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Abstract. We consider multi-particle systems with linear deterministic hamil-
tonian dynamics. Besides Liouville measure it has continuum of invariant tori
and thus continuum of invariant measures. But if one specified particle is sub-
jected to a simple linear deterministic transformation (velocity flip) in random
time moments, we prove convergence to Liouville measure for any initial state.
For the proof it appeared necessary to study non-linear transformations on the
energy surface.
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1. Introduction

Ergodicity problem for hamiltonian multi-particle systems produced many
deep results. First of all, many examples of non-ergodic systems appeared —
linear, non-linear with additional integrals and close to them (KAM theory).
One could expect then that for generic hamiltonians one also has non-ergodic
behaviour. However, as far as we know, this is still an open difficult problem
with many partial results, see [19,20], and, after the century of existence of the
ergodicity hypothesis it is reasonable to look for simpler alternative approaches
to it.

Namely, one could assume that any physical system has always some contact
with external world. Such contact can be of quite various extent: 1) all particles
can have contact with external world and stochastic behaviour (for example,
with dynamics of Glauber type), 2) only particles on the boundary, etc. But then
it is quite natural to ask — what is the minimal contact which definitely provides
ergodic behavior. Possible reformulation of the ergodicity hypothesis could be
the following: for generic system even the minimalistic contact produces ergodic
behaviour.

Here we consider an example of such minimalistic contact which consists,
first of all, in that we allow some contact with external world for only one
(marked) particle. In our earlier papers [9–11] this particle was subjected to
some random force, that guaranteed convergence to Gibbs equilibrium. Here
we assume even less randomness. Namely, the marked particle is subjected
to a simple deterministic transformation (velocity flip, very popular in other
problems [3–8]) but in discrete random time moments

0 < t1 < . . . < tm < . . . (1.1)

Liouville measure is evidently invariant w.r.t. such dynamics on the energy sur-
face. We prove then that ergodicity in the stronger form holds — for any initial
state we have convergence to Liouville measure on the energy surface.
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It is very interesting that it works even for the systems having the worst
possible non-ergodic behaviour — linear systems. The only price we pay is
that ergodicity holds not for any linear system but for almost any — this is
purely algebraic phenomenon which was discussed in our earlier papers and
cannot be avoided. It seems reasonable that the same result holds for non-linear
systems as well (following the common belief that the latter have better mixing
properties than linear systems). The convergence results for anharmonic chains,
see [3, 21, 22] and reviews [23, 24], support this belief. However, the principal
question (which we answered for linear hamiltonians) — what class of non-linear
hamiltonians could be called generic and be ergodic — is largely open.

The paper is naturally subdivided in two parts. The first part uses no prob-
ability at all but only elaborates non-linear analysis to prove that the trajectory
visits all invariant tori and even any point — we had to use coordinates on
the energy surface where velocity flips are strongly non-linear. Second part, on
the contrary, essentially uses non-trivial parts of Markov processes theory on
continuous state space.

Now we come to rigorous definitions.

2. Model and main results

Hamiltonian dynamics We consider the linear space

L = R2N = {ψ =
(
q
p

)
: q = (q1, . . . , qN )T , p = (p1, . . . , pN )T , qi, pi ∈ R}.

where T denotes transposition (thus ψ is a column-vector). It can be presented
as the direct sum L = l

(q)
N ⊕ l

(p)
N of two orthogonal (coordinate and momenta)

spaces of dimension N with the standard scalar product in R2N

(ψ,ψ′)2 = (q, q′)2 + (p, p′)2 =
N∑

i=1

(qiq′i + pip
′
i).

We consider quadratic hamiltonian

H(ψ) =
N∑

k=1

p2
k

2
+ U(q), U(q) =

1
2
(q, V q)2 (2.1)

where the matrix V > 0 acting in RN is assumed to be real and positive definite
(thus the particles cannot escape to infinity). This defines hamiltonian system
of linear ODE with k = 1, . . . , N

q̇k = pk, ṗk = −
N∑

l=1

Vklql. (2.2)
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For any h > 0 define the constant energy surface

Mh = {ψ ∈ L : H(ψ) = h}.

Then Mh is a smooth manifold (ellipsoid) in L of codimension 1.

Allowed hamiltonians Define the mixing subspace

L− = L−(V ) =
{( q

p

)
∈ L : q, p ∈ lV

}

where lV = lV,1 is the subspace of RN , generated by the vectors V ke1, k =
0, 1, 2 . . ., where e1, . . . , eN is the standard basis in RN .

Let V be the set of all positive-definite (N ×N)-matrices, and let V+ ⊂ V
be the subset of matrices for which

L−(V ) = L. (2.3)

Denote by Vind the set V ∈ V such that the eigenvalues of the matrices, denoted
by ω2

1 , . . . , ω
2
N , are independent over the field of rational numbers.

Lemma 2.1. The set V+ is open and everywhere dense (assuming topology of
RN(N+1)/2) in V, and the set V+ ∩Vind is dense both in V+and in V.

See more in Section 5.3.

Piecewise deterministic process Assume that at time moments (1.1) the
following deterministic transformation I : L → L occurs: all qk, pk are left
unchanged, except for p1, the sign of which becomes inverted,

p1(tm − 0) → p1(tm) = −p1(tm − 0),m ≥ 1.

For example, one can consider L as the phase space for N identical point par-
ticles in R, with mass m = 1, and real numbers qi, pi are their coordinates and
velocities (momenta). Then this transformation can be interpreted as the elastic
collision of the particle 1 with a wall. Alternatively, taking dN instead of N , one
can imagine N particles in Rd where only one velocity component of particle
1 is flipped. Reflections w.r.t. any hyperplane in Rd could be considered quite
similarly.

In-between these moments the system evolves via hamiltonian dynamics
(2.2).

With (2N × 2N)-matrix

A =
(

0 E
−V 0

)
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the system (2.2) can be rewritten as

ψ̇ = Aψ. (2.4)

and the solution ψ(t) of (2.4) with initial vector ψ(0) will be

ψ(t) = etAψ(0).

For given sequence (1.1) the dynamics of our process is defined for tm ≤ t < tm+1

as
ψ(t) = eA(t−tm)IeAτmIeAτm−1I . . . IeAτ2IeAτ1ψ(0)

where
τ1 = t1, τ2 = t2 − t1, . . . , τm = tm − tm−1, . . .

For any t > 0 define linear maps L→ L

J(t)ψ = IetAψ, ψ ∈ L.

It is clear that Mh is invariant w.r.t. J(t) for any h > 0 and t > 0. For any
ψ ∈ L and any integer m > 1 define the set of states

Jm(ψ) = {J(τm) . . . J(τ1)ψ : 0 ≤ τ1, . . . , τm} ⊂ Mh

which the system can visit at the m-th flip.

Theorem 2.1 (Covering theorem). Assume that V ∈ V+∩Vind, then there
exists m > 1 such that for any ψ ∈ L we have Jm(ψ) = Mh.

We introduce randomness by the following assumption.
Assumption A0. Positive random variables

τ1 = t1, τ2 = t2 − t1, . . . , τn = tn − tn−1, . . .

are assumed to be independent, identically distributed with measure Pτ =
ρ(s)ds where the density ρ (w.r.t. Lebesgue measure ds) is positive everywhere
on R+, and moreover the first moment Eτ1 <∞.

If, for example, τi are exponentially distributed with the density λ exp(−λτ),
λ > 0, then it defines Markov process ψ(t) with right continuous deterministic
trajectories and random jumps. Such processes are often called piecewise deter-
ministic Markov processes, see for example [14]. At the same time, this can be
considered as an example from random perturbation theory, see [12] where the
problem of invariant measures is studied.

Let π be Liouville measure on the energy surface, defined by the surface
form dσ divided by |∇H|. It is well known that π is invariant w.r.t. hamiltonian
dynamics and also w.r.t. velocity flips.
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Theorem 2.2 (Convergence theorem). Assume that V ∈ V+∩Vind. Then
under assumption A0) for any initial ψ(0) and any bounded measurable real
function f on Mh we have a.s.

Mf (T ) def=
1
T

T∫

0

f(ψ(t))dt→ π(f) def=
∫

Mh

fdπ, as T →∞.

We call this property Liouville ergodicity.

3. Deterministic part — proof of covering theorem

Plan of the proofs In all assertions below we always assume that V ∈ V+ ∩
Vind. Theorem 2.2 will follow from Theorem 2.1. Theorem 2.1 will follow from
the following weaker results.

Theorem 3.1 (Closure theorem). There exists m > 1 such that for all ψ ∈
L we have Jm(ψ) = Mh.

This way of proof is very natural — it is important to know whether one
can reach any point from any other. In our case it is absolutely not evident. We
want to note that after the paper was finished, we found an analog of Theorem
3.1, but not of the Theorem 2.1, in completely different situation in [21].

The covering and closure theorems have simpler local analogue. And more-
over it shows that the dimension of Jm(ψ) grows as m for m = 1, 2, . . . , 2N −1.
For exact formulation we need some definitions. For any τ1, . . . , τm > 0 denote
J(τ1, . . . , τm) = J(τm) . . . J(τ1). It can be considered as the mapping from L
to Mh for fixed (τ1, . . . , τm), but also J(τ1, . . . , τm)ψ can be considered as the
map

Jψm : Ωm →Mh, τ̄ = (τ1, . . . , τm) 7→ J(τ1, . . . , τm)ψ

from the m-dimensional orthant Ωm = {(τ1, . . . , τm) : τi > 0, i = 1, . . . ,m} =
Rm+ , to Mh, for fixed ψ ∈Mh.

Theorem 3.2 (Local covering theorem). For any point ψ ∈ Mh and any

k = 1, . . . , 2N − 1 the dimension of Jψk Ωk is equal to k. Moreover, there ex-

ists open subset U ⊂ Ωk such that the mapping Jψk : U ↪→ Mh is a smooth
embedding.

3.1. Key definitions, notation and some intuition

The sequence (1.1) completely defines the trajectory, or the path. Proof
of convergence and covering theorems could be obtained, in some sense, by
“summation” over all possible paths. For this we have to use various coordinate
systems on the energy surface. To get some intuition it is useful to see how it
works for easier cases N = 1, 2.
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Action-angle coordinates Let v1, . . . , vN be the orthonormal eigenvectors
of V in RN , and let ω2

1 , . . . , ω
2
N be the corresponding eigenvalues of V . For any

k = 1, . . . , N define 2N -vectors in L:

Qk = (vk, 0)T , Pk = (0, vk)T (3.1)

The coordinates of ψ ∈ L in the basis Q1, P1, . . . , QN , PN are denoted by
(q̃k, p̃k)T , that is,

ψ =
N∑

k=1

q̃kQk +
N∑

k=1

p̃kPk. (3.2)

They correspond to coordinates and momenta of the independent “quasiparti-
cles”, that is, one-dimensional oscillators with energies r2k/2 where

r2k(ψ) = p̃2
k+ω2

k q̃
2
k = (ψ, Pk)22 +ω2

k(ψ,Qk)
2
2 = (p, Pk)22 +ω2

k(q,Qk)
2
2, k = 1, . . . , N

are the action coordinates of the point ψ = (q, p)T . We agree that rk(ψ) =√
r2k(ψ) > 0. It is easy to see that rk are integrals of the hamiltonian dynamics,

that is, for any t > 0,
r2k(ψ) = r2k(e

tAψ). (3.3)

The angle variables then are the angles for these oscillators.
The following assertions easily follow from the known facts, see for example

[1], pp. 103, 272. But the proof is very elementary and we give it for the reader’s
convenience in Appendix.

Lemma 3.1. Consider hamiltonian dynamics (2.2), then

1. For any r1 > 0, . . . , rN > 0 the set

T (r1, . . . , rN ) = {ψ ∈ L : rk(ψ) = rk, k = 1, . . . , N}

is invariant and diffeomorphic to torus of dimension N−n, where n equals
the number of zeros among r1, . . . , rN .

2. For any point ψ ∈ L the closure of its orbit coincides with the torus defined
by it, that is

{etAψ : t > 0} = T (r1(ψ), . . . , rN (ψ)).

3. Thus the torus defines the vector r̄ = r1, r2, . . . , rN . Vice-versa, any such
vector with non-negative coordinates uniquely defines the torus. This
torus lies on the energy surface Mh iff

N∑

k=1

r2k = 2h.
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For convenience we put h = 1/2, and denote the set of all invariant tori on
M = M1/2 by

T = {r̄ = (r1, . . . , rN ) : ri > 0,
N∑

k=1

r2k = 1}.

Case N = 1. Here ω2
1 can be arbitrary, and we take h = ω2

1 = 1. Let S be
the corresponding circle. Then the particle moves along S with constant angle
velocity in the clock-wise direction. Covering theorem is evident in this case
(with m = 1). However, for N = 1 we have much stronger statement.

For any ψ,ψ′ denote by T (ψ,ψ′) the minimal t > 0 such that ψ′ = eAtψ.
Then T0 = T (ψ,ψ) is the first return time, or the time of complete rotation
around the circle, and for any ψ

T (ψ,−ψ) =
1
2
T0.

Theorem 3.3. For any ψ,ψ′ and any t ≥ T0 there exists 0 < t1 = t1(ψ,ψ′, t) <
T0 such that exp{A(t− t1)}I exp{At1}ψ = ψ′.

See Appendix for the proofs.

(r, p̃)-coordinates and (r, p)-coordinates Note that I can be written as

I = E − 2P1,

where E is the identity matrix and P1 is the orthogonal projector on the vector
g1 = (0, e1)T ∈ L. The expansion

e1 =
N∑

k=1

βkvk

of the vector e1 ∈ RN defines the numbers βk. The pk and p̃k coordinates of
the vector p in RN are related by the formulas:

p =
N∑

i=1

piei =
N∑

k=1

p̃kvk,

p̃k =
N∑

i=1

pi(ei, vk)2, pk =
N∑

i=1

p̃i(vi, ek)2. (3.4)

Note also that I acts only on pk-coordinates and p̃k-coordinates, but not on qk
and q̃k. Thus the following notation is justified

Ip = p− 2(p, e1)2e1 =
N∑

k=1

p̃′kvk, p̃′k = p̃k − 2p1βk, (3.5)
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where

p1 = (p, e1)2 =
N∑

k=1

p̃kβk.

By (3.4) the velocity flip changes the action variables as follows

r2k(Iψ) = (Ip, vk)22 + ω2
k(q, vk)

2
2 = (p̃′k)

2 + ω2
k(q, vk)

2
2

= p̃2
k + 4p2

1β
2
k − 4p̃kp1βk + ω2

k(q, vk)
2
2

= r2k(ψ) + 4p2
1β

2
k − 4p̃kp1βk = r2k(ψ) + 4p2

1β
2
k − 4p1βk(p, vk)2.

The following formula defines the time evolution of the tori, in terms of
initial action variable and momenta at time t− 0. Namely, for any k,

r2k(Ie
tAψ) = r2k(Iψ(t− 0)) = r2k(ψ) + 4p2

1(t− 0)β2
k − 4p1(t− 0)βk(p(t− 0), vk)2,

(3.6)
where

ψ(t− 0) = etAψ = (q(t− 0), p(t− 0))T ∈ L,
p(t− 0) = (p1(t− 0), . . . , pN (t− 0))T .

We can rewrite (3.6) as

r̄(J(t)ψ) = Ψ(r̄(ψ), p(t− 0)), (3.7)

where
Ψ = (Ψ1, . . . ,ΨN ),Ψ2

k(r̄, p) = r2k + 4p2
1β

2
k − 4p1βk(p, vk)2

has the domain of definition

D(Ψ) = {(r̄, p) : r̄ ∈ T, p ∈ Tp(r̄)} ⊂ T× RN

where Tp(r̄) is the projection of the torus T (r̄) onto the space of momenta, that
is the set of all p ∈ RN such that for some q ∈ RN we have (q, p)T ∈ T (r̄). For
any ψ = ψ(0) = (q, p)T , q = q(0), p = p(0) consider the following set of tori

T1(ψ) = {r̄(J(t)ψ) : t > 0} = {Ψ(r̄(ψ), p(t− 0)) : t > 0, p(0) = p} ⊂ T.

From continuity of Ψ it follows that T1(ψ) depends only on the invariant
torus containing ψ, that is if r̄(ψ) = r̄(ψ′) for two points ψ,ψ′ ∈ L, then

T1(ψ) = T1(ψ′). (3.8)

Then, the following notation is correct

T1(ψ) = T1(r̄(ψ)). (3.9)

It is useful to note that by continuity of Ψ for any r̄ ∈ T we have

T1(r̄) = {Ψ(r̄, p) : p ∈ Tp(r̄)}.
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Case N = 2 Here we will only give intuitive arguments why for any initial
state ψ we can enter any torus in finite number of jumps. From (3.6) one can
get the following formula for the evolution of the action variables

r21(J(t)ψ)− r21(ψ) = 4β1β2(p̃1(t− 0)β1 + p̃2(t− 0)β2)(p̃2(t− 0)β1− p̃1(t− 0)β2),
(3.10)

and also
r22(J(t)ψ) = 1− r21(J(t)ψ).

Denote the right-hand side of (3.10) by D(t). It appears that for some t′ the set
{D(t) : 0 ≤ t ≤ t′} contains an open interval, and moreover its length has lower
bound δ > 0 uniformly in ψ. Thus the measure of the set of visited tori, after
each application of I, enlarges by an additive constant. It follows that all tori
may be visited for finite number of I transformations. To see this for general N
is more difficult.

3.2. Proof of closure theorem

3.2.1. Contraction property

Define the function ρ in T by

ρ(r̄, r̄′) =
N∑

k=1

|r2k − (r′k)
2|,

where r̄ = (r1, . . . , rN ), r̄′ = (r′1, . . . , r
′
N ). Denote r̄∗ = (|β1|, . . . , |βN |) ∈

T, thus it is the invariant torus, containing the point g1 =
√

2(0, e1)T ∈ L.
Note that all βk are nonzero, that follows from the assumption V ∈ V+, see
Section 5.3. The point g1 corresponds to the configuration of particles where all
particles have zero velocity and zero coordinates, except for the particle 1.

Theorem 3.4 (Contraction theorem). For any r̄ = (r1, . . . , rN ) ∈ T we
have the following contraction bound

ρ(T1(r̄), r̄∗) 6 (1− c(r̄))ρ(r̄, r̄∗),

where the constant c(r̄) is given by

c(r̄) =
1

max{1, D2(r̄)} , D(r̄) = max
k=1,...,N

rk
|βk| − min

k=1,...,N

rk
|βk| . (3.11)

Proof. We will find a point p′ ∈ Tp(r̄) such that

ρ(Ψ(r̄, p′), r̄∗) = (1− c(r̄))ρ(r̄, r̄∗).
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Note first that in coordinates p̃ the set Tp(r̄) is the N -dimensional cube with
sides (2r1, . . . , 2rN ), this follows from the oscillator representation. In other
words, the point p = (p̃1, . . . , p̃N )T ∈ Tp(r̄) iff for any k = 1, . . . , N

|p̃k| 6 rk. (3.12)

For k = 1, . . . , N denote
γk =

rk
|βk|

and denote the minimal of them by γn and maximal by γN . We will need the
following functions

f±(x) =
1
2

(
x±

√
x2 + c(1− x2)

)

of x ∈ R, where the constant c is defined in (3.11). Since c 6 1, we have for all
x,

x2 + c(1− x2) ≥ 0.

Define the point p′ ∈ RN with coordinates (p̃′1, . . . , p̃
′
N ) in the basis v1, . . . , vN

by the formula

p̃′k = yβk − c
β2
k − r2k
4yβk

, y = f+(γn),

and find the value of Ψ(r̄, p′). As

p1 = (p′, e1)2 =
N∑

k=1

βkp̃
′
k = y

N∑

k=1

β2
k −

c

4y

N∑

k=1

(β2
k − r2k) = y,

we have for any k = 1, . . . , N

Ψ2
k = r2k+4p2

1β
2
k−4p1βkp̃

′
k = r2k+4y2β2

k−4yβk
(
yβk−cβ

2
k − r2k
4yβk

)
= r2k+c(β

2
k−r2k).

Then we have the distance

ρ(Ψ(r̄, p′), r̄∗) =
N∑

k=1

|Ψ2
k − β2

k| = (1− c)ρ(r̄, r̄∗).

Lemma 3.2. p′ ∈ Tp(r̄), that is the inequalities (3.12) hold.

Proof consists of simple calculations and is given in Appendix.
From the contraction theorem only, one cannot prove the closure theorem

because c = c(r̄) depends on r̄. That is why we need one more assertion. For
any r̄ = (r1, . . . , rN ) ∈ T put

A(r̄) = min
k=1,...,N

rk
|βk| , B(r̄) = max

k=1,...,N

rk
|βk| , ∆(r̄) = B2(r̄)−A2(r̄).
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The function ∆(r̄) defined on T also looks like a distance to the point r̄∗. Let
us explain this in more detail. In particular, ∆(r̄) = 0 iff rk = |βk| for all
k = 1, . . . , N . Moreover,

N∑

k=1

r2k = 1, (3.13)

and hence, if ∆(r̄) is small, then the numbers rk are close to |βk|. Even more,
it gives an upper bound for the distance, more exactly, for any r̄ ∈ T,

ρ(r̄, r̄∗) =
∑

k

|r2k − β2
k| =

∑

k

β2
k|
r2k
β2
k

− 1|

6
∑

k

β2
k(B

2(r̄)−A2(r̄)) =
∑

k

β2
k∆(r̄) 6 ∆(r̄). (3.14)

The following result shows that each velocity flip at appropriate moments makes
point g1 closer by 1.

Corollary 3.1. For any point r̄ ∈ T there exists p ∈ Tp(r̄) such that

∆(Ψ(r̄, p)) 6 max{∆(r̄)− 1, 0}.

Proof. From the proof of contraction theorem it follows that there exists p′ ∈
Tp(r̄) such that

Ψ2
k(r̄, p

′) = r2k + c(r̄)(β2
k − r2k).

Denote r̄′ = (r′1, . . . , r
′
N ) = Ψ(r̄, p′). Without loss of generality one can choose

the indices so that
r′1
|β1| = A(r̄′),

r′N
|βN | = B(r̄′).

Then

∆(r̄′) =
(r′N )2

β2
N

− (r′1)
2

β2
1

= (1− c(r̄))
( r2N
β2
N

− r21
β2

1

)
,

from where we get
∆(r̄′) 6 (1− c(r̄))∆(r̄), (3.15)

c(r̄) =
1

max{1, (B(r̄)−A(r̄))2} .

Note that the following inequality holds

(B −A)2 6 B2 −A2 = ∆

and then

c(r̄) =
1

max{1, (B(r̄)−A(r̄))2} > 1
max{1, B2(r̄)−A2(r̄)} =

1
max{1,∆(r̄} .
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From this inequality and the bound (3.15) finally we have

∆(r̄′) 6
(
1− 1

max{1,∆(r̄)}
)
∆(r̄) = max{∆(r̄)− 1, 0}.

2

3.2.2. Closure theorem

Before proving the theorem we have to prove a weaker assertion.

Lemma 3.3. There exists an integer m > 1 such that for any ψ ∈M,

g1 ∈ Jm(ψ).

In other words, there exists m such that for any ψ ∈ M and any ε > 0 one
can find moments 0 < t1 < . . . < tm so that

||J(τm) . . . J(τ1)ψ − g1||2 < ε.

By continuity of maps Ψ and ∆, and by Corollary 3.1 it follows that for any
point ψ ∈ L and any ε > 0 one can find a time moment t > 0 such that

∆(r̄(J(t)ψ)) = ∆(Ψ(r̄(ψ), p(t− 0))) 6 max{∆(r̄(ψ))− 1, 0}+ ε.

It follows that there exists m > 1 such that for any ε > 0 there exist time
moments t1, . . . , tm > 0 such that

∆(r̄(ψ′)) 6 ε, ψ′ = J(τm) . . . J(τ1)ψ,

and moreover one can take m = [∆(r̄(ψ))] + 1. But as for any r̄ ∈ T the
following inequality holds

∆(r̄) 6 max
k=1,...,N

1
β2
k

,

m can be chosen uniformly in ψ. By formula (3.14) we get

ρ(r̄(ψ′), r̄∗) 6 ε.

Alternatively it is evident that there exists a constant c > 0 such that for any
ε′ > 0 there is t > 0 such that

||etAψ′ − g1||22 6 cρ(r̄(ψ′), r̄∗) + ε′.

As ε and ε′ are arbitrary and by etA = J(0)J(t) we get the proof. 2
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Now we prove the closure theorem. Define another norm on L

||ψ||H =
√
H(ψ).

Let us fix two points ψ,ψ′ ∈M and show that ψ′ ∈ Jm(ψ) for some m > 1 not
depending on ψ,ψ′. By Lemma 3.3 there exist τ1, . . . , τm > 0 and τ ′1, . . . , τ

′
m > 0

such that
||J(τ1, . . . , τm)ψ − J(τ ′1, . . . , τ

′
m)ψ′||H < ε.

It is clear that the transform J(τ ′1, . . . , τ
′
m) is invertible and conserves the norm

|| ||H , that is why

||J−1(τ ′1, . . . , τ
′
m)J(τ1, . . . , τm)ψ − ψ′||H < ε.

One can find m′ 6 2m and τ ′′1 , . . . , τ
′′
m′ > 0 such that

||J(τ ′′1 , . . . , τ
′′
m′)J(τ1, . . . , τm)ψ − ψ′||H < 2ε. (3.16)

In fact
J−1(τ1, . . . , τm) = e−τ1AIe−τ2AI . . . e−τmAI. (3.17)

As etA conserves the norm ||.||H and I = J(0), it is sufficient to show that for
any point ψ ∈M, any ε > 0 and t > 0 there exists s = s(ψ, t, ε) such that

||e−tAψ − esAψ||H < ε.

But as the closure of the orbit of any point is the torus, it is Poincare recurrence
theorem.

From (3.16) and equivalence of the norms || ||2 and || ||H the closure theorem
follows.

3.3. Proof of local covering theorem

Fix ψ. It is sufficient to show that for some point τ̄ ∈ Ωk the rank of dJψk (τ̄)
equals k. The columns of the Jacobian matrix Jψk are the vectors

θk(τ) =
d

dτk
J(τ1, . . . , τk)ψ = IeτkAAJ(τ1, . . . , τk−1)ψ,

θi(τ) =
d

dτi
J(τ1, . . . , τk)ψ = IeτkA

d

dτi
J(τ1, . . . , τk−1)ψ, i = 1, . . . , k − 1.

Denote by dim〈w1, w2, . . .〉 the dimension of the linear span of vectors w1, w2, . . .
As the mapping I exp{τkA} is non-degenerate, one can derive for any k =
1, 2, . . . that there is τ̄ = (τ1, . . . , τk) ∈ Ωk such that

dim〈θ1(τ), . . . , θk(τ)〉 = dim
〈
AJ(τ̄c)ψ,

d

dτ1
J(τ̄c)ψ, . . . ,

d

dτk−1
J(τ̄c)ψ

〉
= k,
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where τ̄c = (τ1, . . . , τk−1) ∈ Ωk−1. We shall do it by induction in k. Remind
that for any ψ ∈ L,

Iψ = ψ − 2(ψ, g1)2g1.

In fact, for k = 1 this is trivial.
Induction step. Assuming that we have proved the assertion for k ≤ 2N −2,

we shall prove it for k + 1.
For τ̄ = (τ1, . . . , τk) ∈ Ωk denote τ̄c = (τ1, . . . , τk−1) ∈ Ωk−1. Then

AJ(τ̄)ψ = AI exp{τkA}J(τ1, . . . , τk−1)ψ
= A exp{τkA}J(τ1, . . . , τk−1)ψ + a0(τ̄)Ag1
= exp{τkA}

(
AJ(τ1, . . . , τk−1)ψ + a0(τ̄)Ae−τkAg1

)

= exp{τkA} (AJ(τ̄c)ψ + a0(τ̄)A exp{−τkA}g1) ,
where a0(τ̄) = −2(exp{τkA}J(τ̄c)ψ, g1)2. Similarly we get equalities for the
derivatives for i = 1, . . . , k − 1:

d

dτi
J(τ̄)ψ = I exp{τkA} d

dτi
J(τ1, . . . , τk−1)ψ

= exp{τkA} d

dτi
J(τ1, . . . , τk−1)ψ + ai(τ̄)g1

= exp{τkA}
( d

dτi
J(τ̄c)ψ + ai(τ̄) exp{−τkA}g1

)
,

ai(τ̄) = −2(exp{τkA} d

dτi
J(τ̄c)ψ, g1)2.

Derivative in τk has the following expansion:

d

dτk
J(τ̄)ψ = IA exp{τkA}J(τ1, . . . , τk−1)ψ

= A exp{τkA}J(τ1, . . . , τk−1)ψ + ak(τ̄)g1
= exp{τkA} (AJ(τ̄c)ψ + ak(τ̄) exp{−τkA}g1) ,

ak(τ̄) = −2(A exp{τkA}J(τ̄c)ψ, g1)2.

Then by nondegeneracy of the mapping exp{τk}A, we get that the dimension
of the subspace

〈AJ(τ̄)ψ,
d

dτ1
J(τ̄)ψ, . . . ,

d

dτk
J(τ̄)ψ〉

equals the dimension ℵ of the linear span of the following (k + 1) vectors:

AJ(τ̄c)ψ + a0(τ̄)A exp{−τkA}g1, AJ(τ̄c)ψ + ak(τ̄) exp{−τkA}g1,
d

dτ1
J(τ̄c)ψ + a1(τ̄) exp{−τkA}g1, . . . , d

dτk−1
J(τ̄c)ψ + ak−1(τ̄) exp{−τkA}g1.
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By inductive assumption there exists a point τ̄c such that the vectors

AJ(τ̄c)ψ,
d

dτ1
J(τ̄c)ψ, . . . ,

d

dτk−1
J(τ̄c)ψ

are linearly independent. By Lemmas 3.4 and 3.5 there exists τk > 0 such that
the vectors

AJ(τ̄c)ψ,
d

dτ1
J(τ̄c)ψ, . . . ,

d

dτk−1
J(τ̄c)ψ,A exp{−τkA}g1, exp{−τkA}g1

are linearly independent and a0(τ̄) = −2(exp{τkA}J(τ̄c)ψ, g1)2 6= 0. Thus
ℵ = k + 1 and the induction step is proved. 2

Lemma 3.4. For any vector ψ ∈ L \ {0} the set

{t > 0 : (etAψ, g1)2 6= 0} ⊂ R+

is open end everywhere dense.

Proof. To prove this, note the following equalities

(etAψ, g1)2 = (etAψ, g1)H = (ψ, e−tAg1)H .

The second one holds since A? = −A, where A? is the adjoint operator to A,
for the scalar product (, )H , which follows from the equality

(Au,w)H = (V p, q′)2 − (V q, p′)2 = −((V q, p′)2 − (p, V q′)2) = −(u,Aw)H

for u = (q, p)T , w = (q′, p′)T ∈ L. Then we use the expansion

(ψ, e−tAg1)H =
∞∑

k=0

(−1)k
tk

k!
(ψ,Akg1)H

as, by Lemma 5.1, the linear span of vectors Akg1, k = 0, 1, 2, . . . coincides with
L. Then by analyticity of the left-hand part of the latter formula we get the
proof. 2

Lemma 3.5. For any linearly independent vectors w1, . . . , wk ∈ L, k < 2N−1,
the set

T (w1, . . . , wk) = {t > 0 : dim〈e−tAg1, Ae−tAg1, w1, . . . , wk〉 = k + 2} ⊂ R+

contains an open and everywhere dense subset.
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Proof. If k < 2N − 2, then choose the vectors wk+1, . . . , w2N−2 so that

dim〈w1, . . . , w2N−2〉 = 2N − 2.

Note that T (w1, . . . , w2N−2) ⊂ T (w1, . . . , wk). That is why it is sufficient to
prove the assertion of the lemma for the case k = 2N − 2. Thus further on we
assume that k = 2N − 2.

Consider the following real function on L:

W (u) = det[u,Au,w1, . . . , w2N−2].

Denote by X = {u ∈ L : W (u) = 0} the set of zeros of the function W . It is
clear that

T (w1, . . . , w2N−2) = {t > 0 : W (e−tAg1) 6= 0} = {t > 0 : e−tAg1 /∈ X}.
It is clear that W is a quadratic function. Thus X is a quadric. Further we

define the canonical type of the quadric X. Denote

L1 = 〈w1, . . . , w2N−2〉.
Consider also the orthogonal complement L⊥1 to L1 (in the scalar product (, )H).
By definition ofW , we have L1 ⊂ X. Thus in some coordinates (u1, u2, . . . , u2N )
on L the function W will look like

W (u) = a1u
2
1 + a2u

2
2,

for some a1, a2 ∈ R. (As the basis for such coordinates, one can choose the
vectors w1, . . . , w2N−2, u1, u2, where u1, u2 are the appropriate coordinates of
the orthogonal compliment L⊥1 . Since L1 ⊂ X, the form will not depend on
the first 2N − 2 coordinates, and one can choose two coordinates in L⊥1 by the
method of Lagrange).

If we show that there exists a vector u such that W (u) 6= 0, then it will follow
that a1 and a2 cannot be simultaneously zero. And consequently the canonical
type of X should be one of three types: a 2N − 2-dimensional hyperplane,
2N − 1-dimensional hyperplane, the union of two 2N − 1 hyperplanes. Then
applying the same argument as in Lemma 3.4 we get the proof of Lemma 3.5.

Let us show that there exists a vector u such that W (u) 6= 0.
For a vector u ∈ L denote by u⊥ and (Au)⊥ the orthogonal projections on

L⊥1 of the vectors u and Au correspondingly. As the determinant is polilinear
we have

W (u) = det[u⊥, (Au)⊥, w1, . . . , w2N−2].

That is why X is the set of all u ∈ L such that u⊥and (Au)⊥ are linearly
dependent. Note that for any u = (q, p)T ∈ L

(u,Au)H = (V q, p)2 − (p, V q)2 = 0.
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Consider two cases:
1. Subspace L1 is invariant with respect to A. Let us show that then L⊥1 is

also invariant with respect to A. In fact, for u ∈ L⊥1 , v ∈ L1 we have

(Au, v)H = (u,A?v)H = −(u,Av)H = 0,

as Av ∈ L1 by invariance of L1. Then L⊥1 is invariant with respect to A and
X ∩ L⊥1 is the set of all u ∈ L⊥1 such that u and Au are linearly dependent. As
the spectrum of A is pure imaginary and does not contain zero, the vectors u
and Au are linearly independent for all u 6= 0 ∈ L⊥1 . Then X ∩ L⊥1 = {0} and
the proof is finished in this case.

2. Subspace L1 is not invariant with respect to A. In this case there exists
vector v ∈ L1 such that u = (Av)⊥ 6= 0. Consider a vector ũ ∈ L⊥1 such that
ũ, u are linearly independent and ũ′, u are linearly dependent, where ũ′ ∈ L⊥1
is orthogonal to ũ in L⊥1 , again with respect to the scalar product (, )H . As
(ũ, Aũ)H = 0, for the projection (Aũ)⊥ of the vector Aũ on the subspace L⊥1
we have (Aũ)⊥ = cũ′, for some c ∈ R. If c 6= 0, then it is clear that W (ũ) 6= 0.
Assume that c = 0 and consider the vector u∗ = v + ũ. Then

(u∗)⊥ = ũ, (Au∗)⊥ = (Av +Aũ)⊥ = u+ (Aũ)⊥ = u.

By definition of ũ the vectors ũ and u are linearly independent. Then (u∗)⊥

and (Au∗)⊥ are also linearly independent, and then W (u∗) 6= 0. The proof in
this case is also finished 2

3.4. Proof of Theorem 2.1

Fix two points ψ1, ψ2 ∈ M. We want to show that for some m∗, not de-
pending on ψ1, ψ2, there exist τ1, . . . , τm∗ > 0 such that

J(τ1, . . . , τm∗)ψ1 = ψ2.

By local covering theorem there exists a point τ̄ = (τ1, . . . , τm) ∈ Ωm such
that there exist two neighborhoods: O(τ̄) ⊂ Ωm of τ̄ and O(ψ∗1) ⊂ M of
ψ∗1 = Jψ1(τ̄) = J(τ1, . . . , τm)ψ1 such that

Jψ1(O(τ)) = O(ψ∗1). (3.18)

Consider ε-neighborhood Oε(ψ∗1) of ψ∗1 in the norm, corresponding to the scalar
product (, )H , such that

Oε(ψ∗1) = {ψ ∈M : ||ψ − ψ∗1 ||H < ε} ⊂ O(ψ∗1).

By closure theorem there exist τ ′1, . . . , τ
′
m > 0 such that

||J(τ ′1, . . . , τ
′
m)ψ∗1 − ψ2||H < ε. (3.19)
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Note that for fixed τ ′1, . . . , τ
′
m the map J(τ ′1, . . . , τ

′
m) : L→ L is non-degenerate

and conserves the norm || ||H . That is why from (3.19) the following inequality
follows

||ψ∗1 − J−1(τ ′1, . . . , τ
′
m)ψ2||H < ε.

Thus, J−1(τ ′1, . . . , τ
′
m)ψ2 ∈ Oε(ψ∗1) and by (3.18) there is τ̄∗ = (τ∗1 , . . . , τ

∗
m) ∈

O(τ̄) such that
J(τ∗1 , . . . , τ

∗
m)ψ1 = J−1(τ ′1, . . . , τ

′
m)ψ2.

This can be rewritten as

J(τ∗1 , . . . , τ
∗
m, τ

′
1, . . . , τ

′
m)ψ1 = J(τ ′1, . . . , τ

′
m)J(τ∗1 , . . . , τ

∗
m)ψ1 = ψ2.

2

4. Stochastic part — proof of convergence theorem

4.1. Embedded process

Here we consider the sequence ψk = ψ(tk), which is a discrete time Markov
chain (embedded chain) with state space M. We prove that it is (Markov)
ergodic as it is defined in the following theorem concerning more general class
of discrete time Markov chains. Namely, we consider Markov chains ξn on
compact state space X with Borel σ-algebra B(X) (with countable basis) and
transition probability kernels P (x,A), which are probability measures on B(X)
for any x ∈ X and measurable functions on X for any A ⊂ X. We will consider
the class of such chains satisfying the following assumptions:

(A1) for some integer m ≥ 1 and any x ∈ X the m-step transition probability
Pm(x, ·) is equivalent to some finite non-negative measure µ such that
µ(O) > 0 for any open set O ⊂ X. Moreover, for any x there exists m-
step transition density pm(x, y) (with respect to µ), which is measurable
on M×M;

(A2) for any open O ⊂ X the function P (x,O) is lower semi-continuous.

Theorem 4.1. Under assumptions (A1), (A2) the Markov chain ξn is ergodic,
that is there exists probability measure π on X such that

sup
A∈B(X)

|Pn(x,A)− π(A)| → 0 (4.1)

as n→∞, uniformly in x.

This theorem follows probably from the existing deep theory of such Markov
chains with continuous state space, see for example [15–17], but we did not find
the statement we need, and for the reader’s convenience we give a short proof
below, using the ideas from [15,17].
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Corollary 4.1. The embedded chain ψk has the unique invariant measure π,
and moreover it is ergodic as in Theorem 4.1.

We have only to prove the properties (A1) and (A2) for our embedded chain.
For the rest of this section the integer m is the same as in the covering theorem.

Proof of (A1)
We will prove that the measures π and Pm(ψ,A) are equivalent for any ψ.

Lemma 4.1. For any measurable B ⊂ M its Liouville measure π(B) = 0 iff
the Lebesgue measure λ of the set (Jψm)−1(B) in Ωm is zero.

Proof. 1) Assume that for some B ⊂ M we have π(B) = 0. Let us show
that λ((Jψm)−1(B)) = 0. Let Acr be the set of critical points of the map Jψm
(that is points τ = (τ1, . . . , τm) where the rank of the Jacobian is not maximal)
and let E = Jψm(Acr) ⊂ M be the set of critical values of Jψm. By Sard’s
theorem π(E) = 0. But since Jψm(Ωψ) = M, there exists non-critical point
τ = (τ1, . . . , τm) ∈ Ωm such that the rank of dJψm at this point equals 2N − 1.
As the map Jψm is analytic in the variables τ1, . . . , τm, the set of points Acr where
the rank is less than 2N − 1, has Lebesgue measure zero. Then the equality
λ((Jψm)−1(B)) = 0 follows from Theorem 1 of [13].

2) Assume that for some B ⊂ M we have π(B) > 0, and let us show that
λ((Jψm)−1(B)) > 0. By Lebesgue differentiation theorem there exists a point
ψ′ ∈ M \ E and its neighbourhood O(ψ′) such that π(O(ψ′) ∩ B) > 0. Then
there are a point τ = τ(ψ′) ∈ (Jψm)−1(ψ′) and its neighborhood O(τ) ⊂ Ωm,
so that the restriction of Jψm on O(τ) is a submersion. Then π(O(ψ′) ∩ B) > 0
implies λ((Jψm)−1(B) ∩O(τ)) > 0. 2

Denote by ρ(m) the product of m densities ρ. Then, as for any B ⊂M

Pm(ψ,B) =
∫

(Jψm)−1(B)

ρ(m)(τ)dτ,

by Lemma 4.1 we get that Pm and π are equivalent measures.
The proof of measurability of the transition density follows from Theorem 1,

p. 180 of [16], and Proposition 1.1, p. 5, of [17]. 2

Proof of (A2)

Lemma 4.2. Our Markov chain ψk is a weak Feller chain, that is for any open
O ⊂M the transition probability P (ψ,O) is lower semicontinuous in ψ.

Proof. For any ψ denote by 1ψ(τ) the indicator function on R+, that is, 1ψ(τ) =
1 if IeτAψ ∈ O and zero otherwise. Then we have

P (ψ,O) =
∫

R+

1ψ(τ)ρ(τ)dτ.
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Let ψn → ψ as n→∞, ψn ∈M. Fix τ > 0 and consider two cases:
1. IeτAψ ∈ O, then starting from some n the inclusion IeτAψn ∈ O holds,

as O is open. That is why limn→∞ 1ψn(τ) = 1ψ(τ) = 1.
2. IeτAψ /∈ O. Then lim infn 1ψn(τ) > 1ψ(τ) = 0. Thus for any τ ,

lim infn 1ψn(τ) > 1ψ(τ). Then by the Fatou lemma lim infn P (ψn, O) > P (ψ,O).
2

4.2. Proof of Theorem 4.1

Small sets We will need the following important definition.

Definition 4.1. Below ν will be any non-zero non-negative measure not nec-
essarily probabilistic. The Borel subset C ⊂ X is called (ν, n)-small (or simply
small, if it is (ν, n)-small for some integer n > 0 and some ν ) if for any x ∈ C
and any Borel set B

Pn(x,B) ≥ ν(B).

Lemma 4.3. Assume (A1). Then for some n1 > 1 and some ν there exists
(ν, n1)-small subset C ∈ B(X) such that ν(C) > 0.

Proof. It follows from the assumption (A1) that for any n > m there is a
measurable function pn(x, y) such that

Pn(x,B) =
∫

B

pn(x, y)µ(dy),

for any x ∈ X, B ∈ B(X). Moreover, pn(x, y) > 0 for almost any (x, y) ∈ X×X
(with respect to µ× µ).

We will prove more, namely, that for some n > m there exist sets B1, B2 ∈
B(X) of positive measure µ and a constant δ > 0 such that for all x ∈ B1, y ∈ B2

we have
pn(x, y) > δ. (4.2)

As the density pm(x, y) is measurable and almost everywhere positive, one can
find a number c > 0 so that the sets

A = {(x, y) ∈ X ×X : pm(x, y) > c},
{(x, y, z) ∈ X ×X ×X : (x, y) ∈ A and (y, z) ∈ A} = (A×X) ∩ (X ×A)

have positive measures µ2 = µ × µ on X × X and µ3 = µ × µ × µ on X ×
X × X correspondingly. Denote by Or(x) ⊂ X the open neighborhood of
x ∈ X of radius r, and put Or(x, y) = Or(x) × Or(y) ⊂ X ×X. By Lebesgue
differentiation theorem there exists a set A0 of zero measure µ×µ such that for
any (x, y) ∈ A \A0

lim
r→0+

µ2(A ∩Or(x, y))
µ2(Or(x, y))

= 1.
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It follows that the set ((A \ A0) ×X) ∩ (X × (A \ A0)) also has positive mea-
sure. Consider a point (x∗, y∗, z∗) in this set. Choose r so that the following
inequalities hold:

µ2(A ∩Or(x∗, y∗)) > 3
4
µ2(Or(x∗, y∗)), µ2(A ∩Or(y∗, z∗)) > 3

4
µ2(Or(y∗, z∗)).

For any x ∈ X put

AL(x) = {y ∈ X : (x, y) ∈ A}, AR(z) = {y ∈ X : (y, z) ∈ A}.

Define B1 by

B1 =
{
x ∈ Or(x∗) : µ(AL(x) ∩Or(y∗)) > 3

4
µ(Or(y∗))

}
.

Otherwise speaking, the set B1 consists of the points x ∈ Or(x∗), for which
the set AL(x) is sufficiently large inside Or(y∗). Let us show that B1 has
positive measure. Assume the contrary — that for almost all points of Or(x∗)
the inequality µ(AL(x) ∩ Or(y∗)) 6 (3/4)µ(Or(y∗)) holds. Then by the Fubini
theorem

µ2(A ∩Or(x∗, y∗)) =
∫

Or(x∗)

µ(AL(x) ∩Or(y∗))µ(dx)

6 3
4
µ(Or(y∗))µ(Or(x∗)) =

3
4
(µ× µ)(Or(x∗, y∗)).

That contradicts the choice of the points x∗, y∗. Thus, µ(B1) > 0. Similarly,
one can show that the set

B2 =
{
z ∈ Or(z∗) : µ(AR(z) ∩Or(y∗)) > 3

4
µ(Or(y∗))

}

has positive measure µ. But from the definition of the sets B1, B2 it follows
that for any points x ∈ B1, z ∈ B2 the following inequality holds

µ(AL(x) ∩AR(z)) > 1
2
µ(Or(y∗)).

Also we have the estimates for the density p2m and any x ∈ B1, z ∈ B2:

p2m(x, z) =
∫

X

pm(x, y)pm(y, z)µ(dy) >
∫

AL(x)∩AR(z)

pm(x, y)pm(y, z)µ(dy)

> c2µ(AL(x) ∩AR(z)) ≥ c2

2
µ(Or(y∗)).
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Thus we have proved (4.2). Now we finish the proof of Lemma 4.3. Note
that for any x ∈ B1 and any B ∈ B(X) we have

Pn(x,B) =
∫

B

pn(x, y)µ(dy) >
∫

B∩B2

pn(x, y)µ(dy) > δµ(B ∩B2).

Moreover, as the sets B1, B2 have positive measure, there exist a subset C ⊂ B2

of positive measure µ and a constant δ′ > 0 such that Pm(x,B1) > δ′ for all
x ∈ C. It follows that for all x ∈ C, B ∈ B(X) the following inequalities hold:

Pm+n(x,B) =
∫

X

Pm(x, dy)Pn(y,B) >
∫

B1

Pm(x, dy)Pn(y,B) > δ′δµ(B ∩B2).

Thus, C is (ν, n+m)-small, where ν(B) = δδ′µ(B∩B2), and moreover ν(C) > 0.
2

Lemma 4.4. Let C ∈ B(X) be (ν, n1)-small and assume that for any x from
some set D ∈ B(X), Pn(x,C) > δ for some δ > 0 and n > 1. Then the set D is
(δν, n+ n1)-small.

Proof. For any x ∈ D and any B ∈ B(X), by semigroup property

Pn+n1(x,B) =
∫

X

Pn(x, dy)Pn1(y,B) >
∫

C

Pn(x, dy)Pn1(y,B)

> Pn(x,C)ν(B) > δν(B).

2

Lemma 4.5. Under assumptions (A1) and (A2) the set X itself is small.

Proof. Consider a (ν, n1)-small subset C ∈ B(X) of Lemma 4.3. For k = 1, 2, . . .
introduce the subsets

Ak =
{
x ∈ X : Pm(x,C) >

1
k

}
,

where m is defined in (A1). From Lemma 4.4 we have that Ak is a ((1/k)ν,m+
n1)-small set. Let us prove that its closure is also a small set. Note that the
measure ν is regular, that is for any Borel set B, ν(B) = sup{ν(K)}, where the
supremum is over all compact sets K ⊂ B. As ν(C) > 0, there exists a compact
set K ⊂ C such that for all x ∈ Ak,

Pm+n1(x,K) > 1
k
ν(K) = δ > 0.
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Let {xn}n=1,2... ∈ Ak and xn → x, then by semi-continuity of the transition
probability we get:

Pm+n1(x,K) = 1− Pm+n1(x,X \K) > 1− lim inf Pm+n1(xn, X \K)

= lim supPm+n1(xn,K) > δ.

Thus, for any x ∈ Āk we have Pm+n1(x,K) > δ/2, and applying Lemma 4.4
yields that Āk is a ((δ/2)ν, n2)-small set for some n2.

But also by assumption (A1) X = ∪∞k=1Ak. As X is not a countable union
of sets which are nowhere dense, for some k there is an open subset O ⊂ Āk.
Thus for any x ∈ X and any B ∈ B(X), we have

Pm+n2(x,B) =
∫

X

Pm(x, dy)Pn2(y,A)

>
∫

O

Pm(x, dy)Pn2(y,B) > δ

2
ν(B)Pm(x,O). (4.3)

As the measures P (x, ·) and µ are equivalent for any x ∈ X, we have Pm(x,O) >
0. But Pm(x,O) is lower semi-continuous, and thus attains minimum on the
compact X. It follows that Pm(x,O) > δ′ for some δ′ > 0 and any x ∈ X.
Using inequality (4.3), we get the proof. 2

Proof of Theorem 4.1
ForA ∈ B(X) and n > 1 denote

In(A) = inf
x∈X

Pn(x,A), Sn(A) = sup
x∈X

Pn(x,A).

Note that

In+1(A) = inf
x∈X

∫

X

P (x, dy)Pn(y,A) > inf
x∈X

∫

X

P (x, dy)In(A) = In(A).

Thus, for fixed A ∈ B(X) the sequence In(A) is non-decreasing. Similarly the
sequence Sn(A) is non-increasing. We shall prove that Sn(A)− In(A) tends to
zero as n→∞.

Take the number N and the measure ν as in Lemma 4.5. Then for any n > 1

Pn+N (x,A) =
∫

X

PN (x, dy)Pn(y,A)

=
∫

X

(PN (x, dy)− ν(dy))Pn(y,A) +
∫

X

ν(dy)Pn(y,A).
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As the measure PN (x, ·)− ν(·) is non-negative, we get from this equality that

Pn+N (x,A) > In(A)
∫

X

(PN (x, dy)− ν(dy)) +
∫

X

ν(dy)Pn(y,A)

= (1− ν(X))In(A) +
∫

X

ν(dy)Pn(y,A)

and then

In+N (A) > (1− δ)In(A) + c1, δ = ν(X), c1 =
∫

X

ν(dy)Pn(y,A).

Similarly we get the upper bound for Sn+N (A):

Pn+N (x,A) ≤ (1− ν(X))Sn(A) +
∫
ν(dy)Pn(y,A) ≤ (1− δ)Sn(A) + c1

and
Sn+N (A) 6 (1− δ)Sn(A) + c1.

Then the difference is estimated as follows

Sn+N (A)− In+N (A) 6 (1− δ)(Sn(A)− In(A)).

From the last inequality and monotonicity of the corresponding sequences it
follows that for any x ∈ X there exist the following limits and that they are
equal

lim
n→∞

In(A) = lim
n→∞

Sn(A) = lim
n→∞

Pn(x,A) = π(A),

and moreover the convergence is uniform in A ∈ B(X) and in x. 2

4.3. Proof of Theorem 2.2

We will use the following theorem (strong law of large numbers) for discrete
time Markov chains on arbitrary state space X equipped with σ-algebra A. Let
Pn(x,B) be n-step transition probability assumed to be measurable on X for
any B ∈ A and a probability measure on (X,A) for any x. Let us assume that
there exists invariant measure π on (X,A) such that uniformly in x

sup
A∈A

|Pn(x,A)− π(A)| → 0, n→∞.

Denote by Px the measure on trajectories (x0 = x, x1, x2, . . .) with initial
point x. Under these conditions the following assertion holds.
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Theorem 4.2. For any f ∈ L1(X,π) and any x ∈ X we have Px-a.s.

lim
n→∞

1
n

n∑

k=0

f(xk) =
∫

X

f(x)π(dx).

Proof. See [18], p. 140, and [16], p. 209.
To prove Theorem 2.2 we need the following lemma.

Lemma 4.6. For any measurable bounded function f on M and any initial
state ψ(0) = ψ the following limit holds a.s.

lim
N→∞

Mf (tN ) = π(f).

Proof. Denote by Xk = (ψk, τk+1), k = 0, 1, . . . the Markov chain with values
in X = M× R+. Then

tk+1∫

tk

f(ψ(s))ds =

tk+1∫

tk

f(e(s−tk)Aψk)ds =

τk+1∫

0

f(esAψk)ds = F (Xk) (4.4)

where

F (ψ, t) =

t∫

0

f(esAψ)ds, (ψ, t) ∈ X.

Then

Mf (tN ) =
1
tN

N−1∑

k=0

tk+1∫

tk

f(ψ(s))ds =
1
tN

N−1∑

k=0

F (Xk). (4.5)

It is easy to show that Xk has invariant measure µ = π × Pτ , Pτ = ρds,
which satisfies the relation stated in Theorem 4.2, since ψk satisfies it. Then

lim
N→∞

1
N

N−1∑

k=0

F (Xk) = µ(F ) =
∫

X

F (ψ, s)dµ

where

µ(F ) =
∫

R+

Pτ (dt)
∫

M

π(dψ)

t∫

0

dsf(esAψ) =
∫

R+

Pτ (dt)

t∫

0

ds

∫

M

π(dψ)f(esAψ)

= π(f)
∫

R+

Pτ (dt)

t∫

0

ds = π(f)Eτ1.
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Moreover, by strong law of large numbers for independent random variables τk
we have

lim
N→∞

tN
N

= Eτ1.

Then by (4.5) we get the proof of the lemma. 2

To prove Theorem 2.2 we have to estimate the difference between Mf (t) and
Mf (tN ). Using the boundedness |f(ψ)| 6 c we have

|Mf (t)−Mf (tN )| 6
∣∣∣∣∣
1
t

t∫

tN

f(ψ(s))ds|+ |t− tN |
t

|Mf (tN )

∣∣∣∣∣6
|t− tN |

t
(c+|Mf (tN )|).

(4.6)
For any t > 0 define the random index N(t) so that

tN(t) 6 t < tN(t)+1

and note that
|t− tN(t)|

t
6
τN(t)+1

tN(t)
=

τN(t)+1∑N(t)
k=1 τk

.

As Eτ1 <∞, the law of large numbers, as N →∞, gives a.s.

τN+1∑N
k=1 τk

→ 0.

But N(t) → ∞ as t → ∞. Then the right-hand side of (4.6) tends to 0 a.s. if
N = N(t) and t→∞. 2

5. Appendix

5.1. Proof of Lemma 3.1

For any t > 0 one can show that

etA =
(

cos(t
√
V ) (

√
V )−1 sin(t

√
V )

−√V sin(t
√
V ) cos(t

√
V )

)
,

where
√
V is the positive square root of the matrix V . Then for any k = 1, . . . , N

and t > 0:

etAQk = cos(ωkt)Qk − ωk sin(ωkt)Pk, (5.1)

etAPk =
sin(ωkt)
ωk

Qk + cos(ωkt)Pk, . (5.2)
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Using (5.1)–(5.2) we have for any ψ

ψ(t) = etAψ =
N∑

k=1

(
cos(ωkt)q̃k +

sin(ωkt)
ωk

p̃k

)
Qk

+
N∑

k=1

(−ωk sin(ωkt)q̃k + cos(ωkt)p̃k)Pk

and then

q̃k(t) = cos(ωkt)q̃k +
sin(ωkt)
ωk

p̃k, p̃k(t) = −ωk sin(ωkt)q̃k + cos(ωkt)p̃k.

From these two formulas we see that the pair of functions (q̃k(t), p̃k(t)), k =
1, . . . , N, corresponds to the dynamics of one-dimensional oscillator of unit mass
and frequency ωk, where q̃k(t) is the oscillator coordinate and p̃k(t) is its mo-
mentum. Thus the dynamics etAψ is isomorphic to the uniform movement on
the torus with velocity (ω2

1 , . . . , ω
2
N ). This gives the second assertion.

5.2. Case N = 1

Note the identity for any ψ

IeAt1ψ = e−At1Iψ. (5.3)

Let us first prove the proposition for t = T0, ψ = ψ0 = (1, 0) and arbitrary
ψ′. Define the one-to-one mapping W : (0, (1/2)T0) → S as follows: for any
t1 ∈ (0, (1/2)T0) set

W (t′) = ψ′ = exp{A(T0 − t1)}I exp{At1}ψ0 = exp{A(T0 − 2t1)}ψ0.

Then it is sufficient to take t′ = (T0 − t′′)/2 and choose minimal t′′ > 0 so that

ψ′ = eAt
′′
ψ0.

For t > T0 the proof is quite similar but we will not need this case to prove
convergence.

5.3. Mixing subspace

Here we give some properties of the mixing space. The following two lemmas
show how the dimension of L−can be explicitly characterized.

Lemma 5.1. The space L− is invariant with respect to A. Moreover

L− = 〈{Akg1 : k = 0, 1, . . .}〉
where 〈 〉 is the linear span of the set of vectors.
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Consider also the orthogonal complement to L− in the scalar product (, )2,

L0 = L⊥−.

Then it is also invariant with respect to A. Moreover, the vector ψ ∈ L0 iff
for the hamiltonian dynamics with initial condition ψ = ψ(0) the momentum
p1(t) = 0 for any t.

Lemma 5.2. Assume that the spectrum of V is simple, and let {v1, . . . , vN}
be the eigenvectors of V , they form a basis in RN . Then the dimension of L0 is
twice the number of vk having coordinates vk,1 = (e1, vk) = 0.

On what occurs if condition (2.3) is not fulfilled, for exact formulas for
the dimension of L− for the chain of harmonic oscillators and for other cases
see [9–11].

5.4. Proof of Lemma 3.2

We have

|p̃∗k| = |βk|
∣∣∣∣y − c

1− γ2
k

4y

∣∣∣∣ = |βk|
∣∣∣∣∣
2γ2
n + 2γn

√
γ2
n + c(1− γ2

n) + c(γ2
k − γ2

n)
4y

∣∣∣∣∣ .

As for any k = 1, . . . , N we have γk > γn > 0, the expression under module in
the last formula is non-negative, and we have

|p̃′k| = |βk|
(
y − c

1− γ2
k

4y

)
.

Consider two cases:
1. γk 6 1. Show that f+(x) is monotone increasing, that is, its derivative

(f+(x))′ =
1
2

(
1 +

x(1− c)√
x2 + c(1− x2)

)
> 0.

Thus y = f+(γn) 6 f+(γk). Taking into account γk 6 1, we have the inequali-
ties

|p̃′k| = |βk|
(
y − c

1− γ2
k

4y

)
6 |βk|

(
f+(γk)− c(1− γ2

k)
4f+(γk)

)

= |βk|2γ
2
k + 2γk

√
γ2
k + c(1− γ2

k)
4f+(γk)

= |βk|γk = rk.

2. γk > 1. Then we will show that f−(γk) 6 y. It is easy to check that f−(x)
is increasing and hence 0 < f−(γk) 6 f−(γN ). Note that the left inequality holds
because f−(1) = 0.
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Let us prove that for any x ∈ R we have f−(x) < (c/2)x. We have

f−(x)− c

2
x =

1
2

(
(1− c)x−

√
x2(1− c) + c

)

=
1
2

( −c− x2(1− c)c
(1− c)x+

√
x2(1− c) + c

)
< 0.

Thus we have proved that

f−(γk) 6 f−(γN ) <
c

2
γN . (5.4)

By f+(0) =
√
c/2 and the evident inequality (f+(x))′ > c/2, which holds as

c 6 1, we have

y = f+(γn) > 1
2
(cγn +

√
c). (5.5)

Then by (5.4), (5.5) and c 6 (γN − γn)−2 we get

y − f−(γk) > 1
2
(−c(γN − γn) +

√
c) =

√
c

2
(−√c(γN − γn) + 1

)
> 0.

Remind that we have proved earlier that the function f+(x) is increasing, then
taking into account the latter inequality we have the following bounds

|p̃∗k| = |βk|
(
y − c

1− γ2
k

4y

)
= |βk|

(
y + c

γ2
k − 1
4y

)
6 |βk|

(
f+(γk) + c

γ2
k − 1

4f−(γk)

)

= |βk|
(γ2

k − γ2
k − c(1− γ2

k) + c(γ2
k − 1)

4f−(γk)

)
= |βk| c γ

2
k − 1

2f−(γk)

= |βk|c2(γ2
k − 1)f+(γk)
2c(γ2

k − 1)
= |βk|f+(γk) 6 |βk|γk = rk.

In the last inequality we used the fact that f+(x) < x for x > 1, which holds
due to f+ + f− = x. 2

5.5. Advertisement concerning non-linear situation

Here we summarize our intuition of general problems concerning ergodic-
ity. We think that the difference between linear and non-linear hamiltonians is
overexaggerated.

1. We think that without external influence “generic” N -particle hamilto-
nians will give non-ergodic system (Problem 1). More interesting question is
what means “generic” and how the foliation on invariant subsets looks like in
the “generic” case; we do not know the answer.

2. Possibly a bit easier problem — ergodicity in the “generic” case with most
minimal random influence (Problem 2). One can think that Boltzmann did
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not speak on rigorous mathematical language and did not make any difference
between closed system and systems with most minimal random influence. It is
funny that we did not see earlier attempts to formulate it like this.

3. One could give many examples or even classes of non-linear hamiltonians
for which Problem 2 could be solved. But it is not clear whether such very time
consumable activity deserves big efforts. The result can be positive — that
there will be generic ergodicity for some class of non-linear hamiltonians — but
this will not give any certitude concerning Problem 1. Or the result could be
negative — one could imagine in this case that this class is far from the “generic”
situation.

4. The authors think that after more than 100 years of hard work the strategy
should be changed. Namely, some active organizer should better consolidate a
goal-oriented team for the “generic” problem.

References

[1] V. Arnold (1989) Mathematical Methods of Classical Mechanics. Springer.

[2] D. Anosov and E. Zhuzhoma (2012) Closing lemmas. Differ. Equ. 48 (13),
1653–1699.

[3] J. Fritz, T. Funaki and J. Lebowitz (1994) Stationary states of random
Hamiltonian systems. Probab. Theory and Relat. Fields 99, 211–236.

[4] C. Bernardin, V. Kannan, J. Lebowitz and J. Lukkarinen (2012) Harmonic
systems with bulk noises. J. Stat. Phys. 146, 800–831.

[5] C. Bernardin, V. Kannan, J. Lebowitz and J. Lukkarinen (2011) Nonequi-
librium stationary states of harmonic chains with bulk noises. Eur. J. Phys. B 84
(4), 685–689.

[6] C. Bernardin and S. Olla (2011) Transport properties of a chain of anharmonic
oscillators with random flip of velocities. J. Stat. Phys. 145, 1224–1255.

[7] J. Lukkarinen (2014) Thermalization in harmonic particle chains with velocity
flips. J. Stat. Phys. 155, 1143–1177.

[8] M. Simon (2013) Hydrodynamic limit for the velocity-flip model. Stoch. Process.
Appl. 123, 3623–3662.

[9] A. Lykov and V. Malyshev (2013) Convergence to Gibbs equilibrium — un-
veiling the mystery. Markov Processes Relat. Fields 19 (4), 634–666.

[10] A. Lykov, V. Malyshev and S. Muzychka (2013) Linear hamiltonian systems
under microscopic random influence. Theory Probab. and Appl. 57 (4), 684–688.

[11] A. Lykov and V. Malyshev (2012) Harmonic chain with weak dissipation.
Markov Processes Relat. Fields 18 (4), 721–729.

[12] Yu. Kifer (1988) Random Perturbations of Dynamical Systems. Birkhauser,
Boston-Basel.

[13] S. Ponomarev (1987) Submersions and pre-images of sets of zero measure. Sib.
Math. J. 28 (1), 199–210.



412 A.A. Lykov and V.A. Malyshev

[14] R. Azais, J. Bardet, A. Genadot, N. Krell and P. Zitt (2014) Piecewise
deterministic Markov process — recent results. ESAIM: Proceedings 44, 276–290.

[15] S. Meyn and R. Tweedie (2009) Markov Chains and Stochastic Stability. Cam-
bridge.

[16] N. Portenko, A. Skorohod and V. Shurenkov (1989) Markov Processes.
Itogi nauki i tehniki, VINITI, Moscow.

[17] S. Orey (1971) Lecture Notes on Limit Theorems for Markov Chain Transition
Probabilities. Van Nostrand, London.

[18] D. Revuz (1984) Markov Chains. NorthHolland.

[19] C. Villani (2011) Particle Systems and Nonlinear Landau Damping. Lecture
Notes, http://cedricvillani.org/.

[20] N. Simanyi (2009) Conditional proof of the Boltzmann – Sinai ergodic hypothesis.
Invent. Math. 177, 381–413.

[21] J.-P. Eckmann, C.-A. Pillet and L. Rey-Bellet (1999) Entropy production
in non-linear, thermally driven hamiltonian systems. J. Stat. Phys. 95 (1), 305–
331.

[22] L. Rey-Bellet and L. Thomas (2002) Exponential convergence to non-
equilibrium stationary states in classical statistical mechanics. Commun. Math.
Phys. 225, 305–329.

[23] L. Rey-Bellet (2003) Statistical mechanics of anharmonic lattices. In: Ad-
vances in Differential Equations and Mathematical Physics, AMS Contemporary
Mathematics Series 327, 283–298.

[24] J.-P. Eckmann (2002) Non-equilibrium steady states. In: Proceedings of the
International Congress of Mathematicians, Beijing, Higher Education Press 3,
409–418.


