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• Control protocol with two parameters only for deterministic movement of infinite chain of cars with the leader is studied in detail.
• Complete phase diagram with three regions: stability, partial stability, instability is studied in detail.
• In stability region both absence of collisions and uniformly positive density are proven.
• In two regions of stability, we studied fine dependence on the initial conditions and the movement of the leader.
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a b s t r a c t

We consider one-way road deterministic traffic model with N particles. The simplest local
control protocol, which reminds physical interaction is considered. We obtain complete
phase diagram uniformly in N and study in detail its stable and unstable domains.
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1. Introduction

Theoretical modeling and computer simulation of transportation systems is a very popular field, see very impressive
review [1]. There are two main directions in this research — macro and micro models. Macro approach does not distinguish
individual transportation units and uses analogy with the fluid flow in hydrodynamics, see [2,3]. Stochastic micro models
are most popular and use almost all types of stochastic processes: mean field, queuing type and local interaction models.
We consider here completely deterministic transportation flows. Although not as popular as stochastic traffic, there is also
a big activity in this field, we give short review (with comparative analysis) in the last section.

We consider the one-way road traffic model organized as follows. At any time t ≥ 0 there is finite or infinite number of
point particles (may be called also cars, units etc.) with coordinates zk(t) on the real axis, enumerated as follows

· · · < zn(t) < · · · < z1(t) < z0(t). (1)

We assume that the rightmost car (the leader) moves ‘‘as it wants’’, that is the trajectory z0(t) is often assumed to have
non-negative velocity.

Our problem is to find the simplest possible local protocol (control algorithm) which would guarantee both safety (no
collisions), stable (or even maximal) density of the flow or maximal current. Otherwise speaking, we try to find control
mechanismwhich guarantees that the distance between any pair of neighboring cars is close (on all time interval (0,∞)) to
some (given a priori) fixed number, that defines the density of the flow.
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More exactly, denoting rk(t) = zk−1(t) − zk(t), and

I = inf
k⩾1

inf
t⩾0

rk(t), S = sup
k⩾1

sup
t⩾0

rk(t),

we try to get the bounds – lower positive bound on I and upper bound on S – as close as possible. Namely, we want to prove
the following inequalities

0 < I ≤ S < ∞. (2)

That is by stability we mean that the cars do not become too close to each other, and simultaneously the distances between
neighbor cars do not become too large. As for the general mathematical definitions of stability, we use the following: the
system is stable if the inequalities (2) hold, otherwise it is unstable. Then one could give more detailed definitions, see
Section 5, depending strongly on the class of initial conditions and of allowed motion of the leader.

Locality (of the control) means that the ‘‘driver’’ of the kth car, at any time t , knows only its own velocity vk(t) and the
distance rk(t) from the previous car. Thus, for any k ≥ 1 the trajectory zk(t), being deterministic, is uniquely defined by the
trajectory zk−1(t) of the previous particle.

Using physical terminology one could say that if, for example, rk(t) becomes larger than d, then some virtual force
Fk increases acceleration of the particle k, and vice-versa. Thus the control mechanism is of the physical nature, like
forces between molecules in crystals but our ‘‘forces’’ are not symmetric. Thus our system is not a Hamiltonian system.
Nevertheless, our results resemble the dynamical phase transition in the model of the molecular chain rapture under the
action of external force, see [4]. However here we do not need the double scaling limit used in [4].

We will see however that for the stability, besides Fk, also friction force −αvk(t), restraining the growth of the velocity
vk(t), is necessary, where the constant α > 0 should be chosen appropriately. Taking Fk to be simplest possible

Fk(t) = ω2(zk−1(t) − zk(t) − d) (3)

we get that the trajectories are uniquely defined by the system of equations for k ≥ 1

d2zk
dt2

= Fk(t) − α
dzk
dt

= ω2(zk−1(t) − zk(t) − d) − α
dzk
dt
. (4)

Note that general ‘‘Microscopic follow the leader model’’ can be defined in various ways. See for example equation (5)
in [1] and also the models listed in the last section. Our goal was to obtain most detailed results for the simplest model (4)
of this kind.

Stability depends not only on the parameters α, ω, d but also on the initial conditions and on themovement of the leader
(on its velocity and acceleration). This is easy to understand for the case of N + 1 particles. For example, for N = 1, where
the calculations are completely trivial, assume also the simplest leader movement

z0(t) = vt, t ≥ 0. (5)

Then, if the initial conditions for the second particle are

z1(0) = −a = −

(
d +

α

ω2 v

)
, ż1(0) = v,

then z1(t) = −a + vt for any d, α, ω. However, if we change only the initial velocity ż1(0) = w to somew > 0, then for any
α, ω there exists w1 = w1(α, ω, d) such that for any w ≥ w1 collision occurs.

For N = 2, 3, . . . the situation becomes more and more complicated, and its study has no much sense. That is why we
study, in the space of two parameters α, ω (for fixed d), stability conditions, which are uniform in N and in large class of
reasonable initial conditions and reasonable movement of the leader.

Natural (reasonable) initial conditions are as follows: at time 0 it should be

0 < inf
k⩾1

rk(0) ≤ sup
k⩾1

rk(0) < ∞.

As for the leader movement, it is sometimes sufficient to assume that the function z0(t) were continuous, but in other cases
it is assumed to twice differentiable and has the following bounds on the velocity and acceleration of the leader:

sup
t⩾0

|ż0(t)| = vmax, sup
t⩾0

|z̈0(t)| = amax. (6)

It appears that under these conditions there are 3 sectors in the quarter-plane R2
+

= {(α, ω)}: 1) α > 2ω, where we can
prove stability, 2) α <

√
2ω, where we can prove instability, and the sector 3)

√
2ω ≤ α ≤ 2ω, where we can prove stability

only for more restricted classes of initial conditions and of the leader motion.
The paper is organized as follows. Section 2 contains definitions and formulation of the main results, Sections 3 and 4

are devoted to the detailed proof of stability and instability conditions correspondingly, Section 5 is a short review of earlier
results in comparison with our model.
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2. Results

2.1. Stability

Here we consider the region α > 2ω, and this is always assumed in this section.

Movement close to stationary. For any given d > 0 there are special initial conditions (which can be called equilibrium
configuration) when the force acting on any particle is zero:

zk(0) = −ka, żk(0) = v, k = 0, 1, 2, . . . , (7)

with

a = a(α, ω, d, v) = d +
α

ω2 v. (8)

If the leader moves as (5), then for any k > 0 also

zk(t) = zk(0) + vt.

Such movement we call stationary. Now consider a perturbation of this situation

Theorem 1. For given d and v assume

|zk(0) + ka| ⩽ θa, |żk(0) − v| ⩽ βv, (9)

sup
t⩾0

|z0(t) − vt| ⩽ δa (10)

for 0 ≤ δ < 1
2 and θ, β ⩾ 0 such that

ϵ = 2max

⎧⎨⎩δ, θ +
2vβ
αa√

1 −
( 2ω
α

)2
⎫⎬⎭ < 1. (11)

Then

(1 − ϵ)a ⩽ I ⩽ S ⩽ (1 + ϵ)a. (12)

Now we want to show that in some cases the sufficient conditions of this theorem are not very far from necessary. For
example, from the theorem follows that the condition

θ <
1
2

√
1 −

(
2ω
α

)2

, δ = β = 0 (13)

is sufficient for I > 0. This means that the deviations of the particle from the equilibrium (that is the distances between
particles are equal to a) do not exceed a

2 .

Remark 1. The movement of any first N particles does not depend on other particles. Thus for any N the system of Eqs. (4)
for k = 1, . . . ,N , is finite-dimensional, linear and, for any α, ω > 0, the spectrum of the corresponding linear operator
is inside the left half-plane. One could look at it formally, neglecting possible collisions between particles. In this case it is
asymptotically stationary, that is, as t → ∞, its solution converges to stationary for any initial conditions and if z0(t) = vt .
However we do not know whether collisions occur before it becomes stationary. In the following theorem we get such
conditions.

Because of this one could think that the spectrum does not play big role in the stability problems. This is not quite true if
we consider the problems uniform in N , or the corresponding infinite-dimensional operator, see below.

Note also that for the randommovement of the leader the same results hold.More exactly, assume that z0(t) is a stationary
processwith smooth trajectories, satisfying bounds (6)with probability one. Then themeanvelocity of anyparticle converges
to the mean velocity of the leader.

Theorem 2. (1) Assume (7) and (10). Then for all k = 1, 2, . . . we have:
supt⩾0|żk(t) − v| ⩽ supt⩾0|ż0(t) − v|. If the right hand side is sufficiently small then vk(t) = żk(t) > 0 for any k, t.
(2) Assume (5), (9) and that for some parameters θ, β > 0

ζ = 2
θ +

2vβ
αa√

1 −
( 2ω
α

)2 < 1. (14)
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Then for all k

lim
t→∞

(zk(t) − (vt − ka)) = 0

where a is in (8) and

(1 − ζ )a ⩽ I ⩽ S ⩽ (1 + ζ )a.

Non-stationary initial conditions. In Theorems 1 and 2 we considered initial coordinates of the particles close to the fixed
lattice points−ka. Herewe considermore natural initial conditionswith restrictions only on the distances between particles.
Denote

d∗
=

amax + αvmax

ω2 . (15)

Theorem 3. Let the initial conditions be

(1 − θ )d ⩽ rk(0) ⩽ (1 + θ )d, |żk−1(0) − żk(0)| ⩽ β, k = 1, 2, . . . (16)

for some β ⩾ 0, 0 ⩽ θ < 1. Assume moreover that

η = max

⎛⎝d∗

d
,

θ +
2β
αd√

1 − ( 2ω
α
)2

⎞⎠ < 1. (17)

Then we have the following stability bounds

(1 − η)d ⩽ I ⩽ S ⩽ (1 + η)d. (18)

Remark 2. If β = θ = 0, one can prove the same result for the case α = 2ω.

Corollary 1. Assume that

rk(0) = zk−1(0) − zk(0) = d, żk(0) = ż0(0), k = 1, 2, . . . . (19)

If moreover

d∗ < d

then

d − d∗ ⩽ I ⩽ S ⩽ d + d∗. (20)

Remark 3. It is natural to consider the stability problem for more general initial conditions. Assume we know the initial
conditions and the parameters vmax, amax of the leader. We want to know whether the parameters α, ω, d such that
0 < I ⩽ S < ∞, exist. Namely, we will prove that for any z0(t), satisfying (6) and the initial conditions such that:

min
k⩾1

(zk−1(0) − zk(0)) = A > 0, max
k⩾1

(zk−1(0) − zk(0)) = B < ∞, max
k⩾1

|żk−1(0) − żk(0)| = C < ∞,

the parameters α, ω, d, such that 0 < I ⩽ S < ∞, always exist.

Theorems 1 and 3 and Corollary 1
(1) guarantee that there are no collisions between particles (by the lower bound),
(2) provide lower bound for the density of the flow (by the upper bound), that is the mean distance between particles

remains bounded.
(3) do not guarantee that the velocities remain positive. Such conditions were obtained above in Theorem 2.

Flow density. Let n(t, I) be the number of units on the interval I ⊂ R at time t . Instead of the density (|I| is the length of I)

ρ(t) = lim inf
|I|→∞

n(t, I)
|I|

it is more convenient to consider the inverse density, or the mean distance between cars 0, 1, . . . ,N

LN (t) =
1
N

N∑
k=1

rk(t) =
z0(t) − zN (t)

N
.
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Theorem 4. For any α > 0, ω > 0 assume that the initial conditions (16) are such that the following finite limits exist

lim
N→∞

LN (0) = L(0), lim
N→∞

L̇N (0) = L̇(0),

Then for any t there exists

lim
N→∞

LN (t) = L(t),

and moreover

L(t) = L(0) +
1
α
(1 − e−αt )L̇(0).

Note that if moreover dzk(0)
dt are uniformly bounded then dL

dt (0) = 0, that is the mean length does not change with time.
Due to convergence to stationary movement, in the case when z0(t) = vt , the flow current converges, at any point, to the

current of the stationary flow

va−1
=

ω2v

ω2d + αv
.

Restricted stability. Here we consider the region
√
2ω ≤ α ≤ 2ω, where we can prove stability only for asymptotically

homogeneous initial conditions.

Theorem 5. Let
√
2ω ⩽ α ≤ 2ω and let z0(t) be such that

ω

∫
∞

0
|z0(t) − vt|dt = σa < ∞

for some σ ⩾ 0. Assume also that the initial conditions are ‘‘summable’’, that is
∞∑
k=1

|zk(0) + ka| ⩽ θa,
∞∑
k=1

|żk(0) − v| ⩽ βv

for some θ, β ⩾ 0. Then

I ⩾ (1 − 2η)a, S ⩽ (1 + 2η)a,

where

η = 2
(
θ +

βv

aω
+ σ

)
.

It follows from this theorem that the upper bound S < ∞ holds for all parameters, but the lower (safety) bound I > 0
holds if

θ +
βv

aω
+ σ <

1
4
.

Theorem 6. Assume again that
√
2ω ⩽ α ≤ 2ω, the initial conditions satisfy

∞∑
k=1

|rk(0) − d| ⩽ θd,
∞∑
k=1

|żk−1(0) − żk(0)| ⩽ β, k = 1, 2, . . .

for some β ⩾ 0, 0 ⩽ θ ⩽ 1, and the leader moves as

1
ω

∫
+∞

0
|z̈0(t) + αż0(t)|dt = σd < ∞

for some σ ⩾ 0. Then

I ≥ d(1 − η), S ≤ d(1 + η),

where

η = 2
(
θ +

β

ωd
+ σ

)
.

It follows that the safety condition I > 0 holds if

θ +
β

ωd
+ σ <

1
2
.
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2.2. Instability

Here we will prove instability for the region α <
√
2ω. The first reason for the instability is the absence of dissipation,

that is if α = 0. The following result shows this even for the most favorable initial conditions.

Theorem 7. Assume that α = 0 and

zk(0) = −ka,
dzk
dt

(0) = v, k ≥ 0 (21)

z0(t) = tv + sinω0t, v > 0, ω0 ̸= 0.

Then for any k ⩾ 2 we have due to resonance

inf
t⩾0

rk(t) = −∞.

Nowwe show that, even under the smallest perturbation of the initial conditions (21) and even simpler leader trajectory,
we get much more general instability condition.

Theorem 8. Assume α < 2ω, z0(t) = vt and initial conditions such that:

zk(0) = −ka, żk(0) =

{
v, k > 1,
v + ϵ, k = 1 (22)

where ϵ is some real number. Then for any µ > 1
τ
, τ =

√
ω2 −

α2

4 the following asymptotic formula takes place:

zk+1(t) − (vt − (k + 1)a) ∼
c

√
k
ekf (µ) sin(Ω(µ)k + φ0(µ)), when t = µk, k → ∞

where

f (µ) = −
αµ

2
+ 1 − ln

(
2τ
µω2

)
,

φ0(µ) = arctan(ν), ν =

√
µ2τ 2 − 1,Ω(µ) = ν − φ0(µ) = ν − arctan(ν), c = ϵ

√
2τ
πνµ

.

The necessary properties of the function f (µ) will be obtained in Lemma 6.

Corollary 2. Assume α <
√
2ω and z0(t) = vt. Assume the initial conditions (22). Then

I = −∞, S = ∞.

While proving the theorem we will see that corollary 2 holds even for more general initial conditions:

max
k

|zk(0) + ka| ⩽ ϵ1, max
k

|żk(0) − v| ⩽ ϵ2,

with some non negative ϵ1, ϵ2 ⩾ 0.

3. Stability: proofs

3.1. Theorem 3, Corollary 1, Remark 1

It is very convenient to use new variables

x0(t) =
z̈0(t) + αż0(t)

ω2 , xk(t) = zk−1(t) − zk(t) − d = rk(t) − d, k = 1, 2, . . . . (23)

Using

z̈k = ω2xk − αżk = ω2xk − α(żk−1 − ẋk), z̈k = z̈k−1 − ẍk

we get the main equations (4) in terms of these variables:

ẍk + αẋk + ω2xk = z̈k−1 + αżk−1 = ω2xk−1, x0 =
z̈0 + αż0
ω2 . (24)

Lemma 1. Assume that

sup
t⩾0

|x0(t)| = Q < ∞.
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Let also the initial conditions be such that

sup
k⩾1

|xk(0)| = A < ∞, sup
k⩾1

|ẋk(0)| = C < ∞.

If α > 2ω then

sup
k,t

|xk(t)| ⩽ Q ′
= max

{
Q ,

αA + 2C
√
α2 − 4ω2

}
.

Proof. The solution of the linear equation (24) for any fixed k is of course well-known. Namely, if the roots

λ± = −
α

2
±

√
α2

4
− ω2

of the characteristic equation

G(λ) = λ2 + αλ+ ω2
= 0 (25)

are different, then the solution can be written as

xk(t) = xk,+(t) + xk,−(t)

where

xk,±(t) = Ck,±eλ±t
+ ω2 eλ±t

G′(λ±)

∫ t

0
e−λ±t1xk−1(t1)dt1

= Ck,±eλ±t
+ ω2 eλ±t

2λ± + α

∫ t

0
e−λ±t1xk−1(t1)dt1.

Using the initial conditions one finds

Ck,± =
1
2γ

((
±
α

2
+ γ

)
ak ± bk

)
, γ =

√
α2

4
− ω2,

where xk(0) = ak, k ∈ N, ẋk(0) = bk, k ∈ N. As λ+ > λ− we get:

|xk(t)| ≤ |Ck,+| exp(λ+t) + |Ck,−| exp(λ−t) + sup
s≥0

|xk−1(s)|
ω2

2γ

∫ t

0
|exp(λ+(t − t1)) − exp(λ−(t − t1))|dt1.

Let us prove that for yk = sups≥0|xk(s)| the following inequalities hold

yk ≤ max
{
yk−1,

αA + 2C
2γ

}
. (26)

Putting t − t1 = s and using ω2
= λ+λ− and

|Ck,±| ≤
( α2 ± γ )A + C

2γ
we get:

|xk(t)| ≤ |Ck,+| exp(λ+t) + |Ck,−| exp(λ−t) + sup
s≥0

|xk−1(s)|
ω2

2γ

∫ t

0
(exp(λ+s) − exp(λ−s))ds

≤
1
2γ

((α
2

+ γ

)
A + C + yk−1λ−

)
exp(λ+t) +

1
2γ

((α
2

− γ

)
A + C − yk−1λ+

)
exp(λ−t) + yk−1. (27)

To finish the proof we need the following simple lemma.

Lemma 2. Let us consider the function

f (t) = a exp(λ+t) + b exp(λ−t) + c

for some constants b, c > 0, a ∈ R, λ− < λ+ < 0. For every t ≥ 0 the following statement is true:

|f (t)| ≤ max{c, a + b + c}.
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Proof. There are two cases:
1. a > 0, then it is obvious that sups≥0|f (s)| = f (0) = a + b + c.
2. a < 0, in this case the set of such t , that the derivative of the function is positive, is:

t >
1

λ− − λ+

ln
(

−
a
b
λ+

λ−

)
.

The point t0 =
1

λ−−λ+
ln(− a

b
λ+

λ−
) is the minimum point. If t0 < 0, then sups≥0|f (s)| tops in the point +∞ and is equal to c . If

t0 > 0, then sups≥0|f (s)| tops in the point 0 or in the point +∞.
Having applied this lemma to (27) we get (26) and

|xk(t)| ≤ max{Q , B} = Q ′

where B =
αA+2C

2γ . Lemma 1 is thus proved.

To prove theorem 3 it is sufficient to put A = θd, C = β, Q = d∗. To prove Corollary 1 we can put θ = β = 0.

Remark 3. We use here Theorem 3 and the notation therein. From

(1 − θ )d = A, (1 + θ )d = B, β = C, (28)

we find first the parameters d, θ,

d =
A + B
2

, θ =
B − A
2d

=
B − A
A + B

.

Then we find α, ω such that α > 2ω and η < 1. Namely, we choose α sufficiently large and take any ω so that
1

√
d

√
amax + αvmax < ω <

α

2
.

Then the inequality (17) evidently holds.

3.2. Theorem 1

Note that the functions qk(t), k = 1, 2 . . ., defined by

zk(t) = vt − ka + qk(t), (29)

satisfy the system of Eqs. (24) with the initial conditions:

q0(t) = z0(t) − vt, qk(0) = zk(0) + ka, q̇k(0) = żk(0) − v, k = 1, 2 . . .

Then

sup
k

|qk(0)| ⩽ θa, sup
k

|q̇k(0)| ⩽ βv, sup
t

|q0(t)| = δa.

Using Lemma 1 one has the lower bound

rk(t) = zk−1(t) − zk(t) = a + qk−1 − qk(t) ⩾ a − 2 sup
k,t

|qk(t)| = a(1 − ϵ).

The upper bound for rk(t) can be obtained similarly.

3.3. Theorem 2

Differentiating the system (24) we get the equations for velocities vk(t) = żk(t).

v̈k = ω2(vk−1 − vk) − αv̇k, (30)

with initial conditions:

vk(0) = v, v̇k(0) = 0.

So for every k = 0, 1, 2, . . .:

vk(t) = v + uk(t),

where uk satisfy equations (30) with zero initial conditions u0(t) = v0(t) − v, uk(0) = u̇k(0) = 0, k ≥ 1. So from Lemma 1
for uk we get that for any k = 1, 2, . . . and t ⩾ 0

|uk(t)| ⩽ sup
t⩾0

|u0(t)| = sup
t⩾0

|ż0(t) − v|.

This proves assertion (1) of the Theorem.
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Let us prove now assertion (2). The functions qk(t) defined in (29) satisfy the system (24) with initial conditions:

qk(0) = zk(0) + ka, q̇k(0) = żk(0) − v.

Moreover q0(t) = z0(t) − vt = 0 for all t ⩾ 0. By induction we get:(
d2

dt2
+ α

d
dt

+ ω2
)k

qk = 0,

which gives

qk(t) = eλ1tPk(t) + eλ2tQk(t),

where Pk,Qk are the polynomials of degree k − 1 and λ1, λ2 are the roots of Eq. (25). Note that, for any ω, α > 0, the real
parts of λ1, λ2 are negative.

The last statement follows if we put δ = 0 in (11), which gives (14).

3.4. Theorems 5 and 6

Before proving them, we need new notation. Introduce the Banach space

X = {ψ = (q, p), q = {qk}k=1,2..., p = {pk}k=1,2... : ∥q∥ = sup
k

|qk| < ∞, ∥p∥ = sup
k

|pk| < ∞, qk, pk ∈ R} (31)

with the norm

∥ψ∥ = max{∥q∥, ∥p∥}.

Define also the bounded (non-selfadjoint) linear operator in X

Aψ = ψ ′, ψ = (q, p), ψ ′
= (q′, p′), (32)

where

q′
= p, p′

k = ω2(qk−1 − qk) − αpk, q0 = 0.

Then the dynamics (24), if qk = xk, pk = ẋk, k ≥ 1 and x0(t) = 0, can be written as

ψ̇ = Aψ H⇒ ψ(t) = eAtψ(0). (33)

Proof of Theorems 5 and 6 is similar to the proof of Theorem1 and 3, but one should use, instead of Lemma1, the following
lemma.

Lemma 3. Consider the system of equations

d2qk
dt2

+ α
dqk
dt

+ ω2qk = ω2qk−1, k = 1, 2, . . . (34)

that is the same as (24), where q0(t) is continuous and absolutely integrable on R+:∫
+∞

0
|q0(t)|dt = Q < ∞.

Assume the following initial conditions
∞∑
k=1

|qk(0)| = a < ∞,

∞∑
k=1

|q̇k(0)| = b < ∞.

If
√
2 ⩽ α ≤ 2ω then

sup
k,t

|qk(t)| ⩽ Q ′
= 2a +

2b
ω

+ 2ωQ .

Proof. The system (34) can be written in the operator form, as in

ψ̇ = Aψ + ω2q0(t)g1, ψ(0) = ψ, (35)

where g1 = (0, e1)T ∈ X , e1 is the vector (1, 0, 0, 0 . . .). Then the solution of (35) is quite standard, see [5],

ψ(t) = etAψ(0) + ω2
∫ t

0
q0(s) e(t−s)Ag1 ds,
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and

etA = −
1

2π i

∫
Γ

eztR(z) dz, (36)

where Γ is a closed contour around the spectrum of A, and R(z) is the resolvent of A, see (45). Using Lemma 5 we get

qk(t) = q(L)k (t) + q(N)
k (t), (37)

where

q(L)k (t) = (etAψ(0))(qk) = −
1

2π i

k−1∑
j=0

∫
Γ

φj(z)lk−j(z)etzdz, (38)

q(N)
k (t) =

ω2

2π i

∫
Γ

φk−1(z)
z2 + αz + ω2Q (t, z)dz, Q (t, z) =

∫ t

0
e(t−s)zq0(s)ds. (39)

Then change of variables gives

Q (t, z) =

∫ t

0
eszq0(t − s)ds =

∞∑
k=0

zk

k!

∫ t

0
skq0(t − s)ds.

As for any t ⩾ 0⏐⏐⏐⏐∫ t

0
skq0(t − s)ds

⏐⏐⏐⏐ ⩽ tkQ ,

the Q (t, z) is entire for any t ⩾ 0. Note that the integrands in the formulas (38)–(39) are meromorphic functions in the
complex plane, having exactly two poles z1, z2, corresponding to the multiplicity of the roots of the polynomial G(z). By
Theorem 9, the points z1, z2 belong to the spectrum of A, and by the same theorem, we can to choose the contour Γ so that
the following 3 conditions hold

1. if z ∈ Γ then Re(z) ⩽ 0;
2. σ (A) ∩ Γ = {0};
3. the points z1, z2 lie inside the domain bounded by Γ .

Using formulas (38)–(39) for the chosen Γ , we will get estimates of the functions q(L)k , q
(N)
k . It is clear that |φ(z)| ⩽ 1 for

all z ∈ Γ . Then

|q(L)k (t)| ⩽
1
2π

k−1∑
j=0

∫
Γ

|φj(z)∥lk−j(z) ∥ etz∥dz| ⩽ c ′

qa + c ′

pb,

where the constants

c ′

q =
|Γ |

2π
1
ω2 max

z∈Γ
|α + z|, c ′

p =
|Γ |

2π
1
ω2 .

Similarly we get estimate for q(N)
k :

|q(N)
k (t)| ⩽ Q

|Γ |

2π
.

We want to estimate the length of the contour Γ , satisfying the conditions 1–3. Assuming that α < 2ω, let the points z1, z2
are enumerated so that

z1 = −
α

2
+ ir, z2 = −

α

2
− ir, r =

√
ω2 −

α2

4
.

Then z2 + αz +ω2
= (z − z1)(z − z2), and if z ∈ σ (A), then at least one of the inequalities |z − z1| ⩽ ω or |z − z2| ⩽ ω holds,

see Theorem 9 below. It follows that σ (A) belongs to the union of two circles

K1 = {z ∈ C : |z − z1| ⩽ ω}, K2 = {z ∈ C : |z − z2| ⩽ ω}.

Note that both circles intersect the real axis at the points −α and 0. That is why Γ can be presented as the union of a part of
the circle bounding K1, segment of the imaginary axis and a part of the circle bounding K2. Then

|Γ | ⩽ 4πω, max
z∈Γ

|z + α| = 2ω.

and finally

|q(L)k (t)| ⩽ 2a +
2b
ω
, |q(N)

k (t)| ⩽ 2ωQ .
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The proof of Theorem 6 is similar to the proof of Theorem 5, only instead of the variables qk(t), introduced therein, one
should use variables xk(t), introduced in (23).

3.5. Theorem 4

Rewriting LN in terms of xk

LN (t) =
z0(t) − zN (t)

N
=

∑N
k=1 xk(t)
N

+ d, t ⩾ 0 (40)

and using Eqs. (24), we get the linear equation for LN

L̈N + αL̇N + ω2LN =
ω2

N

N∑
k=1

xk−1 + dω2
= ω2

(
N∑

k=1

xk
N

+ d +
x0 − xN

N

)
= ω2LN + ω2 x0 − xN

N

or

L̈N + αL̇N = fN (t) = ω2 x0 − xN
N

. (41)

It is easy to see that the solution of this equation is

LN (t) = LN (0) +
1
α
(1 − e−αt )L̇N (0) + gN (t)

where

gN (t) =

∫ t

0
e−α(t−s)hN (s)ds, hN (s) =

∫ s

0
fN (s′)ds′.

Lemma 4. There exists smooth function c(t) on R+ such that for any k ≥ 1 and any t ≥ 0

|xk(t)| ⩽ c(t).

Proof. The solution can be written as in (37)

xk(t) = q(L)k (t) + q(N)
k (t).

We can use formula (37), choosing any contour Γ , which does not intersect the spectrum of A. It is clear that for any
z ∈ Γ we have |φ(z)| < q < 1 for some q. Then

|q(L)k (t)| ⩽
|Γ |

2π
θdc + β

1 − q
1
ω2 u(t), u(t) = max

z∈Γ
|ezt |, c = max

z∈Γ
|z + α|.

Similarly one can get the bound for q(N)
k (t).

It follows from this lemma that for any 0 < T < ∞ the sequence fN (t) → 0, as N → ∞, uniformly in t ∈ [0, T ]. Thus for
any t > 0

lim
N→∞

gN (t) = 0

and the theorem follows.

4. Instability: proofs

4.1. Theorem 7

This is just an exercise to see that the reason for this is the resonance effect: already x1(t) obtains harmonic components
with frequencies ω,ω0, that implies resonance for the particle 2 as its proper frequency is ω. Here

d2x1(t)
dt2

+ ω2x1(t) = f (t) = −
1

(ω0ω)2
d2z0(t)
dt2

(42)

with x1(0) = ẋ1(0) = 0. In case ω = ω0 the proper frequency coincides with the frequency of the external force, and already
the first particle will have resonance behavio⁀r that is supt≥0 |x1(t)| = ∞. Consider now the case when ω ̸= ω0. The Eq. (42)
has the solution

x1(t) =
1

ω2 − ω2
0

(
sin(ω0t) −

ω0

ω
sin(ωt)

)
. (43)

That is why already for the particle 2 the resonance occurs. Note however, that the first collision can occur between particles
k and k − 1 for k > 2.
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4.2. Spectrum, Theorem 8 and Corollary 2

Remarks concerning spectrum.

Theorem 9. The spectrum σ (A) of A is the set

σ (A) = {z ∈ C : |z2 + αz + ω2
| ⩽ ω2

}. (44)

As a corollary we have:
(1) if α ⩾

√
2ω then for any z ∈ σ (A) we have Re(z) ⩽ 0 and the equality takes place only if z = 0.

(2) if α <
√
2ω then σ (A) contains some segment of the imaginary axis together with a neighborhood.

Proof. Let

R(z) = (A − zE)−1, z ∈ C (45)

be the resolvent of A. We use the following Lemma.

Lemma 5. Let ψ = (q, p) ∈ X, ψ ′
= (q′, p′) ∈ X and

R(z)ψ = ψ ′.

Then for any k = 1, 2, . . .

q′

k =

k−1∑
j=0

φj(z)lk−j, p′

k = qk + zq′

k

where

φ(z) =
ω2

z2 + αz + ω2 , lk(z) = −
(α + z)qk + pk
z2 + αz + ω2 . (46)

Proof. From the definition

ψ = (A − zE)ψ ′.

Then q = p′
− zq′ and p′

= q + zq′. Moreover, we have the system of equations

pk = ω2(q′

k−1 − q′

k) − (α + z)p′

k = ω2(q′

k−1 − q′

k) − (α + z)(qk + zq′

k)

which, using (46), can be rewritten as

q′

k =
ω2

z2 + αz + ω2 q
′

k−1 −
(α + z)qk + pk
z2 + αz + ω2 = φ(z)q′

k−1 + lk(z).

Finally

q′

k =

k−1∑
j=0

φj(z)lk−j. (47)

Proof of Theorem 9. Let us consider two cases. Let |φ(z)| = q < 1. Note that for any k

|lk(z)| ⩽ |
(α + z) + 1
z2 + αz + ω2 |∥ψ∥ = c.

It follows that for any k

|q′

k| ⩽ c
1 − qk

1 − q
⩽

c
1 − q

.

Then the operator R(z) is bounded and z ̸∈ σ (A). Another possibility is |φ(z)| > 1. Consider the sequence ψn = (qn, pn) ∈ X ,
where

qn = 0

pnk =

{
1, k < n
0, k ⩾ n.

Denote ψ ′
n = R(z)ψn, ψ

′
n = (q̂n, p̂n). From formula (47) we get

q̂nn = −
1

z2 + αz + ω2

1 − φn(z)
1 − φ(z)

.
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That is why for |φ(z)| > 1

∥R(z)ψn∥ ⩾
1

|z2 + αz + ω2|

⏐⏐⏐⏐1 − φn(z)
1 − φ(z)

⏐⏐⏐⏐ → ∞, n → ∞.

However, it is evident that ∥ψn∥ = 1 and thus R(z) is not bounded. We conclude then that z ∈ σ (A). As the spectrum is a
closed subset, we get the proof of the first part of the theorem. Now let us prove the two other assertions.

For z = a + ib, a, b ∈ Rwe have

z2 + αz + ω2
= a2 − b2 + αa + ω2

+ i(2ab + αb).

Then the inequality |z2 + αz + ω2
| ⩽ ω2 is equivalent to the inequality

(a2 + αa + ω2
− b2)2 + b2(2a + α)2 ⩽ ω4

or

b4 + b2((2a + α)2 − 2(a2 + αa + ω2)) + (a2 + αa + ω2)2 − ω4 ⩽ 0. (48)

If we denote

A = (2a + α)2 − 2(a2 + αa + ω2) = 2a2 + 2αa + α2
− 2ω2

B = (a2 + αa + ω2)2 − ω4
= a(a + α)(a2 + αa + 2ω2).

the inequality (48) can be rewritten as

h(a, b) = b4 + Ab2 + B ⩽ 0.

Consider the case α ⩾
√
2ω. Then for any a > 0 and b ∈ R we have evidently h(a, b) > 0, that is z ̸∈ σ (A). If a = 0 then

B = 0 and A ⩾ 0. It follows that the unique b such that h(0, b) ⩽ 0 is b = 0. Thus the first assertion is proved.
Let now α <

√
2ω. For a = 0 we have A = α2

− 2ω2 < 0, B = 0. It follows that there exists b ∈ [−
√

−A,
√

−A] such
that h(0, b) < 0. From continuity of h it follows that there is some interval of the imaginary axis around this b, belonging to
the spectrum.

Remark 4. Stability problems, considered here, cannot be completely treated by spectral methods. In fact, the stability
concern the value of supt⩾0∥q(t)∥. This question was studied by many authors, in particular, by Scottsdale and Rein, see [5].
Their results concern the case of ϵ-dichotomous operators, i.e. when the spectrum of the operator A is the union of two
subsets σ+, σ− of the complex plane, such that σ+ belongs to the open right half-plane and σ− belongs to the open left
half-plane. We have shown that for any parameters the spectrum contain the point 0 and thus A is not ϵ-dichotomous
operator.

Proof of Theorem 8. Using formula (36), Lemma 5 and the theorem assumptions one gets:

qk+1(t) = −
ϵ

2π i

∫
Γ

eztφk(z)dz.

The integrand has two poles (roots of the characteristic equation). Because of α <
√
2ω the roots are:

λ1 = −
α

2
+ iτ , λ2 = −

α

2
− iτ , τ =

√
ω2 −

α2

4
.

By Jordan lemma, for any a > −
α
2

qk+1(t) = −
ϵ

2π i

∫ a+i∞

a−i∞
eztφk(z)dz.

For t = µkwe can rewrite this as

qk+1(µk) = F (µ, k) = −
ϵ

2π i

∫ a+i∞

a−i∞
exp

(
k(µz − ln(z2 + αz + ω2) + lnω2)

)
dz (49)

= −
ϵ

2π i

∫ a+i∞

a−i∞
exp(kS(z))dz, S(z) = µz − ln(z2 + αz + ω2) + lnω2. (50)

The mapping z2 + αz + ω2 transforms the line a + ib, b ∈ R to parabola. Thus one can select holomorphic branch of the
logarithm on any such line with a > −

α
2

ln(z2 + αz + ω2) = ln|z2 + αz + ω2
| + i arg(z2 + αz + ω2).
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Now we use the saddle point method. Saddle points are found out from the equation:

S ′(z) = µ−
2z + α

z2 + αz + ω2 = 0,

or from the quadratic equation

µz2 + (αµ− 2)z + ω2µ− α = 0. (51)

The discriminant

D = (αµ− 2)2 − 4µ(ω2µ− α) = α2µ2
+ 4 − 4µ2ω2

= −4µ2τ 2 + 4.

and we assume that

µ >
1
τ
.

Then D < 0 and there are two complex saddle points:

z± = z±(µ) =
2 − αµ± i

√
−D

2µ
= −

α

2
+

1
µ

±
i
µ

√
µ2τ 2 − 1.

To check that z±(µ) are simple saddle points, we should find the second derivative

S ′′(z±(µ)) = −
2

z2 + αz + ω2 +
(2z + α)2

(z2 + αz + ω2)2
|z=z±(µ) = −

2µ
2z± + α

+ µ2

= −
µ

1
µ

±
i
µ

√
µ2τ 2 − 1

+ µ2
= µ2

(
±i
√
µ2τ 2 − 1

1 ± i
√
µ2τ 2 − 1

)
.

This shows that S ′′(z±(µ)) ̸= 0. We shall put a = a(µ) = −
α
2 +

1
µ
in the formula (50) for F (µ, k)

F (µ, k) = −
ϵ

2π i

∫ a(µ)+i∞

a(µ)−i∞
exp(kS(z))dz.

To use the line a(µ) + ib, b ∈ R as the contour for the saddle point method one should check two following conditions

(1) The function

H(y) = Re(S(a + iy))

reaches its maximum only at two points: Im(z±) = ±
1
µ

√
µ2τ 2 − 1. In fact

H(y) = µa −
1
2
ln
(
(a2 − y2 + αa + ω2)2 + ((2a + α)y)2

)
+ lnω2

= µa + lnω2
−

1
2
ln h(y2), h(s) = (s − (a2 + αa + ω2))2 + (2a + α)2s.

And it is sufficient to check that the graph of h(s) is the parabola with the vertex:

s0 = −
(2a + α)2 − 2(a2 + αa + ω2)

2
= −

4
µ2 − 2( α

2

4 −
α
µ

+
1
µ2 −

α2

2 +
α
µ

+ ω2)

2

= −

2
µ2 +

α2

2 − 2ω2

2
= τ 2 −

1
µ2 = Im(z±)2.

(2) In some neighborhoods of the saddle point z± the contour goes through two different sectors where Re(S(z)) <
Re(S(z±)). To prove this put

ν =

√
µ2τ 2 − 1

and rewrite the expression for S ′′(z±):

S ′′(z±) = µ2 ±iν
1 ± iν

= µ2 ν
2
± iν

1 + ν2
=
ν

τ 2
(ν ± i). (52)

Further onwe agree that the arguments of complex numbers take values in the interval (−π, π]. Using (52) we obtain:

arg(S ′′(z+)) ∈

(
0,
π

2

)
, arg(S ′′(z−)) ∈

(
−
π

2
, 0
)
.
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The argument of the axis of the saddle point (p. 84 [6]) z± is

φ± =
π

2
−

1
2
arg(S ′′(z±)).

It follows that

φ+ ∈

(π
4
,
π

2

)
, φ− ∈

(
π

2
,
3π
4

)
.

In both cases the angle between the integration contour (i.e. the line a(µ) + ib) and the saddle point axis is less then π
4 .

That means that the line a(µ) + ib can be used as the saddle point method contour (see for example,¸p. 89 of[6]).
So by formula (5.7.2), p. 88 of [6], we have the asymptotic formula

F (µ, k) ∼ −
ϵ

2π i

(
a+ekS(z+)

+ a−ekS(z−)) , as k → ∞, (53)

where the constants

a± =

√
2π

k|S ′′(z±)|
s±, s± = exp iφ±.

We choose the signs of the constants s± so that the angle between the saddle point axis (this angle is determined with an
accuracy to π ) and the contour of integration were acute (see [6]).

One can rewrite the right part of the formula (53)

S(z±) = µz± − ln
(
2z± + α

µ

)
+ lnω2

= µz± − ln
(

2
µ2 (1 ± i

√
µ2τ 2 − 1)

)
+ lnω2.

Obviously,

exp(kS(z−)) = exp(kS(z+)),

and arg(S ′′(z−)) = −arg(S ′′(z+)). Then

s− = exp(−iφ−) = exp
(
−i
(π
2

+ arg(S ′′(z+))
))

= exp(−iπ ) exp(iφ+) = −s+.

Here using (52) we get

|S ′′(z+)| = |S ′′(z−)| =
ν

τ 2

√
ν2 + 1 =

νµ

τ

and

F (µ, k) ∼ −
ϵ

2π i

(
a+ exp(kS(z+)) − a+ exp(kS(z+))

)
= −

ϵ

π
Im(a+ exp(kS(z+))) (54)

Re(S(z+)) = µa(µ) − ln
⏐⏐⏐⏐ 2
µ2 (1 + i

√
µ2τ 2 − 1)

⏐⏐⏐⏐+ lnω2
= µa(µ) − ln

(
2τ
µ

)
+ lnω2

= f (µ)

arg
(
1 + i

√
µ2τ 2 − 1

)
= arg S ′′(z−) +

π

2
= φ+

Im(S(z+)) =

√
µ2τ 2 − 1 − φ+ = ν − φ+.

Substituting this to formula (54), we get

F (µ, k) ∼ −ϵ

√
2τ
πkνµ

ekf (µ)Im(ei(φ++k(ν−φ+))) = ϵ

√
2τ
πkνµ

ekf (µ) sin(Ω(µ)k + φ0(µ))

where

φ0(µ) = φ+ = arctan(ν), Ω(µ) = ν − φ+ = ν − arctan(ν).
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Corollary 2. We need the following

Lemma 6.

1. If α <
√
2ω then.

sup
µ> 1

τ

f (µ) > 0

2. If
√
2ω ⩽ α < 2ω then

sup
µ> 1

τ

f (µ) ⩽ 0.

Proof. We have:

f ′(µ) = −
α

2
+

1
µ
.

It follows that on the interval (0, 1
α
2
) the function f (µ) is increasing, and for µ > 1

α
2
it is decreasing. Thus the function f

obtains its maximum at the point µ∗
=

1
α
2
:

f (µ∗) = − ln

(
1
2ω
α

2τ
ω

)
= − ln

(
2x
√
1 − x2

)
, x =

α

2ω
< 1.

As for all x ∈ (0, 1) we have x2(1 − x2) ⩽ 1
4 , with equality only for x =

1
√
2
, we get

f (µ∗) ⩾ 0

where the equality is obtained only for α =
√
2ω. Consider two cases:

1. µ∗ > 1
τ
. This is equivalent to the inequality α <

√
2ω, from where the first assertion of the Lemma follows.

2. µ∗ ⩽ 1
τ
. This is equivalent to the inequality

√
2ω ⩽ α. As f is decreasing for µ > µ∗, then

sup
µ> 1

τ

f (µ) = f
(
1
τ

)
.

We have:

f
(
1
τ

)
= −

α

2τ
− ln

(
τ 2

ω2

)
+ 1 − ln 2 = 1 − ln 2 −

x
√
1 − x2

− ln(1 − x2) = h(x), x =
α

2ω
⩾

1
√
2

h′(x) = −
1

√
1 − x2

−
x2

(1 − x2)
√
1 − x2

+
2x

1 − x2
=

−1 + 2x
√
1 − x2

(1 − x2)
√
1 − x2

= −
(x −

√
1 − x2)2

(1 − x2)
√
1 − x2

< 0, as x < 1.

It follows that the function h is monotone decreasing on [0, 1). Also, it follows that

f
(
1
τ

)
⩽ h

(
1

√
2

)
= 0.

This gives the second assertion of the Lemma.

For t = µk, k → ∞ we have:

Rk = rk+1(µk) = zk(t) − zk+1(t) = a + qk − qk+1

∼ a +
c

√
k − 1

e(k−1)f (µ)

(
sin(Ω(µ)(k − 1) + φ0) −

√
k − 1
k

ef (µ) sin(Ω(µ)k + φ0)

)
.

We chose µ so that f (µ) > 0 and Ω(µ) is irrational. There exists a sub-sequence kn, n = 1, 2 . . ., such that kn → ∞ as
n → ∞ and

lim inf
n→∞

sin(Ωkn + φ0) = −1, lim sup
n→∞

sin(Ωkn + φ0) = 1.
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Obviously then:

lim inf
n→∞

Rkn = −∞, lim sup
n→∞

Rkn = +∞.

Corollary 2 is proved.

5. Related results and possible perspective

Deterministic chains of cars were considered in many papers where interesting wide range results were obtained for
sufficiently general control protocols. We give here a short review of some of these results and explain important difference
between these results and our estimates. Speaking shortly, we consider the simplest model of the infinite chain of cars, with
two control parameters only butwith general initial conditions and generalmotion of the leader.We obtain for this case very
detailed results and, in particular, the complete phase diagram. Moreover, with rigorous proofs of necessary and sufficient
conditions for two definitions of stability.

In the following review we use mostly the notation of our paper. General overview one can find in the book [7].

Integral functionals. In [8,9] and in references therein, the following model is considered

z̈n + αżn = un, n = 1, . . . ,M,

where α > 0, zn = zn(t) is the coordinate of the nth car on the real axis, u1(t), u2(t), . . . , uM (t) — control functions, which
should be chosen to minimize the functional

J =
1
2

∫
∞

0

M+1∑
n=1

a(zn−1(t) − zn(t) − d)2 + b(żn(t) − v)2 + c(un(t) − αv)2dt, uM+1 = αv

where a, b, c are some-positive constants, v is the safe velocity and d is the safe distance between cars. Moreover, it is
assumed that

z0(t) = vt, zM+1(t) = vt − (M + 1)d.

This functional has an integral character, and does not guaranty that cars will not collide.
On the contrary, in our paper we consider local conditions under which that following inequalities hold

I = inf
t,n

(zn−1(t) − zn(t)) > 0, S < ∞ (55)

which guaranty the absence of collisions and everywhere positive density.

String stability. Another cluster of papers deals with the so called ‘‘string stability’’ [10–27]. Common definition of the string
stability one can find, for example in [10,11] and reviews in [12,13]. In some cases the string stability and our conditions (55)
seem to be equivalent. Most papers consider zero initial conditions for separation distance errors: as our conditions (19),
but also, see for example [14], the analog of our stationary conditions.

Among the papers where non-zero initial conditions are studied, we discuss in more detail the results of the papers [10,
11,15,16]. In [10,11] a general model was considered. The equations for this model are the following (in our notation)

Mkz̈k =
1

1 + a
(z̈k−1 + az̈0 + (b + λ)(żk−1 − żk) + (c + λa)(ż0 − żk) + Zk(t))

where

Zk(t) = λb(zk−1 − zk) + λc(z0 − zk + Dk),

a, b, c ≥ 0, λ,Mk,Dk are fixed constants. Under some conditions on the movement z0(t) of the leader, some bounds from
above, uniform in k, t , for |rk(t)| = |zk−1(t) − zk(t)| were obtained. From these formulas it is clear that our model is not a
particular case of this one.

In [16] the chain, infinite to both sides, is considered. The control for the car k assumes the knowledge of coordinates and
velocities of some number of other cars. The author defines ‘‘practical string stability’’ and obtains sufficient condition for
string stability and for this kind of stability which is similar to our ‘‘restricted stability’’.

In [15] one-side infinite chain of cars is considered under the initial conditions where only one distance between cars is
deviated from zero condition.

It is important obviously to consider more general control protocols, for arbitrary ‘‘information graph’’, see [17,18].
Now we want to explain why the zero initial conditions case is technically easier to study (one does not need recurrent

procedures). We will use our model as an example. Let uk(λ) denote the Laplace transform of xk(t) = zk−1(t) − zk(t) − d

uk(λ) =

∫
+∞

0
e−λtxk(t) dt, λ ∈ C.
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Zero initial conditions give the following simple formula

uk(λ) = H(λ)uk−1(λ), H(λ) =
ω2

λ2 + αλ+ ω2 .

From this it is easy to get the stability conditions as

|H(is)| ≤ 1, h(t) ≥ 0

for all s ∈ R, t ≥ 0, where h(t) is the inverse Laplace transform of H , see [7,19]. This implies our condition α ≥ 2ω, that can
be seen from Theorem 9. Note that there are similar results for more general protocols in [20–23].

Model similar to ours is [14], however¸ it is assumed that z0(t) = zN (t), that is the system is considered on the circle.
In [14] for zero initial conditions the sufficiency of the stability condition α > 2ω was rigorously proven.
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