m and T to be proper probability distributions, it is necessary and sufficient to
have

x=-L-M+1,

which reduces easily to (6.5.7). The proof of the lemma is terminated. [ ]

Remark 6.5.4 The ergodicity conditions for the two-dimensional random walk,
obtained in a purely probabilistic way in [29]), write as follows:
Ml M"
M, <0, M;/<0, and A )‘”W > 2R.

The reader can check that they do not coincide with (6.5.7) and bring to light
a spectacular phenomenon. We have seen in theorem 6.5.2 the impossibility of
using lemma 2.2.1. Indeed, 7(z,y) is analytic in the open domain D x D, but
the continuity on the boundary I' x I' need not hold, unless additional condi-
tions on the parameters are in force. This was recently observed by probabilistic
arguments in [2].

Essentially because of technicalities concerning the explicit expression of con-
formal mappings, it will be more convenient to pose the BVP (6.5.4) on the
curve

M= MU
shown in figure 6.5.2.
Lemma 6.5.5 The simply-connected domain G 5 is conformally mapped by one
branch of the function t — z71(t) onto the lens-shaped domain H bounded by

two circular arcs, in the Z-plane as shown in figure 6.5.2. In addition, H is
conformally mapped onto the upper half-plane by the function

w(z) = ( “)3, (6.5.10)

20z — 1

where v is the angle between the two arcs. |
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Fig. 6.5.2. The conformal transform of M

Proof. The algebraic curve corresponding to Q(z,y) = 0 admits a rational
uniformization, of the following general form (see section 6.4), Vz € C,

Xy + T Ty I 1
z(z) = 5+t (z+z),

_ Yty Ya— 1
v =B BB () ).

The curve M; corresponds in the z-plane to two circular arcs, drawn in figure
6.5.2, which are inverse with respect to the unit circle I', so that one of them
is located inside D. They cross I" at the conjugate points zy, Zp, where

(6.5.11)

z(20) = z(Zo) = 1.

The function in (6.5.11) is standard (see e.g [71]) and the proof of the lemma

is terminated. ]
1

Since the mapping w — w + — maps the unit disk onto the plane cut along

the slit [-1,+1], the function 7 is finally obtained from the integral formula
(5.4.21), using (6.5.6) for the index, and (6.5.10).



7. Miscellanea

In this book we have described completely only some topics related to the
subject. There are however a lot of directly related questions not included into
the present book.

7.1 About Explicit Solutions

Besides considering BVP in the complex plane, there are different alternatives.
The first one is to consider a BVP on a Riemann surface, the second one to
work on the universal covering, as shown in section 5.5. The direct passage to
the universal covering itself, by uniformization, involves Weierstrass functions.
In [46], the functions 7 and T are represented in terms of convergent series (as
for meromorphic functions) and convergent products (as for entire functions).
In all these approaches, one must localize the zeros and the poles of ¢ and ¢q
in some regions. Even if this can be easily done for some parameter values, the
technical details are tedious in the general case.

The method of solution presented in the book can be applied to solve non
stationary problems, by means of an intermediate Laplace transform [27].

In [3], one has considered a diffusion process in Z2. The determination of its
invariant measure is equivalent to solve a BVP for an elliptic operator on an
hyperbola (1), allowing for explicit solutions. Here the generating functions are
replaced by Laplace-transforms and the unit disk by the right half-plane.

In other problems, especially in many models encountered in queueing theory,
jumps inside the quarter plane are not bounded, and it is no more possible to
speak of algebraic curve. Nonetheless, it is still possible to associate the BVP
approach in the complex plane with conformal mapping techniques (or Fredholm
equations). In this connection, the reader can see [19, 4].

7.2 Asymptotics

Under this title, several important areas are in fact concerned.
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7.2.1 Large Deviations and Stationary Probabilities

Even if asymptotic problems were not mentioned in this book, they have many
applications and are mostly interesting for higher dimensions. We recall here the
results of [55] concerning the asymptotic behavior of the stationary probabilities.
We shall consider the simple random walk defined in chapter 2, i.e. inside the
quarter plane all the transition probabilities are zero, but po;, P10, P-1,0, Po,-1-
In addition the following assumptions are made on the drift vectors M, M', M"
defined in (1.2.3) :

M<0, M #0, M!#0. (7.2.1)

The choice of the simple random walk is not crucial for the applicability of the
analytical methods, but it simplifies considerably the computations. Also, the
case where only one component of M in (7.2.1) is negative, can be analyzed via
similar methods.

Some new facts about the Riemann surface will be needed. Let z(s),y(s) be
meromorphic functions on S defining the coverings of the z-plane and y -plane
respectively.

1. We know that the algebraic function Y(z) [resp. X (y)] has exactly four
branch points z; [resp. y;], where

0<z1<T2<1<z3< 1y,
O0<y<y<l<ys<ys
2. Let S, = {s : z(s) € R ,y(s) € R} be the set of all real points of
S. Then S, consists of two disjoint analytic closed curves, homologous to one
of the elements of the normal homology basis on S, more exactly to the one

different from z7!({z : |z| = 1}). These curves will be denoted by Fp, F;, with
F, satisfying

2o <z(s)<z3 and y2 <y(s) <ys, Vs€ K.

F, contains an ordered set of eight characteristic points sg,... , s7, which are
defined as follows:

( [Po,-1 ) (Po -1 )
So = 1’ 1 y S1= —, Y2 ), S2=|—", 3
0 ( ) ! ( Po1 2 2 Po1
{83 = (1?3, p-llo): S4 = (po’-l ) p-llo)y S5 = ( pOl—l’yi‘l)’
P1o Por P10 Po1
S¢ = (11 p_llo) y 87 = (I2> p-l'0> .
\ P1o P1o

3. The function ¢,(s) = |zy?| , 0 < v < 1, has in the set {z # 0,y # 0} four
non-degenerate critical points s;(),%? = 1,... ,4, which are defined by the two
of equations
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F)
Q(z,y) =0, y%Q(w, y) = 793%@(9:, y)-

Each s;(7) is uniquely defined and depends continuously on v, remarking that
z(s;(0)) = ;.

Moreover, s1(7), s3(7) € Fo and z;(v) = z(s:(v)), %(v) = y(si(v)) are real. For
v = 1, one can put $;(1) = 0,s4(1) = oo, and hence, for the critical points
s2(1), s3(1), the above assertions hold. We have also

1 < z3(1) < z3(y) < z3(0) = z3,

y¥3(0) = ,/p;’T'll < y3(7) <ws(1).

It appears that the asymptotics of the stationary probabilities is determined
either by the critical point s3(7y) or by the zeros of g¢ or g,. Note as a reminder
that £ and 7 are the Galois automorphisms on S constructed in section 2.4, and

f such that
‘ Po,-1 P-10
x’ = x’ —, z’ — —_—, .
&(z,y) ( ly) n(z,y) (plox y)

Now in the parameter space P x {y: 0 <y < 1}, with P given in section 2.3.1,
we introduce the subsets

; P = {(p, ) q(zs('r), p:: ;;(l,y)) <0, &“(ﬁ:’(":ﬁ,ys(v)) < 0},
f Py = {(p,"r) : q(wa(v) M) >0, E(ﬂ-,ys(v)) < 0},

" porys(7) p10z3(7)

and P_,, P, accordingly. The main result is given by the next theorem.

Theorem 7.1 Let m,n — oo so that % — 7,0 < v < 1. Then we have

fcl

7—5065"‘(7)3/5"(7) inP__,
Cozy™ (7)™ inP_y
— 225" (7)% "(7) m P-4 (7.2.2)
Cszs™(Mys"(7)  in Pyo,

; (Cazg™ (MY "(7) + Cszs™ (Mys (1) in Py,

where the C;’s are constants (depending on v) and

Po,-1
1<z <z , 1< < ——,
0(7) 3(7) yO(’Y) P01y3(')’)
P-10
1<z <— 1< <
s(7) p——— ys(7) < ya(7)

are solutions of the respective systems
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{Q( y) =0, q(z,6y) =0, for zo(7),%0(7);
0

Qz,y) =0, qnz,y) =0, for z5(v),ys(7)-
For v = 0, the asymptotic behavior could be obtained (although this was not
done) by means of the method proposed in [66]. . n

We will only give a brief sketch of the methods used to prove the main re-
sult (7.2.2). The stationary probabilities can be represented by two-dimensional
Cauchy integrals, which, using Leray residues (see e.g. [1]), can be reduced to
one-dimensional integrals over some cycle on the Riemann surface. The asymp-
totics will be thus defined either by the steepest descent point (saddle-point) or
by a pole, that could be encountered while moving the integration contour on
the surface. Both the saddle point and the possible pole belong to the real part
of the algebraic curve.

Martin Boundary Roughly, let us simply say that the so-called Martin bound-
ary (MB) describes the way in which a process escapes to infinity (see e.g. [69]).
For non-smooth regions, probabilistic methods rarely yield a complete char-
acterization, while complex analysis appears promising. To calculate the MB,
one needs the asymptotics of Green functions, and thus of the MB kernel. This
requires a little bit more effort than large deviation asymptotics. Transient ran-
dom walks in Z2, with the same kind of jumps as in the present book, were
considered in [42]. Starting from convenient functional equations, it was possi-
ble by analytic continuation arguments to obtain the first singularity and the
saddle-point (which form the main contribution to the MB), but still not a
complete explicit expression.

7.3 Generalized Problems and Analytic Continuation

We have already seen how analytic continuation is crucial in most of the prob-
lems, including asymptotics. Undoubtedly the first step toward a generalization,
in the case of jumps bounded in modulus by a finite number n, is the analytic
continuation process. Here there are 2n unknown functions, m;(s), 7;(s), which
must be analytic in the connected domain £ C S,

€= {lz(s)l < 1, ly(s)| < 1}.

Then a functional equation can be obtained, on a Riemann surface S of arbitrary
genus, which has the form

n

Z(fh(S)m(z(S)) 4 q~i<s>%i(y(s))) a0(s) =0 (7:3.1)

i=1

where g;(s), g:(s) are meromorphic on S. The next results where proved in [56].
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1 m;(s),7i(s) can be continued ”infinitely” outside £ and can have only alge-
braic branch points in the complex plane. The resulting covering surface
is isomorphic to the disk but it is not the universal covering of S. The
reasons become clear when we consider the sequence of fields

KhcHhRCcFKC..., (732)
where

— Fj is the field of meromorphic functions on S;
— Fy; is the minimal Galois extension of C(y), containing Fy;_1,% > 1;
— P4 is the minimal Galois extension of C(z) containing Fy;,1 > 0.

In the generic situation m;(s), 7;(s) can only be considered as meromor-
phic functions on the limit of S;-Riemann surface of F;, or, more exactly,
as sections of the inductive limit lim;_, of the bundles of meromorphic
functions on S;;

o there is a necessary and sufficient condition for the finiteness of the se-
quence F;, showing that stabilization rarely occurs. In case of the stabi-
lization they are meromorphic on Sy, for some finite % ;

o if the problem can be solved by Wiener-Hopf factorization techniques,
then the chain stops at Fj.

In the class of generalized problems, one finds also the famous queueing model
Joining the shorter queue, which was solved in the non-symmetrical case in
[22, 39]. Here there is no space homogeneity: the quarter plane is separated into
two homogeneous regions, and one must write a functional equation for each

region. This gives rise to the following system:

Qi (z, y)m(z,y) = qu(z, y)m(z) + qa(z, ¥)me(z) + @ (z, ¥)T(y)
Q2(z, y)m2(z,y) = gn(z, y)m(z) + g22(z, y)m2(z) + G, y)Ta2(y) -

There are 4 unknown functions of one variables. The algebraic curves corre-
sponding to @; and Qs are of genus zero. It is possible to write, in some region,
a non-Ncetherian BVP (i.e. its index is not finite). Upon combining @; and Q;,
let us say simply that we are in the situation of non-Galois extension. It was
proved that all functions can be analytically continued as meromorphic func-
tions to the whole complex plane. The symmetrical case, i.e. @, = @3, reduces
to a single functional equation on a curve of genus zero, and it was originally
solved in [32].

Finally, it is not necessary to insist on the usefulness of getting results for
random walks if Z¥, N > 2. For a first step in this direction, see [65]. The
general problem of unique continuation for solutions of functional equations on
spaces with group actions was considered in [58].
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7.4 Outside Probability

Operator Factorization and C*-Algebras There was a great activity con-
cerning the indez problem for pseudo-differential operators in domains with a
smooth boundary, and one of the central results is the so-called Atya-Zinger
index theorem. In the present book, we have dealt with the simplest case of
non-smooth boundary (one corner), and the derivations of the ergodicity con-
ditions, via the index, presented in sections 5.4 6.5 are new.

In larger dimensions, the index problem, especially for Toeplitz operators in Z ¥,
Wiener-Hopf equations in R¥Y and BVP for N complex variables, is still largely
open. The reason resides in the inductiveness property: indeed, dimension N
demands much finer properties for the related problems in dimension N — 1
[59]). However, formal inductive solution for general N can be given in terms of
C*-algebras and by factorization of functions on the circle, taking their values
in the set of compact operators in Hilbert spaces (see [57]).

Physics Some relationships with the so-called integrable models in statistical
physics are described in [59], but they seem to be much deeper.
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