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We find that certain random fields obtained by perturbing Gaussian fields with a self-interaction

potential have the same limit properties as do the random fields of statistical mechanics.
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"~ INTRODUCTION

The limit theorems of the theory of probability have
been applied many times to Gibbs random fields of various
.+ kinds.

. The integral central limit theorem has been proved by
many authors’-? and also the local one.>-* These theorems
are very important because they describe the properties of
- Gibbs random fields outside the critical region. The critical
. behavior can be described by other kinds of limit theorems,
. that is by the existence of fixed points of the renormalization
- group.5-1° In this paper we find both types of limit theorems.
~The first one (the integral theorem) is obtained in the case of
" a Gaussian random field with slowly decreasing correlations
" but integrable, perturbed with a small self-interaction poten-
. tial; the second one is obtained in the case of a Gaussian
“random field with nonintegrable correlation perturbed by a
. potential of the same kind as before. In this case we obtain a
- Gaussian isotropical automodel random field with a correla-
'~ tion asymptotically equal to the correlation of the unper-
turbed Gaussian random field. As we know this is the first
example of renormgroup convergence for non-Gaussian
... Gibbs translation invariant field to a nontrivial Gaussian
field. We proceed now to exact statements.

» 1. FORMULATION OF RESULTS

R Let 0, be a translation invariant Gaussian random field
"~ onalattice Z", with
j (0’,)0=0, (0,0'1.>0=¢(t—t').
B We denote i, the corresponding probability measure on the
space {2 = R* of configurations with Borel o-albegra Z; (-),
is the expectation w.r.t. . Let u(x) be a real function on R
bounded from below and such that

(u?(a¢)>0< 0.
Let us consider a new measure u, on £ with density

dus/dpe=2 5 ‘CXP( — Y eulo, ))
teA

w.r.t. ;A is a finite subset of 2", Z, = <e & J) 0 {4 is
the expectation w.r.t. i, . We denote =, the minimal o-
subalgebra of = such that any o,, te4, is measurable w.r.t.

- Z,. Weshall write F = F, if Fis X ,-measurable and
|4 | < «. We shall use the following:
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Theorem 1.1: If
d= Y |pt)<pO)<w, (1.1)
10 eZ

then there exists €,> 0 such that for any O < € < €, and any
bounded F, the following limits

(Foy=lim (F),

exist and have convergent cluster expansion defined in Sec.
2. The moments (F, ) uniquely define a translation invariant
measure » on f2. .

This theorem was proved in Ref. 11. We give indepen-
dent proof for the sake of completeness. We use the methods
of this proof also in the proof of the following theorems.

Theorem 1.2: Under the conditions of theorem 1.1 the
central limit theorem holds for the random field o, with
probability measure i£. We shall prove this theorem in Sec. 4.
Letusput#=(t',...t*)eZ” and

S (,k) = ag;.
tk<t'<(t! + Dk,i= 1,
o) = §*/\/DS*), (w.r.t. measure,u) DS*) = (S%1?)
This transformation is the renormalization group transfor-

. mation.*® The easy generalization of Theorem 1.2 is the

following.

Theorem 1.3: The random field o!*' converges weakly
{i.e., finite dimensional distributions converge) to the trivial
Gaussian field £, with (£,),=0, {£,&, )0 =6, . We want
now to find conditions when the convergence is to a nontri-
vial Gaussian field.

Let us consider some Gaussian field with measure
such that

(0)0=0, {o,0.)o=ot—1").
We shall not suppose (1.1), but assume that
[t]"~2t)>C, |t|—>o. (1.2)
This field exists when v>3. Let us define new random
variables

A A ik —

6,=6,""= [(Ut
- [ (U, +e

where e, ,...,e, are the unit coordinate vectors and e; ,¢; ,e,

are three different elements of this basis. Let us consider the
new measure

_at+e,~+e_,)]

_at+e,+e,+e.)] ’

- 0t+e,) - (ax+e,

—Oriere)— (Oirese
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dp,
dpo

2, = (e~ Teu@))o-
teA
Assumption: We assume that i, is such that ¢ (¢)
= (5,,0,) satisfies (1.1).

=Z e - ;eu«?,))

It is an easy matter to construct such examples. We can
consider arbitrary Gaussian field o, satisfying (1.2) and
make the transformation

g, >0, =0, . (1.3)
We note that for all m
> 405,67 | < (1.4)

t
and for sufficiently large m (1.1) is valid with

)= (3:51).

Theorem 1.4: For € > 0 sufficiently small iz, tends
weakly to some non-Gaussian measure z. There is conver-
gent cluster expansion in this case. The proof is quite similar
to the proof of Theorem 1.1. Let o, be the non-Gaussian

random field with measure p constructed in Theorem 1.4.
Now let v = 3.

Theorem 1.5: The sequence of random fields
0.('k) = Sltk}/(Ds(lk))lD

(w.r.t. measure 1) weakly converges when k—» oo to a Gaus-
sian isotropic automodel vector field with correlation func-
tion X (¢,5) given by

K(t,s)=constf f du dv——l——, (1.5)
A, JA, ju—v|”~?

where

A, = {(ueRu =t + u%u9 = (u?,..,u?),0<u0<1} . (1.6)

2. VACUUM CLUSTER EXPANSION

Let us denote
f(x) =exp[(—eu(x)], fr= llf(m) .
Then

z,= (gf(a.)>o = (fu)o -
and

Z,(Fyda = (Fufs _)0 . @n
- The right-hand side of (2.1) is the moment of N + 1 random
variables

Fy,flo,)flo,), where A = {1,,....t5} .

So one can expand this moment in semi-invariants and after
resummation we get

Eufd= 3 Fafn ) Yo lf )

70T, Tp

= 3 (Fafr.XZa_z, (2.2)

T/CA
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where T, can be empty and where, e.g., (F,, fr,); is the semi-
invariant of T, + 1 random variables F,, f,,t€T}, w.r.t. mea-
sure u,. This gives the desirable expansion in finite volume
A:

(FA )A = T;A<FA fT)gg(TA) s

(2.3)
f‘) =ZA—T/ZA .

In order to prove convergence we use the following systems
of equations for g,. For any finite nonempty A CZ" we fix
some point £,€4 and expand Z, _,_,, in semi-invariants .

.....

where the summation is through all partitions T;u--UT), of
A — (4 —t,). We can assume that ¢, €T,. After resumma-
tion over T,...,T, we get

ZA —A—t) = z (fT)gZA — (AUT) » ) (2-4)
T

where the summation is over all T such that
t,eTCA —(A4—1t,).
Let us denote

Ky = (f T )g .
Then K, ; =K, does not depend on ¢, and from (2.4) we get

8521 =Kg" + Y Krgllr,
T

where in 3’ the summation is over all T such that |T'|> 1,
t,eTCA —(—A —1t,). Alternatively we have a system of
equations

g — K¢, + K T Kg8r =0, |4|>1,

" Q.5)
g0+ Ko TKglr =K'y =1
We shall consider also the limiting system of equations

84 _KO—IgA—-t,. +Kq'! zKTgAuT'_—ov l4]>1,
T
: (2.6)
g +Kg'! ZKTgAUT=K0_l , M]=1,
T

wherein 2’ the summation is over all T’such that |T'| > 1 and
t,eTCZ" — (4 — {1, ).

We shall prove that (2.5) and (2.6) have unique solu-
tions in the Banach space # , (respectively %) of functions
¥ = () on the set of all nonempty finite subsets 4 C A (re-
spectively 4 CZ") with the norm

I#ll = sup (&) |9,]].

Let us consider the linear operator L =E — R + K in,
e.g., #, where E is the identity, Ry¢ = ¢, where ¢’ = (¢),
and
e [K¢ 452
4 0 A|=1.
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It is easy to see that IR ||<1/2. The operator K transforms
the vector () into (¢, ), where

¢;.=Ko_l KT'/’AuT

T, eTCZ — (4 —1t,), |T|>1
Let us note that

0<Ci<Ko= (e~ ™)<Cr< 0, Q@7
uniformly on 0<e<é&,. It follows that

IKli<Kg' >

T:0eTCZ"|T|>1

Lemma 2.1: Under the conditions of Theorem 1.1 for
any & > 0 there exists €, > 0 such that for 0 < <€, one has
IIK || < 8. This lemma will be proved below.

It follows that L = E — R + K is invertible in # (and
in & ,). Thus there exists a unique solution of (2.6) [and
(2.5)]. The solution g*> of (2.5) tends to the solution g, of
(2.6) when A—Z". We shall not prove this fact here (see Ref.
11), as the proof is standard (see Ref. 12).

If || K ||<1/4 then ||(E — R + K )"'||<4 and so

IKrl|2/Ko| T (2.8)

|g.4|<2(Ko/2) ~ 141 (2.9
We shall prove below also -
Lemma 2.2:
z |(F4 fr)5|<C(F,)Ce)", (2.10)

T:|\T}=n, TCZ®
where C does not depend on € and F,,,C (F,) depends only
onkF,.

It follows that the cluster expansion

(Fq) = z (Fu fr)&r

TCA

Q.11
is absolutely convergent. Thus Theorem 1.1 is proved.

3. BOUNDS ON SEMI-INVARIANTS OF FUNCTIONS OF

A GAUSSIAN RANDOM FIELD
Let us put _
Fo)=f)—1= f [—u@le-9de  (.1)
and note that
(f@, )0eer F@ V= (0, )unf (0.))S . (3.2)

We shall estimate the semi-invariants (3.2) under the condi-
tions of Theorem 1.1. Let us put ¢, = 0 and we shall always
assume that ¢,,1,,...,t, are pairwise different. Let = be the
sum over all lexicografically ordered sequences (¢,,...,Z, ), the
components of which are pairwise different and 0#¢;€7Z",
i.e.,overallsubsets 7= {1,,...,t,} C Z' — {0}. Lemma 2.1
evidently follows from Lemma 3.1. o

Lemma 3.1:

2O (f(ooh f(O)h-r f10,,))5 ] <(Ce)". (3:3)

We shall prove this lemma now. Let 4, (c,) be the normed
Hermite polynomials w.r.t. u,, i.e., (42(g,))o = 1; we can
assume that @ (0) = (0?), = 1 without loss of generality.
Thend < 1.

Let us denote
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0: =V nlh, (o)

the corresponding Wick polynomials.
We expand f (¢,) in Hermite polynomials in Ly(du,).

fod= 5 anhnio)= $ Lo

m= m=0 ‘/ml ¢
Then
3 @ = 177 duscicer,
and so
la,,|<Ce. _ (3.4)

Then

(flooh flo, s flon,))E

a. —aq

my

e oo™ ), (3.5)

0

Ms
1 M8

m, =1

tymytem,!
if the series in the rlght-hand side of (3.5} is absolutely con-
vergent. Let us fix the ordered sequence (m,,m,,...,m,).

Lemma 3.2:

. .. ) . m"- C
E |<.00m-.,.q’2m2,,...,.0," .)0 l
)

(3.6)
<(n—1)d N7 H mm, — 2)(m, — &)

i=1
where N=m, + - + m,l andthesum X, isoverall the
ordered sequences (t,,...,t,, ) of points #,€Z” such that
1;#0,t; #1;, if i#]. We shall prove this lemma below and
now using (3.6) we shall prove Lemma 3.1.

Proof of Lemma 3.1: We have
S |{floo) flo, ),---,f(a,")>§ |
m, | --Iam, |

i i (n— 1) N7
" ='\/'"'m'(n—1)'
I_I i —2)m; —4)
< i i Iam"|2m1'--2m,,d‘"‘-+'"+m..)/2
o (3.7)

where C, depends on (1 — d)™'. Thus Lemma 3.1 is proved.

Proof of Lemma 3.2:
We shall use the diagrammatic representation

=31, (3.8)

which we shall now define exactly.

A diagram G consists of the following objects: (1) An
ordered set of vertices {1,...,n} and of one-to-one mapping 7
of {1,...,n} in Z* such that (1) = 0,7{i) = ¢,. (2) Each vertex
has an ordered set of m; legs (i,1),(i,2),...,(#,m;). (3) There is a
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partition of the set of all N = m, + - + m,, legs onto pairs
such that each pair (line of the diagram G') has legs from
different vertices and the resulting graph is connected. (4).
The Gaussian random variable o;; = 0, corresponds to the
leg (7, /). The contribution of the diagram G is then

I = H(aﬁ’akl>0 s

where the product is taken over all pairs (ij,k! ) of contracted
legs (i.e., over lines of G ). Formula (3.8) is then Wick’s theo-
rem for semi-invariants.

Let 2, be the set of all sequences @ = (x,,...,Xy ,, ) With

0#x,€Z",N = m; + -+ m,. Let us fix a permutation

= ( 2 ver n )

m(2) - in)

and M, = m,,M; = mp,,i>2. For each ae¥y and each /T
we shall construct a set &, (@) of connected diagrams with
fixed (m,,...,m,). A set 9 () can be empty or otherwise it
contains no more than II7_, m;(m, —2)(m, —4)-- dia-
grams and moreover a,7 uniquely define vertices f,,...,Z,
which are the same for all Ge 4 , (@). Moreover the contribu-
tion of each Ge ¥ () is equal to I ¢ (x,). We describe
now the algorithm of construction of & , (). This algorithm
constructs vertices and contracts legs step by step.

First step: We begin with the vertex ¢, = 0 and contract
leg (1,1) with arbitrary of 7, legs of vertex t2 = x,. Thus the
first step is finished and we proceed by induction.

Let T= (t,,tz, ,t,) I<k, be the vertices with ,,...,7,
legs which have been constructed after k steps Suppose that
Fi--ot; legs of the correspondingly ,,...,/, are yet uncon-
tracted. So on each step one line and O or 1 new vertex is
constructed.

(k + D)st step: Let us consider the vertex t, ,<i<l, such
thatt = x, + X, + -x, . It exists by inductive construction.
There can be two cases: 7, >0 or 7, =0.

(1) If r, > O then consider the point t + X, isnot
equal to any f,,...,f; then we construct new a vertex
o1 =4+ X and we contract the first of r; uncontract-
edlegs of £, with arbitrary of m,, | legs of f, +1 Iff, + x, 1
is equal to some 7;, j</, then we contract the first of r; uncon-
tracted legs of t w1th any of the r; uncontracted legs of t If

r; = 0 then we define G .(a)to be empty. Otherwise we pro-
ceed to the next step.

(2) If r, = 0 then we take the ﬁrst ,1<j</, such that

r;#0 and we take the first of its uncontracted legs and we
contract it with any of the uncontracted legs of the vertex
t —-t + X, . (asin case 1). If all r;,1<j</, are equal to 0,
then we define & (a) to be empty.

We get a combinatorial factor

A, — 2

for each t since after each arbitrary choice of a leg we imme-
diately take the first leg of ¢,. Evidently each diagram G with
given (m,,...,m,) is in at least one ¥ (@). Lemma 3.2 is
proved.

Proof of Lemma 2.2: 1t is sufficient to consider the case
when
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F = [[£&),

i=1

where | f;{<land 4 =

formula
(fl(ax. )fk (ax,)’f(at, )’"'vf(at,,))g

= 3 [ (fe)xe

T, f@)eT))s
i=1

where the sum is over all the partitions (T',...,T,,) of the set
{X15-sX st 1s-t, } SUch that each T; has non empty intersec-
tion with {x,,...,x; }. If all the ¢, are different from all x; then
as in the proof of Lemma 3.1 we expand f; and fin Hermite
polynomials and we use diagrams. The diagram G will give
contribution to the rhs of (3.9) iff each of its vertices ¢; is
connected by some path with some of the vertices x,...,X.
The proof then repeats the proof of Lemma 3.1.

If in

(filx)x. €T}, flo ) €T})5 (3.10)
some x,€T; is equal to some €7 then we use the formula

(W01 W0))S = QPO Y30, )G
- > W) JeT')s

T'C (paabgl
I\NC
_T>o

X <¢'(y2)r¢(yj)’yje{ 3’~"yq}
to exclude these cases.

We use (3.11) subsequently for each pair x; = ¢, and for
all semi-invariants (3.10).

After this procedure we shall also have the sum of dia-
grams such that each of its points is connected with some of
the points x7,...,x, . We get also factors depending on k. Our
construction is again applicable to this sum of “connected”

diagrams.
4. THE CENTRAL LIMIT THEOREM

We shall prove Theorem 2 here. Let ( S4,....,8, )be the
nth semi-invariant of the random variable S, =2, ,0,. We
want to show that

{X15.--s% }. We use the following

(3.9)

1
im ———— (S,,... €=0, n33. 4.1
Pri (DS,,)”/2< preeesSa ) @“4.1n
We have
(SpsSa)= 3 (04,50,)°
byt

We shall define new random variables

whgre @ = e*™" and 0,'* = 1,...n, are new random fields
which are independent copies of the random field o, with
measure 4. Then we have (see Ref. 13)

(7,,0,)=0, k<n,
and

(@, 1s0, ) = U/N) (@, 1, Yo = (U/N)(T, T, ) -
“42)

Using the cluster expansion for our n independent copies of
it is similar to (2.11)]
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(&t. ...&'")

= 3 A6, 0, Fx)eFx)g

{X1sX) J CZY
X(8ixsixy )" 4.3)
. where
Fe)= [] F),
a=1
we have
(&t, '"6t,, »F(xl)r-"»F(xk))g)
= (G, -0y, F(x,),...,F(xk))g, 4.4
and

(G, G,y F (x5 F (1)) =0, p<n.
The proof of (4.4) is similar to that of (4.2) due to the symme-
try of F(x) w.r.t. permutations of {1,...,n}. Then
l <&t 1---3&1 ’F(xl) ""F(xk))cl

<n sup l(ag:ll)’ ’at ")’F(xl) )F(xk)) ' (4'5)

We expand each f(0'®) in the series of Wick polynomials
and get as in (3.5)

(80,0 T2 F (%)), F (x0))

Dy Q)

m},....m,>0 m: !---m,l, !

a_i-a, .

my m,

mf, 25>0 V mkt..m®!

% (a‘,“'", ,a(tan)’ (a“' mi

O ol o 08
Ffom {4.2), (4.3), (2.9) we get

‘ l(at, yers Ty )CI

< X

(4.6)

2"B"* (G, yoons0 F (%)) F S|, (47)

B=2/K,

We want to represent the semi-invariants in the rhs of (4.6) as
the sum of connected diagrams G with n + k vertices
Eyeeestn 3osXi - We fix ¢, = 0 and we want to prove that

S {00, )€ |<const. 4.8)
[ A
(4.8) follows from:
Lemma 4.1:
3 {0, 0., )€ <constlA | . 4.9)

1yt €A

Proof of (4.8): Let us denote by y the semi-invariants in
the rhs of (4.6). It depends on m/, @/, x, ¢ ;. Then using (4.6),
(4.7) we can bound (4.8) by

2nB nk
z,;:,, [x.,...,xzk}CZ" rrgo]:! V m
< 2n (BCe)"" L vq
2 2 > H T

mi=0 ij
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2"
<7{'—' Z

A YR S P X 5
X #X;
We note that for all /

2 mi>1.
7
We fix, n,k,m, and shall prove that

Z x|

. S
x;#Ex;
<kWk"(1+d)y d>m—"?

x| I it 2, 4| T m
B Y iJ

From (4.10) and (4.11) we get (4.8), (4.9).

In order to complete the proof we must prove (4.11).
We show that this proof is quite similar to the proof of
Lemma 3.2. In fact there are no lines between legs of the
same vertex x; since 0'”, 0{* are independent for @ #£a’. To
construct the diagrams using our method we define %, to
be the set of sequences

(yl""’.yn ,21,---,21\] —n/2 )’

N=Y ml, y,z,€l’, z#0.

LJ

Let us note that if we delete vertices 0, £,,...,,, and delete lines
connecting them to the other vertices then the remaining
part of the diagram remains connected. Thus we begin with
the vertex 0 and construct the second vertex. x(;, = y; and
the line between 0 and x,,,. This gives a factor (1 4+ d).

As earlier, we fix a permutation 7 of { 1,...,k }. This gives
a factor k!. Then for each ie{2,...,n} we choose one of the k
vertices x,,...,x, and choose one leg from the chosen vertex
to be contracted with the vertex #,. This gives a factor
k"~'I1,; m] . Each such a construction generates a factor
(1 + d). The remaining connected part of the diagram is con-
structed in the closest similarity to the construction in the

proof of Lemma 3.2. The proof of (4.8) and of Lemma 4.1 is
thus completed.

(BCe)™*

m>0 ij

(4.10)

@.11)

Lemma 4.2:

The proof is quite similar to the preceding one. We have

(A=Y (o.0.)"
tt'eA
In order to bound (0,0, )§ we use cluster expansion. It
contains the “main term” {o,,0,. }$. The sum of the remain-
ing terms being of order O(e).
We have for the “main terms”

e e_ 1 gy
IAI:Z (0,,0:) = 4] (SA>0M| Q-

L t'eA ~—
Then Lemma 4.2 follows with Q> Q, — e. Itis not difficult to
prove that

— (s Ao

Zy
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5. RENORMGROUP CONVERGENCE TO NONTRIVIAL
GAUSSIAN AUTOMODEL FIELD

We have to show that (oitk)’m’o.(tk)y — 0, (5.1)
1 n k—»w

and

(ngza“t’f»c—»K {tt'). ;.2)

The equivalence of these statements and of the statements of
the theorem is due to the following general facts. Statement
(5.1)is equivalent to the statement that the weak limit of 0’
is Gaussian if it exists. Moreover if the limit exists then it is
automodel and there exists only one isotropic automodel
random field with asymptotics (1.5) (see Ref. 14).
We use the following asymptotic properties
|(0.,8, ) | <const/|t —¢'|**!,
(5.3)
|(G.,5,- ) | <const/|t —¢'|* 1,
which are quite evident.
We can write cluster expansion for

(0‘,,0,:) = (0’,,0’,r>0 + 2
k3 L{X ey} CZ*

Xg[x, ,,,,, x.) 0 (5'4)

similar to the earlier cluster expansion. Convergence of this
expansion follows from (5.3). From (5.3) it follows that
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(0.0, F (e 1)yosF (x4))5

<al Ty F

(01,00 )5
because in the diagrammatic expansion of the second term in
the rhs of (5.4) there is no line between vertices fand ¢ *. State-
ment {5.1) can be proved quite similarly to the proof of the

same statement in the preceding section. Theorem (5.1) is
proved.

-1 if t—t'|>o, (5.5)
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