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Asymptotic Behaviour in the Time Synchronization Model

Vadim Malyshev and Anatoli Manita

ABSTRACT. There are two types ¢ = 1,2 of particles on the line R, with
N; particles of type i. Each particle of type i moves with constant velocity
v;. Moreover, any particle of type ¢ = 1,2 jumps to any particle of type
7 = 1,2 with rates N]T‘ lai,-. We find phase transitions in the clusterization
(synchronization) behaviour of this system of particles on different time scales
t = t(N) relative to N = Ni + Na.

1. The model

It is a pleasure to contribute to this volume devoted to the half-life birthday
of Anatoly Vershik. He contributed a lot to probability theory and asymptotic
analysis and these are exactly the topics of this paper.

The simplest formulation of the model which we consider here is in terms of the
particle system. On the real line there are N; particles of type 1 and N, particles
of type 2, N = N; + N,. Each particle of type i = 1,2 performs two independent
movements. First of all, it moves with constant speed v; in the positive direction.
We assume further that v; are constant and different, thus we can assume without
loss of generality that 0 < v; < vy. The degenerate case v; = vy is different and
will be considered separately.

Secondly, at any time interval [¢,t + dt] each particle of type i independently
of the others with probability o;;dt decides to make a jump to some particle of
type j and chooses the coordinate of the j-type particle, where to jump, among the
particles of type j, with probability le Here «;; are given nonnegative parameters
for ¢,j = 1,2. Further on, unless otherwise stated, we assume that ay; = a9 =
0,32,z > 0.

After such an instantaneous jump, the particle of type ¢ continues the movement

with the same velocity v;. This defines the continuous time Markov chain {1,';:) Q) },

i=12and k=1,...,N;, where :L'ff) (t) is the coordinate of k-th particle of type
i at time . We assume that the initial coordinates xi”(o) of the particles at time

2000 Mathematics Subject Classification. Primary 60K35; Secondary 60J27, 60F99.
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102 VADIM MALYSHEV AND ANATOLI MANITA

0 are given. We are interested in the long time evolution of this system on various
scales with N — o0, t = t(N) — 0.

In different terms, this can be interpreted as the time synchronization problem.
In general, the time synchronization problem can be presented as follows. There
are N systems (processors, units, persons, etc.). There is an absolute (physical)
time ¢, but each processor j fulfills a homogeneous job in its own proper time t; =
v;t,v; > 0. Proper time is measured by the amount v; of the job, accomplished by
the processor for the unit of the physical time, if it is disjoint from other processors.
However, there is a communication between each pair of processors, which should
lead to a drastic change of their proper times. In our case the coordinates wg) (@)
can be interpreted as the modified proper times of the particles-processors, the
nonmodified proper time being wg) (0) + vit.

There can be many variants of the exact formulation of such a problem; see
[GMP, MSh1, MiMi, BT, MSi]. We will call the model considered here the
basic model, because there are no restrictions on the jump process. Many other
problems include such restrictions; for example, only jumps to the left are allowed.
Due to the absence of restrictions, this problem, as we will see below, is a “linear
problem” in the sense that after scalings it leads to linear equations. Despite this,
it has nontrivial behaviour; one sees a different picture at different time scales.

There are, however, other interesting interpretations of this model, related to
psychology, biology and physics. For example, in social psychology, perception of
time and life tempo strongly depends on the social contacts and intercourse. We
will not give the details here.

2. Main results

We show that the process consists of three consecutive stages: initial desyn-
chronization up to the critical scale, critical slow down of desynchronization and
final stabilization.

Final stabilization. The first theorem shows that for N; fixed and t — o0
there is a synchronization: all particles asymptotically, as t — oo, move with the
same constant velocity v, that is, like vt. However it does not say how fluctuations
depend on N;. .

Put '

m(t) = miknw;“(t) .
3]
THEOREM 2.1. For any fired N1, Ny there ezists v = v(N1, N2) > 0 such that
for anyi=1,2 and any k =1,..., N; a.s.
(%)
x;. (¢
lim ._.k_.(‘_) =v
t—o0 t
Moreover, the distribution of the vector {ng) (t)—m(t), i=12and k=1,..., M}
tends to a stationary distribution. '
The velocity v will be written down explicitly in terms of this distribution; it

depends of course on o;; and v;. Note that both the velocity and the distribution
do not depend on the initial coordinates.

Initial desynchronization. Now we consider the case when N — oo but ¢ is fixed.
More exactly, we consider a sequence of pairs (N1, Np) such that Ny, N2 — 00 50
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that —}I\Vﬁ —» ¢4, where ¢; + ¢z = 1,¢; > 0. It is convenient here to consider positive
measures or generalized functions

1 )
N; T
m( )(t, m) = _Ni Ek &z — acgc)(t)), xRy,

defined by the coordinates of N; particles of type.i at time £. We assume that at

time ¢ = 0 for any bounded C*-functions ¢;(z) on R the sequence (mgN")(O, BN
converges to some number.

THEOREM 2.2. Then for any t there are weak deterministic limits

1 ;
Jim =m{™(t,2) = my(t, @)
where m;(t, ) satisfy the equations

om, omy

(2.1) ot + 01*5;* = aiz(mz —m),
o om
(2«2) 'gtl“z“ + ’U2a—x2 == Otgl(ml - 'n’Z2) .

Now we want to study the asymptotic behaviour of m;(z, t) for t — oo. Denote
ai(t) = /xmi (z, t)dz, d;(t) = /(m~ ai(t))’m;(t, ) d .
THEOREM 2.3. There exist constants v,d > 0 such that as t — 0o
a;(t) = vt + azo + o(1),

di(t) = dt + dip + o(1)
for some constants a0, d;g. Moreover,

Az, ) — a;(t
Ai(:r:, t) — W(xa ) ‘a"b( )
Vdi(?)
tends to 7127 exp(—ﬁzi) pointwise as t — oo.
Critical point and uniform estimates. Here we assume that Ny = [e1N], Np =

[c2N] for some ¢; > 0,¢3 + c2 = 1. Introduce the empirical means (mass centres)
for types 1 and 2 '

N,
— 1 - i
2®(t) = + > P,
? k=1

the empirical variances

N;
1 & ; — 2
2()) = — Oy — z®
S2() M&@uwxa»
and their means

pi(t) = EzO(t), bia(t) = ua(t) — ma(t), Ri(t) = ES2(t).

- The following asymptotic results hold for any sequence of pairs (N, t) with N — oo
and t = ¢(N) — oo.
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THEOREM 2.4. We have the following asymptotical results as t — oo:
V1 — U3 w;(t) _, Qu202 + o101
o2 + 021’ t o2+ a1

Assume now that N; = ¢;N, where ¢; > 0,¢; +c2 = 1.

l12 (t) —

THEOREM 2.5. There are the following three regions of asymptotic behaviour,
uniform in t(N) for sufficiently large N:

o if t—(YVN—) — 0, then R;(t(N)) ~ haat(N),
o ift =t(N) = sN for some s > 0, then R;({(N)) ~ h (1 —e **°)N,
o if f—(—NIV—) — o0, then R;(t(N)) ~ AN,

where the constant sy > 0 can be explicitly calculated and

_ 20190001 (V1 — ’02)2
»a(0a + 001)3

The proofs for uniform estimate results will be published elsewhere; see also
[MaMal, MaMaz2].

3. Limit t —

In this section we will prove Theorem 2.1.

Two particles. It is useful to consider first the case when Ni = Nz = 1. Thus
consider the process (z(1(t), z(? (t)). We will prove that there exist deterministic
limits 61

z\(t
t—»r{olo t
for i = 1,2 and some v > 0; moreover the distribution of the random variable
p(t) = 22 (¢) — (D (t) tends to some distribution on R..

We can assume that v; = 0,v3 > 0. The Markov chain p(¢) = 2@ (t) — 2V (t)
on R satisfies the Doeblin condition; that is, from any € R.. there is a jump
rate to 0, bounded away from zero. Here it equals a1z + ag1. It follows that p(t) is
ergodic. Then as t — oo there exists the limiting (invariant) distribution F(x) for
p(t). Let

=v

tp <tg <.
be the time moments when (1 (t) = z(&(¢). It is clear that tx — tx—1 are inde-
pendent random variables, exponentially distributed with parameter o + ag1. It
follows that F'(z) is exponential with the density

12 + 021
p(z) = Aexp(—Az), A= ———.
Vg — VU1
Thus, if the limits tlim ﬁfﬂ exist, then they are equal. Let us prove that they
—_ 0

exist and
(3.1) v =v1 + 02 /a:p(a:)da:.

In fact, the particle 1 moves with constant speed v; and performs on the time
interval [0, T'] independent exponentially distributed jumps in the positive direction.
As T — o0, the number of these jumps asymptotically equals a12T, and the mean
jump asymptotically is [ zp(z)dz.
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Similarly one can get
(3.2) V=3 — Qg1 /wp(w)dw.

From this and (3.1) we have

_ ao1V1 + QiU
Q21 + Q12

General case. Let us prove first the second statement of the theorem. We
can put v; = 0 and change the coordinate system putting m(t) = 0. Consider
a configuration of particles at time t. Denote the particle, which has coordinate
m(t) = 0 at time ¢, as particle 0. Let p(t + 2) be the probability that at time
t + 2 each particle will be inside the interval [0, 2vo]. This probability can be (very
roughly) estimated from below as

p(t + 2) > min(po1p2p1, Po2p3pa) -

To prove this, consider first the case when the particle 0 has type 1. Under this
condition p(¢t + 2) can be estimated from below as po;pep1, where pg; is the prob-
ability that particle 0 does not do any jumps in the time interval (t,t + 2), p, is
the probability that each particle of type 2 jumps at least once to the particle 0
in the time interval (¢, + 1) and does not do any more jumps in the time interval
(t,t +2), p; is the probability that each particle of type 1 jumps to some particle
of type 2 in the time interval (¢t + 1,¢+ 2). Similarly, under the condition that the
particle 0 has type 2, p(t + 2) can be estimated from below as pgopsps, where pgo
is the probability that the particle 0 does not do any jumps in the time interval
(t,t + 2), ps is the probability that each particle of type 1 jumps at least once to
the particle 0 in the time interval (¢,¢ + 1) and does not do any more jumps in the
time interval (t,t + 2), ps is the probability that each particle of type 2 jumps to
some particle of type 1 in the time interval (¢ + 1,¢ + 2).

This means that the Markov chain £ = {w,(:) t)—mt),i=1,2and k=1,..., Ni}
satisfies the Doeblin condition. Then it is ergodic and has some stationary distri-
bution. We will now write the formula for v, assuming however that o;; = 0. For
this we need some marginals of this stationary distribution.

Let A;(t) be the event that at time ¢ at the point m(t) there is a particle of
type 4, and let ¢; = tllﬁ,‘o P(A;(t)) be the stationary (limiting) probability of A;.
Let p;(y) be the stationary conditional (under the condition A;) probability density
of the distance from m to the nearest particle. In the time interval [T, T + dt] the
particle in m(t) moves with the speed v; and moreover can make one jump. This
gives, for example under the condition A;, constant movement v;dt of m and the
jump of m to the nearest point with rate aadt. Thus as T — oo we have

E(m(T +dt)|m(T)) —m(T) = q (?Jl + alzfypl(y)dy) dt
+ @ (Uz + o / ypz(y)dy) dt + o(1)
and then

v=q (v1 + a2 / ypl(y)dy) + g2 (vz + 21 / ypz(y)d@/)-
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About Doeblin chains. In the standard theory of Doeblin chains, see [D], it
is assumed that transition probabilities are absolutely continuous with respect to
some positive measure y on the state space.

If at time 0 all x,(c) are different, then for any t it is true that all xS) are
different a.s. Thus transition probabilities (for example, for the embedded chain
at times 0,1,2,...) are absolutely continuous with respect to Lebesgue measure on
R xR U (RI* x RI>71). If at time 0 some coordinates coincide, then a.s.
in finite time 7 they become all different.

4. Limit N — o0

Tt is very intuitive to introduce the following continuous model. Let m;(0,z),
z € R, i = 1,2, be positive smooth functions, M; = [ m;(0,z)dz = 1. We call
them continuous mass distributions of type i at time ¢ = 0. The dynamics of
the masses is deterministic — during time dt from each element dm; of the mass
the part aiz df dm, goes out and distributes correspondingly to the mass ma(z),
namely it becomes the mass distribution with density mg (z) @12 dt dm;, and vice-
versa, interchanging 1 and 2. Moreover each mass element moves with velocities vy
and v, respectively. From this we easily get linear equations (2.1)-(2.2) for mass
distribution m;(t, z) at time ¢ with the initial conditions

m;(0,z) = fi(x).

Now we will prove the convergence of the N particle model to the continuous
model.

4.1. Convergence: the martingale problem. Here we prove Theorem 2.2.
We consider the continuous time Markov process

(41) evma () = (200, 2R @2 @), .., 20)

with the state space RV1+V2, Its generator

N>
0
(Lwmaf) (aD50®) = ”12 <1> Zlaxf) £ (aia®)
Ny N
+ZZ a12 [ (( 2. x(z) ) —f (x(l);x@))]
=1
Na JNll
+ZZ 021 [ (( ). x(z) )-f(x(l);w@))],
j=14i=1
where the notation
(20:0) = (20,2850, .al0),
(+2@) = (e alalileal),
(x(1);x(2))i‘_j _ (x(ll)’ xg\lrz’xf), . 22)1,95(1), 221’ wﬁg)

used is defined on bounded C'-functions.
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We will consider the limiting behaviour of this process when ¢ = const and
Ny, N2 — co. It is not convenient to deal with the sequence ¢ N1, N, (t) of processes
because the dimension of the state space changes with N, Na.

Denote

M, w, () = Za< 20 ()), — Za =P ) |,

where §(z), x € R, is the -function. One can see that the generalized functions

N
LS g = 2
N 200 a0), Za ®))

represent empirical “densities” or masses of (type 1 and 2, respectively) particles
at time t. Thus, if ¢(z) = (¢1(z), ¢2( )), where ¢; € S(R), then for fixed particle
positions m( )( t),. mg,z(t) and ac (t) ,mg\,) (t) the vector function My, n, ()
is a linear funct1ona1 on the vector test functlons @; that is,

(M, v, (8), ) = qul @) + — ¥ qu(m(‘” (t)-

Fix some T > 0. Then (Mn, n,(t), 0 <t < T) can be considered as a Markov
process taking its values in the space of tempered distributions §'(R) x §'(R). In
the sequel we consider §'(R)xS’(R) as a topological space equipped with the strong
topology (see subsection 5.2). Without loss of generality one can assume that the
trajectories of the process My, n,(t) are right continuous functions with left limits.
So it is natural to consider the Skorohod space II” = D([0,T], S'(R) x §'(R))
of functions on [0,T] with values in S'(R) x S’(R) as a coordinate space of the
process M, n,(t). Subsection 5.2 explains how to introduce topology on this space,
Let B(IIT) be the corresponding Borel o-algebra. Denote by PN1 N, the probability
measure on (II7, B(II7)), induced by the process (M, n,(t), 0 <t < T).

Our assumption for the theorem is that for any test function ¢(z) the sequence
(Mn,,n,(0), @) weakly converges as Ny, Ny — co.

We want to prove that as Ny, Na — oo the sequence of probability distributions
PN1 N, has a weak limit, and this limit is a one-point measure, that is the only
trajectory (m(t),mz(t)), 0 < ¢ < T, which is the classical solution of the system
(2.1)~(2.2). We split the proof of this result into the next two propositions,

ProrosiTioN 4.1. The family of probability distributions {PN
(7T, B(MT)) is tight.

1 Nz}Nl N on

ProrosiTiON 4.2, Limit points of the family of distributions Pﬁ N, are con-
centrated on the weak solutions of the system (2.1)—(2.2).

4.1.1. Tightness. Before proving Proposition 4.1, we start with some prelim-
inary lemmas, We want to prove that the family of distributions PN1 N, of the
random process (Mn, n,(t), 0 <t <T), with values in the space of generalized
functions, is tight. By Theorem 4.1 of [M] (see also subsection 5.2), it is sufficient
to prove that for any test function ¥ = (¢1(x), ¢2(z)) the family of random pro-
cesses ((Mn, n,(t), %), 0 <t <T), with values in R1, is tight. This will be done
in Proposition 4.5 below.
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Fix some test function ¢ = (¥1(z),12(x)) and consider the random process
Fymoms (s0@0200) = (My,(0),9)

Zw Do+ 5 sz '®) -

This is a function of the Markov process &y, n;(t); thus (see [KL, Lemma 5.1,
p. 330], for example) the following two processes are martingales:

I

Wy n N () = Fy Ny, (w(l)(t);ﬂf@)(t)) — Fy,n N2 (93(1)(0);93(2)(0))
t
(4.2) - /0 Ly~ Fy, i N, (93(1)(8);93(2)(8)) ds,
t
Vpmama® = (Wom ()’ - / L, v, F iy (2052 (s)) ds

t
* 2/ F¢’N17N2 (ﬂf(l)(s); 33‘(2) (S)) LleNszle N2 (37(1) (3) 33'(2) 3))
0
For shortness we will write F(a:(l); 9;(2)) instead of Fy n,, 3 (a:( ). 93(2))

LEMMA 4.3. The following estimates hold:

i) |LN1,N2F(9:(1);9:(2))| < Cl(w,vl,b2,a12,a21) uniformly in N1, N2 and
" (a0 2®)

i) uniformly in 22, (2
(43)  |La 2@ ®;0®) = Fa;®) Ly, v, F @)
< Ci2(0a2, 1) n 021(0121,1#2)‘

Proor. Note that

P((00)_) £ E52) = (o) - ().
P (6050 ,) - (55) = (s () - ()

Thus

bt (0169) = 235 )+ 2 55 ()
i=1 j=

1
35 (0 () - ()
(4.4) +:§V2:1§: o, Ni2 (¢2 (mgl)) Z (9552))) :

Then

Ly (3052®)| < ol el + ool bl
+2012 |91l + 2021 [l¥2llo
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and the assertion i) of the lemma is proved. To prove assertion ii), it is convenient
to represent L, v, = LY, , + L} Ny,N, 88 the sum of the “differential” L}, y,and
“‘jump” LY, y, parts.

It is easy to see that

LY w2 (2W;2@) — 2F(@M;a®) LY, v, F(aM;2®) =0.
Let us prove that uniformly in z(), z(?
(4.5) ]L}VI,NZFz(xﬂ); 2®) - Fe®;a®)L}, v F(z®;z®)

<o lilly | dom 198
M Ny

In fact,

F? ((m(l);m(z))i_») — P2 (a0;2®)
_ (F ((m(l);m(z)),-ﬁ) P (=0, x(2))>
< (27 (2952) + 5 (0 (o) -1 (o))
= 2F (a;2®) [ﬁ ((mm mm)w) P (s, mm)}
[ (0 (o) =0 ()]

and similarly for expressions with (z(1); m(z))i(_j. Thus,

F2 (.1:(1)' .1:(2))

= 2F (2;2®) ZZ a1 [ ((mugm(z))iﬁj) _F (m(l);m(z))}

Ly, .~

1,NV:

+§§M2[<<9ww@%ﬁ
+2F (2;2) ZZ an [ ( (x(l);x(z)),;.) _F (x(l);x(z))]
TS5 [ ) e )]

=2FLjy, P + 52 j‘:j‘: e (v (=) — =)
Lo ZZNl ( ( (1)) e (mgz)»z ’

~ and the estimate (4.5) follows from this. The lemma is proved. O
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COROLLARY 4.4.

sup E (W, v, #)*—0,  Ny,Ny—o0.
t<

PROOF. As Vy N, N, is a martingale with mean zero, it is sufficient to prove
that the expectation of

i
[ [ (s0(s):0)
0
~2F (s0(5); 2 ()) L v, F (20(9):27(5)) | ds
tends to zero. This follows from estimate (4.3) of the lemma. O

PROPOSITION 4.5. The sequence of distributions of the following real-valued
random processes

Fy o, (29(0;2@(0)) , t€ [0, ),
is tight.

PROOF OF PROPOSITION 4.5. Recall that the following representation holds:
Fymms (200:200) = Fpvm (002 (©0)) + Wy, (1)
i
+/ Ly, Ny Fy, Ny N, (m(l)(s);m(z)(s)) ds.
0

Note that our initial assumption is that the sequence Fy n; n, (2(V)(0);z(3(0))
weakly converges as N1, No — co.
We shall now prove that the sequence

{WN“NZ (t) 7 /Ot Ly, N, F (m(l)(s);x(2)(3)) ds, t € [O»T]}

N1,N;

is tight. We use subsection 5.1 of the Appendix. By assertion i) of the lemma

< Ci(¢,v1,v, 012, 021) - T';

t .
/ Ly, N, F (x(l)(s); m(z)(s)) ds
0

thus, condition 1) of Theorem 5.1 of the Appendix holds. Condition 2) also holds,
as one can prove that

w (N2 ) < 2y - Ci (4, v1, v2, 12, 021) -

We shall prove that the sequence {Wy, n,,n,(t), t € [0, T]}y, y, is tight. Using
Kolmogorov’s inequality for submartingales with right continuous trajectories (see
[D]), we have the following estimate, uniform in Ny, Np:

E (W, £))?
P (supiww,Nl,Nz ®) > C) < DT (C;p’N"N”( Uy
t<T
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Then from Corollary 4.4 condition 1) of the Appendix holds. Thus,
P (IWy, 5y N, (T + 0) = Wy vy 8, (T)] > €)
< EWyni,3, (7 +8) = Wy, v, (7))

2
_ELT Vo nn,(s)ds
= % _
< 8- (Cia(a12,%1)/N1 + O (@21, 92)/Na)
p— 82 .
Using this estimate, one can check the sufficient condition of Aldous. Then
Proposition 4.5 is proved. O

This also concludes the proof of Proposition 4.1.
4.1.2. Weak solutions.

DEFINITION 4.6. We say that the pair of functions M(t) = (m; (t, ), ma(t, z))
is a weak solution of the system (2.1)~(2.2), if for any pair ¢, (z), ¢5 (z) € S(R) the
identities

(M(t),¢) = (M(0),9)
¢
+/0 (M(s), (v1¢] — a1261 + @212, V2 — 1261 + az1¢2)) ds

hold, where ¢(z) = (¢1(z), 2(z)), and the action of G(z) = (91(z), g2(z)) on the
test function ¢(z) can be written as

(G, ¢) =/91($)¢1(w) d513+/92($)¢2(m) dz

Note that from the representation (4.2) and the identity (4.4) it follows that
(M, (1), @) = W, n, 8, () + (M, v, (0), )

t
:+/ (MN,,N, (8), (V161 — Q1261 + 02162, vadh — 1261 + an1ghy)) ds.
0

'

Let h = h(t) € IIT = D([0,T], $'(R) x §'(R)). For fixed ¢ define the functional

Js r(h) =sup
t<T

(h(t)a ¢> - (h(O), ¢>

t
_/0 (h(s), (Vi) — Q1261 + Q21 P2, V2 — 1261 + az1¢2)) ds|.

In particular,
sup (Wm0, 3, ()] = Jo.0(Mn, N, )

The rest of the proof is standard (see [KL]) and consists of three steps.

Step 1. From the definition of the topology on IT7 it follows that Jor(): T - R,
is a continuous functional.

Step 2. Note that _
Ve>0 P{Jor(Mn,N,) > €} =Py, {h: Jpr(h) >} -0 (N, Ny — 00)
by Kolmogorov’s inequality and Corollary 4.4.
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Step 8. As Jy r(-) is continuous, the set {h : Jy,r(h) > 0} is open in 7. It follows
now that for any limit point PL of the family {Pﬁl, Nz} NoN, Ve have

PZ{h: Jyr(h) > e} < limsup Py, n, {h: Jsr(h) >¢}.
N.

1,4V2
That is, for any £ > 0 we have PL {h: Jy r(h) > €} = 0. In other words, all limit
points PT of the family {PF n,} N, N, Dave support on the set
{h: Jor(h) =0},

which consists of weak solutions of (2.1)—(2.2).
This completes the proof of Proposition 4.2.

The problem of uniqueness of the weak solution of (2.1)-(2.2) is quite simple
because the system (2.1)—(2.2) is linear. In subsection 4.2 we shall see that this
system of first-order differential equations has a unique classical solution which can
be obtained in an explicit way.

4.2. Time asymptotics for the continuous model. We prove here Theo-
rem 2.3.
Define the mean (mass centrum) a;(t) = / am;(t,z) dz and the variance (mo-

mentum of inertia) d;(t) = / (x — ai(t))*m;(t, ) dz .
From (2.1)—(2.2) we get the following equations for the means:

d = v+oz(ez—a1),
dy = v+ oo (a1 —a2) .

It follows that the equation for az(t) —a; (t) is closed and has the following solution:

aa(t) — ax(t) = —2— (1 - e~(@satam)t) 4 (az(0) — ay (0)) e (Tt

12 + @21
Thus
V2 — U1
i) — t _— t R
)~ ax(t) = 2t +00)
and similarly
d Q21U1 + (1202
—a;(t —— t .
dta()_) a1z + o2 (t = +o0)
The equations for variances are
dy = auz(dy—dy)+oaz(az(t) - a()?
dy = ag(di—d2)+ oz (a1(t) — ax(t))? .
Or, equivalently,
d
T (0g1dy + cazda) = 201202 (a2(t) — a(t))?,
d
= (dy—di) = —(cuz2+0m1)(da—dy)+ (@21 — oa2) (a2(t) - a(t)? .

From this we get

2
V2 — N1 ) 01 — 012

do(t) — dy(t) — const =
2(t) 1(t) (alz+azl oz + o2
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and

d U2 — U1 2
—_ d d 2 _—
P (a21d1 + ai2da) — 20120 (012 n aﬂ)

Thus the growth of variances is asymptotically linear. Moreover, both are
asymptotically equal.
Now we come to the solution of the equations. Define the Fourier transforms

mi(z,t) = /exp(iwp)gi(p, t)dp .
We get "
7) ,
ggtl + v1ipg; = a12(92 — 91)

g
8 " + v2ipge = an (91 92)

with the initial conditions m;(0,z) = m;(z), i = 1,2. We write this system in the
vector form

dg
= Ag,

a9

where
A= —iv1p — a2 Q12 )
021 —itvgp—az /)’
For the eigenvalues we have
a a?
Ar =—=+4/——b
+ 2 4 )
where
a = i(vy + v2)p + 012 + 01, b= —v1v3p® + ip(vi021 + v20112) .

One can write the solution as
9=Cy¢iexp(thy) + C_g_ exp(th_),

where ¢ are eigenfunctions. Note that for small p there are two roots. One has
ReA_ < 0, thus a strongly decreasing term. The other is

(4.6) A+ = c1p + cp® + O(p®), c2 #0,

for small p.
Let & be a random variable with densn:y m(z,t), and let g(k) be its character-
istic function. We are interested in ;7=(§t a),a = E&, its characteristic function

being . .
P ("'“%) g (%) |

Using (4.6), we get the result.
REMARK 4.7. One can see that there is no solution of the type
m;(t, ) = fi(z — vt)
as then f; would be exponents.

REMARK 4.8. For the singular initial conditions, that is, when @ (0) = 0 for
k=1,...,N; and i = 1,2, one can get the same asymptotic results.
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5. Appendix

5.1. Probability measures on the Skorohod space: tightness. Let us
consider a sequence {(&,t € [0,T))},cn Of real random processes whose trajec-
tories are right-continuous and admit left-hand limits for every 0 < ¢ < T. We
will consider £" as random elements with values in the Skorohod space Dr(R) :=
D ([O,T],Rl) with the standard topology. Denote by P the distribution of &7,
defined on the measurable space (Dr(R), B(Dr(R))). The following result can be
found in [B].

THEOREM 5.1.  The sequence of probability measures {Pp}, - i8 tight iff the
following two conditions hold:

1) for any € > 0 there is C(e) > 0 such that

sup P} ( sup |¢7] > c<e)) <
n 0<t<T

2) for any € >0
lin%limsupr}‘ (€. w' (&) >e)=0,
i n

where for any function f: [0,T] — R and any v > 0 we define

w'(f;7)= inf max sup |f(t)— f(s)];
{ti}:=1 T t;<s<t<t; 41

moreover the inf is taken over all partitions of the interval [0,T] such that
O=tg<ti<-<tr=T, ti—ti1>7 i=1,...,m
The following theorem is known as the sufficient condition of Aldous [KL].
THEOREM 5.2. Condition 2) of the previous theorem follows from the condition

Ve >0 lim limsup sup PP (|ér40 — & >€) =0,
Y20 n o reRr,0<y

where R is the set of Markov moments (stopping times) not exceeding T .

5.2. Strong topology on the Skorohod space. Mitoma theorem. Re-
call that the Schwartz space S(R) is a Frechet space (complete locally convex space,
the topology of which is generated by a countable family of seminorms, which im-
plies metrizability; see [RS]). In the dual space S’(R) of tempered distributions
there are at least two ways to define topology (both not metrizable):

1) weak topology on S’(R), where all functionals

(,9), ¢€SR),

are continuous;
2) strong topology on S'(R), which is generated by the set of seminorms

{pA(M) = zlelal(M, )| ACSR)is bounded}.

We shall consider §'(R) as equipped with the strong topology. Details can be found
in [RS].

The problem of introducing the Skorohod topology on the space Dr (S’ ) =
D([0,T], 8’ (R)) was studied in [M] and [J]. The topology on this space is defined
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as follows. Let {p4} be a family of seminorms, which generates the strong topology

in §'(R). For each seminorm p4 define a pseudometric

A) — A(s)
-8

Jog 2 — N8

n y Y2E DT(S,),

da(y,2) = inf sup |lye — 20| + sup
8

where the inf is taken over the set A = {\ = A(t), t € [0, T} of all strictly increasing
maps of the interval [0, T into itself. Equipped with the topology of the projective
limit for the family {da}, the set Dr(S’) becomes a completely regular topological
space.

Let B(Dr(S’)) be the corresponding Borel o-algebra. Let {P,} be a sequence
of probability measures on (Dr(S'), B(Dr(S'))). For each ¢ € S (R) consider a map
Iy : y € Dr(S') — y.(¢) € Dr(R). The following result belongs to I. Mitoma, M].

THEOREM 5.3. Suppose that for any ¢ € S(R) the sequence {Pnl';l} is tight
in Dr(R). Then the sequence {P,} itself is tight in Dy (S’ ).
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