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Abstract

Quantum evolution of words is defined. The existence of the evolution semigroup is proved.
The spectrum of its generator is calculated for right-linecar grammars and expansion—contraction
evolutions. (© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We define quantum evolution of words. It is similar in many aspects to the random
evolution of words which were called random, probabilistic and stochastic grammars,
see [1,2,7]. The quantum evolution of words has two main motivations. One comes
from the computer science and is related to quantum computation problems. The other
comes from modern physics, more exactly quantum gravity. Theoretical studies in both
fields become more and more popular.

However, quantum evolution of words can be interesting by itself because it relates
two classical mathematical domains: combinatorics of words gives many new models
of linear operators in the Hilbert space, see also [3,4].

In this paper we define the evolution itself and prove its existence, that is the self-
adjointness of the generator of the evolution semigroup. For two simplest examples
we calculate the spectral decomposition of the generator. It is interesting how famous
Fock spaces appear in the context of quantum evolution of words.

2. Hilbert space and Hamiltonian

Let = {1,...,r} be a finite set (the alphabet), Z* the set of all finite words
(including the empty one) o = x...x,,x; € X, in this alphabet. Length » of the word
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o is denoted by |x|. Concatenation of two words o = x;...x, and f = y, ...y, is
defined by

af =X1... Xy V1 V-

The word f is a factor (we use standard notation, see [5, 6]) of « if there exist words
o and y such that x = Jfy. A grammar over X is defined by a finite set Sub of
substitutions (productions), that is the pairs 6; — y;,i = 1,....k = [Sub|,d;,y; € Z*.
Further on we assume that all ;,7; are not empty.

Let H = [;(2*) be the Hilbert space with the orthonormal basis e,, 0 € X* :
(ex,ep) = Oup where the function e,(f) = d.5. Each vector ¢ of H is a function on
the set of words and can be written as

p=ome, €A, o] =3 o).

States of the system are wave functions, that is vectors ¢ with the unit norm ||¢||* = 1.
We shall define dynamics in the form

¢(2) = exp(itH )p(0).

The Hamiltonian H will be written in terms of operators, which resemble creation—
annihilation operators (or g-creation—annihilation, see [4]) in quantum field theory. For
each i = 1,...,k and each integer j>1 we define quantum substitutions, that is linear
bounded operators a;(;). If o = 16;p for some words 1, p,|7| = j — 1, we put

a;i(j)ex = ey,
where f = ty;p . Otherwise we put a;(j)e, = 0. Adjoint operators a}(j) are then
defined by

ai(j)eg = e,
for f = 1y;p and 0 otherwise. Define the formal Hamiltonian by
\Sub[ oo

H=3% S (hai(j)+ 4a; ()
i=1 j=1
for some complex numbers A;,i = 1,...,|Sub|.
We can equally assume that together with the substitution d; — y; also its “inverse”
substitution y; — &; belongs to Sub. The Hamiltonian, then, can be written simply as

|Sub| oo
H=5 % ia(j).
i=1 j=1
We always assume that H = H*, that is 4; = Ij in case 6; = y;,7; = 6;. We shall use
only this representation further on.
H is well defined and symmetric on the set D(X*) of finite linear combinations of
e,. These vectors are C™-vectors (see [8]) for H, that is He, € D(X*). Note that H
is unbounded in general.

Theorem 1. H is essentially self-adjoint on D(Z*).
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Proof. We shall prove that each vector ¢ € D(XZ*) is an analytic vector of H, that is
oC
S | EF |k < 0o
k=0

for some ¢ > 0. It is sufficient to take ¢ = e, for some «. In this case, the number of
pairs (i, ) such that a;(j)e, # 0 is not greater than nk,n = ||,k = |Sub|.
Write the decomposition of H as

H=>V,
where V, equals one of 4;4,(j). Then

H'e, = Z Va,,~~-Va|ea(:ZCﬂeﬂ- nH

The maximal length of the words f in the expansion of V,, ...V, e, does not exceed
la| + Cin, Cy = max(|y;| — |6;]). Then, for given ey, ay,...,a,, the number of operators
Ve,.. giving a nonzero contribution to Vg V,, ...V, e, It does not exceed k(|a| +
Cin),k = |Sub|. Thus, the number of nonzero terms V,, ...V, e, does not exceed

K Tl + C1j) = (RCrY'(|a|Cr + m)lnl(|a] € < (Cy )'al€
j=1
and the norm of each term is bounded by (max 4;)". This gives the convergence of the
series for |¢| < g, where #, does not depend on o. [J

3. Spectrum

Due to our substitution rules ey is the zero eigenvector of H. There can be other
invariant subspaces of exp(itH) of the special type: #(L') = (L), generated by
e,,o € L', where L' is a subset of the set £* of all words. We have

H = @/ﬁoﬂ(l‘k)

if #(L;) are invariant and 2* = U2 ;.

3.1. Right-linear grammars

Consider the case when X = {a,w} consists of two letters and the only substitutions
are aw — w,w — aw. We put A(aw — w) = A(w — aw) = A. Then the subspaces
H(Ly), where L; is the set of words with exactly £ symbols w, are invariant. For
example, L} = {a"w = aa...aw,m = 0,1,2,...}. We shall call s#(L;) the k-particle
space. Let Hy be the restriction of H onto J(Lyg).

Theorem 2 (One-particle spectrum). H, on #(L,) is unitary equivalent to the multi-
plication operator Az +z~') in Ly(S',dv) where dv is the Lebesgue measure on the
unit circle §' in the complex plane C.
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H(L,) is isomorphic to /,(Z,) via aa...aw — m = [(a™w). Then H becomes a
Toeplitz operator in Z, equal to

Ab + ib*,

where b is the left shift in /»

bfYm)y=f(m-1), m=12,..., (bf)0)=0.

Denote W, the C*-algebra of Toeplitz operators, that is the C*-algebra of operators in
1,(Z) generated by b. Note that the commutator [, 5*] has finite rank. More generally,
the following exact sequence of algebras holds:

0K~ w "W =0,

where K is the closed two-sided ideal in W), consisting of all compact operators in
1,(Z}), j is the embedding, n the natural projection of W, onto W;/K ~ W. In fact,
the commutator of any two elements from W) is compact. This can be easily checked
for monomials b1b;...b;,b; = b or b*. By limiting procedure this can be proved for
any elements. It follows that W,/K is commutative. Substitute

y=mb, y =y '=nb"

One can prove that the elements
k :
1
Y. ay
i=—k
are all different and that their norm equals ) |¢;|. It is sufficient to consider its action
of the function f(m) equal to 1 for some m sufficiently large and zero otherwise. It
follows that W;/K ~ W. We proved that the continuous part of the spectrum is the
same as the spectrum of the multiplication operator.
To prove the absence of discrete spectrum, we rewrite the equation

Af —Jf=¢
as a well-known difference equation

¢n:_;~fn+fn71+fn+la n>]9
o =—2fo+ f1.

With ¢, = 0, there are no proper /»-solution.
Another way to get the spectrum could be to use generating functions F(z) =

S0 fizh d(z) = 302, duz®. We have
1
P(z) + o = (—z+ - - A> F(z).
z z
The quadratic equation has the roots z = 4/2 £ /A2/4 — 1. For |4] > 2 one root is
inside the unit circle and the other outside, thus the equation has a unique solution.

This solution is obtained by putting z equal to root inside the unit circle, from this we
get fo. If {4] < 2 and 4 is not real, then there are two roots: one inside and the other
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outside the unit circle (take A imaginary to check it), thus the equation has a unique
solution. For |A| < 2 with 4 real, there are two conjugate complex roots on the unit
circle. The operator is not invertible in this case.

Now, we consider // on all the Hilbert space. Each word can be represented like
this

My

o=a"waw...a™mw, m,m....m=0,1,2,... .

Correspondingly the vectors of the basis in #(L;) can be written as a tensor
product as

ey = ey R ey @ Qeyy, ali) =a™w.

Otherwise speaking #°(L;) is the kth tensor power of #(L,) and the evolution is
(about tensor products see, for example, [8])

exp(itH) ® - - - @ exp(itH) )
or
H=H®1®  -9l+ - +101®---QH,.

Then we have the following:

Theorem 3 (Multi-particle spectrum). The Hilbert space has the following decompo-
sition on invariant subspaces:

H(E Y =B H (Ly), H(Lp)=H(L)R---QH(L).

The Hamiltonian Hy on #(Ly) is unitary equivalent to the multiplication on the
Sfunction

k
> Mzi+ zj-l )
=
in the space Ly(S*,dv) of functions f(zy,...,z;).

3.2. Expansion—contraction evolution of words
Take 2 = {a,b} and substitutions
a—aa, aa—a, b-—bb, bb—b
with
Ma —aa)=iaa — a)= 4, Mb— bb)= A(bb — b)) =p.

Here there are two invariant one-particle spaces #,, #, with cyclic vectors e, e,
correspondingly. For example, 5#, is generated by words 4, a* = aa,...,a",... . We
shall see now the structure of the Hamiltonian on this subspaces.
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Consider one symbol alphabet ~ = {a} and with the following substitutions:
a—aa, aa— a.

We take A(a — aa) = Maa — a) = 4. If the Hamiltonian
X0
Hq =43 (ai(j) + a2()))
j=1

with real 4. Then the Hilbert space J# is isomorphic to [(Z, ), because the word aa...a
can be identified with its length minus 1. The Hamiltonian is unitarily equivalent to
the Jacobi operator H; on {1,2,...} defined by

Hf(n)=Anf(n+ 1)+ (n—1)f(n—-1)).

Consider now the equation

(Hi = D)f = ¢

or

Gn=nfrp1 +—=1)fro1 = Afo

Introducing the generating functions
o0 o0

F(z) =3 faz", ®(2) =3 ¢az",
n=1 n=1

we get the following equations for them:
P(z)=—iF@)+ 2 nfwnz" + 3 (n—1)fp 12"
n=| n=2

i[18

oo o0
(n+ D fnn2" =3 fan2" +22 (0 — 1) fuoi2"% ~ IF
n=1 n=1

|

n=1
=(F - fiz) - é(F — f1i2)+2°F =F @)1 +2%) ~ (/1 + 3) F(2)
or

. 1
/~A+;F: ¢ .
1422 1+22

F

Lemma 4. H does not have discrete spectrum.

Proof. Consider the homogeneous equation. It has the following solution:

.1 1, i
A+; z+i A
exp /1+22dz :Z<z——i>

For any 4, the solution has a nonalgebraic singularity in at least one of the points +i.
This singularity cannot get /;-solution f(n).
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Using these techniques, Shestopal proved (see [9]) that the spectrum is absolutely
continuous on (—oc, 00). .

For all Hamiltonians we can write a multi-particle representation as follows. There
are two invariant two-particle spaces #op = H, @ Ay, Hpy = Hp @ H, with cyclic
vectors eqp, ey, cotrespondingly. For example, S, is generated by vectors ey sk, I >
0. In general, for each n there are two invariant 2n-particle spaces Hapy, = K4
Hp & @Ay ® Hp. 1t is generated by words a*1b" - af b, and #p,, defined
similarly. For each n there are two invariant (2 + 1)-particle spaces A ppy = H'p @
HiQ@H & @H R Ay and H(apyy. [

Theorem 5. We have the following decomposition:

H=HDH DA, H D Hpa® - -
@%(ah)n D %(ba),, ) f%ﬁb(ab)n fan) vyf(ab)"a -

On each of these invariant subspaces, the Hamiltonian is unitarily equivalent to the
corresponding sum of one-particle Hamiltonians. For example, on # 4, it is equivalent
to H,21+1Q .

Remark 6. We call this evolution expansion—contraction evolution because the lengths
of maximal factors with only one symbol can expand and contract. The law of this
expansion can be obtained using the spectral decomposition. We do not do it here.
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