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SERIES EDITOR’S PREFACE

‘Et moi, ..., si j’avait su comment ¢n revenir,
je 0’y serais point allé.’
Jules Verne

The scries is divergent; therefore we may be
able to do something with it.

One service mathematics has rendered the
human race. It has put common sense back
where it belongs, on the topmost shelf next
to the dusty canister labelled ‘discarded non-
sense’.

Eric T. Bell

O. Heaviside

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non-
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as:
‘One service topology has rendered mathematical physics ..."; ‘One service logic has rendered com-
puter science ...”; ‘One service category theory has rendered mathematics ... All arguably true. And
all statements obtainable this way form part of the raison d’étre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems cpportune to reexamine its scope. At the time I wrote

“Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘tree’ of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as ‘experimental
mathematics’, ‘CFD’, ‘completely integrable systems’, ‘chaos, synergetics and large-scale
order’, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of
interaction areas one should add string theory where Riemann surfaces, algebraic geometry, modu-
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonshine (and more)
all come together. And to the examples of things which can be usefully applied let me add the topic
‘finite geometry’; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
numerics, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the
extra mathematical sophistication that this requires. For that is where the rewards are. Linear
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models are honest and a bit sad and depressing: proportional efforts and results. It is in the non-
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci-
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com-
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace
and anticommuting integration, p-adic and ultrametric space. All three have applications in both
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre-
quently proved the shortest path between ‘real’ results. Similarly, the first two topics named have
already provided a number of ‘wormhole’ paths. There is no telling where all this is leading -
fortunately.

Thus the original scope of the series, which for various (sound) reasons now comprises five sub-
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis-
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical and/or
scientific specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;

- influences which the results, problems and concepts of one field of enquiry have, and have had,
on the development of another.

A random field is simply a collection of random variables one for each x € Z" or R" (of finite
chunks of these spaces). A free field is one with no interactions and until fairly recently they were
the only ones which had been studied in real depth. A Gibbs random field is obtained from a free
one by a ‘Gibbsean perestroika’ (the authors do indeed use this word in the Russian text) which
defines a new measure (in various ways) by specifying the Radon-Nikodyn derivative of the new
measure, p, with respect to the old free one, p, in terms of an interaction energy function. This is
the main theme of the book: the construction and study of random fields defined by such a finite
volume Gibbs specification (modification).

The interest in Gibbs random fields is great because a large number of spatial interaction
phenomena can be statistically described by such fields. The subject started in 1925 (with the Ising
model) and by now applications include ecology, statistical mechanics, image modelling and
analysis. Perhaps I should say potential applications because the underlying deeper theory has only
comparatively recently been developed: something to which the present authors have greatly contri-
buted. That deeper theory is most important; for instance the presence (or absence) of phase transi-
tions affects statistical inference and identifiability in image processing applications.

The new tool, one of the most powerful methods of contemporary mathematical physics, goes by
the name of cluster expansions. This allows one to obtain expressions for local random field
characteristics in terms of expansions depending only on a finite set of random field variables (the
clustors).

With this book (and its planned sequel) an additional substantial chunk of mathematics is in
place and ready to be applied. I am pleased to be able to offer the scientific community the chance

to peruse this English language version.

The shortest path between two truths in the
real domain passes through the complex
domain.

J. Hadamard

La physique ne nous donne pas seulement
I'occasion de résoudre des problemes ... elle
nous fait pressentir la solution.

H. Poincaré

Amsterdam, January 1991

Never lend books, for no one ever returns

them; the only books I have in my library

are books that other folk have lent me.
Anatole France

The function of an expert is not to be more
right than other people, but to be wrong for
more sophisticated reasons.

David Butler

Michiel Hazewinkel
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PREFACE

This book is intended for a wide range of readers: specialists in probability
theory will see new and fresh topics concerning random fields; specialists in
mathematical physics (quantum field theory or statistical physics) will be
interested in a thorough presentation of the cluster technique and its various
devices; for the remaining mathematicians, the book offers a number of new
algebraic, combinatorial, and analytic problems.

We will be occupied with explicit constructions of random fields. They
are based on a single method: the so-called Gibbs modification. What is
its meaning? The probability distribution of a finite system of random vari-
ables {£1,...,€n} (of a finite field) is most often given in terms of its density
p(z1,...,%,) with respect to some (usually Lebesque) measure on R". Gibbs
modification is a natural generalization of this method to the case of infinite
fields. The simplest infinite random fields are independent and Gaussian fields
and their functionals (until recently, they remained the only well-studied class
of fields). As to the Gibbs method of construction, one first introduces fields
with a distribution prescribed by a finite (local) density with respect to in-
dependent or Gaussian fields (a finite or local Gibbs modification) and then
passes to the weak limit of such distributions (a limit Gibbs modification);
this limit measure is already singular with respect to the original distribu-
tion, independent or Gaussian one. Random fields originating in this limit
(the thermodynamic limit) actually constitute the main subject of study in
the theory of Gibbs fields.

We will present one of the most powerful methods of investigation of Gibbs
fields, namely, the method of cluster expansions, and its numerous applica-
tions. With this method, any local characteristic of a field (finite-dimensional
distributions, mean values of local functions, etc.) can be represented in terms
of a series where each term depends on a finite group of field variables (“a
cluster”) and is expressed in terms of them in an explicit way. The idea of
the method goes back to the so-called virial expansions in statistical physics
and, on the other hand, to the diagram expansion in quantum field theory;
in its present-day form the method of cluster expansions represents a math-
ematicized development of these methods. Unfortunately, to apply a cluster
expansion, one needs a “small parameter,” i.e., the method appears in the

xi



xii Preface

form of a version of the perturbation theory up to now, even though by its
nature it seems to be more universal and, apparently, should have broader
applications. We hope that in the future, this limitation will be overcome.

Chapter 1 is an introduction to Gibbs fields; Section 0, in particular, is
written in an extremely elementary manner. The reader interested directly
in cluster expansions may skip this chapter. In Chapter 2 some subsidiary
material is collected: the properties and estimates of semi-invariants, the dia-
gram technique, and the most important combinatorial lemmas. The general
scheme of cluster expansions is presented in Chapter 3, and numerous exam-
ples of these expansions are given in Chapters 4 and 5. These are the central
chapters in the book; they contain the basic methods as well as various re-
finements of cluster expansions.

Chapters 6 and 7 are devoted to applications, both traditionally probability-
theoretic ones and also those associated with mathematical physics.

Let us notice that our presentation includes two types of random fields: the
point (labelled) ones and those on a countable set, with special emphasis on
the latter. This stems, in particular, from the fact that to apply the cluster
technique to continuous (functional) fields (that are not included in the book
due to its limited extent), one has to reduce them beforehand to fields in a
discrete set.

We have not enough space here to indicate explicitly the connection of our
constructions with statistical physics and quantum field theory even though
their spirit is invisibly present in the book and the terminology betrays their
influence.

The limited scope of this book did not allow us to present one of the most
important applications of cluster expansions, namely, an investigation of the
spectrum of the transfer matrix of a Gibbs field. Also, numerous other meth-
ods used in the theory of Gibbs fields are not included in this book (cor-
relation inequalities, reflection positivity, duality transformation, and other
special methods). We are planning to write a sequel in which some of. these
omissions will be rectified.




NOTATIONS

(2, Z, p)—a probability space, i.e., a triple consisting of a set 2, a o-algebra
¥ of subsets of §2, and a probability measure u defined on X.

If Q is a topological space, L denotes its Borel o-algebra B(RQ), i.e., the
o-algebra generated by open setg in (2.

We shall usually denote by Q a set of configurations of a random field.

po—a “free” (nonperturbed) measure on Q (usually independent or Gaus-
sian).

For any random variable, i.e.,, a measurable function £ on a probability
space (2, X, u), its mean (mathematical expectation) is denoted by

€ = (€)= ]n £dp.

Whenever {£1,...,£,} is a family of random variables,

(€1, éadu = <H£:> = (ﬁ/)p
m

i=1

denotes their semi-invariant, N' = {1,... ,n} (we shall often omit the sub-
script p); in addition,

( ikl$°°° »E:.k'):'( 1yee: »Els“' 1Snye - )€n>-

ky times ko times

G—agraph, i.e., aset V (of vertices) and a collection of unordered (possibly
coinciding) pairs of elements of V (edges).

T—a tree, i.e., a connected graph without loops.

(Ai,...,An)—an ordered, and {4,,...,A,}—an unordered collection of
sets A;, i=1,...,n (similarly for collections of points).

A partition @ = {T,...,Ti} of a set A is an unordered collection of
nonempty mutually disjoint subsets T; C A, i = 1,...,k, whose union is
A, UL T, = A
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A—the lattice of all partitions of the set N’ = {1,... ,n}.

A$, C Ay—(with a connected graph G with the set of vertices N) the
lattice of partitions of A’ whose elements form connected subgraphs of G.

fta— the Mobius function of the lattice a.

T—a countable (or finite) set supporting a random field.

@—a space supporting a point field.

S—a space of values of a field (a space of “spins” or “charges”).

A, A, R—finite (bounded) subsets of T (or Q).

2A—the space of configurations of a field in A(A C T or A C Q).

Y A—a o-algebra in Q4.

Uar—a Hamiltonian (energy) in A.

Ua,y = U(-/y)—a Hamiltonian (energy) in A under the boundary configu-
ration y.

pa—a finite Gibbs modification (in A).

pA,y—a Gibbs modification under the boundary configuration y.

Zp—a partition function (of a Gibbs modification) in A.

Z,y—a partition function in A under the boundary configuration y.

T,7,§,...—“clusters”: i.e., connected collections of sets (or “labelled” sets).

k4 (or kr)—quantities defining cluster representation of partition functions.

br(F), bg\)(F), bR, bg\)—quantities appearing in cluster expansions of
means (correlation functions, free energy, etc.).
‘(4‘\), 'A—correlation functions.

:p(&1,. .. ,&n):—the Wick polynomial (of a Gaussian family of random vari-
ables {51) v 161!})'

Let % be a family of subsets of T. Then dgr(%;A;,...,A,), where
A, CcT,i=1,...,n, and R C T, denotes the minimal cardinality of a
collection {Bj,...,B,} of sets B; € A such that the collection {By,...,B,,
Aj,..., Ay} is connected and U}_, B; = R.

Further, d(%; Ay,...,A;) = mingdgr(%; Ay,... ,4A,), ie., it is the mini-
mal cardinality of a collection {B;,...,B,}, B; € ¥4, i =1,...,s, forming
together with {A;,...,A4,} a connected collection.

Finally JA(Ql), where A C T, denotes the minimal cardinality of con-
nected collections {Bj,...,B,} of sets B; € 9, i = 1,...,s, such that
A C Ui, B;; ds = JA(QI) if A is the set of pairs of neighbouring sites {t,¢'}
(ie., p(t,t") =1).

For referring to formulae and theorems, the following convention will be
used:

(1) denotes the formula (1) in the same section, (2.1) denotes the formula
(2) in Section 1 of the same chapter, and (3.2.1) denotes the formula (3) in
Section 2 of Chapter 1; similarly for references to theorems and lemmas.
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CHAPTER 1

GiBBs FIELDS (BAsic NOTIONS)

§0 First Acquaintance with Gibbs Fields

In this introductory section, we present the basic notions and problems of
the theory of Gibbs fields and display some typical ways of argumentation by
considering a simple and well-examined example of the so-called Ising model.

0.1. Ising Model

Consider the lattice Z¥ of points t = (t(1),... ,t(*)) € RY of the v-dimen-
sional real space with integer coordinates. Let Ay = A be a “cube” in Z”
centered at the origin, i.e., the set of points in Z¥ whose coordinates have
absolute values not greater than N (with an integer N > 0). Each function
o? = {01, € A}, defined on the set A and taking values oy = +1, is called a
configuration (in the cube A), and the set of all such configurations is denoted
by Q. Obviously, the number of configurations in A equals 2/A!, where |A|
stands for the number of lattice sites in A.
We define, on ,, a function

U"A =Up(o?) = - (hza‘ +8 Z WU:') ’ (1)

teA (t,¢')

called the energy of the configuration o*. The summation in the second sum
in (1) is taken over all unordered pairs (¢,t'),t,¢' € A, such that p(¢,t') = 1
(pairs of “nearest neighbours”), with

p(t,t) = zv: lt(") - t'(i)l ,

t= (t<1),... ,t<")) ,-'=1 ¢ = (t’(l),... )Y 1)
1



2 Gibbs Fields (Basic Notions) Chapter 1

A physical system with the configuration space Q5 of configurations in A
and a configuration energy of the form (1) is usually called the Ising model.
The real numbers h and B in (1) are fixed (parameters of the model). We
refer to the case # > 0, which will be investigated here, as the ferromagnetic
Ising model.

We introduce a probability distribution on the space Q5 defining the prob-
ability of a configuration o by

PA(0™) = Z; exp {~Ua(oM)} . )
The normalization factor Z, is defined by the condition
Z PA(UA) = l)
oAEfA
and thus,
Zy= ) exp{-Ua(c")}. (3
ohreqa

The quantity Z, is called a partition function and plays a key role in what
follows. The probability distribution (2) is called a Gibbs probability distri-
bution in A corresponding to the Ising model. In general, a model is defined
by the choice of a set of values of configurations and of a particular form of
energy function (see p. 19).

Having introduced probability distributions on the configuration space, the
values o; of these configurations may be considered as random variables and
the formula (2) as the joint probability distribution of these random variables.
Later on, the mean (value) of an arbitrary function f on the space 2 under
the distribution (2) will be denoted by (f)a. The means (g7)a of random

variables
or=[[or, =1, (4)
t€T

with T' C A being an arbitrary subset of A, are called correlation functions
(or moments) of the distribution (2).

For any T' C A, we use P,(\T) to denote the joint distribution of the system
of random variables {oy,t € T}, i.e., the collection of probabilities

PT) (34,,...,81) =Pr(oy, = 4y,... , 00, =5, (5)

with T = {¢t,,...,t,} and {:,,...,5:, } being an arbitrary collection of
values @;; = %1, ¢ = 1,2,... ,n. The probabilities (5) may be very simply
expressed by means of correlation functions (or)a. Indeed,

PI(\T) (&tu HE &t.) = %(-l)k <f[ (ata + 6".’))
i=1 A

= -(-2—1,,)"- 3 Cri(oria, (6)
T'CT
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with k being the number of values &;; that equal —1, and

Cr: = H O¢.

teT\T'

0.2. Thermodynamic Limit

Now we fix T and let A expand to Z2¥, A /' ZY, ie., put N — oo. If we
succeed in proving the existence of the limits

i (or)a, ™

we may conclude that correlation functions (and finite-dimensional distribu-
tions) almost do not depend on A for A sufficiently large in comparison with
T. Such a passage to the limit is called the thermodynamic limit (the limit
of a large number of degrees of freedom o;). The limits (7) are denoted by
(o:) and are called limit correlation functions. It follows from (6) that finite-
dimensional distributions also have limits, which form a compatible family of
finite-dimensional distributions. By the Kolmogorov theorem (see [51]), this
family defines a system of random variables {o;, ¢t € Z"}, called a (limit)
Gibbs random field (for the Ising model), as well as their distribution P (a
measure) on the space Q = {—~1,1}2" of infinite configurations in the lattice
zv.

The methods developed in this book enable us to establish the existence of
the limits (7) for a sufficiently general class of models. However, in the case
of the ferromagnetic Ising model, we shall use a special device of the so-called
Griffith correlation inequalities to control the passage to the limit (7). The
existence of the limit distribution P follows from the following theorem.

Theorem 1. The thermodynamic limit (7) of correlation functions (or)a ez-
ists for 8 2 0 and every finite T.

Remark 1. In the case of 8 =0, it is not difficult to calculate (oy)a:

(or)a = (Eh—-—-e—_h-) " . (8)

Consequently, (or)A does not depend on A (for T C A). Thus the thermo-
dynamic limit (or)A exists in this case and equals (8). The random variables
gy are mutually independent, both with respect to the distributions in finite
A and with respect to the limit distribution.

Proof of Theorem 1. Notice that it is sufficient to consider the case h > 0.
This is obvious from the following symmetry property of the Ising model (in
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the notations introduced below, 8 and h as subscripts indicate the dependence
of Gibbs distributions on these parameters):

Prpu(c?) = Prg,—n(—ot), 9)

with —o* denoting the configuration whose values have an opposite sign to

those of the configuration .

It follows from (9) that

(o7)a,,~n, |T| even,

o =
(or)a,p.n {—(UT)A./S.-"’ IT| odd.

(10)

In particular, .
(or)a80=0 (11)

for odd |T|. The proof of the relations (9) and (10) is simple, and is left to
the reader.

We need two inequalities to prove the theorem. It is suitable to consider a
more general situation. Let A be an arbitrary subset of Z¥, Q5 a set of all
configurations o* = {0y, t € A}, oy = %1, in A, and the energy Ux(c*) of
the configuration o be of the form

Ur(c?) = - (Z hioy + Z ﬂt,t'Utdt') , (12)

tEA tt'eA

with h; 2> 0 and By 2> 0 (in general, the sum in (12) is taken over all pairs of
points t,t’ € A). The distribution Pj on 4 is given as before by the formula
(2), and ( )A again denotes the mean under this distribution.

Lemma 2. The inequalities
(or)a 20 (13)

(the first Griffith inequality) and
(oror)a —(or)alor)a >0 (14)
(the second Griffith inequality) are valid.

Proof. To prove (13), it is sufficient to verify

Y. orexp{-Ua(c*)} > 0. (15)
oAEQ,

By expanding the exponential function exp{—Ua(cr)} in the series
Yoreo(=Ua)"/n!, by removing the parentheses in each term of this series,
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and by taking into account that ¢ = 1, we express the left-hand side of the
inequality (15) in the form of the sum

Y. Cs Y os (16)

BCA oreNA

with Cg 2 0. Since

Y a=0 (17)

0.:*1

for any t € A, the sum (16) is equal to Cy, which proves (13).

To prove (14) we investigate two independent samples of the distribution
Py, i.e., a distribution on the space 24 xQ of pairs {o*,51} of configurations
of the form

ﬁA(aA,&A)
=(Z")exp QY b0t +5)+ Y Bru(oow +(8:50) o .
teA Lt'€A (18)
We introduce new variables
& =0+ 0y, 0 = oy — 0y, teA,

taking values (&:,7¢) = (2,0),(-2,0),(0,2),(0,-2). By means of these vari-
ables, the probability (18) may be rewritten in the form

Z3%exp {Z h& + % E Bt (&b + 'hﬂt')} .

teA t,t'eA

Taking into account that

Em=0 and Y &= Y w0

€=-2,0,2 ne=-2,0,2
for each t € A and each integer k > 0, and by repeating the proof of the
inequality (13), we get

(érnr)an20 (19)

for all T and T", with {7 and 9y being defined as in (4) and the mean ( )5 o
evaluated under the distribution (18).
Notice that

(orori)a — (or)alor)a = %((O'T —ar)(or — G1/))A A (20)
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We shall show that the difference o — 67 and the sum o7 + &7 can be
represented in the form

or X or = Z C::,BfA'IB (21)

A,BCT

with Cf, g 2 0. The relations (19), (20), and (21) imply the inequality (15).
The expression (21) can be proved by induction on |T| if we notice that
~ 1 ~ ~
rupy +Frupy = 5 lor +81)6 + (or — 5r)m],

-~ 1 -~ -~
Orugsy = Frugy = 5 l(or +87)m + (o — Fr)éd]

fort ¢ T C A.
The lemma is proved.

Now we return to the proof of the theorem.
The derivatives 3%‘-(01) A and 33%7(01-) A are equal to

52—‘(0-1-),\ = (O’ng),\ -— (UT)A(at)A 2 0’

—0—<0’T)A = (oo )a — (oT)a(0r00)a 20, (22)
3ﬁt,t'

and thus the correlation functions increase when increasing the parameters h;,
and B; . It follows that, in the case of the Ising model,

(o1)a, < (o)A, (23)

for T C A1 C A;. Indeed, the mean (o7)a, coincides with the mean under
the distribution of the form (12) in Ag, with parameters

h_{h, te A,
710, teA\A,

and
8 { B if t,t' are nearest neighbours in A;,
tt =

0 otherwise.

Using the monotonicity of (or) with respect to the parameters h; and g, ./,
we get (23). Since |(or)| < 1, the statement of the theorem follows from (23).
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0.3. Markov Property

Let A C Z" be a set; its boundary OA is defined to be the set of all lattice
sites of distance 1 from A:

OA = {t € 2": p(t, A) = 1}. (24)

Let A C ZY be a cube, and let A,B C A be such that AN B = @ and
6A C B. We use

P{*)(54/5®) = Pr{o; = 51,t € Aoy = Gu,t' € B}

to denote the conditional probability that o* equals 34 = {&:, t € A} on the
set A under the condition that its values on the set B equal 4% = {5, t' € B}.

Lemma 3. The following equalities hold true:

PV (a4/5%) = PV (a4 /5°4)
= Z2;1(6%4) exp {—(Ua(5*) + Ua,04(5%,5°4))} . (25)

Here Uy(4) is the energy of the configuration G4 defined as in (1), Uy 54(54,
&%4) is the energy of the interaction between the configurations G4 and 5%4:

Ua0a(34,8°4) =~ Y &b, (26)
t€A,t'€dA
p(t,t')=1

and Z4(%4) is the conditional partition function

Za(6%4) = exp {—(Ua(3*) + Ua,04(54,5°4))} . (27)

The first equality in (25) is called the Markov property of the distribu-
tion P,, and the other equality expresses its Gibbs property: the conditional

distribution PX“) is similar in form to the distribution (2), except that the
energy Uy p4 of the interaction with the “boundary” configuration 774 was
added to the energy U,. Usually, the distribution given by the formula on the
right-hand side of (25) is called the Gibbs distribution in A with the boundary

configuration %4,

Proof of Lemma 3. It is carried out by a direct computation: The formula
(2) implies that

P{AUB)(z4 3B)
P4 /58) = A" 22 2
P{P)(a8)
E exp {—UA(E‘,&B,UA\(A“B))}
oA\{AUB}

) 28
exp {—UA(TI“, B, O-A\(AUB))} (28)
oA\(AUB),24
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where o = (54,57,0A\(4UB)) and gAVAYB) jg 3 configuration in the set
A\(A U B). Further,

Un(o?) = Ua(5*) + Ua,B(34,58) + Up(6®) + Ur\(aun)(e*\4UD))

+ Up a\(auB)(@®,0"\AVB)),

with the energies Uy p and Up a\(auB) given analogously to (26). Accord-
ingly, the nominator on the right-hand side of the equalities (28) equals

exp {—(Ua(6%) + Ua,B(4,6%) + Up(®))} Za\(auB)(3®),

and the denominator is

exp {-Us(2)} Za\(auB)(3®)Z24(5B),

with Zx\(auB)(52) and Z,4(5P) defined analogously to (27). Inserting these
expressions into (28) and noticing that Uy p(64,55) = U4 04(54,504) and
Z4(6B) = Z4(5%4), we arrive at (25) after obvious cancellations. The lemma
is proved. -

It is obvious from (25) that the conditional distribution PXA)(~/ &8) does not
depend on A. This observation lays the foundation for the following definition
of the Gibbs random field in Z”.

Definition 1. A probability distribution P on the space 2 is said to determine
a Gibbs random field {o;, t € Z*} (for the Ising model) if the conditional
distribution P(4)(§4/6B), generated by the distribution P, coincides with
the Gibbs distribution in A, with the boundary configuration #%4 (see the
second equality in (25)) for arbitrary finite subsets A, B C Z” such that
ANB=0and dA C B.

Notice that, according to the first equality in (28) and the definition (7),
the limit Gibbs distribution constructed above defines a Gibbs random field
in Z¥ also in the sense of Definition 1. Are there still other Gibbs fields in
Z" for the Ising model? It turns out that this depends on the dimension of
the lattice Z¥ and on the parameters (h, ). The values of parameters (k, 8)
for which there exist more than one Gibbs field in Z” define points of the
first-order phase transition in the plane (h, ).

Theorem 4. For a ferromagnetic Ising model:
1) for v =1, there is a unique Gibbs field;
2) forv>2and h#0, or h=0 and B sufficiently small, 0 < B < Bo(v),
there is a unique Gibbs field;
3) for v 2 2, the points (0,5) with B sufficiently large, B > By(v), are
points of the first-order phase transition.

We shall prove only the statements 1) and 3) of this theorem.
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Before proving the theorem, we investigate the possible ways of construction
of Gibbs fields in Z” for the Ising model. Let A C Z¥ be a cube, 7°* be a
configuration in the boundary A of the cube A, and let Py joa (o) denote
the Gibbs distribution in A (on the space 25) with the boundary configuration
&%\ (see (25)). Let ¢®A be an arbitrary probability distribution on the set
Qaa of boundary configurations %A, We use the notation Py 4o for the
distribution

PA'qu(O'A) = (PA'aoA (UA))qu, (29)
on the space ,, arising by averaging of distributions P, 5,, over all boundary
configurations #%A. The distribution (29) is called the Gibbs distribution in
A with a random boundary configuration. Finally, besides Py soa and Py goa,
the Gibbs distribution PR with the so-called periodic boundary conditions
is often considered. It is defined analogously to the distribution Py (see (2))
except for replacing the “cube” A by the “torus” (by identifying the opposite
sides of A) and the energy U, in (2) by the energy UR™" of the interaction
of the nearest neighbours on this torus. The Gibbs distribution (2) is often
called the Gibbs distribution in A under the “empty boundary conditions.”

Following the proof of Lemma 3, we can easily convince ourselves that the
distributions

PA’aOA, PA’qal\, Pxer (30)

have the Gibbs property (25).

As in the case of Gibbs distributions with the empty boundary conditions,
we conclude that the limit P = limy, »zv Pj, of the sequence P, of dis-
tributions of the form (30), with A, being an increasing sequence of cubes,
AICAC...CA, C...CUA, = 2", defines a Gibbs field in Z¥. The
converse is also true.

Lemma 5. Every probability distribution P on the space Q that is a Gibbs
random field in ZV is the thermodynamic limil of a sequence Py, qo5 for

some choice of g8A=.

Proof. For every cube A C Z¥, we choose g2 to be the probability distribu-
tion on Qp, induced by the distribution P. It is obvious that P, 4ea coincides
in this case with the distribution induced by P on Q4. Therefore, Py jon — P
(in the sense (7)) as A /' Z*.

Now we return to the proof of the theorem.

Proof of the statement 1) of Theorem 4. Transfer mairiz. To simplify the
formulae, we put A = 0. The 2 x 2 matrix J = ||joo|| with matrix elements
jogr = P77 00’ = %1,

ef ef

J = e-p ep

(31)

is called the transfer matriz of the Ising model.
Let A = [N, N] C Z! and P, be the Gibbs distribution in A (under the
empty boundary conditions).
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Lemma 6. The following equalities hold:

Zp = (JNe,e), (32)

S [C N A
(e("l),JN‘e) (e(":),J‘z"le("x)) ... (e, JN3eu)
(e,J?Ne) '

(33)

with e = (1,1),e® = (1,0),e(-) = (0,1),N; = t; + N,N2 = N — t,,
—N<t <t3<...<t, < N. The proof is obvious.

Now let g() and g(® be two normalized eigenvectors of the transfer matrix
J, with eigenvalues A; and A2, A1 > |Az]| 2 0. Using the decompositions

e=CigW) +Cyg?, & = pEV M 4 BEDG?),
we get
(J?Ne,e) ~ CININ
(e("'l),JN’e) ~ B,(a")Cp\f",
(e’ Ju,e(a..)) ~ B0 N2,
for large N and fixed {t,,...,t,}, and thus

( (24) ,Jtr—tao e(”u-n))

te—tk—1
A1

Jim Pt G, 5,,) = B B H

Similarly, it can be shown that the probabilities P{"’ ,,,;"'} have the same

limit for any sequence of Gibbs distributions PA g2 ,A,, /" Z1. The proof
of the first statement is finished.

Remark. From our considerations, one may easily derive that the limit Gibbs
field {o¢,t € Z1} is a stationary Markov chain with the matrix of transition
probabilities

_ Jﬂwzgg)

Pal,d: = /\1y(1) ’ 01,02 = %1,

and the stationary distribution 7, = (g.(,l))z, o = %1, where ggl), g(_l) are the
components of the eigenvector g(1).
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Proof of the statement 3) of Theorem 4. We denote the Gibbs distribution
in A with the boundary configuration &, = +1,t € dA ((+)-boundary condi-
tions) by P (4).

Lemma 7. The inequality
Pl'A,(+)(Uo =-1)<1/3 (34)

holds uniformly with respect to all cubes A C Z¥, 0 € A, for all sufficiently
large 3,8 > B1(v).

First, we shall derive our statement from this lemma. Consider the Gibbs
distribution P (.) with the boundary configuration &; = —1, t € 9A (the
(-=)-boundary conditions). By virtue of the symmetry valid for A = 0, we
have

Pa#)(e*) = Pago)(=o"),

and hence,
PrA,(_)(ao =1)< 1/3

for every A, and consequently,
PIA,(_)(O'O = —1) > 2/3 (35)

The inequalities (34) and (35) ensure that there are at least two different
Gibbs distributions in Z".

Proof of Lemma 7. To make the proof more transparent, we restrict ourselves
to the case v = 2. Let Z2 be the dual lattice obtained from the lattxce z?
by shifting it by the vector (1/2,1/2). For any configuration oh, we use
v = ¥(o?) to denote the collection of those bonds of Z? that separate two
neighbouring sites ¢,t’ € AUOA with oy # oy, (6; =1 for t € OA). It is easy
to see that the number of bonds from v(o?) attached to a lattice site from
Z? is always even. Thus, the connected components of 7 are closed polygons
(possibly self-intersecting). We shall denote them by T'y,. .. ,T, and call them
contours. We shall show that there is a configuration o* with y = y(a*) for

each collection ¥ = {I'y,...,Ty} of mutually disjoint contours. Indeed, it is
enough to put g, = 1 for ¢ € A that are outside all contours. Further, we put
o = —1 for the sites that are inside one contour I' only, o; = 1 for the sites

that are encircled by two contours, and so on. Thus, there is a one-to-one
correspondence between the configurations o* and the collections of contours
7. In addition,

Un(+)(@*) = Un(c*) + Un,0a(e*,5°* = 1) = 28lv| - AIAI,

Zngn = Za(@ = 1) = exp {BIAI} 3T €M,
14
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where |y| is the number of bonds in 7 (the length of v) and |A| is the number
of bonds from Z2? adjacent to at least one site from A.

Lemma 8. The probability Py (4)(T) of the event that T is contained in the
collection v can be estimated by

Pp(+)(T) < eI

Proof. The probability P (4)(T) equals

PA,(.'.)(I‘) = E PA,(+)(7)

v:I'ey
E e"zﬁhl e—2p|rlz'e-2p|"|
=rhey Y -2In
- Ee-zphl - Ze-2p|‘7| ’
v v

where E; denotes the sum over all 4 that do not contain I' or intersect it.
The lemma is proved.

Further, it is easy to convince ourselves that the number of contours I' of
the length n encircling a given site tg € Z2 is not greater than n?3”. Since
the event 09 = —1 under the (+)-boundary conditions implies the existence
of at least one contour T encircling the point 0, we have

Pragy(oo=-1)< Y. Py <D n?8"e " <13
I:T" encircles 0 n34

for  large enough. Lemma 7 and, at the same time, the statement 3) of
Theorem 4, are proved.

0.4. Other Models

To enrich the reader’s idea of what the theory of Gibbs fields is all about,
we shall add a few more examples of physical lattice models often met in the
literature.

I. Rotator model

Let A C Z" be a finite subset, the configurations 0 = {0y, t € A} take
values in the n-dimensional sphere, o; € R",|o¢| = 1, and the energy of a
configuration be given by

UNeN) = T Jece -(on00) + Y (hoou),

tLt'EA teA
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with (. , .) being the scalar product in R", and J; being some finite function
oft € Z¥,t#0, h € R". In the case of this model, the Gibbs distribution P
is given by

pa(o*) = Z3 exp {—BUA(eY)} (36)
where pa(o?) is the density of the distribution Pj with respect to the measure
M = Ao x...x Ay of the space Q4 of configurations, with Ao a uniform

(SR
|A|times

distribution on the sphere S C R" and Z, the normalization factor.

II. Model with a global symmeiry (G-model)

Let G be a group, and let the configuration g* = {g,, t € A}, A C 2", take
values from G. The energy of a configuration g* is of the form

U@ = Y ¥loigit),
p(t,t')=1
t,t'eA
where ¢ is some even function on the group G : ¥(g) = ¥(g~!). The Gibbs
distribution is defined according to the preceding by a formula similar to (2)
in the case of the discrete group G, or to (36) in the case of the continuous
group G with \g standing for the normalized Haar measure on G.

III. Gauge G-model (a model with a local G-symmetry)

In this case, the configurations g* = {g,, 7 € A} are defined on a finite set of
oriented bonds 7 = (1,,12), 1, t2 € 2%, p(t1,t3) = 1, and take values from
G as before. Moreover, g, = (9--)~!, where —7 = (3,¢,) denotes the bond
that differs from 7 by its orientation. The energy of the configuration g2 is

given in the form
U (g") =) (gp), (37)
P

with the summation taken over all two-dimensional (nonoriented) plaquettes
p of the lattice Z¥ whose boundary bonds dp = (71,72, 7s,74) belong to A,
and

9p = 9119712973974

In addition, the numbering of the bonds 7; and their orientation are chosen
so that they form a path around p in some direction. The function ¥ in (37)
is a function on the group G so that

v(9) =v(g™Y),  ¥(9909™") = ¥(go). (38)

Under these conditions the value ¥(g,) does not depend on the orientation
and the starting point of the path around p. Most often, the function 9 is
chosen equal to

¥(9) = Re xa(9),
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with xo being the character of some irreducible unitary representation of the
group G. The Gibbs distribution for this model is introduced analogously to
the preceding cases.

IV. P(p),-model

Configurations zA = {z;, t € A}, A C 2Z”, take arbitrary real values, the
energy Uj(z?) is given by

U(zY) = ) (ze—20)? + ) _(P(z:) + mz}),
(t,t'?eA teEA
p(tt")=1

where m 2> 0 and P(-) is some polynomial of an even degree with a positive
leading coefficient. The density of the Gibbs distribution pa on the configu-
ration space 24 = RIA! with respect to the Lebesgue measure (dz)!A! on RIA!
is defined by a formula similar to (36). Moreover, it may be easily shown that
the normalization factor Z, is finite.

We confine ourselves to this list of models. What kind of questions arise in
the theory of Gibbs fields in connection with these (and other) models?

1. The first question is: Does there exist a limit Gibbs field (i.e., a limit
probability distribution for infinite configurations)?

2. Second question: Is it unique? This question is very interesting because
the existence of several limit distributions (phases) is connected with the so-
called phase transitions.

3. If the interaction depends on one or more parameters, the question
is: Are the various characteristics of the limit field (correlation functions,
semi-invariants, and so on) analytic with respect to these parameters (or at
least continuous or differentiable)? In addition, the singularities of correlation
functions with respect to these parameters (discontinuities, discontinuities of
their derivatives, and so on) also indicate phase transitions.

4. Furthermore, questions concerning the ergodic properties of the limit
Gibbs fields arise; mixing, decay of correlations, estimates of semi-invariants,
limit distributions of sums of local variables, etc.

These are the basic topics of the theory of Gibbs fields touched upon in this
book.

Let us now proceed with a systematic presentation of this theory.

§1 Gibbs Modifications
1.1. Random Fields

In this book the following classes of random fields will be studied:
(1) Random fields in a countable set T with values in a metric (complete and
separable) space S. The probability space (2, X, u) is represented in this case
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by the set ST = Q of functions (also called configurations) z = {z:, t € T}
defined on T', with values in S (S is often called the set of “spins”). The space
ST is endowed with the (metrizable) Tikhonov (cf. [16]) topology.

We shall investigate probability distributions p defined on the Borel o-
algebra B(S) = I of the space ST. The collection of random variables z;,
t € T, arising in this way, i.e., the values of the random configuration z at
points t € T, forms a random field.

The simplest example of such a field is the field of independent and identi-
cally distributed variables. In this case, the measure u on B(ST) is defined to
be the product of countably many identical copies of some probability measure
Ao on the space S.

(2) Random point fields in a separable metric space Q with values in a space
S. The role of the probability space is played by the set Q of all locally finite
subsets z C Q. The subset z (at most countable) is called locally finite if any
bounded set A C Q contains only a finite number of points from z. Below,
we shall introduce a metrizable topology in Q. Every probability measure
defined on the Borel (with respect to that topology) o-algebra B() is called
a random point field in Q (sometimes we shall say pure point field, emphasizing
its distinctness from the labelled point field to be introduced later).

Now suppose that a metrizable space S, also called the space of “charges”
(or “labels”), is given. We use Q5 to denote the space of pairs {z,s.}, with
z € Q and s, being a function on z taking values from S. Such pairs will be
called configurations. In the space QF, as well as in , a metrizable topology
can be introduced. Every probability measure on B(Q°) determines a labelled
random field in @ with values in the space S of charges.

The theory of Gibbs fields includes the investigation of:

(3) Ordinary or generalized fields in R¥. The probability space is, in this
case, a topological vector (locally convex) space 2 of functions or distributions
(in the sense of Schwartz) defined on R”. As before, a random field is given
by a definition of a probability measure on the Borel o-algebra B(Q).

In what follows, we emphasize that, by mentioning any random field, we
implicitly understand a measure on the space of its configurations.

1.2 Method of Gibbs Modifications!

Gibbs modification (of a random field) is an important device for the con-
struction of new measures from an originally given measure yo (or from a
family of measures). We shall first describe a general scheme of dealing with

1Translators remark: The authors stress, by introducing a new term “gibbsovskaya pere-
strotka,” the fact that the new measure arises by modifying the original one. To reflect this
stress, and since the notion is crucial in the whole book, we avoided the term “specification”
sometimes used in the literature, and follow the authors in introducing a new term. In the
present context the translation “Gibbs modification” is preferable to, also possible, “Gibbs
reconstruction.”
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Gibbs modifications.

Finite Gibbs modifications. Let (,X, 1) be a measurable space with a
finite or o-finite measure g (called usually a “free” measure), and let U(z),
z € Q, be a real function on Q (taking possibly the value +00), often called
the interaction energy (or Hamiltonian).

The measure y with the density

dp .
m(z)—z 'exp{-U(z)} (1)

with respect to the measure yo will be called the Gibbs modification of the
measure go by means of the interaction U.

It is moreover assumed that the normalization factor Z (called the partition
function) fulfills the stability condition

z= /n exp{=U(2)}dpo(z) # 0, 0. @

Using finite Gibbs modifications, the measures absolutely continuous with
respect to pg arise. A more interesting class of measures, already singular
with respect to the original measure yo, arises when passing to the weak limit
of finite Gibbs modifications.

1.3. Weak Convergence of Measures

Let Q be a topological space, B = B() its Borel s-algebra, and £ C B some
of its sub-o-algebras.

Definition 1. Let a directed family F = {A} of indices be given. We call a
measure u, defined on the o-algebra T C B, the weak limit of the sequence of
measures gp, A € F, defined on X if

/ F(2)dun — / f(z)dp @3
[1] [1]

for any bounded continuous X-measurable function f given on Q.

A more general situation may be examined. Let a complete family
{ZA, A € F}, Ta, C Zp,, A1 < Ay, of sub-o-algebras of the o-algebra B
(i.e., such that B coincides with the smallest o-algebra containing the algebra
A = UpexrZa) be given; the o-algebras £, will be called local o-algebras and
any function f, defined on Q and measurable with respect to some of the local
algebras, will be called a local? function (function f, measurable with respect
to a g-algebra ¥4, A € F, will often be denoted by f,).

2The notion cylinder function is commonly used for local functions (translators remark).
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A finitely additive measure u defined on the algebra 2 so that its restriction
plg, to any o-algebra I, is a o-additive measure on X, is called a cylinder
measure. If Q is a complete separable metric space, and the cylinder measure
p is a probability (u(A) 20, A € A4, u(Q) = 1), u can be extended to a o-
additive (probability) measure defined on the o-algebra B (the Kolmogorov
theorem; cf. [51]).

The following definition generalizes Definition 1.

Definition 2. Let a finite or o-finite measure be given on each o-algebra I, .
A cylinder measure g on 2 will be called the weak local limit of the measures

pa if
lim /n F(2)dua = /n f(z)du @

for any bounded continuous local function f defined on .

In other words, a cylinder measure (or its extension to a measure on the
o-algebra B) is the weak local limit of measures {uA, A € F} if, for each
Ag € F, the restrictions yAlng = pﬁ", Ao < A, A € F, of the measures up
to the o-algebra X5, weakly converge to uls,, = pa,-

In the case @ = ST (with T a countable set and S a metric space; see
Section 1), the index A runs over finite subsets of T', and £ = (pxl(%(S“)),
where pp : ST — SA is the restriction mapping (cf. p. 19), the convergence (4)
is called the weak convergence of finite-dimensional distributions if, moreover,
fA are probability measures.

The relationship between Definitions 1 and 2 is established by:

Proposition 1. Let a family {EA A € F} of o-algebras be such that the set
Co(R2) of bounded continuous local functions is dense everywhere in the space
C(R) of all bounded continuous functions defined on Q (in the uniform metric
in C(RQ)). Then the necessary and sufficient condition for a measure p on
B(Q) to be the local limit of probability measures {up} (defined each on the
o-algebra £y ) is that their arbitrary exztensions iy to probability measures on
the o-algebra B(QY) weakly converge to p.

The proof is obvious.

1.4. Limit Gibbs Modifications

Let a complete directed family {5, A € F} of sub-o-algebras of the o-algebra
B(Q) be given, and let a free measure 43 and a Hamiltonian U be defined
for each A so that the stability condition (2) is satisfied. A cylinder measure p
on the algebra A = UX, (or its o-additive extension to the o-algebra B(RQ))
is called a limit Gibbs measure (or a limit Gibbs modification) if it is the weak
local limit of the Gibbs modifications u, of the measures u (by means of the
energies Uy ).

We note that the theory of Gibbs measures becomes meaningful only with
a special choice of o-algebras £, measures 3, and Hamiltonians U,. Now
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we are going to describe the respective ways of such a choice of £, u3, and
U, in connection with the three types of random fields listed above.

(1) Gibbs modifications of fields in a countable set T. We introduce a set of
configurations SA = {2 = (21, t € A)} defined in finite A C T, and endow
it with a Tikhonov topology and Borel g-algebra B(SA). The restriction
mapping @4 : z +— 2z = z|A defines a o-algebra =) = 3! (B(S*)) C B(ST)
that will be often identified with B(S*). Obviously, {£x, A C T} is complete
in B(ST).

Remark 1. The set Co(ST) C C(ST) of bounded continuous local functions
on ST is, according to Stone’s theorem (cf.[16]), dense everywhere in C(ST),
and hence Proposition 1 applies in the case considered.

Hamiltonians U, are usually defined with the help of ‘a potential {®4;
A CT, |A] < o0}, ie., a family of functions &, on Q that are measurable
with respect to o-algebras X4 (i.e., @4 can be viewed as a function defined
on the space S4).

For any finite A, we put

Upr = Z D4 (5)

ACA
Often, instead of the explicit formula for the potential, the formal Hamil-

tonian (formal sum)
U=) a4 (6)
A

is used.

Remark 2. In many cases, the free measures u} are restrictions of some
probability measure o defined on ST to the respective o-algebras =, C B.
In such cases, instead of a Gibbs modification u, defined by the formula (1),
the measure fis given on the g-algebra B(ST) by

%ﬁ-ﬁ-(z) = Z;' exp{-Ua(2)} (M

is investigated. The measure jij is a “natural” extension of the measure pj to
the whole o-algebra B(ST). This measure is also called a finite (i.e., given in
a finite volume) Gibbs modification of the measure uo. By virtue of Remark 1,
a limit Gibbs measure u on the space ST (i.e., the weak limit of the measures
p#a) is the weak limit of the measures jix, A /' T.

(2) Gibbs modifications of point fields. Let A C Q be a domain in Q (cf.
(2) in Section 1), Q5(A,n) C (A x S)"/1I,, be the set of sequences of pairs

{(qlasl))'“)(qﬂasﬂ)}’ %’€Q, ‘Ic’#%‘, ‘#]) 3iesv (7,)

factorized with respect to the group II,, of permutations of n elements (two
sequences (7') are considered to be equivalent if one arises from the other by
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means of some permutation). In this way, Q5(A, n) is endowed with a metriz-
able topology. We use the notation Q°(A) = U, 25(A,n), Q5(A,0) = 0,
and we introduce on Q5(A) the topology of the direct sum of topological
spaces. By means of the restriction mapping

@a < (2,82) = (N A, 52]nn) € Q5(A), (™)

where A is a bounded domain in Q, the topology on Q5 is defined as the
weakest topology making all mappings ¢ continuous. We define, for any
bounded domain A C Q, the sub-o-algebra of the Borel g-algebra B(Q°) by

Za=py [B@(A)] .

The family of local o-algebras T, generates the whole Borel o-algebra B(Q°),
and the set Co(R°) of bounded continuous local functions is dense everywhere
in C(Q°) (due to Stone’s Theorem; cf. Remark 1).

Poisson field. In the role of the free measure po on QF, the distribu-
tion of the so-called labelled Poisson field in @ is chosen. It is defined in
the following way. Let a positive o-finite (or finite) measure d\o such that
Ao(A) < oo for each bounded domain, A be given on the space @, and let a
probability measure ds be given on the space S. The measure (dAg x ds)",
defined on the space (Q x S)", induces, on the space 25(Q,n) = Q3, the
factor-measure

dv, = (dho x ds)"/n!, n>0, w0 =1 (8)

We shall consider a measure v on the space Qf, = Un30€25 of finite configu-
rations in Q, coinciding on each set Q3 with the measure v,, n =0, 1,....
Now let A C Q be a bounded domain and uQ be a probability measure on
Q5(A) equal to
pa = e 2y 9)

(since Q5(A) C QF,, the measure v is defined on the space Q5(A), too).
Notice that uQ(Q°(A,n)), ie., the probability of the occurrence of exactly
n points of the labelled field in A (with arbitrary values of charges), equals
AZ(A)e=*(A) /nl. Each measure u3 can be considered as defined on the o-
algebra X5. Furthermore, one may easily verify that there is a unique measure
#° on the space 25 such that its restrictions to sub-o-algebras T, coincide
with the measures 4. The labelled point field in Q generated by this measure
is called the Poisson field with independent charges.

Any function ®[(z, s;)] defined on the set Q3 of finite configurations (z, s,)
is called a potential. For each bounded domain A C Q, we put

Ual(z,82)] = E P[(y, 8y)],

yCznA
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with s, = s;|, being the restriction of the function s, to y C z.
The Gibbs modification p, of the Poisson field u° is defined by the density

g -
L: = Z3" exp{-Un}, Zp= /‘;s exp{—=Up}dp°. (10)

Primarily, the case of the proper point field in the space R” is investigated.
At the same time, the Poisson measure u° is defined with the help of the
Lebesgue measure d\g = d’z on RY, and the energies Up are defined by
means of a two-point (or two-particle) translation-invariant potential &, i.e.,

i, |:I.‘| =1,
(I’(Z) = ﬂ‘l’(ql - ‘12), z= (11, ‘12), ) (11)
0, =l > 2;

where /i € R! (so-called chemical potential), ¢ is an even function defined on
the space RV, and 8 > 0.

‘We formulate here one stability condition for Z, in the case of a two-particle
potential of the form (11).

Theorem 2. Let ¢ be a real even upper semi-continuous function on R”.
Then the following conditions are equivalent:

(a) the inequality
Y3 elai-g) >0 (12)

i=1j=1

is fulfilled for anyn and ¢; E RV, i=1,... ,n;
(b) there is a B > 0 such that

Un(z) > —B|z| (13)

for any ¢ € Qq, and A C R".
(c) the partition functions Z, are finile for all bounded domains A.

For proof see [60]. An example when the condition (a) implies the stability
of Z, is the case of positive definite function ¢(g), ¢ € R*.

(3) Gibbs modifications of measures on function spaces. Let Q be some
locally convex space of functions z(t) = {z1(),... ,z4(t)}, t € R", defined
on the space RY, with values in R".

Suppose that the topology on Q is such that the functionals of the form
Fi(2) = z(to), to € RY, k=1, 2,...,n, are continuous with respect to it
(i.e., the convergence of a sequence of functions in  implies their pointwise
convergence). For each bounded open or closed set A C R”, we define the
o-algebra £, to be the smallest sub-o-algebra of the Borel o-algebra B(Q)
making all the functionals { 3, to € A} measurable. Suppose that the family
of g-algebras I, is generating for the o-algebra B(Q).
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We suppose that a probability measure po (free measure) is defined on the
Borel o-algebra B(2), and a functional U, (z) is given to each bounded open
or closed set A C R”, so that:

1) Uxr = 0if |A| = 0, where |A| is the Lebesgue measure of A;

2) Un,un, = Un, +Un, if JAL NA2| =0;

3) U, is Tp-measurable.

A family {Up} of functionals fulfilling conditions 1), 2), and 3) is called a
local additive functional.

Suppose that the stability condition

0< /nexp{—UA(z)}dpo < 00 (14)

is fulfilled for each bounded domain A C R” and define a Gibbs modification
pa of the measure yo with the help of the formula (7). In what follows, a
limit Gibbs modification of the measure pg is defined as before.

Here is a typical example of a local additive functional (in the case when
the space Q contains only smooth locally bounded functions z(t)):

Ua(z) = /A @ [z.-(t), %] at,  t=00,... 1),

with & a real function of n(v + 1) variables that is bounded from below.

Remark 1. In some cases, local additive functionals may also be defined on
the space of distributions (called the Schwartz space D’/(R”)) such that they
fulfill the stability condition (14) (o is a probability measure on D’(R)), and
the Gibbs modifications y, and the limit Gibbs modification s may be defined
with the help of them.

Remark 2. We have examined Gibbs modifications of measures on function
spaces with the help of additive local functionals in such detail only because
this case covers most of the known examples of such modifications. Of course,
it is also possible to investigate nonlocal functionals Uy, e.g., functionals of
the form

Ur(z) = / / B [2(2), 2(')] 1",
AA

with ® being a bounded real function of 2n variables.

Discretization. The discretization method is used when applying the theory
of cluster expansions to functional fields. By discretization a reduction to a
field in a countable set is to be understood. Namely, the space R’ is broken
up into congruent cubes, and the field in Z¥ (the centers of those cubes),
with values in the space S of spins coinciding with some space of functions
defined on a cube, is investigated. At the same time, the energy is rewritten
in terms of the newly introduced field in Z¥ with values in S, and the free
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measure of the original field determines a measure on SZ°. Even though we
do not investigate fields in this book, many statements may be immediately,
and in an obvious way, transferred to the case of functional fields. Notice
that no method of cluster expansion that would exclude discretization exists
at present (except for the expansion in a series of semi-invariants; see Section
6.1V).

1.5. Weak Compactness of Measures. The Concept of Cluster Expansion

Let A be some collection of measures defined on the whole Borel o-algebra
B(R) of a topological space Q or on its sub-o-algebra £ C B(R). By weak
compactness of the set A, its sequential compactness is always understood,
i.e., there is a weakly converging sequence p, — p, n — 0o, g, € B, in any
infinite subset B C A.

Lemma 3. In the case of a complete separable metric space Q and T = B(Q),
each of the conditions stated below is sufficient for weak compaciness of the
set A.

1) Each measure y € A is a probability measure, and there is a compact
function h > 0 defined on Q such that

/ hz)dp < C
(1]

for any measure y € A where C does not depend on u. A function h on Q is
called compact if the set {z € Q, h(z) < a} is compact for any a > 0.

2) There are a nonnegative measure yg on B(Q) and a po-integrable func-
tion p(z) > 0 such that any measure p € A is absolutely continuous with
respect to po and

<p(z), zeq

dp
| o

The statement 1) is a simple corollary of the known weak compactness

criterion of Prokhorov (cf. [6]). A derivation of the statement 2) can be found
in [16].
Definition 3. Let {up, A € F} be a family of measures, each of which is
defined on the o-algebra I, from a complete family {5, A € F} of sub-
o-algebras of the o-algebra B(Q) (here, as above, ¥ is a directed family
of indices). A family {uxr, A € F} is called weakly locally compact if the
set {4A°, Ao < A} of restrictions of measures {sz} to the o-algebra T, is
weakly compact for any Ay € F.

Lemma 4. Let a family {ur, A € F} of measures be locally compact. Then,
in any increasing sequence Ay < A2 < ... < A, < ... of indices ensur-
ing that the sequence of o-algebras Lp,, n = 1,2,..., is complete, there
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is a subsequence possessing the same property and a cylinder measure u on
A = UX, such that

p=lm g, (pn=pa) (15)

The proof is obvious.

Now we shall introduce the concept of cluster expansion of measures in a
way applicable to the case of fields in a countable set T' (with values in a space
S).
Let G C Cy(ST) be some set of bounded continuous local functions whose
linear hull is dense everywhere in the space C(ST) of all bounded continuous
functions. Let the mean (F), of an arbitrary function F € G under a measure
(or cylinder measure) u be expanded in the form

(Fla= Y, br(F), (16)

RCT,|R|<o

with bg(F') being some quantities depending on F' and finite subsets R C T'.
Every such expansion is usually called a cluster ezpansion of the measure u.
Of course, the extent of “constructiveness” of definitions of bg(F') determines
the significance of such an expansion. In the following, we shall construct
the expansions (16) explicitly each time, and the statement that this or that
measure admits a cluster expansion is to be understood only in the sense of
(16).
Definition 4. Let {p, A C T} be a family of measures defined each on the
o-algebra T, = B(SA)(A C T, |A| < 00). The family {u} is said to admit a
cluster ezpansion if

1) it is weakly locally compact;

2) there is a set G C Co(ST) of bounded continuous functions whose linear
hull is dense everywhere in the space C(ST) such that the mean (F),, = (F)a
of any function F € G admits an expansion

(Fa= Y (F) (17)

RCA

with the quantities bg)(F) fulfilling the following conditions:
a) there is a majorant

|b§;‘)(F)| <Cr(F), 3 Ca(F)<oo; (18)
RCT

b) there are limits
. A
Jim, KM(F) = bp(F). (19)
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Lemma 5. Let a family {upr} of measures admit a cluster ezpansion. Then
the weak local limit

p= lim pa (20)
ezists and u admils a cluster expansion.

In the case of probability measures {u,}, the cylinder measure p is also a
probability, hence it can be extended to a probability measure on the o-algebra
B(9Q).

Proof. The condition 1) and Lemma 4 imply the existence of at least one

weak limit point of the set {ur}. Its uniqueness, and (20), follow from the
condition 2). The cluster expansion (16) of the limit measure is obvious.

The cluster expansion of measures in the case of point fields is defined in
Section 6.3.

§2 Gibbs Modifications under Boundary Conditions and Definition of Gibbs
Fields by Means of Conditional Distributions

The definition of limit Gibbs modifications presented above does not include
all interesting cases of fields of that kind, and we offer a more general definition
of the limit Gibbs field. We confine ourselves only to the case of fields in a
countable set T' (on which a metric p is given) with values in a (metric) space
S. Further, we suppose that a finite or o-finite measure is defined on S, and
we choose, for any finite set A C T, the measure 4 = A}, i.e., the product of
|A| copies of the measure Aq, as the free measure 4 on the space SA.

Finally, we suppose that we are given a potential {®4; A C T, |A| < oo}
of a finite range, i.e., ®4 = 0 if diamA = max;, ;,e4 p(t1,12) > d for some
constant d > 0, and that the Hamiltonian Up = Z4ca®4 determined by it
fulfills the stability condition

0< / exp {=Ua(z)} dA3 <
SA

for any finite A C T. Let u, be a Gibbs modification of the measure A}, and
for any Ag C A, we use uA°(-/2A\Ao) to denote the conditional probability
distribution on the set of configurations zA° € SA° under the condition that
a configuration #A\Ae € §A\Ao jp the set A\Ao, is fixed. An elementary com-
putation (cf. Section 0) shows that the density of the measure pA°(./A\A0)
with respect to the measure AA° equals

dplye (1o /34\)
d\he

= Z;ol (:EA\A°) exp {—UA., (zA“/i:A\M)} (1)
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with
Z, (5A\A°) = ./s ay XP {—UAo (x“" /E:A\A°)}dA0A°,

Un, (z"°|i"\"°) =Un (") + Y @a(eh u5"\"°). 1)
A:ANAg#0
AN(A\Ao)#0
Here, zAo UzAVAo denotes the configuration in A whose restrictions to Ag and
A\Aq are equal to zA° and A\Ae, respectively. The second summand (1') is
called the energy of the interaction with an external (boundary) configuration
(“the boundary term”).

Notice that, for a fixed Ap and a sufficiently large A D Ay (so that
p(Ao, T\A) > d{, the energy Up,(z7°|2A\A0) does not depend on the whole
configuration ZA\Ao, but only on its restriction Z2¢A° to the d-neighbourhood
of Ao, i.e., 8aAo = {t € T\Ao, p(t,Ao) < d}.

We denote this energy by

UAo (on/a-:o‘Ao) , (l”)

and let pgg‘ o denote the Gibbs modification of the measure A0A° by means of
the Hamiltonian (1”). The measure u23 ,  is called the Gibbs distribution on

79400

Ao with the boundary configuration %40 in the neighbourhood d4A,.
The formula (1) suggests the following:

Definition. A probability measure y on the space ST is called a Gibbs dis-
tribution in T (for a given potential {®,}) if, for any finite A C T and any
configuration Z € ST\A, the conditional distribution u(-/zT\A = %) on the
set SA coincides, under the condition that the external configuration z27\A is
fixed and equal to Z, with the measure yzo,4 given by

u(/e™ = 2) = phoun, 2)

with £%A being a restriction of Z to 9zA.

This definition is due to Dobrushin, Lanford, and Ruelle (DLR), and equa-
tion (2) representing it is sometimes called the DLR equation.

From the definition (2), in particular, the so-called d-Markov property of
a Gibbs measure u follows. Namely, the conditional measure p(-/zT\A = z)
depends only on the values of the configuration Z in the set 94A for arbitrary
ACT and z € ST\A,

Let A C T be a finite set and let some probability distribution ¢ = ¢%4 on
the set S%A of boundary configurations Z = %4 be given. The measure

pe = / ppde(Z) ®3)
S04A

on SA is called a Gibbs distribution with a g-random boundary configuration
in A.
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Proposition 1. For a measure y on the space ST to be Gibbsian, it is nec-
essary that, for any increasing sequence A, /' T, n — oo, of finile sels A,,,
there is a sequence of distributions ¢, = g%~ defined each on the set S%A» of
boundary configurations, so that the weak local limit of measures p‘q‘: coincides
with u, i.e.,

im pg~ = p, 4)

n—+00
and it is sufficient that the condition (§) is fulfilled for some increasing se-
quence A, /'T.

Corollary. Let a family {u2} of Gibbs modifications be such that there is a
unique limit A

p= ,}l/r.nT Hz
for any sequence A /' T and any choice of boundary configurations z € S%A,
Then u is the unique Gibbs measure on ST.

Proof of Proposition 1.

Necessity. We choose a distribution ¢ = u|ge,a on the set S%4 induced by
the measure u for any A C T. Then it is obvious that p;‘ = p|s,, and (4) is
fulfilled.

Sufficiency. For any Ay C A such that p(Ag, T—A) > d and any distribution ¢
of boundary configurations Z € $%, the conditional distribution p2(-/ FA\Ao)
on SAo generated by the Gibbs measure yA on A with random boundary
configuration coincides (as is easily seen from (1) and (3)) with the measure
ptg‘ A, Where £%¢A0 jg the restriction of the configuration M\ t0 94A, iee.,

#9 (./EA\Ao) = ”lg\gado' (5)

Now let A, / T and ¢, be sequences such that (4) is fulfilled. Since the
equality (5) is satisfied for any fixed Ag C T and all sufficiently large A, it is
also valid for the limit measure u.

Remark 1. A Hamiltonian U, of the form (5.1), and the Gibbs modification
pa of the measure A} generated by it, are sometimes called, for uniformity,
the energy (and, accordingly, the Gibbs measure) with the “empty” boundary
conditions. Moreover, their weak local limit, the limit Gibbs modification, is
the Gibbs distribution in the sense of the definition (2) as easily follows from
the proved proposition.

Remark 2. Definition (2), presented here for the case of a finite-range po-
tential and the free measure ud = A%, can be applied as well (with some
refinements) to the case of an arbitrary “rapidly decreasing” potential {®4},
and also to the case of any d-Markov free measure u° (or even a measure u°
with a rapid “decrease of memory”). In addition, a definition of the Gibbs
field in an infinite space, analogous to the definition (2), is possible both for
the case of point fields and for the case of fields in RY (with ordinary or
generalized configurations). However, they are rarely studied at present.




CHAPTER 2

SEMI-INVARIANTS AND COMBINATORICS

§1 Semi-Invariants and Their Elementary Properties

Let a family {£1,...,£,} of random variables be given (repeated occurrence of
identical ones among them is not excluded). In the following, we shall suppose
that all moments of these variables are finite:

(lF 1) < o0 1)

for each jand k =1,2,....
For any nonempty subset T C N = N,, = {1,...,n}, we use the notation

r=[]& ¢er=1{&:ieT),

i€T

i.e., &7 is a subsystem of the system {£,,...,&,}. If T =0, we put § = 1 and
introduce the symbol £§. For any random variable £, we denote the system

of k samples of the random variable ¢ by £*, and £° = - An analogous
meaning is given to the notation

g =TTex en={em...en},
i=1

with k = (k1,...,ks), ki 2 0, a multiindex.
We shall consider the function

F(1, .00, 00) = (exp(Aré + -+ -+ Anén))

defined for all purely imaginary Ay, ..., A,. It coincides with the characteristic
function of the family {1,...,&,} with real variables t; = A;/i.

27
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Lemma 1. The function f(A1,...,Ay) is infinitely differentiable for all purely
imaginary ;. Mized moments ({5) ezist for an arbitrary multiindez k. More-

over,
okt

(&) = ﬁf A1y, 2n) )
. A1=Ag==Apn=0

(we put 8°/0X3f = f).

The proof can be found in [58].
It follows from Lemma 1 that In f is an infinitely differentiable function in
a neighbourhood of the point (0,...,0).

Definition 1. The number
o« O "
(€1, 6n) E g I f(r, o M) 3)
1 coe 3An

A1=Ag=-=A,=0

is called the semi-invariant of the family {£;,...,£,} of random variables.
The abbreviated notation for it is (§)).
Accordingly, the semi-invariant of the family £} is denoted by

() = (€5, ... %),

In addition, let us agree that
€@) =0, (&.&",..)=(€",...).

Properties of semi-invariants.

A.
Srrttha
(clkl . :‘k.) = Wlnf(Al,...,/\n) rioa ‘o (4)
1 n 1=A3==Ap=
We have

n k;
<exp (Z Z A.’j&) > = f(M,---520),
i=1 j=1

with A; = T8, A;j for k; > 0 and ); =0 for k; = 0.
Using the definition (2) we get (4).
B. Symmetry and maultilinearity.

(€1,---,&n) = (&iyy- -+, 6i0)

for any permutation
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and

(a'fi + a” ;,,62: e afﬂ) = a'(fi,fz, see :fn) + a"(fi,a 62) oo )eﬂ)'

The symmetry is obvious and the multilinearity follows from the equality

(exp{’\l(alfi + a”({') + ’\262 +---4+ '\nen}) = f(a,Al’ a”Ala ’\2, ey ’\n)

by a direct application of (3). Here, f(A{,A!,A2,...,Ap) is the characteristic
function of the family {¢{,£7,€2,...,6n}.

C. If N can be split up into two nonempty nonintersecting subsets,
N = AU B, so that the family £/, does not depend on £, then

(&11'“:6”):0- (5)

Proof. For )Ay,...,A, sufficiently small, we have

In(exp(Mié1 + -+ Anén)) =In <exP (Z Xi&) > +In <exp (Z )\i&) > .

i€A i€B
By applying the definition (3), we get (5).

In particular, even if only one variable §; = const., the semi-invariant
(é1,...,&n) equals zero.

Property C suggests that the semi-invariant characterizes the degree of de-
pendence of random variables. Notice also that, for n = 2, the semi-invariant
coincides with the covariance

(€1,&2) = (&1 - &2) — (&1)(€2),

as easily follows from the definition.
D. Ezpression of moments by means of semi-invariants.

€)= Y ). (n), (6)

a:{Tl,...,T,‘}

with the sum taken over all partitions of the set N, i.e., over all unordered
collections a = {T1,...,T} of mutually disjoint nonempty subsets (blocks)
T; C N such that A is their union.

Proof. Consider formal Taylor series! for functions f and In f in the point
Alz...=An=0:

FOw ) = 30 e,

- @
In fQOh,-, dn) = 3 =AHER),

For the formal series, see [63].
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with the sum taken over all multiindices «; here,

KU=kylo k!, A5 = ARk

Now consider € = A1€; + -+ + Ap€,. We notice that

[ <] o0 00 k
(e€) = exp(ln(ef)) = exp (Z %«")) Y& (Z ﬁ«")) . ®)

s=1 k=0 s=1

We fix k and compute the coefficient of A; ... A, in the formal series of the
k-th summand of the right-hand side of (8). It is easy to see that this is the
sum of expressions of the form .

(ér,)---(én)

over all partitions {T,...,T:}.
E. Ezpression of semi-invariants by means of moments.

() =D _(=1)F 1k = D)!ér,) - .. (ém), 9)

o

with the summation taken over partitions a = (T, ...,T}) of the set N.

The proof can be carried out analogously to the proof of property D. It will
be proved below as a particular case of the Mdbius inversion formula.

F. Characterization of Gaussian families. A system is Gaussian if and only
if

(£i1’°°°’£io)=0) 3>2a
for any (possibly coinciding) indices ¢,,...,i, € N.

This property follows from the fact that the logarithm of the characteristic
function of Gaussian families (and only of such) is a quadratic polynomial.

The set of all partitions of A is denoted by Ay = A. We define in A an
ordering by putting a < B if each element of the partition a is contained in
some element of the partition B (a “refines” §). We denote the partition to
points (the minimal partition) by 0, and the partition consisting of the only
element N (the maximal partition) by 1. The smallest partition § € & such
that o < § and B < § is denoted by a V 3 (for a more explicit account on the
lattice of partitions, see Section 6).

A partition g is called connected with respect to the partition a if aVp = 1.
This obviously means that ' cannot be split up into two subsets, each being
a union of elements of B as well as of a.

G. Generalized expansion over connecled groups. For any partition a =
{Tl,...,Tk} €Ay, it is

(€ obn) = Y (66,)---(€q.) (10)

B:avp=1




)
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with the sum taken over partitions 8 = {Q1,...,Qm} connected with respect
to a.
Proof. Consider first the particular case when |T}| = -+ = |Ticy| = 1,

|Tx| = 2. In other words, we shall prove that (n = k + 1)

(€1,---,€n-2,€n-1"&n)
= (51: oo :fn) + Z (6"-1’65')(5”’5'”.—2\7’)’

TC{1,...n-2}=Nn_3 (11)

We shall proceed by induction on n. Denoting 1 = £,-; - §, and using the
property D, we have

€. ) = (€1, )+ Y (En).--(6R),
{Th,....,Tx}
k32
(&l . --fn—?") = (€I:°° °a£ﬂ—2:")
+ Y U5, (€5 m) + (€5,) .. (€5 )(m)]

{S,,...,S,,}
k32

with {T;} a partition of V;, and {S;} a partition of N,_2. Hence,
(61, €n-2,m) — (61, ... ,&n)
= [€h) - (en)] = 2 [(€5,) - (€5,.m) + (€5, (m)] -

k32 k32
Since |Si| < n — 2, we infer from the induction hypothesis that
(€5,0m) = (5,16n-1.6n) + D (€5r,€n-1){ESm,6n)-
S'uS" =Sk

Moreover,

('l) = (En-lafn) + (fn-l)(en)-

Inserting the last two formulas into (12), we can easily convince ourselves that

only the terms
z (fn-l:f’i')(fmﬁ/._,\r)
TCNn-3

will remain on the right-hand side of (12).

We pass to the general case. Let the statement (10) be proved for all
partitions of the sets A with a number of elements less than n and for all
partitions o' € Ay less than the partition a. We shall prove its validity for
the partition a. Let n € T} and

m=&r,....;M-1 =€y M =En\(n}» M1 =En.
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Using (11) we get

(€1ys- - €Ty s €T\ () “&n) = 70y - - €T\ {n} 1 €n)

+ E (".Ig’en)(n.lAfk_l\s’ka\{”})'
S(_:Nk_l (123)

By the induction hypothesis, each semi-invariant on the right-hand side can
be expanded over connected groups. Inserting these expansions into (12a), we
may convince ourselves that one gets a sum of terms of the form (§3, ) . .. (€5.,.)
for each partition B connected with respect to a.

H. Cauchy inequalities. Suppose that the function (exp(A1é1 +- - -+ Anén))

may be analytically continued to a closed polydisc |A;| €'r1,...,|An| € ™
and differs from zero on it. Denote I' = {);,...,Aq; Ail =r, i=1,..., n}.
Then c
( ikl,..., :,h“) Sh'kn'h—k_—" (13)
ril...rh

with C = supr | In(exp(A11 + - - + Anéa)).

This property is a reformulation of the Cauchy inequality (cf. [66]) and
can be derived from the integral Cauchy representation of a function which is
analytic in a polydisc.

The conditions of Proposition H are clearly fulfilled in the case when all §;
are bounded.

Even for one random variable, the estimate (13) cannot, in general, be

improved: it is not difficult to find examples so that |(¢")| > C™ - n! for any
constant C and infinitely many values of n.
Remark. In many problems of probability theory and mathematical sta- tis-
tics, an important role is played by asymptotic estimates of semi-invariants
(6;"‘,..., :,k") for fixed n and k;,...,kn — oo. These estimates are usu-
ally obtained by standard methods of the asymptotic analysis and theory of
functions of several complex variables. Notice that the specific character of
estimates obtained in this book is related to the case n — oo.

I. Ezpression of semi-invariants in the form of moments. This useful
device consists of the following. Let a family {£1,...,6,} of random vari-
ables be given. We consider n independent collections of random variables:

{6(1) (1)}, ,{55"),.. (")}, each of them having the same dlstrlbu-

tion as the system {£1,...,6,}. Let w = exp{27i/n} and & = E;'=1 w-’f
Then

GRS LT A) (149

Proof. We notice that the cyclic mapping

££J) HE£j+l)s i=1l...,n-1, Eg") Hfg)
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preserves the probability distributions, and hence the families (El,... ,€n),
(wéi,...,wé,) have the same distribution. It follows from this, in particular,
that

(gr) = wIT'(gr)
for T C N, and thus 5 5
€r)=0, (¢r)=0
for T # N. From this and property D, one may conclude that

(€)= €w). (15)

Properties B and C imply that (£};) = n(¢}), and this, together with (15),
gives (14).

J. Formal semi-invariants. Let for each T C N a number f(T') be given.
These numbers will be called (mixed) moments of a virtual field (on N).

Define the semi-invariants g(T'), T C N of a virtual field by the inductive
formula

9(T)=f(T) for |T|=1
and
JT)=fT)- Y 9(B)...g(By) for |T|>1,  (16)
{B1,...,Bx}

with the sum taken over all partitions {Bj,..., By} of the set T, with k > 2.
Notice that formula (16) coincides exactly with formula (6). For the numbers
9(T') the formula

9N = SO (=1)F 1k = DT £(Th), (16)

analogous to formula (9) (see the property E), is valid with the sum taken over
all partitions o = {T3,...,T:} of the set A'. Formula (16'), as well as formula
(9), can be obtained with the help of the comparison of the expansions of the
generating functions

Sg(Myendn) = Y g(TNT

TCN
and
St ndn) = Y A@NT
TCN
with

F:H%

i€T
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We shall need an analogy of the suitably reformulated property C. Let N/
be the set of vertices of some graph G. We denote the subgraph of the graph
G spanned by a set A of vertices by G4 for A C N. For B C A we call the
graph Gp a component of G4 if, in G4, there are no edges connecting B with
A\B.

A system (virtual field) {f(T),T C N} is called independent with respect

to the graph G if
f(4) = f(A1)f(A2) (17)

for any A C NV and all partitions {A;, A;} of the set A such that G4;,i = 1,2,
are components of G 4.

Lemma 2. Ifthe graph G is not connected and the sysiem f(T) is independent
with respect to G, then
gN)=0. (18)

The proof is carried out by induction on n. Let § = {A;, A2} be a partition
of N such that G4, and G4, are components of the graph G = G (£ exists
since the graph is disconnected). From (16) we have

sN)=fN)-Z! -Z7, (19)
where we sum over all @ < § in £’ and over & # 1 in £”. All the summands in

X’ equal 0 according to the induction hypothesis (since in each such a there
is an element intersecting A; and A3). At the same time, according to (17),

= f(A1)f(Az2),

which implies the lemma.

K. Semi-invariants and modifications of measures. Let (Q2, X, po) be a prob-
ability space, &1,...,&; be random variables with finite moments, and U be a
bounded random variable. Consider a new measure (the Gibbs modification
of po)

U
uay= &2 gy, (20)
<e )Ilo
with 2 a real parameter, and x4 the indicator of the set A. Then the semi-
invariant (£,...,&), evaluated with respect to the measure u is an analytic
function of 2z in a small neighbourhood of zero in the 2-plane, and
AW Z ,(51, &6 U™ o (21)
n=0

Proof.
(€1 600 = g nlexp s+ + Da )

X1—~~=Ak=0
ak
= o In{exp{Aié1 + - + Meic + 2U}) o

Expanding the last logarithm in z, we obtain (21).

A1=~--=Ak=0
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§2 Hermite-It6-Wick Polynomials. Diagrams. Integration by Parts

1. Wick polynomials

Let ¢ be a Gaussian random variable defined on some probability space
(R,Z, ). The polynomials in ¢ (for brevity called Wick polynomials? and
denoted by the notation : : introduced by him) arise by orthogonalizing the
system of monomials 1,¢,£2,... in Ly(R, T, p).

Definition 1 (Wick exponential function). We put
exp(af): & XR(a6) _ — ) - La2e
oxp(ot): ¥ 22— exp lae- (@) 3%}, )

with a being an arbitrary complex number. Expanding the right-hand side of
(1) in a (converging) power series in a, we denote the coefficient of a” /n! by

£h e,

:exp(a€): &' > ‘;—:f"a 2

n=0
It is easy to see that :£™: is a polynomial of the n-th degree in ¢ with the
leading coefficient 1, i.e.,
£ =£"+Q(¢), (3

with @ being a polynomial of the degree not higher than n—1. The polynomial
#£": is called the Wick power. For example,

€0 =:1:=1, :£:=€-(6).
If (€) = 0, then

:EZ: = £2 - (52)’ 163: = 63 - 6&(62))
= - 0 + 3(@)) @

For any polynomial P(§) = a,€™ + - - + ap in the random variable £, we
define the polynomial :P(§): by the linear relation

:P(€):=an:€": +--- +ao.
We emphasize that the operation P — :P: depends on the distribution of §

(more exactly, on (¢) and (¢2)).
In the following, we shall consider the case of (§) = 0.

2These polynomials, as we shall see below, coincide with the known Hermite polynomials
(cf. [62]); in the form of stochastic integrals, they appeared in an article by Ité (cf. [23]).
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Lemma 1.
1) The polynomials :£": and :£™: are orthogonal in the space Lo(,X,u)

forn #m and
(" ™) = nl(E)". (%)

2) The polynomial :£": is orthogonal to all powers £™ with m < n.

3) The system {:£":;;n = 0,1,...} of polynomials is complete in the space
L3(R,2(€), sls(e)), with B(€) C T being the smallest o-algebra making £ mea-
surable. In other words, the polynomials

1 n.
ha(§) = Wi : (6)
form an orthonormal basis in Ly(S2, X(£), plg(e))-

Proof. We write ;
o~ OB en. emy _ (. . y = texel(e + B)])
2, i (€7 7 = Cexpla)::exp(B0) = Tt e e

= exp(aBle?) = Y S0y ")

n

Comparing the coefficients of the monomials a®8™ in the first and the last
sums of this equality, we get statement 1). It follows from it and from (3)
that the polynomials 1,:£:,...,:£": form an orthogonal basis in the space
L™ C Ly(Q, T, u) of polynomials in £ of a degree not higher than n. From this
and 1), we get the statement 2). Therefore, the system :£": is an orthogonal
system of polynomials with the leading coefficient being equal to one and,

consequently,
€™ = ()2 Ha(6/(€)?),

with {Hp(z)} being the Hermite polynomials (with leading coefficients one;
cf. [62]).

Statement 3) is valid since the system H,(z) is complete in the space
Ly(RY, (27)~Y2e=%"12dz) (cf. [62]).

Corollary 1. In the decomposition (3), the polynomial Q € L™"~V) coincides
up to the sign with the projection of the vector £" into the subspace L("~1). In
other words, :£": is the perpendicular, in Lo(2, X, ), dropped from the vector
&™ to this subspace.

Definition 1 easily yields

d n n-1

—" =n: . 8
% 3 £ (8)
Definition 2. In the case of an arbitrary Gaussian family {£,...,£,} with
(&1) = (€2) = -+ = (€n) = 0, the Wick polynomial :P:, for a homogeneous
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polynomial of the degree k in £,...,&,, is defined to be the perpendicular
in the space Ly(Q, I, u) dropped from the vector P to the closed subspace
L(*-1) generated by all polynomials in &, .. .,&, of a degree lower than k.

For a monomial Ef‘ ...Ek = &%, k= (k1,...,ks), the polynomial :£5: is
called the Wick monomial.

Notice that, in the case n = 1, Definition 2 of the operation : : is identical
to the preceding Definition 1 if (§) = 0. Therefore, the formula

‘exp (Z ai&') 1= exp {Zfiai - %Zaiaj (Eifj)} = E %fiffv: 9
i i i x

is valid, with «! = ky!...k,!, a% = a*'...a%*. An explicit decomposition of
N 1 n

€. into powers of {;,...,&, may be derived. An analogous decomposition
of :P:, for any polynomial P = P(§,,...,£,), follows from the linearity.

Lemma 2. 1) If&,,...,£, are mutually orthogonal (and thus independent),
then

b gk gk gk (10)

and all Wick monomials are pairwise orthogonal in Lo(Q2, X, pt).

2) In the case of an arbitrary Gaussian family {£1,...,&n}, the system
{:€%::, & arbitrary multiindez} of polynomials is complete in the space
L2(Q,Y, plyr) with T/ being the smallest o-algebra making &,...,&, mea-
surable.

Proof. The equality (10) follows from the equality

rexp (Z a.'&) : =[] :exp(aits):, (11)

i=1 i=1

implied by (1). As for the orthogonality, it follows from Lemma 1.

For the purpose of the proof of 2) we choose an orthonormal basis 7,...,7,
in L), In addition, each polynomial :P(¢;,...,&,): can be decomposed into
(Wick) monomials :¥*5%?...gk: and, conversely, the monomials :n%: are
represented in the form of linear combinations of the monomials :£§,:. As
for the completeness of the monomials :n%.: in Lo(R, X, p|sr), it follows from
statement 1) and Lemma 1.

As before (cf. (8)), the formula

d - .
8_6.-: f‘ o EEm = k;:{f‘ ...£,!" 1. gk, i=1,...,n, (12)
is valid.

Remark. The preceding constructions can be generalized also to the case of
a countable collection {{n; n = 1,2...} of Gaussian random variables. In
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particular, if all ¢, have zero means, (€,) = 0, and (§xén’) = bnn' = {(1, :;:',,,
then the normalized Wick monomials

hik,,...kn,..} = W Y S H (k ,)1,2, (12a)

with (k1,...,kn,...) being any sequence of integers k; > 0 such that k; = 0
for ¢ > ip, form an orthonormal basis in the space L2(Q,T’, y|zr).

2. Diagrams

The diagram technique is useful in the computations with functionals of Gaus-
sian families. It is geometrically intuitive and gets rid of complicated formulas
with a large number of indices. We shall explain this technique in the case of
Gaussian families {£,,...,£,} of random variables with (§;) =0,i=1,...,n.

Let a partition a = {T},...,T:} € Anx be given. We shall show how to
compute the following moments and semi-invariants:

1 (ériér, - --61) = (W)

2. (£Tl9£Tz:"')£Tg);

3. (:br,:...€1,); (13)
4, (:br,:, ..., %€10).

Notice that, for an odd n, all the variables in (13) equal zero. Indeed, we
may pass to a system of random variables ¢/ = —¢; and notice that the family
{¢1,...,€.} has the same joint distribution as the original one. Hence, all the
variables (13) for the new system are the same as for the old one and, on the
other hand, they differ by the factors (—1)".

Thus, we shall only examine the case of an even n.

Denote the set of all partitions 8 = {(i1,¢}), ..., (i, i} )} of the set A into
pairs by 2%, C Ay

Each pair G = (a, 8), with a = {T},...,T,} € 9n, and B = {(i1,}),...,
(%k,1%)} € A3/, is called a (vacuum) diagram of the Gaussian family {¢,.. .,
£.}. With each diagram, we shall associate a graph with the set of vertices V
being the elements of the partition a, and the set of edges E consisting of the
elements of the partition . We then say that the edge (i,i’) € E connects
the vertices T, Tj» € a if i € T}, ' € Tjs.

We shall call a diagram connected, without loops, etc., if the corresponding
graph is connected, has no loops, etc.

Notice that a diagram is connected if and only if the partition 8 is connected
with respect to the partition a (cf. p. 33).

With each diagram G, we associate a quantity I(G) called the contribution
of G and defined by

1G)= ][I (e, (14)

(i,8")eE
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with the multiplication taken over all elements (i,i’) of the partition 8.

Lemma 3. The values of the quantities (13) equal

pN (&)}

with the sums taken for the fized o = (T4, ...,Ti) over the classes of diagrams
of the following type, respectively:

1) all diagrams;

2) all connected diagrams;

3) all diagrams without loops;

4) all connected diagrams without loops.

Proof. 1) is a reformulation of property D of semi-invariants;

2) is a reformulation of property G of semi-invariants. It will be suitable to
postpone the proefs of statements 3) and 4) and to introduce first diagrams
of a more general form. Namely, we shall call a diagram any pair G(a, ),
with @ € A being an arbitrary partition and § € ™Ax being a partition,
each element of which consists of at most two elements. With a diagram G,
we associate a graph with “free legs.” The set V of its vertices is defined
as before, the set E of its edges is the set of elements (i,#') of the partition
B consisting of pairs of elements, and the set L of its free legs is the set of
one-point elements {l} of the partition 8. Moreover, the leg {I} € L is said
to be attached to the vertex T; € V if | € Tj. The random variable

I(G)=[ II (&e.-:)] II: II & (15)

(ii')eE T;€V 1€T;:{l}€L
is called the contribution of the diaigram.

Lemma 4. The following formulas hold true:

v =) 1(G), (16)

with the sum taken over all diagrams G = (a,B) with a = 1, for which the
parity of the number |L| of legs coincides with the parity of n, and

€N = Z(_l)(n—lbl)ﬁ I(G), (17)

with the sum taken over all diagrams G(a, ) with a = Q and with the parity
of the number of legs coinciding with the parity of n.

Proof. From the comparison of the coefficients of a;a; .. .a, in both sides of
the equality

L3

exp {Zai& - % )" aig; (&fj)} =) %"fﬁﬁ (18)
i ij )
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(see formula (9)), we get the equality

€n:= Z Atér (18a)
TCN,
IM\T]-even
with
Ap= (VT2 S TT (&), (18b)
PEX\y (i4")ER

where the sum is taken over all partitions of the set M\T into pairs. The
equalities (18a) and (18b) yield (17). Rewriting (18) in the form

:exp (E a;E.-) :exp (% z:a,-a_,- ({.'{j)) = exp (Z ai&) = Z %fxf
; ij i =

and repeating the preceding considerations, we arrive at (16).

Remark. From (18a), (18b), and statement 1) of Lemma 3, we get

dvi= Y ()M (e g)er.
TCN,
|JM\T|—-even
Similarly, we get

Ev= Y, (enr)iér
TCWN,
|NM\T|—even

Lemma 5. For any partition a = {T3,..., Tk}, it is

e S R D G V Sl (&) (19)
G=(0,8)
and
ér,...br,= Y, I(G), (20)
G=(a,B)

with the sum laken over all diagrams of the form G = (Q,B) in the former
case, and of the form G = (a, B) in the latler, and such that, in both cases,
1) < e;
2) foralli=1,... k, the number |T;| — |L;| is even, where L; C L is the
set of legs {I} € B atiached to T;, i.e., l € T;.

The proof of both, formulas (19) and (20), is obtained by multiplying out
formulas (17) for :£r;: and (16) for £7;.
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Lemma 6. Let a Gaussian family {£1,...,&n, M,...,Mm} of random vari-
ables and a differentiable function F of n real variables be given so that the
random variables F(£,...,&,) and F/(€1,...,&n) belong to L2(2, X, p) for all
i. (F! stands for the partial derivative F with respect to its i-th argument.)
Then

(:ql X °"m:F(£l) (R )fn» = Z(”l&)(:’h e ')miF.'I(fl, oo ,gn))' (21)

i=1

Proof. In the particular case when F(y,...,&,) = €1 ...6&n:, formula (21),
as follows from (12), is of the form

(M. m 1.0 8t = Z:(m&)(m---nm: £1...6...63)  (21a)

(the sign~above the variable §; means it has to be omitted). Formula (21a) is
obtained as follows: we use the equality (19) for k£ = 2, take the mean value
() of it, and, with the help of statement 1) of Lemma 3, we represent this
mean in the form of the sum of the correlations (£;€i+), (njn;+), and (&n;).
Separating the coefficient of (7:£;), we again convince ourselves, with the help
of the equality (19) and Lemma 3, that it is of the same form as in (21a).
In the general case, any function F' can be expanded in a series in the Wick
monomials, and, applying the formula (21a) to each summand, we get (21).

Proof of statements 3) and 4) of Lemma 3. We shall prove both statements
3) and 4) by induction on the number n of random variables {£i,...,&n}.
Let statement 3) be fulfilled for all n < m. Then, applying formula (21)
to the mean (:p,:...:¢n,:), with @ = {T},...,Ti} a partition of the set
N = (1,...,n), and using the induction hypothesis, we verify statement 3)
for n = m. We now pass to statement 4) and suppose again that it is true for
n < m. Writing 1; = :£r,: and applying formula (6.1), we get

(Myeom)=(m-..m)— Y (ng,).--(nG,)- (21b)
6={Qp1>,..l.,Q,}

By virtue of statement 3), the first summand equals the sum of the diagrams
without loops. By the induction hypotheses applied to each factor (1g,), the
sum Y_; equals the sum of all disconnected diagrams without loops, i.e., only
connected diagrams without loops remain in (21b). Lemma 3 is proved.

3. Formulas of integration by parts

One of such formulas is formula (21). We will establish two other such for-
mulas.
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Lemma 7. Let ¢ Gaussian family {ér,...,én,M,...,Mm} be given, and let

the functions Fo = 1y ... 0m:, F1(€1,.. 1 8&n)s - Fu(€1,y ..., €n) obey the fol-
lowing property: all the mized moments of them and their first derivatives
exist. Then

(FO’FI’ F:t) Zz("l& <0F0, 1. )aa? F >’ (22)

i=1 j=1

Proof. We expand the semi-invariant from the left-hand side of (22) into the
moments with the help of (9.1) and use the formula of the integration by parts
for the moment containing Fp. Using formula (9.1) again, we transform the
obtained expression to the right-hand side of (22).

Remark 1. The reason why the term “integration by parts” is used for (21)
and (22) is explained, for example, by the fact that formula (21) for m = 1
can be obtained by the usual integration by parts of the integral

/ yF(zy,...,22)0(¥,21,...,2,)dydz, ...dz,
Rr+1

with p being a Gaussian density.

Lemma 8. Let a family of Gaussian measures y, on R", 0 < s < 1, be given
80 that their means vanish and the covariances ¢, depend smoothly on s. Write

()s = ()u. -

For any twice-differentiable function F(zy,...,z,), for which the means
(F),, (%),, (3‘%’5’;—’,), and dispersions of the function F and its partial deriva-
tives up to the second order are finite for all s, the equality

- Fo=13 | [Feen| (o) @ @

( J)o
holds true.

Proof. As in the proof of formula (21), it is sufficient to consider the case
F =2z,...2,. Apply the formula

1
d
(P - (P = [ [S(F] as (24
[
and notice that, as follows from the statement of Lemma 3,
—(21 zn). - 2 [—(xgzj) ] (zl J ..zn)‘. (25)
l<)

From (24) and (25), we get (23).
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§3 Estimates on Moments and Semi-Invariants of Functionals of Gaussian
Families

Let T and A be countable (or finite) sets and let a Gaussian family {§;q,t €
T, a € A} be given such that for all ¢ and «,

(eta) = 0:
D Y Ketabrar)l < d < oo (1)

t:t'#ta'€A

Let 4 denote an arbitrary integer-valued nonnegative finite function defined
on the set A : ¥ = {m(a), a € A}, m(a) 2 0 be integers, and the quantity
7l = X gea m(a). We write

y!= [ m(e)! and 4= ] m(a),
a€A a€A
with m!! =m(m -2)....
We use :£; : to denote the Wick polynomial

£ =: H gmee),, (1a)
a€A
We use the notation 35,  y(3 (4, . :.}) for the sum over all ordered (or
unordered, respectively) collections of mutually distinct ¢,,...,t, € T.

Lemma 1. Let the conditions (1) be fulfilled. Then, for any finite ordered
collection of functions (v1,...,7n)s i = {mi(a),a € A} andt =t, €T, the
estimate

z (E3 SR 240 | Y G l)!dN/2H7,-!! (2)

(t2,-.tn) i=1

is valid, with N = Y_[_, |vi| (N is an even number).

Proof. In accordance with Lemma 3.2,

Sl gm < ), 3)

(iz,...,i.)

where the summation on the right-hand side is taken over some collection of
connected vacuum diagrams without loops. We are going to describe these
diagrams. They are given by:

1) a sequence of vertices V = (ty,...,t,), with ¢; being fixed and all points
t; being mutually distinct; a set of legs {i, a, k}, « € suppy;, k= 1,...,mi(a),
corresponds to each ¢;;
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2) a partition of the set of legs into pairs (edges)
{G1, a1, k1), (37,01, k1)), 1=1,...,N/2.

We order all the edges of a given diagram G according to the following rule.
First step: starting from the point t; along the leg (1,a1,1) = (i1,01,k1),
with «; being the smallest @ € suppy;, we arrive, along the corresponding
edge {(i1, a1, k1), (%}, o1, k1)}, to the point ¢}, . We say that the legs (i1, ay, k1)
and (i}, o}, k}) contained in this edge are “used.” We will now describe the
general induction step. Let the s edges already be ordered,

{(il’al’ kl)’ (ill»a’l’ i)}’ ceey {(ihankl):(i’ualu‘k:)k

When constructing the (s + 1)-st edge, two cases arise.

First case. Let nonused legs exist among the legs (i},0),k), k¥ = 1,
...,mi,(a;). We choose such a leg with the smallest k¥ = k,41 and put
(ia-l-l y Xs41, ka+l) = (i'., a‘ , kc-l-l)-

Second case. If there is no such leg, we take the first one (in the lexico-
graphical order) from the nonused legs in the visited points (they exist because
the diagram is connected). We denote it by (i,41, as41,ks41)-

As a result of such an ordering of the edges of G, we get the corresponding
sequence of pairs

{(tlaal)’ (ti'lrai'l)}; ceey {(tin/gaain/z) ) (ti'rd/z’ ai&,,)}- (4)

Moreover, the contribution I(G) corresponding to the diagram G equals

I(G) = (fhozl . et"l""x) e <€“N/°O‘N/°£‘ilf¢lﬁailt¢/z)'

We notice that, for fixed (t,...,t,) and (71,...,7n), there are at most
T mi(e)(mie) - 2. (5)
i,

diagrams leading to the same sequence (4). Indeed, we may enter any pair

(t;, a) for the first time in the course of our walk along the edges through one

of m;(a) legs. Since we leave this pair each time along the exactly defined

leg, we can enter into it for the second time by (m;(a) — 2) ways and so on.
We introduce the notations

(zm,am) = (ti,.’ai,.)j (z:n’a:n) = (tiﬁuaai'm)
and investigate the collection & of sequences of pairs

{(z1,01), (zll:all)}’ ceey {(zN/2’ aN/?)’ (z;v/zyajv/z)} (6)
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being obtained from all diagrams G over which the sum in (3) is taken.
The sequences from 2 obey the following properties:
1) zm =2 forsomel<m,m=1,...,N/2,z; =1y;
2) the pair (2m, am) is uniquely defined by all preceding pairs

{(zl’ al)’ (z'l’all)}a sy {(zm—l) am-l)’ (z;n—l)a:n—l)};

3) all the sites z,,, z},, exhaust some n-point set S C T;

4) there are at most (n — 1)! sequences (22, ..., t,) such that the sequence
(4) coincides with them for the given sequence (6).

To prove 4), we associate with each sequence (4) the permutation = which
is obtained by enumerating the points ¢, ..., t, in the order of their first
appearance in the sequence (4). Knowing the permutation 7, we can enumer-
ate elements of the set S = (t1,..., ¢,) in such a way that the sequence (6)
coincides with (4).

Lemma 2. Let a collection A of sequences of pairs of the form (6) fulfilling
the conditions 1) and 2) be given. Then

N/2

Y IT Keomanberan )| = 2. )
A

m=1

The proof can be easily obtained by the induction on even N'’s.
Estimate (2) follows from the formulas (5), (7), and property 4).
Lemma 1 is proved.

Estimates of semi-invariants

Fundamental Lemma 1 enables different applications. We shall use it for
estimates of semi-invariants of arbitrary functionals of Gaussian families.

Let the Gaussian family {&_; t € T, a € A} fulfil, in addition to condition
(1), the condition that for arbitrary t € T', we have

p——
1, a=d,

0, a#d. ®)

(ftm fta’) = baat = {

It follows from condition (8), Lemma 2.2, and the remark on page 40 that
the normalized monomials &
£

hyt = TN 9)

with 4 running over all the integer-valued finite functions on A, form an
orthonormal basis in Ly(2,X¢, 1), and Ty = E({€ia}) is the smallest o-
algebra making all the variables £;4,a € A, measurable, and p; = p|g,. We
shall use F; to denote a random variable which is measurable with respect to
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the o-algebra I, and let Fy € Ly(2, Z¢, 1), i.e., F; have a finite mean (F})
and finite dispersion D; = ((F; — (F;))?). In this case, F; can be expanded in
a sum of the monomials h.; which converges in the quadratic mean:

Fy = Za'yth'yt- (10)
p”
According to the Parseval equality,
3 layl* =D, (11)
1#0
where 0 denotes the null function: 0 = {m(a) = 0}.

Theorem 3. Let {{ia;t € T, a € A} be a Gaussian family of random vari-
ables fulfilling the conditions (1) and (8), with d < 1 in (1). Further, let
{T:,t € T} be some other family of random variables such that, for any
t €T, Fy € Ly(R, X, ) for any p < 1 and its Fourier coefficients {a:}, in
the ezpansion (10), obey the estimate

layt| < ay (12)
Jor any function v, and also
> lay* = D < o0 (13)
1#0

Then, for any finite subset Q = {t1,...,tn} C T, the moments ([];-, F:;)

are finite, and consequently, there are semi-invariants (Fy,,..., Fy,) = (Fg).
Moreover,
n
(F'Q) = Z Ha‘rih’ (h‘uh’ cee ’h‘ru!.): (13')
(71»“’11')"=1

and the series (13') is absolutely convergent.
For any t; € T and any integern 2 1,

n-1
, loye, | ) [o[C)) for any A, (14)
Z I(FQ)Is ‘E;a v ¢ (§6a1 7) T any

QCT:
1:€Q1Ql=n D;}/*pn-nizciain, |4l < oo,  (15)

with

C(v) = [] (m(a) + 1)/2dm/2,
a€A
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0 1/2
C= (E md""’l) .

m=1

and

Proof. By virtue of the Hélder inequality,

<g ml>

and consequently, the moment ([]’., F:), and also the semi-invariant
(Fg), exist. Further, for any integer N, we write the decomposition

N
R, = z:’hﬁl‘hKN Gyt hyyt, + Ft(n ). Then

n

<IIFz. (15)

i=1

(Foy= > sty (Pt Fpgey) + (FC Flvry)- (157)
ninlLN

Using the Holder inequality once more, we get
(N (N)
|(Fn )’F(')\{t,})l < "Fu “L2 -Cq,

where the constant Cq does not depend on N.
Passing, in (15”), to the limit with N — oo, we get

(FQ) = apty (Puts, Fgr i)
"
with the series converging in the sense that its partial sums
Y —(Fh) as N—oo. (15")
T:AnIEN
Proceeding further in an analogous way, we obtain
(Fé) = Z . 'Ea‘ntn oyt (Byytys o By, (16a)
TN Tn

where we are summing iteratively: at first over the index v, (in the sense
analogous to (15”)), then over the index 9,-1, and so on. It follows easily
from estimate (2) for d < 1 that the series (13') converges absolutely, and
consequently, the iterated sum (16a) equals the sum of (13').
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Using (13’) and applying Lemma 1, we get

Y. [F= D Py Fu,....Fo)l

QCT: {ta,ta}
1:€Q,1Ql=n ?

1 oyt - - - 18yatal
L
(‘2‘ \tl) ('Yl\ \1'0) n(”i")l,z

i=1

vi#di=1,..,n

3 [CTRRNE "')l
< Z |“1m|H“‘rsth' /2 7;)1/2

(71: “Tn) =2 i=1
< (Z |ae. H (m(e) + l)’/zd"‘(“)/?)
h}! a€A

( (n-1)/2
+1 1/2dm 0)12) ,
3 (}: oy T[m(@) + 1) ”

v a€A

which coincides with (14). Here, we have used the simply verifiable inequality
m!/(mh1/2 < (m +1)1/2,

Estimate (15) is obtained from (16) with the help of the Schwartz inequality:
> layesl [T(m(a) + 1)1/2amer2
£} ¢’6

1/2

1/2
< ( EAIa’hh |2) (Z H(m(a) + l)dm(a))

71#0
00 141/2
=1),11/2 (Emd’""l) .
m=1

The sum from the second parenthesis in (16) can be estimated analogously.

Estimates of moments

Theorem 4. 1) Let a family {§a; t € T, a € A} of Gaussian random vari-
ables satisfy the conditions (1). Then, for any set of points {t, ..., t,} CT
and any collection of functions (y1, ..., Tn), the estimate

|(:e22: ... €02 st/"'H'y.'!! (17)

i=1
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holds true (the notations are those of Lemma 1).
2) Let the conditions of Theorem 3 be fulfilled. Then, for any finite Q C T,

H Z |aye| 6'(7), A arbitrary, (18)

<H F> teQ v

t )| <

t€Q (H D,‘”) ClAIRI 4] < oo, (19)
teQ

with the constants C(y) and C from the estimates (14) and (15).

Proof. Statement 2) can be proved by repeating the proof of Lemma 1. Since
a moment of Wick monomials enters (17) only for a fixed collection of points
t1,..., tn, and not in a sum over such collections as in estimate (2), it is no
longer essential that the diagrams in (3) can be also disconnected. We bring
another independent proof of the estimate which is slightly weaker than (17).
We use the equality

<H :exp { 2 ftaZm} :> = exp Z 2talt’' o’ (Etaft’a’) = Q({zwl})

teQ a€A t;et‘
a, a

(20)
with {2ia,t € Q,a € A} being an arbitrary finite collection of complex pa-
rameters.

We imply from the easily verifiable estimate

[2({21a})| < exp -d > lzal? (21)

teQ
a€A

and from the Cauchy formula

)

H(21rz)"“PP1:| / /(}({z,a})H H -(m'(a)ﬂ) X H dz¢;a,

i=1 a€supp7;
3¢.a|-'|a

with the integration taking pla.ce on the set |2;,4| = riq in the space of vari-
ables {z;,4; a € suppyi, i =1, ..., n} and rjq = /m;(a)/d, that the inequal-

ity
<H=e:'::> sd””l'[[(v.-!)”’ I1 @rimi(e)+ 1Y
i=1

i=1 a€supp v;
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is true. Statement 2) can be proved in complete analogy with the proof of
Theorem 3.

§4 Connectedness and Summation over Trees

In this section we introduce the concepts of connectedness and d-connected-
ness, often used in the following text, and we establish some simple facts
related to these concepts; in particular, estimates for certain sums over col-
lections of connected graphs.

Connectedness. Let T be a countable set and ' = {A;,...,A,} be a
finite or infinite (unorderd) collection of its subsets. The collection I is called
connected if the following graph Gr is connected: the set of its vertices consists
of the elements of (1,2,...,n), and the set of its edges contains those pairs
(3, §) for which the sets A; and A; intersect: A; N A; # 0.

Let 2 be a finite or countable family of subsets of T satisfying the following
conditions:

1) The cardinality of all subsets A € 2 is bounded:

[AlS M, Aef (1)

2) Each point t € T is contained in at most K sets from A (M and K are
some constants).

For any point ¢t € T, the maximal number of connected collections I' =
{A1,...,An} consisting of n (possibly coinciding) sets 4; €A, i=1,... ,n,
such thatt €T = U, A; is denoted by Sy ;. Let S, = maxier Sn .

Lemma 1. There are the constants C = C(M, K) and B = B(M, K) such
that for any n,

S, < BC". (2)

Proof. We use §,. to denote the maximal number of connected collections
I'={A;,...,A,} consisting of n mutually different sets A; € A(t € T'). The
numbers S, satisfy the following recursive inequalities:

§1 < K)
R min(n-1,M) M R R
S. <k ) (s) Y S8, >, (3)
s=1 (n1y.omy):
N+ $n,=n-1
with the sum E(n,,... n) being taken over all ordered collections (n4, ... ,n,),

s > 0, such that n; +---+n, = n—1, n; 2> 0. The inequality (3) is deduced in
the following way. Let n > 1 and A; be the first (with respect to any ordering
of the family ) of the sets of the collection I' = {A;, ..., An} which contains
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a fixed point ¢ € T'. In addition, the collection {A3,... ,Apn} splits up into s
connected components Ty,...,T,, Ty N f‘j #0, i # j. Let t; be the first (in
the sense of some ordering in T') point in Tind;, i=1,...,s.

Now we fix A;, a number s < |4,|, the points ¢;,...,t, € A;, and the
number n; = |I], i = 1,...,s, such that ny + --- 4+ n, = n — 1. Then the
number of collections T' of sets from 2, having exactly s connected compo-

nents I'y,...,T', consisting each of n; different subsets and containing points
t1,... ,t,, respectively, is not larger than

Sy -+ 5n,. 4)

Summing further (4) over all collections (ny, ... ,n,), over choices of points

ts,...,t, € Ay, over all numbers s, and also over all sets A; containing a
point ¢, and considering the conditions 1) and 2), we get (3).
We further introduce the numbers S,,, n > 1, defined recursively:

§1=K)

min(n-1,M) M
Sa=K ), ( ) > 5a..Ba, n>1L (5)

S
=1 (N1, 0 ):
nitdn,=n-1

Obviously, §,. < 5,,. We define a function

fla)= Z Snzn

n=1

(assuming that the series on the right-hand side converges for sufficiently small
z). We find, according to (5), that f(2) satisfies the equality

f(z) = Kz(f(2) + )M,
which we rewrite in the form
2= W/(K(Q + W)M) = F(W),

with W = f(z). Since the function F(W) of the complex variable W is
analytic in a neighbourhood of the point W = 0 and F’(0) # 0, the inverse
function W = f(z) is analytic and bounded in some disc {|z| < r}, » > 0. We
get from it

Sn < B(/r)", (5")

with B = max,|=, | f(2)].
Coming to the number S, of arbitrary connected collections

T'=(A,...,4,), t€T,
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we notice that each such a collection can be written down in the form I’ =
{(A1,k1),..., (A, k) ), Ai # Aj, i # j, with (Ay,..., A,) being a connected
collection of mutually different sets from A, and k; > 0 the multiplicity, with
which the set A;, i = 1,...,s, occurs in I'. Obviously, k; + --- + k, = n,
andltherefore, the number of ordered collections (ky,... ,k,) does not exceed

n—

(2D

*From this and (5"), we get (2).

We present an important corollary of the proved lemma.

Lemma 2. Let the conditions of Lemma 1 be fulfilled. Then there are the
constanis Cy > 0,Cy > 0, B; > 0 and A\g > 0 (depending on M and K) such
that for all0 < XA < Ao, any finile set Q C T, and any n,

Y Al < By(Cpynel?, (5")
r

with the summation over all collections T = {A,,...,An}, Ai € 4, i =
1,...,m, such that |T| = m > n, and the collection (T, Q) = {A;,...,An,Q}
is connected.

Proof. We denote the connected components of the collection I by I'y,.. .,
T,, s=1,2,.... Obviously, ;N Q # 0, and let ¢; be the first (with respect
to some ordering in T') point in the set FnQ.

As follows from the preceding lemma, the sum Y AlGl over all such col-
lections T, with a fixed number s of components I';, cardinalities |[[';| = n;, i =
1,...,8 and pointst € Q,i = 1,..., s, does not exceed B*(CA)"* ...(CA)"** =
B*(CX\)N, with N = |T'|. The number of ordered collections (n;,... ,n,) such
that ny + - -+ n, = N does not exceed 2V, and the number of collections (no
longer ordered) of mutually distinct sites {t1,...,%,} C Q is not greater than
Clq- From this we get (5") with Ao < 1/(2C), Cy = (2C), C2 = B+1, Bi =
(1 - 2C/\o)_l.

A-connectedness and d-connectedness. Let A be some family of subsets. A
finite set R C T is called ™A-composable if there is a collection

I ={Bi,...,Bi}, B;€e4,

such that -
I'=R. (6)

An 2A-composable set R is called A-connected if the collection
I'={By,...,B:}, B;€q,

from (6) can be chosen to the connected; every maximal 2-connected subset
R C A of the set A is called the A-connected component of A (i.e., A has no
A-connected subset R’ C A such that R C R').
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Lemma 3. FEach 2A-composable set R can be uniquely split up into its A-
connected components:

p
Rlla-“’R;n R:-nR;=0, ‘#j: R=UR:

i=1

The proof is simple and we omit it.

Now let {A;,...,Ar} be a collection of finite subsets A; C T; we say
that an A-composable set R is A-connected with respect to the collection
{A1,..., Az} if the collection {R],...,Ry, Ai,...,A}, with R} C R being
the A-connected components of R, is connected.

Let the family A satisfy the conditions 1) and 2), and L ,,(A) be the number
of A-connected sets of the cardinality n that contain a fixed point t € T', and

Lo=L,(A) = max Ly n(2A).

Lemma 4. There are the constants Cs = C3() and By = By(A) such that
foranyn21,
L, < By(Cs)"™. (M

Proof. Obviously, the number of A-connected sets R of the cardinality n,
containing ¢, is not greater than the number of connected collections I' =
{By,...,B,}, B; € 4, such that s < n and t € I'. Estimate (7) follows from
Lemma 1.

Now we introduce the following quantities.
Let A be a family of sets and R an 2A-connected set. We put

dp(%)= min |T], ®)

with the minimum taken over all connected collections I' = {B,,...,B,},
B; € 2, such that T = R.

Let A = {Ay,...,A;} be some collection of sets and let the set R be
A-connected with respect to {A;,...,Ar}. We put

dn(®,4) = min [T, ©)

with the minimum taken over all collections ' = {B;,..., B, }, B; € 4, such
that {By,...,B,, Ay,..., At} is a connected collection and T = R. It is easy

to see that
dr(®,A) = 3 dpy(%), (10)

where Ry, ..., R, are the A-connected components of the set R.
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We now define
dA(ﬂ) mm dn(ﬁ) (11)

for any set A, where the minimum is taken over all A-connected sets R con-
taining A (d4(2) = oo if there is no such set R). Further, we put

d(ﬁsA) = rrgn dﬂ(qu)’ (12)

where A = {A,,...,A:} and the minimum is taken over all sets R that are
A-connected with respect to the collection A (in case there does not exist such
a set, we put d(2A, A) = 00).

Let Hy.,t € T, r 2 1, be the number of those finite subsets A C T for
which (%) = r, t € A, and write H, = max;er Hy .
Lemma 5. Let a family A satisfy the conditions 1) and 2). Then there are
the constants C4 = C4(2) and B3 = B3() such that for any r 2 1,

H, < B3C§ (13)

The proof easily follows from Lemma 4.

Lemma 6. Let a family A satisfy the conditions 1) and 2). Then, for suffi-
ciently small A, the estimate

k A;
Z AR(,{A1,..,Ak}) < 652-'=1| 'I(Csz\)d(ﬂ’{A"""A"}) (13')
R
is valid, with Cs,Cs being constants depending on A, {A;,..., A} being an

arbitrary collection of subsets of T, and the summation taken over all sels R
that are A-connected with respect to the collection {A,,...,Ar}.

Proof. Let R},..., R be the ™A-connected components of R. Then, with the
help of (10) and definition (12), we find that the sum on the left-hand side of
(13) admits the estimate

E,\dn(ﬁ.{m, yAk})<(K—lA)d(ﬁ,{A1, ,A.})ZH n'(ﬁ)
R i=1

with k = k() < 1 to be specified later. Further, the sum )" in the last
inequality does not exceed

Z ﬁndR'!(g) < H E Kda(ﬂ) (13”)
k
teua;

{R},...,R}}i=1 R:t€R
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where the sum 3~ R},...,R]) On the left-hand side denotes the sum over all pos-
sible unordered collections of mutually disjoint sets R} that are A-connected
with respect to the set Uf_, A;, and the sum }_p.,c o on the right-hand side
denotes the sum over such sets containing a fixed point ¢ € UA;. Further, by
Lemma 1,

(= <]
E k4r(Y) {BEC"&” =C<oo
R,teR n3l
for k < C~!, with C and B being defined in (2). From this, the right-hand
side of (13") does not exceed CV4:l < CEl4:l (with C = max{C, 1}), and we
get (13’). The lemma is proved.

Now let the set T' be endowed with some metric p so that the cardinality
of all balls of radius » > 0, i.e.,

B ={t' e T,p(t,t") < r}
is uniformly bounded:
|B"| < C(r) < 0 (14)
(r arbitrary).

We shall often consider the case T = Z¥, v 2 1, and the metric p on Z¥
(cf. §0, Chapter 1):

14
pt,t) =t —t| =) |t )|, (14')
i=1
with t() and ¢"() being the coordinates of the vectors ¢, t' € Z".

In the role of the family A = A4 we consider the class of subsets B C T with
diam B < d. Notice that, for the metric p obeying condition (14), the family
A4 has the properties 1) and 2), and each subset R C T is ™4-composable.
Every %4-connected set R is called simply d-connected (and, similarly, d-
connected with respect to a collection {Ay,... ,Az}, A;i CT). In the case of
a metric p fulfilling

. _ "

h"r’f:lt‘fl#hp(tl:h) =1, (14")
the quantity JA(Qld':l) will be denoted by d4. Notice that, in the case of
T = Z¥ and the metric (14), the quantity da equals the minimal length of
trees T, with the set of vertices coinciding with A (the length of 7 equals the
sum of the lengths of its edges). Let (14) and (14”) be fulfilled for the metric
p, and A be a family of subsets satisfying the conditions:

1’) the diameters of all set B € 2 are uniformly bounded:

diamB<r, Be€Y¥;
R 2') for each pair of acjacent points ¢, t2 € T, p(t1,22) = 1, the quantity
d{1, 1,3 () is bounded:
J{‘hf:}(m) <v;
here r and v are constants.
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Lemma 7. Let T be 1-connected and the conditions 1), 2) and (14), (14") be

fulfilled. Then there ezist such constants Cs and Cg (depending only on r, v,
and the metric p) that

Ceda < du(2) < Coda (15)

forany ACT.

Proof. By 2'), each 1-connected set A can be covered by a connected collec-
tion I' = {By,...,B,}, B; € ¥, such that |I'| < Cs|A|. Hence, the second
inequality from (15) follows. As T is 1-connected and the conditions 1’), (14),
and (14”) are fulfilled, dp < K for each B € %, where K = K (v, p). Hence,
the first inequality from (15) follows. '

Summation over trees. Let A be a finite set (the elements of which we
enumerate for our convenience : N’ = (1,2,...,n)). We use G(N') to denote
the set of connected (unoriented) graphs G with the set of vertices coinciding
with N, and we use 7 = (N) C G(N) to denote the corresponding set of trees.
Sometimes, connected graphs with multiple edges, i.e., pairs ¥ = {G,k¢g}
with G € G(N) and k¢ = {k(i, j), (i,5) € G} being a positive integer-valued
function defined on the set of edges of the graph G (multiplicities of the edges),
are considered. The set of such graphs is denoted by G(N).

Let ¢ = {p(4,4), (i,§) € N, i # j} be a symmetric real function defined
on the set of pairs of distinct elements of A'. The number

1G,9)= [[ #i.d)
(4,5)eG
is called the contribution of the connected graph G € G(N), and the number
I(v,e)= JI [, 3D
(4)eG
is the contribution I(y, ¢) of the graph v = (G, kg) with multiple edges.

Lemma 8. The inequalily

<@ Y I(nlol) (16)

T€T(N)

Y IG.y)
GeG(N)

holds true, with S(p) = 3, ; le(i, 5)I-
In the case max |p(i,5)| < 1, the equality

Y Ine)= ) IG¥) (17)
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holds true, with (i, 5) = ¢(i, i)/(1 — ¢(i, ).

Proof. Notice that each connected graph G € G(N) can be represented, at
least in one fashion, in the form G = 7UT, where 7 € T (V) is a tree with
vertices (1,...,n) and T is a graph (in general disconnected) with the set of
vertices V(I') C N and with edges distinct from the edges of 7. Thus,

< II k6l Y Inled,  (18)

P (i,4)el TET(N)

> 1Gy)

GEG(N)

where )« denotes the summation over all those graphs T (including the empty

one) for which V(F) C V.
On the other hand,

o TT leGoa)l =TT +le(, 5))) < 5. (19)

I (i.j)el i<j
The inequality (16) follows from (18) and (19). The equality (17) is obvious.

Let the number I, (i) denote the degree of the vertex i € A (i.e., the number
of edges of 7 incident with i) for each 7 € T(N). Since the number of edges
of any tree 7 € T(N) equals n — 1, we have

(1) + -+ I (n) = 2(n - 1). (20)

Lemma 9. For any collection (1-1,... ,In) of positive integers satisfying con-
dition (20), we use Vyp(ly,...,l,) to denote the number of trees 7 € T(N)
with fized degrees of vertices equal to

Ir(i)=l-is iEN.

Then
2"=2(n — 2)!
—_—

H"

Proof. A vertex i € N of a tree 7 is called an end vertex if I,(i) = 1. Let
M = {i1,... ,im} C N be a set of vertices of 7 which are not end ones, and
let i ¢ M be its end vertex with the least index.

Removing this vertex and the edge (i,%,) incident with it, where i, € M,
we get a tree 7 € T(N”), with N/ = N\{i}, such that the degree of i, is
decreased by one, and the degrees of the other vertices remain unchanged.
Thus, we get the recursive equality

Va(ly,..., ) < (21)

Vallyo o) = Y Vaca, Byl =1, 1), (22)
1,€EM
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The inequality (21) can be easily deduced from (22) by the induction on the
number n, considering that 3=, . ki, < 2(n — 2) (any tree has at least two
end vertices).

Let T be a countable set and ¢ = {p(t1,t2);t1,22 € T,t1 # t2} be a
symmetric function of distinct variables t1,t3 € T such that

sup Z le(t1,t2)] = D < oo. (23)
i) T‘zeT

Lemma 10. For anyt € T and any inleger n > 2, the estimate

o Y Ik I et.t)| < 8Dy (24)

ACT: 71€T(A)teA tt)eT
TeATAl=n (4) (t,¢)

holds true.
Proof. The equality

1
2 oo, 2

ACT,f€A, contn ) i T
|Al=n
is valid, with the second sum denoting the summation over all ordered collec-
tions of (n — 1) mutually distinct points from T which are distinct from the
point ¢. Thus, the left-hand side of (24) can be rewritten in the form

iy O o S I wen. @0
T€T(N)IEN (t3,...,ta): (i.5)€T
ti#t,i32
with N = (1,...,n) and t; = . Further, for a fixed tree 7 € T(N), the
estimate

> II ettty <D (25)
{ta,...ta}: (i,4)ET
tift=t,
is valid.

Indeed, let i; be some end vertex of the tree 7, i2(i2 # il) be an end vertex
of the tree 7/ = 7\{i} obtained by cancelling the vertex #; together with the
edge (i1,J1) emanating from it, i3 be an end vertex of the tree 7/ = 7/\{i,},
and so on. Then

Yoo I ettt < X |ttt )] Yo - Y et ta)l-

{tﬁr‘_w‘u}:(‘.’j)e' t"n-l “o—? “l
tift=t,
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Now, usmg (23), we get (25). Since there are at most 2%("~!) sequences
(h,... ,1,) satisfying the condition (20), we get (24) from (24’), (25), and the
estunate (21).

Corollaries of Lemma 10. 1) A weaker inequality

Yo X II ettt < @D)? (26)

ACT,T€A, T€T(A) (t,t')ET
|Al=n

Jollows from the inequality (24).
2) It follows from (26) and (16) that

Y, X I ewth[<@D)y (27)

T Geg(A)(tt')eG
IAICA|= €G(A) (1.1')e

with D' = ¢P/2D.
3) In case sup, yer lp(t,t')| = d < 1, we get

> Y I wetren| <@yt @)

ACT, tt')eEG
Te ATAl=nT=C" ka)ed(4) (t4')

from (27) and (17), with D" = exp{1/2D(1 — d)~'}d(1 - d)~'.

§5 Estimates on Intersection Number

Let T be a countable set with a metric p satisfying the conditions (14.4) and
(14" 4), and let @ = (Ay,...,AN) be a collection of finite subsets of T' (not
necessarily different). We define v; = vi(a),i = 1,..., N, to be the number
of the sets A; € a,j =1,...,N, such that A; N A; # 0, and n; = n;(a) to be
the number of sets A; € a,j =1,..., N, coinciding with A4;.

Theorem 1. There is a constant C = C(p) such that the inequality

_ N N N
CZIA;I-{—Zlnn;}Zlnv; (1)

i=1 i=1 i=1

is valid for any collection a = (Ay,...,AN) of 1-connected finite subsets
ACT.

Proof. Each collection a = (4i,...,4nN) can be written in the form o =
{(A1,n1),...,(A,,n,)}, with {41, ..., A4,} being the collection of all mutually
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different sets from «a, and with n;, i = 1,...,s, the multiplicities of the sets
A; in the collection a.

We will now partition the collection of sets {4;,...,4,} into blocks By, :
Bir = {A; : n; = k, |A;| = r}, and let az, be the cardinality of the block
Bir. Finally, the number of the pairs (i, j) for which A; € By, A, € By,
and 4; N A; # 0, is denoted by ai k.

Several obvnous properties of the above introduced numbers are:

1) 3=, . kok, = N (normalization);

2) Ckrktrr = Qpopr kr (Symmetry);

3) as follows from Lemma 4. 4, for any A;, the number of sets A; of cardi-
nality r that intersect A;, does not exceed |A;| B2(Cs)", and, consequently,

E Qler k'r! < BzC;;r'ak:,.:. (2)
k
Further,
E v=k E klakr,k'r' , (3)
AiclAil=r, k'r!
n.-=k

with the sum 3, over all sets A; € « of cardinality |4;| = r and of multiplic-
ity n; = k. Hence, using the well-known inequality between the geometric and
arithmetic means, (a1a;...a))"/" < (a1+---+a;)/l, with1 > 1,a; > 0,a; > 0,
we get, by taking the logarithms,

Z K g,k
Z Inv; € ko, In ﬁ'—’-a—— (4)

AclAil=r, kr

ni=k

Thus it follows from (4) that the inequality (1) is implied by
5Nd + Z mg, In Mpy > Z Mgy In ﬂkr ) (5)
kr kr

with the notations mi, = kakr, Ber = X4y kthy prpr, and d =1/N 37 A; =
1/N Y",, krai, (the average cardinality of the sets from the collection a).
It follows from (2) that

Eﬁh-zk'zakrw ByC3 ) K'r'apys = BC3jNd.  (6)
k""

Further, with the help of a standard computation of the constraint maxi-
mum of the function Y°{_, b;Inz;, z; > 0,. ..,Z4 > 0 under the constraint
Y-{_, 21 = const., we find from (6) that, for any fixed r,

Y miInBi €Y miy Inmy—N, In(N,/N)+N,(In By+rIn Cs+Ind), (7)
k k
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where N, = Y, m;, is the number of sets of cardinality r in the collection a.
Summing further (7) over r and considering that }, N,r = dN, we find that
it is enough to prove the inequality

=Y prlnp, <Ind+1, (8)
.

with p, = N, /N, to prove (5). Computing again the constraint maximum
of the function —E,. z.Inz,, z, 2 0, under the constraints ).z, = 1 and
Y ,rz, = d, we find that this maximum is achieved for the values z, =

747 (451)" and equals Ind + (d - 1)In (a-f—l) < Ind + 1. The theorem is
proved.

We shall now suppose that T is a 1-connected set, and {A;,...,Ax} is an
arbitrary collection of subsets A;.

Theorem.2. There ezists a constant C = 6’(p) such that the inequality

N N N
CY da;+) Inm;>2) Iny 9)
1 1 1

is valid (JA 1s the minimal cardinalily of 1-connected subseis B C T containing
A; see (11.4)) for each collection a.

The proof of this theorem is carried out similarly to the proof of Theorem
1, with the only difference that the blocks By, are defined in the following
way: By, = {Ai;n; = k,d4, = r}. In addition, the property that corresponds
to property 3) follows from Lemma 5.4.

Let a set S = {t1,...,tm} C T of points ¢; # t;, i # j, be given, and a
collection a = (Ay,...,AN) of subsets A; be partitioned into m subcollections
61y...,6m, 6 Ca, k=1,...,m, so that the condition

the (| A k=1,...,m, 9)
A€,
holds true.
Lemma 3. For any partitions 61,...,6, of a collection « satisfying (9'), the
estimate
N m N
14+ Y [6|In 6] 2 Y Inng (10)
i=1 k=1 i=1
is valid.

Proof. Let {Al, ceey fi,} be a set of mutually different sets from the collection

a, and let nfk) be the number of sets from the collection §; coinciding with
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A,k =1,...m;i=1,..,s Since 3 I_, n(k) l6,,|, it follows from the
obvious mequallty PIHIRE k) In(n(k)/ [6:]) €0, k=1,...,m, that

S0P <37 16k n |6 (11)
i,k k

Let the set A; be contained in exactly = subcollections 6k, , 6k, ..., 6k,. In
this case, the set of points {t,,tx,,...,t,} C Ai, and |4;| > r.
Using the well-known entropy inequality:

3 by lnky > er:b,,) ln% ('Xr:b,) -
pr=1 =1 =1

for any b; 2 ., b, 20, and the equality Zp_l nike) = n; (n; is the multi-

plicity of the set A, in the collection a), we get Y, n(k) In n(k) 2 n;In(n;/r)
and, consequently,

n; |A;| +Zn$k) In ngk) > n;Inn;. (12)
k

Summing (12) over ¢ and using (11), we obtain (10).
This lemma and Theorem 2 imply

Corollary 1. There ezists a constant C so that, for any collection o =
(A1,...,AN), any set of points {t1,...,tm}, t; # tj, i # j, and any par-
tition 8y, ...,6m of the collection a satisfying condition (9'), the estimate

chA, +Z|a,,nn |6¢| = Zlnv, (13)

i=1 i=1
is true.

Let now 2 be a system of finite subsets T', satisfying the conditions 1) and
2) from §4, and let d4(2) be the minimal cardinality of connected collections
of sets from 2 that cover A (see (11.4)). Then we find, from (13) and Lemma
74, that

C*Zd,. () +Z|6k|ln 166] > Elnv,, (14)

i=1 i=1

with C* = C*(%, p) being an absolute constant.
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§6 Lattices and Computations of Their Mdbius Functions

Lattices. Let a partially ordered set P with an order relation < be given.
The upper bound of a set X C P is defined to be an element p € P such that
z < p for all z € X. The least upper bound, sup X, is the upper bound that
is less than, or equal to, all other upper bounds.

Similarly, also the greatest lower bound inf X of a set X C P is defined.
An ordered set P is called a lattice if any two elements P;, P, € P have the
smallest upper bound p; V p2 = sup{p1,p2} and the greatest lower bound
P1 A pa = inf{p;,p2}. Later on, P is always supposed to be a lattice. The
greatest and smallest elements of P are denoted Q and 1, respectively.
Example 1. Let P = Ay be the set of all partitions a = {A,,..., Az} of
the set N =(1,2,...,n), and a < 8 = {By,..., B} if each element A; of the
partition a is contained in some element of # (a is “finer” than ) (see §1).
Example 2. Let G be a connected graph with the set of vertices A, and let

A$, C A be the set of all partitions o = {4;,...,A4;} such that each block
A; is a connected subgraph of G.

It is easy to convince oneself that Ay and AS; are lattices.
For each lattice P, we shall use P* to denote the dual lattice with the same
elements as P and with the order relation replaced by the opposite one:

z<y in P* if y<z in P

For any two elements z, y € P, z < y, the set [z,y] = {z € P;z < 2 < y}
is called an interval. It is evident that every interval is again a lattice.

Elementary facts on Mobius functions. Consider the set of all (complex or
real) functions f(z,y) of two variables z,y € P such that f(z,y) may differ
from zero only for z < y. This set of function forms an (incidence) algebra
over the field of numbers with the usual pointwise addition, and multiplication
by a scalar, and with the product defined by the convolution

FxgEy)= Y f=2e(z).

z€[z,y]

This algebra has a unit element, namely the Kronecker delta, é(z,y). We
define the ¢-function

1, ifz<y,
0 otherwise.

e = )

Lemma 1. (-function is invertible in the incidence algebra.

Proof. We define recursively the M6bius function pp = u(z, y) of the lattice
P:

p(z,2)=1, p(z,y)=- z u(z,2). 2)

z2:2Q€3<y
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It is easy to convince oneself that u x { =¢ x p = 6.
Lemma 2 (Mdbius inversion formula). Let f be a function on P, and

9(2) = f 3)
y&z
Then
f(2) =" 9(v)n(y, 2). (4)
y&z

Proof. Indeed,

Y swmw,z) =YY f@u,x) = Zf(z) ¥ ¢y, o)

y&z <2147 F1 <1 <)

=Y f(2)8(z,2) = f(2).

The following properties of the Mébius functions, to be needed later, follow
easily from the definition (2):
1. Let z < y, 2, 2’ € [z,y]. Then
Bp(2,2') = preg)(z,2). (5)
2. Let P* be the dual lattice to P. Then

#P(l‘, y) = ppe (y:z)' (6)

3. Let P x @ be the Cartesian product of the lattices P and @, i.e., the set
of pairs (p,q), p € P, ¢ € Q, with (p1,q1) < (p2,¢2) if and only if p; < ps,

and ¢; < ¢2. In this case,
#pxql(p1,01), (P2, 22)] = pp(P1,P2)Ba(01, 22)- ()

4. (The inclusion-exclusion principle.) Let P be a lattice of all subsets z of
some set; in this case, z < y signifies that z C y. Then

pp(z,y) = (-1l 2 <y, (8)

with |z| being the number of elements of z.

This follows from the fact that P is isomorphic to the Cartesian power of
the two-point lattices: {0,1}, with 0 < 1 and p(g43(0,1) = -

It follows from (8) and (4) that

f(2) =) g (-1)\,
yCz

where g(z) = }°, . f(y). This is precisely the formula that is usually called
the inclusion-ezclusion principle.
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Galois connections. Let P and @ be two lattices. We call a Galois connection
any pair of mappings p: P — @ and 7 : Q — P such that

1) p and = change the order of elements: p(a) < p(b) ifb < a, a, b € P, and
similarly for ;

2) 7(p(p)) 2 p and p(7(q)) > gforall p€ P and ¢ € Q.

Lemma 3. Let p, 7 define a Galois connection. Let, moreover, (1) = 0, and

7(q) =0 for ¢ # 1. Then,

”Q(Q)l)= Z I-‘P(Q’a)' (9)
a:p(a)=0

Proof. It follows from the definition of a Galois connection that x(z) > b
if and only if z < p(b) (because w(z) > b implies z < p (7(z)) < p(b) and
conversely). In other words, this means that

Y ép(n(z),a) = (o(=,p(b)). (10)
a:azpb

Fix z and consider {q(z, p(b)) and ép(7(z), a) as functions on P (of b and
a, respectively). We use the Mébius inversion formula in (10);

6P(7r(z):g) = Z(Q(x,P(a))ﬂP‘(a,g) = E(Q(Q,P(a))ﬂ}’(g, a)‘ (11)

a30 a30
Put n = { — 6. The assumptions of the lemma imply that
6p(7(z),0) =1 —ng(z,1).

We rewrite (11) in the form

1-nq(z,1) = {q(z,p(0)) + E 1p(Q, a)Cq(z, p(a)).

0<a

Since p(0) = p(r(D)) = 1, we have Co(z,p(Q) = 1. Consequently,
—nQ(z,1) = Yoo #P(0,8)Cq(c, p(a)). As p =6 — pn, we get

pQ(Q’l) == 2 I‘Q(Qy 3)ﬂq(z,l) = Z ZPQ(Q) Z)ﬂp(g, a)(Q(zv p(a))

o<z 0<zla>0
=Y ur(0.a)5q@p(a) = . pp(0a).
a>0 a:p(a)=0

Lemma 4. Let L be a lattice, and let a subset R C L be given such that
1¢ R,0¢ R, and that there is a y € R with y < z for each z € L,z # Q. Let
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k > 2 and q be the number of sets X C R such that |X| =k andsup X = 1.
Then

pr(Q,)=g-ga+qsa—.... (12)

Proof. Let @ = L* and P be the lattice of all subsets of R in Lemma 3. We
define 7 : Q — P as follows: n(z), z € Q, is the set of some elements y € R
such that y < z. For A C R, we put p(A) = supA in L. Then (12) follows
from (8) and Lemma 3.

Explicit computation of the MGbius function. We define the rank r(p) of
the element p € P as the maximal number r such that there is a sequence
Z1,...,Zp41 € P for which Q = 2y < 29 < --- < 2,41 = p. The elements of
rank 1 are called atoms.

Let R be a set of atoms of P. A lattice P is called a geometric lattice (or
matroid lattice) if:

1. any element of P is the least upper bound of some set of atoms;

2. if p is an atom and a an arbitrary element, then either p < aor pVa
covers a (i.e., there is no element z such that a <z <pVa).3

The set X of atoms is called independent if r(sup X) = | X|, and generating
ifsupX =1.
Remark. It is easy to verify that the lattices Ay and 2A$;, introduced in
Examples 1 and 2, are geometric lattices. A partition o € %y is an atom if
and only if exactly one of its blocks consists of two elements, and the remaining
ones contain one element each. In case this two-point element corresponds to
an edge of the graph G, the partition a € Qlf'.', is, according to the foregoing,
an atom in the lattice. Thus, the atoms of A$; may be identified with the
edges of the graph G. Let Gx C G denote the subgraph of the graph G
spanned by the set of edges in X (atoms of the lattices A$;) as above. Then
the sets of vertices of connected components of Gx coincide with the block of
the partition sup X € A§;, containing more than one element.

The set of atoms X C A$; is independent if and only if Gx is a forest, i.e.,
G does not contain a closed path. A set X of atoms is generating in A§; if
and only if Gx is connected, and the set of its vertices coincides with N

Lemma 5. In a geometric latlice, the number of elements in each independent
generating set of atoms equals r(1).

We give a proof of this lemma only for the case of the lattice A Indeed,
if X is an independent and generating set of atoms (edges of G), then Gx is a
tree with the set of vertices N’ = {1,...,n}, and thus the number of its edges
|X| = n — 1. On the other hand, in any chain of partitions

0=a;<a3<- - <apy =1, (12)

3Other equivalent definitions of geometric lattices are given in [7].
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the number of blocks |a;| € n— (i = 1), i = 1,...,r + 1, and, consequently,
r € n— 1. In addition, it is also easy to find a chain (12') with r =n -1, i,

r(l)=n-1. (12")

A subset T of atoms is called a circuit if T is not independent, but all its
(proper) subsets are independent.

Remark 2. A subset T of atoms forms a circuit in A$; only if the correspond-
ing set of edges of G (mentioned in Remark 1) is a closed self-avoiding path,
i.e., each vertex of G belongs either to two edges of T or it does not belong
to any edge of T. Indeed, in the graph Gr C G, constituted from the edges
of T, there is a closed path. We denote the set of its edges by C C T'. Since
C is not an independent set, we have C = T.

We shall now assume that the set R of all atoms of P is enumerated in an
arbitrary way: ay,...,a;. If T = {a;,,...,a;} is a circuit, §; < --- < 4, then

= (p(T) = {as',, ce ’ain-x}

is called an open circuit. We use ¢~!(T") to denote some circuit T' with
#(T) = T’ (under the hypothesis that T exists). Obviously, in the case of the
lattice A%, such a circuit is unique.

Theorem 8. Let P be a geometric latlice. Then

sp(0,1) = (=1)"Omy,

where my is the number of subsets X C R of the set of atoms such that
1) |X]=r(1);

2) X does not contain open circuits.

Proof. For a fixed enumeration of elements of the set R of all atoms, we can
enumerate the set of all open circuits T7,...,T} so that

FT AT i s<i, (13)

where f(T') = i} is the number (in the fixed enumeration of R) of the last
atomin T = {a;,,...,a3, }, &1 < -+ < .

We use R; to denote the set of all generating subsets X C R such that
|X| = j and X does not contain T{, T R is the set of all generating
subsets X C R such that |X| = j, X does not contain Tj,...,T{_;, but
contains the circuit ¢~1(T7); R‘ is the set of all generating subsets XCR
such that |X| = j, X does not contam T{, .,T!_,, contains T}, but does not
contain ¢~}(T}). Then, for i = 0,1,..., we have

|Rf| = |Rj*| + IRf“"I +|Rj*H]. (19)
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We shall prove, by induction on i, that

#p(0,1) = |Ry| - |Rg| + |Ry| - ... (15)
fori=0,1,.... For ¢ =0, it is the statement of Lemma 4. For any i > 0, we
get, by induction and by the formula (14), that

pp(Q1) = |R7Y| = |RS + |RETY = = |Ry| - |RS| + |RY| - ...

+ 1B+ (1R57) - 1)) - (1R8] = [RA]) +..

But R;'A = 0, since a circuit cannot contain exactly two elements (any two
atoms form an independent set). ) '

We shall define a one-to-one correspondence { between R;-’B and R;-
the following way: we put

'_;_41 in

{(X) =X U{p (TO\T;}

for X € R;’B; ¢(X) € R;fl because the elements a; = ¢~!(T})\T} cannot
belong to any circuit T7,...,T{_; according to the chosen enumeration of the
system of open circuits; if a; € T} for some j < i, then ! > f(T}) > f(T}) > k.
It follows from (15) for i = h that up(0,1) = (—1)"@W|Rk )|, because if X
does not contain open circuits (and, consequently, does not contain circuits
at all), then X is independent. Since X is generating at the same time, it
contains exactly r(1) elements, and therefore |R}| = 0 for j = r(1). The
theorem is proved.

Corollary. In the case of the lattice AS;, as follows from (12),
pag (0,1) = (=1)""'my,

where my is the number of subsets X of such edges of G that |[X|=n—1 and
X does not contain open circuits.

§7 Estimate of Semi-Invariants of Partially Dependent Random Variables

We recall that, in §1, a virtual field {f(T'),T C N'} on the set N was defined
(as the set of its “moments”), and formal semi-invariants {g(T'), T C N'} were
introduced with the help of the recursive formula (16.1), being rewritten in
the form

AT)=) g(B)...9(B:), ITI>1,
£(T) = 9(T), IT| =1, (1)

e

PETSVe




§7 Estimate of Semi-Invariants of Partially Dependent Random Variables 69

with the sum being taken over all partitions {By,..., B} of the set T
Let now N be finite and a = {A;,..., A} be any of its partitions. We put

k k
f@) =TI (4, g()=T]a(4). )
i=1

i=1

Let Ay = ¥, be the lattice of all partitions of the set N’ = {1,...,n} (cf. §6).
We get

fl@)y=3"9(8) 3)
BLa
from the relation (1). The Mdbius inversion formula (cf. (4.6)) implies that

9(a) = Y pay(B,0)f(B)- (4)

A

Comparing (4) for @ = 1 with formula (1.16), we get

pa,(8,1) = (-1)P1=1(|8] - 1), (5)

where |8] is the number of blocks of the partition 8.

Noticing that for any a > 8 the interval [3,a] C A, is isomorphic to the
Cartesian product of the lattices A,, x --- x A,,, where s = |a| and n; is
the number of blocks of the partition a contained in the i-th block of a, we
obtain

L]

pay(B,a) = pa,, (Q.1)...pa,, (0, 1) = (-1)"* [[(mi = 1)1 (6)

i=1

Let G be a graph with the set of vertices N, and let a virtual field {f(T),
T C N’} be independent with respect to the graph G (see definition (1.17)).
(For all graphs considered below, we shall assume that there is at most one
edge connecting every two vertices.)

We denote, for any A C N,

k
Cy(A) = max|[] £(B1)|, (7)

i=1

with the maximum taken over all partitions {Bj,..., Bi} of the set A.

Theorem 1. Let a virtual field be independent with respect to a graph G, and
let the subgraph G 4, spanned by the vertices of the set A C N, be connecled.
Then

19(A)] < Cy(A)3 TT(3w0), (®)

teA
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where v, = vg“) is the number of edges in G4 which are incident with t € A.

Corollary. Let po be the distribution of an independent field {z:,t € T}
on a set T and Fy,,...,Fy, be a collection of bounded local functions (also
coinciding ones may appear among them). Then

Hsup |Fa, IHE Hm, (&)

i=1 i=1

(Fass- s Fanhy,

where C is an absolute constant, and n;, i = 1,..., N, is the number of sets
Aj in the collection {A,,..., AN} coinciding with the set A;.

The estimate (8') follows from (7), (8), and Theorem 2.5.
As to the proof of Theorem 1, we note that, with the help of Lemma 2.1,
it is possible to rewrite formula (3) in the form

fl@)=Y 98), BeAf )
B:PRa

(for the definition of the lattice AS;, see the precedmg section).
If we consider, in (9), only the o belonging to A%, then we can use the
Mobius inversion formula for A$; and write

9@ =Y pag(B.a)f(B) (10)
pess

for a € A§.

Lemma 2. The estimate

|Ilu° (Q,l)l <IIw 1)

teN
is valid.

Proof. We shall use the corollary of Theorem 6.6. Hence I[lga 0,1 <

My, where m; is the number of subsets X of the set G of edges such that
|X| = n—1 and X does not contain any circuit. To estimate 772;, we notice
first that X has to be a connected tree. We define a one-to-one mapping ¢ x of
the set X onto some A C N, with |A| = n—1, in the following way. Consider
any edge 7; € X and choose ¢x(71) to be any of the two vertices incident
with 7,. We shall proceed by induction. Suppose that px(71),-..,2x(Ym)
are defined for 71,...,Ym € X, with {y1,...,Ym} being a connected set of
edges. Let V,,, be a set of vertices incident with some of 71, ...,9m. We choose
Tm+1 € X so that one of its vertices belongs to V,,; this is possible because
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X is connected. Moreover, both vertices of y;m4+1 cannot belong to Vi, since
{7,---,Ym+1} is connected by construction. We put px(Ym4+1) to be equal
to that of the two vertices of ¥y, 41 that belongs to V;, if it does not coincide
with any from the vertices px(71),...,9x(Ym) already defined, and to the
other vertex in the opposite case.

We define a mapping ¥x of the set A into the set of all edges of G writing
¥x(t) =vif px(y) =t,t € N, and, in case no such v exists, put ¥x(t) equal
to any v incident with ¢. The mappings are different for different X, thus the
number of all possible X does not exceed the number of all mappings of the
set N to the set of edges of G that assign to any ¢ € N some edge which is
incident with . The number of such mappings equals [T, v:- The lemma
is proved.

The theorem follows from (10) in an obvious way, for G = G4, a = 1, by
proving

Lemma 3. The estimate

3
) |Ilsxg,(ﬂ,l)| <3 II 3 (12)
pEAF teN
is valid.
Notice that
sag(8,1) = ”gﬂ(lﬁ)(g, 1), (13)

where the graph G(B) is obtained from G by the identification of the vertices
belonging to only one block of the partition B, i.e., the blocks of B form the
vertices of G(B). The vertices B; and B; are connected by an edge in G(B) if
there is an edge joining some by € B; and by € Bj in G.

The equality (13) follows from property 1 of the Mobius function (cf. §6)
and also from the fact that the interval [3,1] C AS; is isomorphic to the lattice
26(8)

sl -

Proof of Lemma 3. The proof is based upon a special procedure of iterated
“gluing” of the vertices of the graph G which produces all partitions 3 € A$,.
It is suitable to interpret this procedure in the form of a construction of some
tree G = G(G) with vertices labelled by pairs (8, D), where 8 € A$; and D
is a subset of the blocks of the partition 8. Moreover, each vertex t € G is
coloured; it is red or blue. The process of construction of the tree G consists
of successive steps; the order k is designated to the vertices constructed in
the k-th step. Further, each vertex f of the order k + 1 is connected with the
only vertex t of order k (we shall say that 7 lies below t). We pass to the
construction of the tree G.

1. In the first step, only one vertex of the order 1 labelled by the pair
(8 =0,D = 0) of the red colour is constructed.
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2. Second step. We enumerate all elements of the set /' (the vertices of the
graph G) so that

1<r<... <V, (14)

(v is the number of the edges of the graph G that are incident with the i-th
vertex). The vertices of order 2 are constructed as follows. The only blue
vertex of order 2 is labelled by the pair (8 = 0,D = {1}). Further, v; red
vertices of order 2, labelled by pairs {B;, D; = 0}, are introduced with 3,
running over all the atoms of the lattice A$; corresponding to the edges of
the graph G that are incident with the vertex 1.

3. Let all vertices of G up to the order k be constructed. Let ¢ = (8¢, D;),
B: € ﬁf,, be some vertex of order k, and &;,...,&n be the vertices of the
graph G(ﬂg) (blocks of ﬂ‘) that do not belong to D; and are enumerated so
that v < ”6 £...€ "E where ”6 is the number of edges of the graph
G(ﬂ,) t‘hat are 1nc1dent w1th the vertex &, i = 1,...,m. Each such vertex
t is connected by an edge with at most one blue and no more than vzl red
vertices of order £+ 1. A blue vertex is constructed in case m > 0, and a pair
(Bt, D; U {£1}) corresponds to it, and the red vertices are labelled by pairs of
the form (B;, D;) where the partitions §; are obtained from the partition f;
by gluing together the element ¢; with any of the elements &, ..., that are
connected with §; by an edge of the graph G(8;) (in addition, the elements
of the set D; do not change, and they form the blocks of the partition £;).

Proposition 4. For any partition 8 € ﬂf,, there is a red vertezxt € G such
that ﬂ = ﬂg.

Proof. We proceed by induction on the number of elements of the set A. It
is evident from our construction that, for any vertex ¢t = (8, D;) (of order
k) and any vertex ¥ = (B, D;) that lies below ¢ (i.e., a vertex of an order
greater than k that can be connected with ¢ by passing through vertices of
the order greater than k), the partition f; > B, and the blocks of B; which
are contained in the set D; remain blocks of the partition Sf and belong to
the set Dj.

Let B € Qlf, be a partition. We consider three cases.

1. B =0. Then 8 = B; where t is the 1st vertex.

2. Let B # 0, and the vertex 1 € N of the graph G (the enumeration of
the vertices being the same as in (14)) forms a separate block of the partition
B. Then any blue vertex of the order 2 is of the form t = (8 = 0; D = {1}),
and the subtree G’ C G spanned by ¢t and by the vertices of G lying below ¢ is
isomorphic to the tree G(G’) (with the change of the colour of ¢ to the red),
where G’ C G is the subgraph of G spanned by the set of vertices N7 = N\ {1}.
Further, the induction hypothesis may be used.

3. The vertex 1 belongs to a block B of the partition 8, |8] > 2. Now we
choose a red vertex t = (8;,0) € G of the order 2 that is obtained by gluing
together the vertex 1 with any other vertex from the block B. The partition
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B: < B and the subtree G’ C G rooted in the vertex ¢ is isomorphic to the tree
G(G(B:)). Now we shall again use the induction hypothesis.

We put
t
H Ve
§€G(B1)

for each t € G. Let t be a vertex of order k, and ¢’ be a vertex of order k + 1
lying below ¢. If ¢ is blue, then

T =Y (15)
according to the construction. If ¢’ is red, then

, v 4vt -2 9
v ﬁ+ < -, (16)
" Ve, Ve, Ve,

where £, is the vertex glued together with £; in the construction of G(B8y).
We get 3, 7¢ € 27, from (16), where the sum is taken over all red vertices
(of order k + 1) lying below t. Consequently,

Y. m<2 Z r+2 Y, <2 Z 7+2 Y 0w

red t blue t red t
of order k+1 of orderk of order k& of orderk of order k-1
+2 ), n<...€2 ) %
blue t red t
of order k-1 of order k

Putap = ) (redt M We have ai41 < 22,_1 a; which implies that a; <
of order k
3‘01

Taking into account Proposition 4, Lemma 2, and (13), we have

> Iu(ﬂ,l)lszwsalZ?»" u<s Hsv,

HEAG teM

Lemma 3 is proved.

§8 Abstract Diagrams (Algebraic Approach)

In the theory of random point fields, the diagrams of the general form (and
not only related to Gaussian variables) often turn out to be useful. We shall
explain here these notions and the related algebraic constructions, limiting
ourselves to the case of pure point fields.
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Algebraic approach. Let @ be a (metric) space and ) a continuous measure
on Q (i.e., the measure A({t}) of any singleton {t} C Q equals zero). Let Qg,
be the set of all finite subsets Q (with the g-algebra B defined in §1, Chapter
1), and A be the set of all measurable (complex) functions ¥(z), z € Qgn, on
Q. The set A with the product

(1 x ¢2)(2) = > p1(z1)p2(22), 1)

z1,%3:
£1Nz3=0,2,Uz3=2

where the summation is taken over ordered pairs of nonintersecting subsets
(21,23), z; C z, i = 1,2, such that z; Uz, = z (including also the pairs (0, z)
and (z,0)), forms a commutative algebra with the unit

1, z=40,
1z) = { 0, z#0. @

Notice, that, for each element ¢ € A, any of its powers (Y)** = ¢ x --- x ¢
equals —

n times

|=| k
()"(2) = gw-%mﬂw { Z(k;.-I.Il'”“‘)’

(¥)*"(0) = ¥"(0),

where the sum E?;)h' o} is taken over all partitions of the set z that consist
of k elements (i.e., over unordered collections {z;, ...,z } of mutually disjoint
nonempty subsets z; C z such that U,’;l z; = z).

We use Ay C A to denote the ideal of the algebra A consisting of such
functions that ¥(@) = 0. We introduce the mapping A4 — 1+ Ay:

©))

'/“—*ExP¢=Ll+¢+§1?(¢)"2+---+;11(¢)""+.... (4)
We find, from formula (3), that
(Exp¥)(0) =1,
(Expy)(z)= ) f[ ¥(z:), =#0, ()

{21,...,£k} i=1

where the sum is taken over all partitions of the set z.

Lemma 1. The inverse mapping to (4) defined on the set 1 + A, ezists, and

(Bxp)~(1-+9) = Log(1+9) = ¥= 2 ) <+ 30—+ EL(pens .
©)
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or, in accordance with formula (3),

(Log(1 +4))(9) =0
(Log(1 +9))(2) = Z (=D (k- l)'H¢(z.), z#0, (7

{’l’ ’zk}
where the sum is taken over all partilions of the set z.

The proof is simple and we omit it. Notice that formula (5) is similar to
the formula expressing the moments by means of semi-invariants and formula
(7) to the formula expressing the semi-invariants by means of moments. (See
§1, properties D and E.)

Let ¥ € A and § = {£(t),t € Q} be a bounded measurable (complex)
function with compact support on the space Q (§(t) = 0 outside some bounded
domain A C Q). We define a functional in §;

¥(E) = / ¥(2) (He(t)) dvy(2), (®)

t€x

under the hypothesis that the integral on the right-hand side of (8) converges
absolutely. Here v, is a measure on Qg, defined with the help of the measure
A on Q (cf. §1, Chapter 1). The functional ¥(§) is analytic on D, if the
integral (8) exists for all functions , with compact supports, belonging to a
ball

D, = {§; max |¢(t)] < r,§ with compact support} (9)

for some r > 0. Let A C A be the set of those functions ¥ € A for which the
functional ¥(£) is defined in a domain D,. It is easy to verify that AcAis
a sub-algebra of A, and the mapping ¥ — ¥(§), ¥ € A, is a homeomorphism
of A to the set of germs of holomorphic functions in the point £ = 0 (i.e., of
functionals in £ analytic in some domain D, of the form (9), r > 0). In other

words,
¥1(6) - ¥2(€) = (%1 x ¥2)(€), ¥1,¥2 €A (10)

Diagrams. We call a pair G = (z,T') a diagram (a hypergraph) if z € Qgn,
z # 0, is the set of vertices of G and T = {z,,...,z,} is an arbitrary unordered
collection of subsets z; C z, |z;| > 2, which are called the edges of G. For a
diagram G = {z,T}, the connected components {T'y,...,'n} of the collection
I' = {z),...,2,} define connected diagrams G; = (y;,T;), where

= U =

z;€l;

are called connected components of G. For two diagrams G; = (z1,I'1) and
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G2 = (z2,T3), for which z; Nz, = @, we define their union G; U G, =
(z1Uz,, T UT;) (T UT, is the collection obtained by the union of collections
I‘l and rz).

Let & be a family of diagrams having the following properties:

1) for any diagram G € &, all its connected components G; € &;

2) for any two diagram G, = (z1,I'1), G2 = (2,T2) for which z; Nz, =0,
the diagram G, UG, € 8.

Any such a class of diagrams will be called admissible. Here are some
examples of admissible families of diagrams:

1) all diagrams without multiple edges (i.e., all z; are distinct in the collec-
tion I' = {z4,...,2,});

2) all diagrams G = (z,T') with the number of edges z; € I incident, with
any point ¢ € X not exceeding a given number.

Let & be an admissible class of diagrams. For any function ¢ € A4, we
define two functions Z € A, and F € A, on Qg, by the formulas

2e)= 37 [ w0, @11)
G=(z,I')ed z;€T
Fo = 3 I v, (12)

G‘=(3,F)€ Sconn Ti€EL

where the sum 2(:6)6 stands for the sum over the diagrams from & with
the set of vertices z, and Z(ngaco-n for the analogous sum over connected
diagrams from &.
As easily follows from the definitions (11) and (12), the functions Z and F
are related by
Z =ExpF. (13)

We assume that Z and F belong to A, and we define the functionals Z(¢)
and F(§) by the formula (8):

26 = / 2(2) [L £t dva,

Nin €z
F(e) = / F(e) [T &) dva.
nﬁn i

Lemma 2. The functionals Z(€) and F(§) are related by
Z(§) = exp{F(§)}. (19)

The proof follows directly from (10) and (13).

e e g bt as o e
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CHAPTER 3

GENERAL SCHEME OF CLUSTER EXPANSION

§1 Cluster Representation of Partition Functions and Ensembles of Subsets

The technique to be developed here is related to random fields in a countable
set T'. We note that to use this technique for point and functional fields, they
first have to be reduced to fields in a countable set, as explained in Chapter 1.
There is, however, a special technique for point fields.

Let T be a countable set, and for each finite A C T, let the Gibbs modifi-
cations in A and their partition functions be defined. The basic step in the
construction of cluster expansions consists of a cluster representation of the
partition functions Z,.

We assume that a metric p(-,-) is defined on T', where the cardinality of
the d-neighbourhood of any point t € T' does not exceed v = v(d) < oo for
each d > 0. We fix d > 0 and call a partition @ = {A4;,...,4,} of a set A
admissible (more exactly, d-admissible) if p(A;, Aj) > d for any two different
elements A; and A; of a, |A;| > 2, and |4;] 2> 2.

Definition 1. We shall say that the partition functions admit a cluster rep-
resentation, if a number k4 corresponds to each finite set A C T so that the
following conditions are fulfilled:

1) (cluster representation) for all finite A C T,

Zn=) ka,...ka,, (1)

with the sum taken over all admissible partitions a = (A;,... ,A,) of the set
A;
2) (cluster estimate) for all t € T and all n 2> 2,

Y kal<aAt, n=23,..., 2
A:t€A|Al=n

77
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with A 2 0 called a cluster parameter and ¢ > 0 small enough (see below);
3) for |[A] =1,
lkal > k> A @)

Remark 1. It is often suitable to use a slightly more general definition of the
cluster representation of Zy, AC T

Zn=) kr,...kr,, (4)

where the “cluster” T' = (4,9) is a pair: A finite subset A = A(T) C Tofa
countable set T (T often coincides with T), here A(T) is called the support
of the cluster, and an element ¥ of an abstract space, particular for each A;
kr, are numbers assigned to the clusters. The summation in (4) is taken over
all unordered collections of clusters such that the collection of their supports
forms an admissible partition of the set A C T, with A being uniquely defined
by A C T. Here we need:
l)fora.nyteTandanyn 2,

> kel < er; (5)
r:ieA(r),
|A(D)|=n

2) for any i € T, there is exactly one cluster T with A() = {t} and,
moreover,

lke| 2 k> A (6)
(for X and ¢, the same conditions as above are fulfilled).

We note that, if T =T and ka=3r. A(D)=A kp for any finite A C T, then
we obtain (1) from (4). Here the ensemble of clusters is introduced similarly
to the ensemble of subsets considered below.

It is a particular problem how to obtain a cluster representation of the
partition function Z,, and we shall examine it in the following chapters (cf.
also §5 of this chapter). In some cases, this representation is found very easily
(§5), while in others, it is obtained in a more difficult way (§7, Chapter 4; §8,
Chapter 4). However, as soon as it is established, further construction of the
cluster expansions is carried out by a unique scheme which we shall describe
now.

Lemma 1. A family of quantities {Zx; A C T, |A| < o0} admils a cluster
representation (1) (for all finite A C T) if and only if for any finite nonempty
set BC T and allt € B, the following relations hold:

Ze=kwyZp\n+ Y ka|I] k| Zevas (7)
ACAt€A e




§1 Cluster Representation of Partition Functions 79

with Zg =1, A= A3 = {t,p(t,A) < d}, |A]|>2,and A=A for |A| = 1.

Proof. In (1), we put A = B, and let t € A, for a fixed point t € A = B.
Writing A = A; and summing, in (1), over Aj,...,A,, we obtain formula
(7). Conversely, by virtue of the recursive character of the relations (7) and
of the equality Zy = 1, the system of quantities Z, satisfying (7) is uniquely
determined, and consequently, it is of the form (1).

Lemma 2. Let the family of quantities {Z5, A C T} admit a cluster represen-
tation (1) (or, which is equivalent, let it satisfy (7)) such that the conditions
(2) and (3) are fulfilled, with the constant c in (2) sufficiently small. Then

Zp#0 (8)
for all finite ACT.

The proof of this lemma, and also its essential refinements, will be obtained
as corollaries of further constructions. In this and subsequent sections, we
shall assume, not mentioning it in particular cases, that quantities k4 are
such that condition (8) is fulfilled. We notice that this condition is fulfilled in
an obvious way.

Ensemble of subsets. It is useful to interpret the representation (1) and the
notion, introduced further, with the help of the “ensemble of subsets,” that
we shall now describe. For any fixed A, we introduce the space of elementary
events A(A) as the set of all admissible partitions of A. The number

p(A)(a) = lekAx o kA.t (9)

for any admissible partition o = {A;,...,A,}, is called its “probability.” We
note that, in the case of negative (or complex) k4, the numbers p(A)(a) do
not actually define a usual probability.

Let T = {A,,...,A,} be an arbitrary admissible (i.e., such that
p(Ai, Aj) > d for |A;] 2> 2, |Aj| 2 2) unordered collection of mutually disjoint
subsets of A. We write

~ n ~ n -
= U A;, T'= U A;.
i=1 i=1

Define a “probability” of T as

a:l'Ca

PC) = Y M) =kay.kay T ‘% (10)
? ~
with the sum taken over all admissible partitions « such that each A; €T is a

block of the partition a. The function p(A)(T'), defined on the set of admissible
collections T', is called the correlation function of the ensemble of subsets of A.
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Theorem 3. Let the partition function Zy, A C T, admit a cluster repre-
sentation (1) fulfilling the conditions (2) and (3), with the constant c, in (2),
satisfying the condition ¢ < co(A/k) with co from (23). Then there is a limit
correlation function p(T'), with T' being a finite admissible collection of sets,

such that "
Aim P (L) = p(T). (11)

This theorem will be proved in §3.
A particular role is played by the relations

Z
W =2\ Tk, fo=1 (12)
Za teA '

If A= {t,,...,1}, then it is obvious that

0 = (), (13)
with T = {{t1},..., {tx}} consisting of singletons. Hence, in case the assump-
tions of Theorem 1 are fulfilled, the limit

. A) def
Jim £ 4 = p(T) (14)
exists. We find, from (10) and (12), that
PM(T) = ga, ...gA,f%A), T ={A1,...,4n}, (15)

using the notation

gaA = kA /H k{‘} (15')
t€A

It is evident from (15) that it suffices to prove the existence of the limit
(11) in the particular case (14).

As is evident from (12), the quantities f‘(‘A) are rational functions of the
variables {gp;|B| 2 2, B C A}, and f‘(‘A)(gB =0) = 1. Hence f‘(‘A) expands in
a power series in these variables converging in a neighbourhood of zero that,
in general, depends on A and A. However, as we shall show later (and this is
the main purpose of cluster expansions), this neighbourhood may be chosen
uniquely for all A C A, and its dimensions do not depend on A.

We use n = {A;,...,A,} to denote an arbitrary unordered collection of
subsets, |4;| 2 2, i = 1,...,n, among which the same set may repeat several
times, and let g, = [ Aen 94- Then the desired series are of the form

& =3 DM(4;n)g,. (16)
n
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The coefficients D(A)(A; ) can be easily expressed in an explicit form by
means of functions similar to the Mébius functions for some lattices (cf. §6,
Chapter 2). However, such a representation of these coefficients does not help
too much in the investigation of the convergence of the series (16). Therefore,
we shall employ another expression for these series.

We fix a point t =tp € D for each finite D C T.

Lemma 4. Under any choice of points tp € D, the system of quantities
{ff,A),D C A} satisfies the relations

) _ Ay (D) £
/b D\{tn}"'z 9afpucanay = 0s (17)

with |D| 2 2, and for |D| =1,

(D)
10+ 9apiann = 1 a7)
with the summation in E(D) taken over sets A C A such that AND = {tp}
and |A| 2 2.

Proof. Formula (7), with the set B C A replaced by A\B, after division by
Z and multiplication by [],.¢p k{113, can be rewritten as

A A A
= x(su){:} + ngfj(su)(jnA)'
Letting here t = tp and B = D\{tp}, we obtain (17) and (17').

It is convenient to write the system (17), (17') in an operator form. To do

this, we consider the vector space B(A) of the complex vectors p(A) = {go(A),
A C A}, with the coordinates indexed by all nonempty subsets A C A (the
superscript will often be dropped for the sake of brevity).

We define an operator R (a generalized “shift”) on B(A):

_ [ paviay |Al>2
(Re)a = { 0, Al =1,

and an operator K = K(A) on B(A);
(4)
(Kp)a = -Z 9BPAU(BNA)- (18)

We use the notation § = §(A) for the vector with coordinates

s _{1, Al =1,
4710, |4>1.
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Under these notations, the system of equations (17), (17') can be rewritten
in the form

D —(R+ K)f®M =, (19)

To investigate it, we introduce, in B(A), a norm
llellar = sup lpalorars (20)
ACA MlAl

with a constant M > 0 that will be specified below.

Notice that ||R|| < 1/M, and it follows from (2) and (3) that if 2M* < 1
(recall that v denotes the maximal cardinality of a d-neighbourhood of any
point t € T'), then .

1 (4) c
Il < 3780 Y lonl MIBPM < 2 S (Meazmm. (1)
n32

Hence, it follows from (21) that

N z2
IR+ KI| < (E) T (1+c1_z),

with z = (A/k)M".
We use h(c) to denote the quantity

W)= min —— (14c2—
T o<z<1 zl/v -z

and zo = zo(c) € (0,1) to denote the point at which this maximum is attained.
Choosing
M = [(ME) zo(e)]'/", (22)

we get
€0 = ||R+ K| < (A\k)*h(c). (22)

We shall always suppose that
(A/B)Y*h(c) < 1 (23)

and refer to this condition as to the cluster condition later on.
As h(0) = 1, the function h(c) is monotone for ¢ > 0 and increases as ¢ > 0;
for A/k < 1, there is only one solution ¢y = ¢o(A/k) of the equation

(A/E)Y?h(co) = 1, (23)
with co(A/k) — 00 as A/k — 0.
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Obviously, the cluster condition (23) is fulfilled for A/k < 1 and ¢ < co(A/k).
It follows from (22) and (23) that 9 < 1 and that the solution of (19) exists,
is unique, and satisfies the estimate

-1 1Al/v
W) ¢ Bl ppia o 1 (ﬁ) 24
|fA |< I—EoM <M(1-—€o) k zo(c) ) ( )
Moreover, this solution can be expressed in the form of a series
[+ [+
fM=3(R+K)"s= ) R™s
n=0 m;=0

+ i i R™KR™K ...R™ KR™+§, (25)

P=1(my,....mp41)

with the last sum taken over all (ordered) collections of nonnegative integers
(m1,...,mp41);m; 20,i=1,...,p+1, and the series converges in the norm
(20) in BN,

§2 Cluster Expansion of Correlation Functions

It is easy to deduce the representation of f&'\) in the form (16) in §1 from
the expansion (25) in §1. Namely, we express the solution of (19) in §1 in a
geometrically intuitive form that is convenient for further application (in the
form of a series over “connected groups of clusters”).

Therefore, we introduce an oriented graph (a connected tree) with the set
of vertices to be the set F = F(T) of all finite subsets of T. An edge is
connecting a vertex A € F and a vertex B € F if and only if B = A\{t4a}.
We say that a vertex B lies below a vertex A, if there is a path through the
graph F beginning at A and ending at B. The lowest vertex of the tree F is
0. There are exactly |A| vertices below the vertex A.

We use the notation v for the collection of nonempty subsets

7= (BI’AI;"';BP’AP)’ p=p(1)21, (1)
such that
1) for all i = 2,...,p, either B; lies below C; = B;_; U A;_;, or B; = Cj;
we write m; = |C;\B;;
2) AiNB; = {tp,},|Ai| > 2foralli = 1,...,p; we denote, for each collection
(1), the ordered collection (A;,...,Ap) by n = n(y), and let

P
9y = Gn(v) = HyA.'- (2

i=1

The set suppy = #j(7) = | [=; Ai is called the support of 7.
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Lemma 1. If the condition (23) in §1 is fulfilled, then

(A,4)
f‘(,'\) =1+ E (_l)p('v)g_y, (3)

with the summation taken over all collections v of the form (1) for which
1) suppy C A; 2) B; C A; 3) either By = A or B, lies below A. Here, the
series on the right-hand side converges absolutely.

Remark 1. In case d = 1, i.e,, A = A, each collection of the form (1) that
enters the sum (3) can be uniquely expressed in the form of a path through
the graph F:

(CI: BI;C2’ B2; ce ;Cp) Bp)) Cl = Aa‘

where the path to B; C C; leads downwards in F, and the path to C;41 D B;
leads upwards.

Proof of Lemma 1. We choose a basis {x(4); 4 C A,A # 0} in B, with
x* = {xA), x} = 6B (the Kronecker delta).

It is easily seen that, with respect to this basis, the matrix elements (R™)c,8
or the operator R™ equal

1, if B lies below C in F and |C\B|=m,
= 4
(R")c. { 0 otherwise, )
and the matrix elements of the operator K equal
—ga, Iif there is such an A C A that
A|22,BNA={tg},C=BU(ANA
(K)s.c = 4l - 112,C=BUMANA)
(if such an A exists, it is unique),
0 otherwise.
Noticing that § = Y, x{*}, we find, from (25) in §1, that
f,(4A) = Z Z (R™) g0y + Z Z Z (R™) 4,8,
teAL my p3l(my,..,mp41) Br,...,Bp
x (K)By,c, (R™)c,,B, - - (K)B,.c, (R™"*)c, 11} |- (6)

Obviously, for any A C A, it is

Y B™ay =1

tEA m
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and it is evident from (4) and (5) that each nonzero summand of the second
sum corresponds to a collection v of the form (1) (and all such collections
enter this sum) and equals (—1)P(")g,,.

Thus expansion (3) is proved.

Notice that, in case —g4 2 0 for all A, each summand from (6) is positive
and the convergence of the series (3) follows from (24) and (25) in §1. To
prove the absolute convergence of the series (3) for arbitrary g4, the term
—ga has to be replaced by |g4| in the above considerations. This does not
change the norm of the operator K.

Corollary 1. The ezpansion (16) in §1 follows immediately from the ezpan-
sion (3) by putting the coefficient D(A,n) equal to (—l)l"l, for any nonempty
collection n = {Ay,...,Ap}, multiplied by the number of collections v from
the representation (8), for which n = n(vy) and D(A,0) = 1.

Remark 2. The representation (16) in §1 and expressions for the coefficients
D(A,n) can be obtained by a direct substitution of the series (16) in §1 to
the equations (17) and (17), §1. Hence the following recursive system of
equations for D(A, 1) arises:

D(A,n) - D(A\{ta,m)+ 3 D(AU(BNA),n\{B}) =0,

Beg
BnA={tas}

|A1>2, n#0

D(A,n)+ Y D(AU(BNA),)\{B}) =0,
Ben

A={t}, n#0, t=t,€B, D(A0=1

It is useful to sum partially the series (3). We use the notation

(A,A)
) =Y (~1ptg,, (7
suppy=R

with the summation taken over all 7 defined in (3) and such that suppy = R.
Then (3) can be rewritten in the form

=1+ ¥ M) ®)
RCA
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§3 Limit Correlation Function and Cluster Expansion of Measures
We shall prove Theorem 1 of §1.

Lemma 1. Provided the cluster condition (23) in §1 is satisfied, the limil
(14) in §1 ezxists, and f4 obey the estimate (24) in §1, and

(T,A)
=143 P 1pmg, =14 Y ba(4), (1)
RCT
where @.4)
T - L 3D
br(4) =3 " (-1 Mg, = lim bz (4), )
v:suppv=R

and in Z(T'A), the sum is taken over all collections v of the form (1) in §2
such that either B, = A or By lies below A in the graph F. The series (1)
converges absolutely.

Proof. Any summand of the series °(T4) |g. | enters ("4 |g,| for all suf-
ficiently large A. Since these sums are uniformly bounded in A, the series
T (T4) |g,| converges. Hence (1) follows. It is obvious from (2) and (7) in §2
that

br(4) = b (4) 3)

for all A C A and R with R C A. (2) follows from (3). The lemma is proved.
The above statements and (15) in §1 imply the statement of Theorem 1 of

§1, with
p(T) = (H gA) fe 4
Ael
Lemma 2. Let {uxr,A C T} be a family of Gibbs modifications of measures
pa, A CT, obtained by means of the energies {Ur,A C T}. Suppose that
1) the set {par,A C T} of measures is weakly locally compact;
2) the partition functions Z5 admit a cluster representation (1) in §1, with
the estimates (2) and (3) in §1, and the cluster condition (23) in §1 fulfilled;
3) there is a set G C Co(R) of local functions, with the linear span being
everywhere dense in the space C(Q2) of all bounded continuous functions such
that, for any function F = F4 € G, ils mean (Fa)u, = (Fa)a, A CA, is of
the form
(Fada = ke(FOFO + 3 kr(Fa)filr, ®)
RCA

with fg\) being a correlation function and kr(Fa) some quantities obeying the
estimate n
lkr(Fa)l <m(Fa) 3 TIr5P. ()
r={B,,...,Ba} j=1
F:R
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Here, m(F4) is a constant depending only on A and F4 and not depending on
R, and the summation is taken over all d-admissible collections
T = {Bi,...,Bn} of finite subsets B;, |B;| 22, BBNA#0,i=1,...,n

Moreover, the numbers rg‘) 2 0 satisfy the condition: for anyt € T and any

n2z2,
> <n(3) ™

B:teB
|Bl=n

with a constant by > 0 (depending on A) and the same parameters
0 < A <k < oo as in the estimates (2) and (8) in §1. Then the set
{ua, A C T} admits a cluster expansion.
Proof. Define @ A

B2 )(Fa) = kr(Fa)fiia ®
for F4 €G.

We find, from (6) and (24) in §1, that the estimate (18, §1, Chapter 1) is
fulfilled, with

Ml Z H" (A) » sv|B;
(I’R F" =ml f" — M |Bi| 9
(F2) ( )M(l-eo) r=(B,,..B }.'—.1r ' ' )

Hence, with the help of (22) in §1 and (7), we obtain

14|
E Cr(Fa) € m(FA)M eo) [lb:z::(cz) < 0.

Further, (14) in §1 implies that

Jim 30(F4) = kn(Fa)favn = ba(Fa).

Thus the conditions (17), (18), and (19), §1, Chapter 1, are fulfilled. The
lemma is proved.
Besides the cluster expansion of the means (F4)x with the quantities

(A)(FA) of the form (8), the representation (5) and expansion (8) in §2 imply
another expansion for the means:

(Faa= Y KP(Fa), (10)

RCA

with the quantities E(A)(FA) being equal to

()= Y. km(FASNAUR). (11)
R',R"CA,
R'URZR
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Lemma 3. Let the conditions 2) and 3) of the previous lemma be fulfilled.
Then the quantities 5%”(1‘14) Julfill the conditions (19) from §1 in Chapter 1.

Proof. The existence of the limit

Jim B/ (Fa)=br(Fa)= Y, kr(Fa)bre(AUR)
R',R"CT
R'UR"=R

follows from Lemma 1. Further,

PED|s X kr(FIBRAAUR)
Rl’R’I 'RIURII=R .

< Y |kr(Fa)lbr(AU R') = Cr(Fa),
RI,RII

where we have used the notation 5%)(3) > bg‘)(B) for the quantities in the

expansion (8) in §2 of the correlation function f,(,A) > 0 that is defined by
the quantities {—|gp|} (compare with the proof of Lemma 1 of §2). The

quantities bg(B) = limp s l-;g\)(B) have an analogous sense.
Obviously,
Y Cr(Fa) =Y |kr(Fa)| faur < oo,
R R

as follows from the preceding lemma.

As we shall see below, the cluster expansion of the form (10) with the
quantities (11) in some cases possesses a remarkable property. We shall need
it only in §3, Chapter 4.

Definition. The cluster expansion of the means (F4),, F4 € G, with p being
a measure on the space ST,

(Fa)u =Y br(Fa) (12)

RCT

is called regular if the following conditions are fulfilled:
1) There is a family of finite subsets 2 satisfying the conditions 1) and 2)
from §4, Chapter 2, and such that in the expansion (12),

br(Fa) # 0 (13)

only in case the set R is A-connected with respect to A (cf. §4, Chapter 2).

2) In case Fy = Fyp,-Fp,,Fp,Fy,,Fy, €G, and A;NA; =0, 4,UA, = A,
and the set R is not A-connected with respect to {A;, Az}, and br(F4) # 0,
the equality

bR(FA) = le(FAI) : sz(FAz) (14)
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holds true, with

m= U ® om= U &

j:R}nA;#O j:R;»nAz#.

and Ry,..., R, being the ™-connected components of the set R (cf. §4, Chap-
ter 2). Notlce that Ry UR,; = R because R is A-connected with respect to A
(and, in addition, R; N R, = 0).

In case, besides 1) and 2), condition 3) is fulfilled, the expansion (12) is
called ezponentially-regular:

3) For all F4 € G and all R that are A-connected with respect to A, the
estimate

bR(Fa)| < C(Fy) - A%R(%A4D) (15)

holds true, with C(F,) being a constant depending only on Fs, 0 < A < 1.
Recall that dgr(%, {A}) (cf. (9), §4, Chapter 2) is the minimal cardinality of
a collection T' = {By,...,B,}, b € 4, i =1,...,s, such that {B,...,B,, A}
is connected and T' = R.

A regular (or exponentially-regular) cluster expansion of the means (F4)a,
for a family of measures {ux,A C T}, is defined similarly, assuming that
the constants C(F4) and parameter ) in the estimate (15) do not depend on
ACT.

Let a family of Gibbs modification {uar,A C T} be given, and let the
partition function Z, admit a cluster representation (11) with d = 1, where

ka#0, ACT, |A]22, (16)

only in case A is A-connected (2 is a family of subsets satisfying the conditions
1) and 2) of §4, Chapter 2), and the estimate

'kAI < 6XJA(’)’ |A| >2,
kg >1 (17)

is fulfilled, with ¢ > 0 and a sufficiently small constant A < 1. Then, as
follows from Lemma 2 in §4, Chapter 2, the conditions (2) in §1 (with the
parameter A = ¢\ where ¢ = ¢(2) is a constant) and (3) in §1, and also
the cluster condition (23) in §1, are fulfilled, and consequently, there is a
correlation function f‘(‘A) that admits an expansion (8) in §2. In addition, let
for any function F4 € G (cf. Lemma 2), its mean (F4)A admit the expansion
(5), with the quantities kr(F,) satisfying the conditions 1), 2), and 3) from
the definition of the exponentially-regular cluster expansion, where

lkr(Fa)l < C(Fa)(A)*r(244D), (18)

with a constant C(F4), depending only on Fy4, and the same ) as in (17).
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Lemma 4. Under the above assumptions, the conditions (6) and (7) of
Lemma 2 are fulfilled, and the ezpansion (10) is ezponentially-regular.

Proof. The estimate (6) is a consequence of (18), with

A { (A)2=™), if B € A connected and BN A # 0,

"B 0 otherwise.

Here, the estimate (7), with A = ¢}, follows again from Lemma 2 in §4, Chap-
ter 2. The condition 1) from the definition of a regular expansion follows
immediately from formula (11) if we notice that it holds for the quantities
b%‘)(A) by (7) in §2. The condition 2) follows from (11), the analogous condi-

tion 2) for the quantities kgr(F, ), and from the fact that the quantities bg:)(A)
possess a property analogous to (14):

(A1 U Az) = b2 (A1) - b8 (42),

where A; N A, = 0 and the set R is not A-connected with respect to {A4;, 4,}
(but A-connected with respect to A; UA3), R; and R; are defined in (14). In
order to verify the condition (15) of the exponential regularity, we put

ka= (K-IX)dA(ﬁ)EA
and _ _
kr(Fa) = (Ic_lz\)d"(g'{A})kn(FA),

where k¥, 0 < k < 1, is a constant that will be defined below. Notice that
k4 and kgr(Fy) satisfy the estimates (17) and (18), respectively, in which A
is replaced by k. Choosing now x < 1 sufficiently small, but such that k=1
is also sufficiently small, we verify the cluster condition for the quantities k4,
and the quantities kr(Fy4) satisfy the conditions (7) and (8). Moreover, it
follows from (7) in §2 that

br(A)] < (k=2)*=({4Dbp(4), (19)

where the quantities br(A) >0 define an expansion of the correlation function
fa defined with the help of §p = — |k3|. Further, we find from (11) and (19)
that

[BR(FA)| < (k=22)#=® 44D 5(Fy),

where bp(F,) are defined by (11), in which the quantities IcRu(FA) and bgr/(A)
are replaced by kpu(F4) and bp/(A), respectively. It remains to use the
considerations from Lemma 3. The lemma is proved.

Remark 1. In some cases, the quantities k4 which enter the cluster repre-
sentation (1) in §1 of the partition function and the quantities kr(F4) in the

expansion (5) for the means (F4)A may depend on the set A : k4 = kf"\) and

N WA
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kr(Fy) = k(A)(FA) This is, for example the case of the cluster expansion
of the measures {ua,y®A}, where y?A is a boundary configuration; see §2,

Chapter 1. However, if the quantities k( ) satisfy, uniformly in A, the clus-
ter estimate (2) and the condition (3) in §1, and the quantities kf‘A)(FA) the
estimates (6) and (7), and if there exist limits

ka= Jim KN, kr(Fa) = Jim, EN(Fy), (20)

then all the constructions of this chapter remain valid.

§4 Cluster Expansion and Asymptotics of Free Energy. Analyticity of
Correlation Functions

In the preceding sections, we assumed that the partition functions Z, do not
vanish. Now we prove Lemma 2 of §1, i.e., we shall prove that the condition
ZA # 0 is a consequence of the cluster representation (1) in §1.

In a finite-dimensional complex space B® ¢ BA of the vectors {98;
B C A,|B| > 2}, we consider a polydisc

()
H= Z lgBl <ck™t€ANR>2}. (1)

K, B:t€B,|B|=n
As shown in §2, the series (3) converges uniformly in A and absolutely in
any domain Hf“,\z with & < 1, ¢ < cg(x) (cf. 23’ in §1) and defines an analytic

function fﬁA)({ys}) in this domain.
We introduce a polynomial in {gp, B C A}:

Qr= 2 / Mea= Y  Ilss. (2

teA I={B,....Ba} i€l

where the sum is taken over all d-admissible collections I' of the sets B; C A.
For all values {gp} for which Qa # 0, the equality

Q- SV =1, (3)
following from (12), §1, holds true. In particular, the equality (3) is fulfilled for

~ (A
all positive real collections {gp} from the domain H(A) The set l'[i, c) C Hf‘fc)

of such collections is the set of unicity for the domain H(A)

Recall that the set Dy, contained in a domain D C C*, is called a set of
unicity for D if any two analytic functions on D comcxdmg on Dy coincide on
all D.
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Lemma 1. Each domain Dq in the real space R*={(z1,...,2,);Imz=0,
i=1,...,n} C C® is a set of unicity for any domain C C C" containing
Dy.

Proof. We proceed by induction on the number n of variables. In the case
n = 1, the statement is well known. For an arbitrary n, it is enough to
consider the case when D is a convex neighbourhood of Dy that is entirely
contained in the tube {(21,...,2,),(Rezy,...,Rez,) € Dy}. Considering the
cross sections of the domain D by hyperplanes 2, = const., we reduce our
statement for the case of n variables to the case of n — 1 variables. The
lemma is proved.

By Lemma 1, the equality (3) holds true in the whole domain Hf:c) . This
implies Lemma 2 of §1.
The proved lemma, and the fact that Q5(gp = 0) = 1, imply that in the

domain HS;A.;) , an analytic function Fj is defined:
Fa({98}) =1nQa({g8}), (4)
Fr({gp =0}) =0. (6)

The function F) admits an expansion in a power series, in the variables
{gB}, which converges in the polydisc Hf"’\c) .

Lemma 2. This power series is of a form analogous to (3), §2:

Fa =Y (rpg) [ 3 14, ©)

tEA v A€n(y)

with the sum E_(YA’{'}) taken over all collections v of the form (1) in §2 and
defined in Lemma 1 of §2.

Corollary 1. If the ezpansion (6) is rewritien in the form

F) = Z d,gA)gﬂ, ™
n

by analogy with (16) in §1, then (6) implies that the coefficients d,fA) are of
the form

d® =3 DV, {t}) /3 14, ®
teA A€n
with D) being the coefficients from the ezpansion (16), §1.
Corollary 2. By virtue of (2) and (6), we find that

mZx=Y {1nk{,}+z“"{'” ((_1):»(1)97 / >3 |A|)] L)

teA A€n(v)




§4 Cluster Ezpansion and Analyticity of Free Energy 93

Proof of Lemma 2. Fix a collection of parameters {g% : AC A} € ]’[f""c) and
consider the one-parameter family of collections {g%,A C A} € Hf“‘c)

gh =g, 0<s<o0. (10)
Letting
Fi=F\({s2)), Q=g o =]]s%

A€n
and using (10) and (14) of §1, and (3) of §2, we get

dFy 1
RO (- > IAI) == ¥ Ms(a)

Aen Ac L)Aj32
(A{t})
= Y lAl=g2) SR e =33 (-1,
ACA teA v (11)

Integratmg (11) over s from 0 to oo, and using the fact that F{ — 0 as s — oo
and [°gids=g5%/> Aey |Al, we obtain (6); Lemma 2 is proved

We mtroduce the quantities

i,g\)(t)= E At })( l)p('v)( /E |A|) ,

v:suppT=R A€n(v)

brty= TP (21pm (!h ) |A|) (12)

v:suppy=R Aen(y)

(the sum E(T'{'}) is defined in Lemma 1 of §3).
It is obvious that . A
KN() = ba(2) (13)

for any t and any R such that ¢t € R, R C A. Here,

=Y Y 0= Y bat)+AF, (14)

t€A R:teR,RCA teA R:teR

where the “boundary term” is

AF=Y"| ¥ @0 -br@)- Y br®)|. (15

t€A | Ri€RCA, Rit€RZA
RA(T\A)#9
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The first sum on the right-hand side of (14) is called the bulk part of Fj.
Such a notion is justified by the following theorem, which we formulate in a
general form.

Let G be a transitive group of transformations of a set T" that preserve the
metric p, and let the small subgroup of each point be finite. These conditions
are in particular fulfilled if T = Z¥, and G = Z" is the group of translations
in Z¥.

We use r to denote any class of congruent (with respect to G) sets from
T, and for any A C T, let Sx(r) denote the number of such sets R € r that
RNA#0,RN(T\A) #0.

We say that an increasing sequence of finite subsets A, C T tends to T as
n — oo in the sense of van Hove if | JA, = T, and for any, class r,

SA.(r)/|An| = 0, n — oo. (16)

Theorem 3. In the cluster representation (1) in §1, let the quantities k4 be
tnvariant under G, i.ec.,

kga =ka (17)
for all g € G.
Then for any sequence A, tending to T in the sense of van Hove, there is
a limit In Z
f=lim==2 = 3" Ba(t) +Ink, (18)
|An| R:teR

where t € T is an arbitrary fized point and k = kyy).

Proof. Notice that, under condition (17), the sums )., r br(t) are identi-
cal for all ¢, and at the same time, (14) implies that

=3 b+ G (19)

R:teR

The second sum in (15) admits the estimate

2 ) bl

t€An R:t€RZ A,
(T.{t})
OB D DES SERCIARN
RZA, vy:suppY=R
RNA#£0

with

C.=Cr= Z MY

te R ‘y supp y=R
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for any R € r. Since

YrG= 3 crg TP 0l < oo, (21)
r

R:to€R ¥

where &, is the number of sets from the class r containing an arbitrary fixed
point to € T (k, < |R| - |Gy,l, G, is the small group of the point to), we
obtain, from (21), the estimate Sy, (r) < |A,| &y, and from (16) that the sum
on the left-hand side of (20) is of the order o(JA,]). Similarly, the first sum
in (15) can be estimated. The theorem is proved.

Let now the quantities k4 = ka(z1,...,2m) be analytic functions of the
complex parameters z1,...,2y, in a domain D C*C™, and let the conditions
(1), (2), (3), and (23) in §1 be fulfilled uniformly in D.

Theorem 4. Under the assumptions formulated above, the correlation func-
tions p(A(T), p(T), and also In Z», and (if the conditions of Theorem 3 are
Julfilled) the quantity f are analytic functions on D.

The proof follows from the representations (3), §2; (15), §1; (1), §3; (3), §3;
(9), (12), and (18) of this section.

§5 Regions of Cluster Expansions for the Ising Model

This section is a continuation of §0, Chapter 1, and at the same time, serves
as an introduction to the following chapters. Here, we illustrate, on a simple
example, how the cluster expansion of partition functions is obtained. We
consider the Ising model and use the notations from §0, Chapter 1.

We distinguish four regions in the plane of parameters (3, k) with different
types of a corresponding cluster representation of the partition function for
the Ising Model. It turns out to be suitable to consider a cluster expansion
not of the original partition function but of a quantity which differs from it
by a simple factor.

I. High-Temperature Region (Small 3)

We obtain here a cluster representation of the partition function Z, with
empty boundary conditions (see §2, Chapter 1).

For B = 0, the limit measure pj g=o is a measure with independent values
in the case of the Ising model (see §0, Chapter 1). It is natural to suppose
that, for each small 8, the limit Gibbs measure defines a field that is close
to the independent one, and the cluster representation of the partition func-
tion can be obtained by expanding exp(—U,) in a series in 8. Joining the
terms with the same collections of potential supports in this representation
and averaging with the help of the measure yg, we obtain the required repre-
sentation. Technically, this is to be carried out in the following way: Notice
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that ((-)u,8=0 = (-}n)

Zp = <eXP (ﬂ Z(A) Utdt') > (e" + M)A,

t,t Py

and deduce the cluster representation of

<exp (ﬁ Z(A) mw) > ,
t,t A

with ZS:},) denoting the sum over the pairs of nearest neighbours in A:

<exp (13 Z(A) a,a,:) > = <H(A)[exp(ﬁa,o',:) -1+ l]>
t,t A t,t A
=1+ Z < H [exp(Boiov) — 1]> ,
o (D

L \{t,¢'}er’

and with the sum }_ . taken over unordered nonempty collections T of different
pairs {t,t'} of nearest neighbours.

By splitting I up into connected components I'y,...,I', and by using the
independence of the random variables [] {t.¢}€rs [exp(Boov)—1],i=1,...,s,
we obtain the required cluster representation (4) of §1, in which

kr=< II [exp(ﬂv:vc')—1]> . 2
h

{t,t'}er

Thus the cluster here is interpreted as a connected collection of pairs of
nearest neighbours with the support I, and the cluster estimate (5) in §1
follows from (2) and Lemma 1, §4, Chapter 2.

II. Region of Large Magnetization (Large |h|)

We shall investigate the case h > 0, for large h, and we get a cluster rep-
resentation of the partition functions Z, 4 for the (+)-boundary conditions.
Similarly, the symmetric case h < 0 and the representation of the partition
function Z, with (—)-boundary conditions can be examined.

In our region, the values o; = —1 are attained with a small probability
(more exactly, each value oy = —1 produces a small factor z = e~? in the
corresponding term in the partition function). In this connection, we define a

L oy st Pt et
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cluster to be the maximal 1-connected set of such points t € Z¥ that oy = —1.
More exactly, for each configuration o?, let

B_(cM)={teA:o,=-1}, B(c*)=B_(o}),

with _
B={teZz:p(t,B)<1}

for any B C Z°.

For any B C Z”, we use the notation 9(B) to denote the set of bonds
(i.e., of pairs {t,2'} of nearest neighbours) such that t' € ; B, t € Int B, with
0;B = {t € B,p(t,Z"\B) = 1}, Int B = B\3;B. Then the partition function
Z\,+ may be written in the form ({-)o = (-)g=0,n=0)

Zn,+ = exp [hIA| + B|AD] (exp {28 |1(B(e"))| - 24 |Int B(e*)|}),

_ ©)
with A) being the set of all bonds {t,t'} such that t € A, ¢’ € A.
Now we get a cluster expansion for

2175, exp {~hIAl - B [A®|} = 14 3 exp{-281x(B)|-2h |Int B}, (4)
BCcA

with the summation taken over all nonempty B C A such that each of their
1-connected components has a nonempty interior. Let

kp = exp{—24 |(B)| — 2h |Int B|} ()

for each 1-connected set B with a nonempty interior. Let k(;} =1 and kg =0
for other B. Then we obtain the cluster representation (1) of §1 with d = 2
from (4).

Noticing that |Int B| > |B|/(2v + 1), |¥(B)| < 2v|Int B| and that the
number of 1-connected sets of the cardinality n that contain a fixed point
t does not exceed const (C)*, C = C(v) (cf. Lemma 4, §4, Chapter 2), we
obtain the estimate (2) in §1 with

c=1, v=Cexp{-2(h-2vpB)/(2v+1)}. (6)

For sufficiently large h > 0, the cluster condition (23) in §1 is fulfilled.

III. Low-Temperature Ferromagnetic Region of the First-Order Phase
Transitions (h = 0, # > 0 and Large)

We use again the notations of §0, Chapter 1, and assume » = 2 for simplicity.
In the capacity of the set T (see Remark 1, §1), we take the set of all
bonds of the dual lattice Z; and put A = A, with A being the set of bonds
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of the dual lattice that intersect bonds from A(?) (i.e., that lie completely
inside A = AU OA). We call a cluster an arbitrary contour I' C A (i.e., a
closed connected polygon consisting of the bonds from A). Then the cluster

representation of the quantity Z AH,e“""' takes the form

%wm“Zm{mwm-X:HmHWB (7

{Ph ,Pn} i=1

with 7(c*) C A being the boundary of the configuration ¢'*, and the last sum
in (7) taken over all collections of mutually nonintersecting contours. Thus,
(7) yields the desired cluster expansion, in which

exp{—2b[T|}, if T C A is a contour,
k=41, Irl=1,TcA,
0 for other subsets T' C A.

The cluster estimate (2) of §1 for these quantities kr may be proved by
analogy with the preceding cases.

IV. Low-Temperature Ferromagnetic Region of Uniqueness (h # 0, 8 > 0
and Large)

We examine the case v = 2, as before, and get here a cluster expansion for
the quantity

Za+ = Za4 exp {—ﬂ |A(2)| - "lAl}
= Y exp{-28|y(c*)| - 2h|B_(c*)|} (8)

+
c"eﬂ(A )

for h > 0. Here as above, B_(o) C A is the set of sites in A, in which the
configuration o takes the values ¢ = —1, 7(d*) C A is the boundary of

the configuration oA, Q("') C Q2 is the set of the configurations in A with the
boundary consisting only of contours, and the set B_(o?) lies inside y(o})
(i.e., any site t € B_(oA) is separated from A by a contour I' C y(c*)). The

set Qf\") C Q4 is defined similarly. We use, for any contour T, the notation

I' = Int T\3;(Int T),

with Int T C Z2 being the set of sites encircled by the contour I'. Obviously,
0 ~ ~
OI' = 0;(IntT"). Now we choose T and A just as in the preceding case. A
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contour I” C T is called internal with respect to a contour T' C T if I” lies in
Int T and there are no sites of A inside I''. Then it is simple to see that

ZA,.', = Z' exp ( ZﬂE IT:] - 2h Z |3P. |) K (9)

{rlt'"’ru} i=1

with the sum taken over all possible collections of mutually nomnt.ersectmg
contours I'; C A none of which is internal with respect to the remaining ones.
Here, we use ZA -, A C Z2, to denote the sum analogous to (8) taken only

over the set Qf\ C Q4 of configurations. Defining for each contour I' C T,

Zo
kr = exp {—2,6[1"[ 2h|31‘|} (10)
P.+

we get from (9) that

Zry = E Hkp, " (11)

{PI I :Pn} i=1

Using the expansion (11) repeatedly for each sum Zf‘ , we finally obtain

[

Zra= Y, Ik (12)

¥={T41,....,C'a}

with the sum taken over all collections v of mutually disjoint contours.

Lemma 1. For any finite set A and h > 0, the inequality

holds true.
Proof. Itis Zx,— = Zp 4 for h = 0. Further,

1(2"7) gu- (), ()} (14)

dh \ Zn+

ZA + ZA"’ ZA:"’
As easily follows from (8),

(204, 1204 = 2B-@ a4 = Tlodas =ML (15)

teEA
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with (-)A,+ being the mean value under the distribution with (+)-boundary
conditions in A. Since, under the mapping o — —o?, it is Q) - — Q4+
and B_(0*) = A\B_(—0d?), we get

(2n-), /20~ = =2A1+ 2(B-(e")as = - S(odas Al (16)

As (o¢)a,+ > 0 for h > 0 (the Griffith inequality, cf. (13), §0, Chapter 1), we
find from (14), (15), and (16) that for A > 0,

d ZA -

— | =——]<0.

dh (ZA.+)
Hence (13) follows.

The cluster estimates (2) in §1 for the quantities kr follow easily from (13)
and (10).

§6 Point Ensembles

We shall preserve here the notations of §1, Chapter 1, and consider a pure
point field in the space Q in which a continuous measure is given (i.e., such that
the measure A({t}) of any singleton, t € Q, equals zero). The generalization
of the constructions occurring here to the case of labelled fields does not
cause any trouble. The case of a purely discrete measure A reduces to an
examination of fields in a countable set.

On the set Qgp, C Q of finite configurations (subsets) z C Q, let a function
k(z) be given so that, for any bounded domain A C Q,

k(z Uy)dv(z)dv(y) < oo. (1)
y€Q(A),z€Qqn

Recall that Q(A) denotes the set of configurations in the domain A, and the
measure v on the space Qg (or its restriction v|s to the space Q(A) C Qan)
is defined by formula (8), §1, Chapter 1.

It follows from (1) that, for any bounded domain A, it is

[ k@) ) < o, (1a)
(A)

and, for v-almost all y € Qgy, the integral fulfills

/ k(y U z)| du(z) < oo. (1b)

Qin
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Assume that the densities py = 5}} of the Gibbs modifications {ua;

A C Q is a bounded domain} with respect to the measure » = v|s on the
subspace $2(A) may be expressed in the form

pa(z) = 25! Z(z) k(z1)...k(zn), z#0,

pa(0) = 2", (2
with Z(’) denoting the sum over all partitions ¢ = z; Uz U--- Uz, to
nonempty subsets z; C z, i = 1,...,n; n = 1,...,|z|, and the partition

function equals

Zn= / (E"’ k(zl)...k(z,.)) dv(z). 3)

a(A)
This representation of Z, is also called the cluster representation.

Lemma 1. The following formula

/ F(z)( ) m(a:l)...go,,(z,,)) d
Qgia

(Z1,,2p)

p times

——
= / / F(z1U--Uzp)lp1(z1) ... op(2p)] d¥(z1) - .. d(zp)

Qin Ngin (4)

is valid under the assumption that one of the integrals in () converges abso-
lutely. Here, F, ¢, ...,pp are arbitrary functions defined on the space Qgn,
and Z(zhm',’) is taken over all ordered collections of nonempty mutually
disjoint subsets z; Cz,i=1,...,p, such that Uz; = z.

The proof of this lemma follows easily from the definition of the measure
v; see §1, Chapter 1 (for more details, see [45]).

Using formula (4), inequality (1a), and the representation (3), we easily find
that

(

1
=Y / Y k). k(za) | du(2)
n3l a(A) \(z:,...,f:)

=1+ Z % / k(z)dv(z)| =exp / k(z)dv(z) p. (5)

31 |a(a) a(A)
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Theorem 2. Let the assumption (1) be fulfilled. Then for all bounded domains
A C A CQ, the densily pf\“)(y) = dupla/dv of the restriction pp|s of the
measure pup lo the o-algebra ) , is of the form

50w = EP) Y O kP ), (©)
with
D= [ kyusane) )
AA\4)
Zk‘)=exp / rﬁ“)(y)du(y) . (8)
(A)

There ezists a limit cylindric measure (or measure) p on the space Q:
= lim
B=, b QI‘A

(in the sense of the weak local convergence), where, for any A C Q, the density
P4)(y) = dp|a/dv of its restriction to 3", equals

el
P00 = lim #00) = (Z9) TV T+, )
i=1
with
D) = JmO0 = [ Heu)be) (10)
Q4a(Q\A)
and
7(A) — 1; (4) _ (A)
V4 -AI%ZA = exp /r (v)dv(y) ; - (11)
(4)

The expansions (6) and (9) are usually called the cluster expansions of the
Gibbs modifications s, and the limit measure y, respectively.

Proof. From an obvious property of the measure v : dv(zUy) = dv(z) dv(y),
zNy =0, we find that

PO ) = / Pa(yUz) dv().
A\A)
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Using the equality

—(yuz1)

Y %) ke = S E@mU2). kg Uzl

21,23:
z1Nza=0,
z2)Uz=2z

x [ ket ket

with E(W‘l) denoting the summation over all partitions yU 2y = (3 Uz})U
~+U(yn Uz,), 4 Cy, 25 C z1, in which the y; are nonempty subsets of y,
and after that successively applying Lemma 1 several times, we arrive at the
decomposition (6). From the conditions (1) and (1a), we deduce the existence
of the limit (9) (and also of the limits (10) in (11)), and hence, we derive the
existence of a limit measure g on €.



CHAPTER 4

SMALL PARAMETERS IN INTERACTIONS

§1 Gibbs Modifications of Independent Fields with Bounded Potential

Let S be a complete separable metric space and pg a probability measure on
ST that is the product of probability measures v, on S (in general, different
for distinct t € T'); write (-)o = (-)p.

Let a potential {®4;A C T,|A| < oo} be given, and let up be the Gibbs
modification of the measure pg with the density

d
ZPA _ Z7lexp(=Ua), Ur= > ®a. (1)
dpo ACA

In addition, we shall assume that the one-point potential ®;} = 0, replacing
the measures 14 on S, in the opposite case, by the measures 7; with the
densities dv;/dv; = C; ! exp(—®43) where C = [ exp{—®)}du:.

s

In this section, the boundedness of the potential {®4} is supposed:

sup |®4(z)| = bas < © (2)
for all finite A C T, with
Y ba<er @)
AtEA,
|Al=n

for allt € T and n > 2, with ¢ > 0 and A, 0 < A < 1, being some parameters.
Introducing the quantities x 4(z) = e~24(%) — 1, the conditions (2) and (2')
become equivalent to K4 = sup, |k4(z)| < 0o, and for allt € T and n > 2,

Z K4 < A" with ce™® < ¢ < ce®. 3)
A:t€A,
|Al=n
The stability conditions (2), §1, Chapter 1, are obviously fulfilled.

104
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Theorem 1. If the conditions (2) and (2') are fulfilled, and the constant c is
sufficiently small (c < ¢,())), the family of measures {up,A C T} admits a
cluster ezpansion.

Proof. For any finite set B C T and any bounded ) ,-measurable function
F4 on Q = ST, we use the notations

kp(Fa) =Z<FA II nA..>,

¢ Ai€(
kg = kB(l)y |BI 22, k{t} =1, teT, (4)

with the sum taken over all unordered collections ¢ = {A;,...,A,} of finite

sets such that Z: B and {4, A,,...,A,} is connected. In the case of Fy =1,
the very collection ( is supposed to be connected.

Lemma 2. The partition functions admit a clusier ezpansion with the terms
kp defined by the formulas (4), where for the case € < (1 — ))?/4,

Y lksl< T ()", X=A@-X) <1 (5)
Bi€B, -
|Bl=n

forallt €T and n 2 2.
Moreover, for any bounded local function F4, the decomposition

(Fada = (Fadof¥ + 3" kr(Fa)- fitoa (6)
v

takes place.

Proof. To derive a cluster representation of Z,, we proceed in the same way
as in §5 of Chapter 3 in the high-temperature region. Notice that

2A=<H(1+m)>o=z<nm>o, )

ACA ¢ \AC¢

with the sum taken over all collections ¢ of mutually different sets
Ay, ...,Ap C A. For each collection { = (4;,...,4,), we use the notation
ke =1 Ac KA Let (1,...,(x be the connected components of the collec-
tion (. The random variables «¢,, ..., k¢, are independent, and consequently,

(kc)o = ]'[Ll(:c(,.)o. Moreover, (7) may be rewritten as

k
ZA = Z H(K(‘)o. (8)

{¢1,iCa} i=1
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With the help of definition (4), we obtain from (8) the cluster expansion
(1), §1, Chapter 3. We pass to the proof of estimate (5). Obviously, for all
§E>21andteT,

he(©E Y 1ksle® < Y T Ragh < Zsk(ﬁ), (9)

B:teB ¢:teC A€
with . ’
5@ = 3 T 7agM, sk<s)=ggg3£ 13}

(:te¢ A€C
iKI=k

Here, the collections ¢ are supposed to be connected in all sums. Notice that
the quantities Si(€) satisfy the following recursive inequalities:

00 min(k-1,m)
so<eyoom » (7) T snO-s0,
m=2 =0 (k1y..rk

with the summation in the last sum taken over the ordered collections
(k1,...,k,) of integers such that ky +---+k, =k—land k; 2 1,i=1,...,s
The inequalities (10) can be deduced similarly to the inequalities (3), §4,
Chapter 2.

Further, we introduce the numbers Si = Si(¢), defined recursively by the
formulas

o) min(k-1,m)
§k=62(/\£)m Z ( ) Z Sk,. .?k,, k>1,

m=2 =0 (k1y..erks)

Si=S1=28) ()™ (11)

m=2

It is obvious that Si(€) < Si. We introduce the function
w —
f(2)=)_Sed* (12)
k=1

under the hypothesis that the sum on the right-hand side converges for suffi-
ciently small z.
We obtain from (11), under the condition

&+ £())l < 1, (13)
e DE(L+ £GP
z
0=+ 1y -

Lt A oanr
v 3

L i b s
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With the help of an explicit solution of this equation (which reduces to a
quadratic equation), we can easily convince ourselves that there is an analytic
function f(z) on a neighbourhood of 2z = 0 that satisfies the conditions (13)
and (14). Under the conditions

A<1/(2-2) and &< (1-2))%/4, (15)

the function is analytical on the disc |z| < 1, satisfies condition (13) in this
disc, and is bounded by 4¢/(1 — X). Thus,

Y Sk(6) € Yo5k(€) = £(1) S 46/(1- N).
k=1 k=1

It follows from here that for €| < 1/[A(2 — ))] and any ¢ € T, the function
h¢(€) is analytic in £ and does not exceed 4¢/(1—)). Hence we obtain estimate
(5) with the help of the Cauchy formula. The decomposition (6) can be
deduced by analogy with the cluster representation of partition functions.
The lemma is proved.

It follows from (4) that

lkr(Fa)| < sup |Fa(2)] > T ksl

r={B,...,B.},F=R,
BinA#?

Thus, for 4¢/(1 — ) < co(}) (see (23'), §1, Chapter 3), the cluster repre-
sentation of Z, satisfies the cluster condition (23) in §1 of Chapter 3, and
the expansions of the means (F4), are of the form (5) in §3, Chapter 3, and
satisfy the conditions (6) and (7) in §3, Chapter 3.
Further, as is easily seen from (1), (2), and (2’), the density duaja/dpo of
the restriction of the measure puj to the o-algebra Y~ ,, A C A, admits the
dpaja

estimate
mlAI | A) l
dpo f(

with m = sup, é:te pbp < oco. This and Lemma 3 of §1 in Chapter 1 imply
the weak local compactness of the family of measures {ur,A C T}. The
theorem is proved.

emlAI A\A

Remark. In the case of a finite-range potential {®4}, ie.,, ®4 = 0 for
diam A > R, that is sufficiently small, sup, |®4(z)] < B for all supports
A (B <€ 1 a small number), all the conditions of Theorem 1 are fulfilled.
Moreover, the expansion of the form (10) in §3 of Chapter 3 for (F4)a turns
out to be exponentially-cluster (see §3, Chapter 3) if the role of the family
A is played by the set of the supports of {®4}, i.e., of sets A C T with
®,4 # 0. This fact follows easily from the proof of Theorem 1 and Lemma 4,
§3, Chapter 3.
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§2 Unbounded Interactions in the Finite-Range Part of a Potential

In this section, we generalize Theorem 1 of §1 to the case when the potential
®, is unbounded for some A C T. Namely, we suppose that the potential
{®4} that defines the Gibbs modification (1), §1, is expressed as the sum of
two potentials R

Sa=Bs+V4, ACT, (1)

with &, satisfying the conditions (2) and (2') of §1 and ¥, the following
conditions:

1) ¥, is finite-range, i.e., its supports have uniformly bounded diameters:
diam A < R; hence |A| £ D = D(R) and each point t € T belongs to at most
M supports (M = M(R)); ‘

2) ¥4 > 0 for all 4; 2)

3) for any support A of ¥4,

(le® -1]), <6 @)

with § being sufficiently small.
As before, we assume that the one-particle potential ¥(,; =0,t € T.

Theorem 1. Let &4 from (1) satisfy the conditions of Theorem 1 in §1 and
the constant § > 0 in (2) be sufficiently small (6 < 8o(c,))). Then the family
of Gibbs modification pp, defined by the formula (1) in §1, admits a cluster
ezpansion.

Remark. The potential of the form
B4 =84+ P4, ®)

with &4 fulfilling the conditions (2) and (2') of §1 with a sufficiently small
constant ¢, and ¥4, a finite-range potential uniformly bounded from below,
satisfies, for sufficiently small 8, the conditions of Theorem 1.

Proof of Theorem 1. The partition function Z4, just as in the case of a
bounded potential, admits a cluster expansion with the numbers kg defined
by (4) of §1. We prove for them the cluster estimate

> ksl < 2 G, R=d@-X <1, @
B:teB
|Bl=n
with L+ 8N
d = max {6, a+oM jf,) 6‘/<1+MD)} :
We have

e~@at¥a) _ 1 = (=84 _1)(e ¥4 — 1) 4 (%4 — 1) 4 ("4 — 1),
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Using (3) of §1, we obtain that

|e-($..+~u) 1| <sP+ KD +1), (5)
with - -
Ky =|e"®4 -1, KD = e~ —1|.
Thus, we get from (5) and (4) of §1 that

lkal < Z(1+a)‘=‘<1'[ sa) - 11 &g) : (6)

LI A€l Aler 0
with the summation over all pairs of collections I' = {A;,..., A}, IV =
{4},..., A} of mutually different sets, where the collection I' UT' is con-
nected, and B = TUT", and the sets A} € T’ are supports of the potential ¥.
Notice that for each collection IV = {A4,..., AL} a sub-collection ' C I
consisting of at least ['/(1 + M D)] + 1 mutually disjoint sets may be chosen.
Since n’fz) <1,

(1 1) <o
0

Ael’ A'er’ Ael
Thus, for any § > 1,

WO Y kael® < Yl ( I fm) (1'[ zgngw)

B:teG r,r A'er Ael

< 2 Skk'(&))

k'
k+k'>0

with

Sw=sp 3 o ( 1 f"‘") (H E“l)‘w) ’
ter LI A'er A€l
terur’,
IN=k, |0 |=k’
a= (1 + 5)61/(1+MD).

As before, we obtain the following recursive inequalities for Sgg::

min(m,k+k'=1) m
Sw(f) < EZ(&)’" Z (8) E Sk;b( ...Sk.kl.

m32 =0 ky4-+k,=k-1,
ky+-+k, =k’

D min(m,k+k'=1) m
+a ENmfm E (8) Z Sklkll ..-Sk,k‘,

1 =0 kit +k,=k,
Ej4+kl=k =1
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which may be derived similarly to the inequalities (10) in §1.

Here, N, < M is the maximal number of supports of the potential ¥ of
the cardinality m, which contain a fixed site. Since N, < MA™ /AP m =
2,...,D, the numbers Siis are bounded, Six € Siis, with Sis recursively
defined by the equalities

_ oo min(m,k+k’'-1) m
e 2

m=2 s=0

X Z Skukt - -Skey + E Skt - Seks |
kydo b, =k-1, kit ko =k, ()
Eyto+k, =k k4 +kl=k'-1

d = max(é,aM/\P).
We introduce the function

(P(Zl, 22) = Z?kk,z{‘z{f’,

k,k’

and under the condition that A§ |1 + ¢(21,22)| € 1, we find from (7) that
¢(21 + z2) satisfies the equality

zn+ 22 M1 +)P
2 1-XM01+¢)

p=2d

Thus ¢ = fa4((21 + 22)/2), with fz(z) denoting the solution of equation
(14) in §1. Using the results of the preceding section, we find that for
€ =1/[A(2—2X)] and d < (1 —))?/8, the function ¢ is analytic in the polydisc
|21] € 1, |z2] € 1 and bounded by the constant 8d/(1 — X) on it. Hence,
similarly as before, we obtain estimate (4). The remaining part of the proof
is completely analogous to the proof of Theorem 1 of §1.

§3 Gibbs Modifications of d-Dependent Fields

A random field {{;,t € T} in an arbitrary set T (not necessarily countable)
with a metric p(-,-) (for example, T = Z¥ or T = R") is called d-dependent
if, for any finite set {t;,...,tn}, t; € T and p(t;,t;) > d, the random variables
&, ...,&, are mutually independent.

Now let T be countable and the measure po on ST define a d-dependent
field with values in S.
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Theorem 1. Theorems 1 of §1 and 1 of §2 remain valid if the free measure
po used therein is d-dependent. (Under the corresponding change of the ad-
missible boundaries for the small constants ¢ and 6.)

The proof follows the proofs of Theorems 1 of §1 and 1 of §2 with the

difference that d-admissible partitions have to be considered in cluster rep-
resentations of the partition functions. Here, kp is defined by (1), §1, as
before, with the sum taken over d-connected collections {. Recall that this
means that ¢ cannot be split up into two collection ¢’ and {” such that the
distance between (' and (” is greater than d. The necessary changes in these
considerations are obvious.
Remark. A lot of examples of d-dependent translation invariant random
fields in R” can be shown. With the help of the coarse graining device (dis-
cretization) described in §1 of Chapter 1, we may construct and examine the
Gibbs modifications of such fields.

§4 Gibbs Point Field in R

We consider the Gibbs modifications {ux,A C R} (A being a bounded do-
main) of the Poisson pure point field po in R given by the Lebesgue measure
d) in RY. The density ps(z) = %l(z), z € Q(A), of the measure up with
respect to the measure v on Q(A) (which differs only by the factor exp{A(A)}
from the measure po|a; see (9), §1, Chapter 1) equals

pa(2) = 23" exp{—BU(2)}, O
with a Hamiltonian of the form (11), §1, Chapter 1:
Uaz) = el + Y olt—t), (2)
{t.v'}Cx

where the function ¢ is bounded from below and satisfies
1) the stability condition: for any z € Qgan,

Y pt-t)> B, 3)
{t,¢’}Cz

with B 2 0 being a constant that does not depend on z;
2) the regularity condition:

d't < o0 4)

cP) = =Be(t) _ 1
I

for some B > 0 (and, consequently, for all 8 > 0).
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Theorem 1. Let the conditions (3) and (§) be fulfilled and the quantity z =
e~PP (activity) be sufficiently small. Then there is a function k(z), = € Qqp,
defined on the space Qqn, satisfying the condition (1), §6, Chapter 3, and such
that for the density pa(z) and the partition function Zy, the representation
(2) and (3) of §6, Chapter 3, containing the function k(z), are valid.

It follows from this theorem and Theorem 2, §6, Chapter 3, that the Gibbs
measures {sa,A C R’} admit the cluster expansion (6) in §6, Chapter 3, and
that there is a limit measure (or cylinder measure) u on the space Q admitting
also the cluster expansion (9), §6, Chapter 3.

Proof. For z € Qgy, |z| 2 2, we write

e U@ = el T (14 (P - 1)) '
(tv}ce

= ol (l +Z H (e=Pett=t) 1)) , (5)

I {1,’}er

with Y taken over all possible graphs I' constructed on the subsets #(T') C z.
We use kr to denote the expression

kp=28 [ (P -1). (6)
{t,t'}er

Each graph T splits up into its connected components 1,...,7,, and
kr‘ = k‘yl ...koy.. (7)
We introduce, for each set z € gy, the function

z, |z| =1,

H) =0 5 12>, ®)
v

with the sum E.(f) taken over all possible connected graphs with the set of
vertices coinciding with z. We get from (5), (6), (7), and (8) the expansion
(2), §6, Chapter 3:

Pa@) = 25" Y k(z). . k(zn). ®

We shall show that k(z) satisfies condition (1), §6, Chapter 3.
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Lemma 2. For the function k(z), the estimate

k@I < (e T I | (e -1)| o)

T (tt)eT

is valid, where the sum 2(1’-’ ) is taken over all trees T , with the set of vertices
coinciding with z.

Proof. We introduce a function k(z,y), z,y € Qan, 2Ny =0,z #

= (z.9)
Bz =Y " kr,

r

where the sum is taken over all graphs I', with the set of vertices z Uy, and
simultaneously, each connected component ¥ C T of the graph I' contains
at least one vertex from the set z. It is easy to verify that k(z,y) satisfies
the following relations. Let t; € 2 be an element of z € Qg, that fulfils the
condition

D et —t)>-2B (11)

tez’

with z = z\{t,}. The stability condition (3) implies that there is at least
one such point. The equalities

E(z:y) = ze'p Ece,l o(t1—t)

x |k 9)+ Y ke Uug\w) [J(ePP-D - 1), y#0,
q:‘iy., t€u (12)

k(z,0) = e PV

hold true.

Notice that the equalities (12) are of a recursive nature: the value k(z,y),
for |z|+ |y| = n, may be expressed by the values of lc(z,y) for |Z|+|§] = n—1.
Hence, from t.hls and (11), it follows that k(z,y) is majorized (|k(z,y)| <
Q(z,y)) by a solution Q(z,y) > 0 of the system of relations

Q(z,y) = |2[e*®

x Q.9+ Y Q' Uy.y\u)H| "“’(‘"‘)—ll} , Y¥#0,
uCy, t€u (13)

Q(z,0) = |2]e**P1#, Q(8,y) =0
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With the help of the induction on the number n = |z| + |y|, we can easily
convince ourselves that the solution of (13) is of the form

Q(zv y) = Z Q({tl}) yl)Q({t‘&’}» y2) ce Q({t:}) y:)) (14)

(1,-19)
with z = {t1,...,¢,}, and the sum taken over ordered collections (y1,...,¥,)
of mutually disjoint sets y; C y (possibly empty) such that |J;_, y; = y and
QUit).9) = (=Pt 3- T oot -y, (15)

T {t'1"}eT

with the sum taken over all trees 7, with the set of vertices {t} Uy. Since
k(z) = k({t},z'), (10) follows from (15). The lemma is proved.

Further, we have from (10) that

28Bym+n
k(zUp)| d(z)dvy) € 3 (_lz_li'_nm)'_
yEN(A) T€(a m,n,m>0 e

m times n times

X ;Tjﬁ H le"p"(“"'") - l| ':ijl:” dt;, (16)

A Rv Rv (4)ET

with the sum )", taken over all trees with the set of vertices Npyn =
{1,...,m + n}, and the integration with respect to the first m variables
(t1,...,tm) is carried out over the set A and with respect to the other vari-
ables (tm41,-..,tm4n) Over the whole space R”. It is easy to verify that for
any tree 7,

m times n times

I

//// |e—p¢(‘i—”)_l|"ﬁ”dt,~<|A|(C(ﬁ))m+"-l' (17)

A A A Ry Rv (J)ET i=1
Since (as follows, e.g., from (21), §4, Chapter 2), the number of trees with k

vertices does not exceed ck! with a constant ¢ (the exact value of this number
is k¥=2 (cf. [52])), we find from (16) and (17) that the integral (16) is finite if

el < 5cle®PC() (19)

The theorem is proved.
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§5 Models with Continuous Time

We consider here Gibbs fields {{;,,¢t € T, s € R!} taking values in a finite set
Q = (q1,---,q) and defined in the “space time” T' x R!, where the “space”
T is countable and the “time” R! is continuous.

First we define the free measure yo. Let a stationary ergodic Markov chain
&(s) with continuous time and with the set Q of values be given. To it corre-
sponds the measure vy on the space § of piece-wise constant (and continuous
frcl)m the right) trajectories (functions) {¢(s),s € R!}, £(s) € Q, defined on
R!.

Consider the space Q@ = Q7 with the measure yo = 1, i.e., the collection
{&:,t € T} of mutually mdependent chains {£;(s) = & .} a.ssoclated with each
point t € T.

We now define the modification ppxr of the measure po (A C T is a finite
subset of T', L = [l;,12) C R! a finite segment):

PAL = 73k, exp{Unec) M
where
(A)
Une =B [ ®(€x(e), (o)) ds @)

(t.t') L

Z(, y) is thesumover ¢,¢’' € A, p(t,’) = 1, and @ is a real symmetric function

n@xQ.

Theorem 1. For sufficiently small B, the partition functions Zpxy admit a
cluster representation and the measures ppxr a cluster ezpansion (and thus
the limit measure u = A/-ql'i,lt?/m BAxL on the space Q ezists).

Since the random field &; , is not defined in a countable set, the assertions
of the theorem require, strictly speaking, some refinement. Namely, let us
consider the set T x Z}, where Z! = {an,n = 0,+1,%2,...} is the lattice
with the lattice spacing a > 0 to be chosen sufficiently large. Let Sy, be the
space of trajectories S;,,an < s < a(n + 1), on the interval [an,a(n + 1))
associated with the site ¢ € T. Clearly, @ = [], , St,n, and in the case of a
segment L = [n;a,nya] where ny,n3(n; < n3) are integers, the Hamiltonian
(2) may be represented in the form

Usxe= Y, %,
SCAXL,

where
6 =6(t,t',n) = {t,t'} x {na,(n+ 1)a} C T x Z}, 3)



116 Small Parameters in Interactions Chapter 4

{t,t'} C T is a pair of nearest neighbours, L, = LNZ! = {na,n; < n < n,—1}
d
an (n+1)a
%=p [ 86s)6e(e))ds @
na

Thus, the measure ppx (with L = [nya, n2a]) may be regarded as a modifica-
tion of a random field in the countable set T' x Z! taking values in the spaces
Si,n; namely, regarding the measures ppxr in that way, we shall establish
their cluster expansion.

Proof. We use § = §(A, L,) to denote the set of values taken by the random
trajectories £;(s) at points in A x L,, and let #§(-) = po(-|§) be the conditional
distribution on Q under a fixed set §. The distribution of values § (with
respect to the measure yo) will be denoted by po(§). The values &;(s) taken
by trajectories in different segments &;, = {t} x [na,(n + 1)a] C A x L are
mutually independent under the conditional measure pg.

We put V5 = €% — 1 with & being a set of the form (3), and for any
unordered collection A = {8,,...,8;} of such mutually different sets, we use
the notation Va = []s¢a V5. Hence,

ZaxL = (exp UAxL)po = Z< H e“> po(9)
4

'] §CAXL, ul

= Z(AXL') Y (Va)ugpo(a), (5)
a i

where Eg\xL.) is taken over all collections A (including the empty one) lying
in A x L,.

A collection A = {6(t1,t],n1),...,6(t,t;,nk)} will be called connected if
ny = ng = .-+ = n; and the collection {{t;,¢},...,{t,t;}} is connected.
Let A;,..., A, be the connected components of the collection A in (5). From
the independence of Vj, for different A;, we find that

ZpxL = Z(AXL. EH(VA uiPo(9), (6)

F—(Ah yA’) f

where E(AXL *) is taken over sets T" of connected collections A; (each of which
is maximal, i.e., any union A; UA,, where A;, A, are two arbitrary collections
from T, is not connected any more).

Furthermore,

i Pal\q:, ) qt,
r@= I #oles) ] al '(a(n+1) z)an)’ @
(t,8)CAXL, teA, Po\Qt,a(n+1)
ni€n<ny
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where po(g) are stationary probabilities of the process £(s) and ps(g2,91) =
Pr(é(a) = ¢2,€(0) = ¢1) are transition probabilities of the process £(s) over
the period of time a. In view of the ergodicity of the process £(s), we have

mqinpo(q) =pp>0 (8)

and
IPa(g2,91) — po(g2)| < Ce™"%, 9)

where C > 0 and 7 > 0 are some constants.
For sets of the form

a=ayq = {t} x {na,(n+1)a} CT x Z,, (10)

we use r, to denote the quantity

ro= pa(qt,(n-l-l)m qt,na) -1
Po(Qt,(n+1)a)

and for each unordered collection 7 = {ay,...,a} of mutually different sets
o of the form (10), we set ry = [],¢, Ta-

Thus, if we use /i3 to denote the probability distribution on the space QT*Ze
that equals the infinite product of measures po on @ at each point (t,na) €
T X Z,, it follows from (6) and (7) that

Zaxp= Y Z(AXL.)<H(VA),,3%>' (1)

r={A,,...,.4,} n={a1,..., 1} Aer

A pair (T, ), T =~{A,-}, 17 = {a;}, is called connected if the collection of sets

{a,...,01,A,,...,Ap} is connected in T x Z,. Let (Ty,m),...,(T'm,7m) be
connected components of the pair (T, ) in the sum (11). Since the quantities

Irim) = H (VA)pg Tni
Aerl;

are independent for different components (T;, 7;), we get from (11) the final
cluster representation of the partition function Zxxr of the form (1), §1,
Chapter 3, where kg = 1for BC T x Z,, |B| =1, and

(B)
ks=), (armlag 1BI<2, (12)
(Tyn)

where the sum EE?’I’) is taken over all connected pairs (T',n) such that
Uaer A) Uij = B (if there is no such a pair, then kp = 0).
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It follows from (12), (8), (9), (4), and Lemma 1 in §4, Chapter 2, that, with
a suitable choice of a > 0, we get

> ksl <A,

B:teB,
|B|=n

where A = A(f) = minC [;l;e"" +I:aﬂe""”] —0as B — 0, C and c are
absolute constants, and k = max |®|.

A cluster expansion of the means (F4)axr of the form (5), (6), and (7) of
§3, Chapter 3, for the bounded local function F4 may be obtained in a similar
manner. Finally, with the help of the preceding arguments, it is easy to verify
that the densities (dp, Ax')/(dpolel), where prLle, and ) are the

restrictions of the measures puaxr and po onto the o-algebra )" ,.;,, ACT,
1 C R}, are bounded by a constant that does not depend on A and L. Thus
the collection of measures paxr is locally weakly compact (see Lemma 3, §1,
Chapter 1). The theorem is proved.

§6 Expansion in Semi-Invariants. Perturbation of a Gaussian Field

Let po be a probability measure on ST and {ua,A C T} be a family of its
Gibbs modifications by means of a one-point potential. More precisely, let
the Hamiltonian be of the form

Ur=8)_ ¥, (1
teA
where £ is a real parameter. We suppose that for each ¢ € T all moments are
finite: .
(lewl*), <o, k>0. @)
Let, moreover, a compact function h be defined on the space S (see §1, Chap-
ter 1) such that
(h(z()))o < 00 (2)

for eacht € T.

Theorem 1. Let the conditions (2) and (2') be satisfied and let some class G
of local functions exist so that

a) the linear span of GNC(R) is everywhere dense in C(Q);

b) hsy € G for each t € T(hyy)(z) = h(z(t))).

Let the following estimates be valid for any function Fy € G: for each
n=1,2,... and arbilrary integers k; > 0,...,k, > 0, it is

Z |<FA,¢'{k“l},---,Q’{k‘:}>o| { n!C(FA)kI!.“knlﬁ(kl"'-..-}ku)’ (3)

(tl'...'t‘)
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where the sum is over all ordered collections (t,,...,t,) of mutually distinct
points, the constant C(F4) depends only on the function Fy, and C does
not depend on n,Fy4, and ky,...,k,. Then, for sufficiently small B > 0, the
system of measures {up,A C T} admits a cluster ezpansion.

Proof. We make use of formula (21) in §1, Chapter 2, to infer that

(Faa=), %(FA,UII\H)O
n=0
=(Fao+ Y 1'[( ﬁ) (Fa, @y, @™{u})

{(t1,k1),.. (2 ,K,)} i=1 0 (4)

where thesum 3", 4y 4, &,)}» 8 > 0, is taken over all unordered collections
of pairs (¢;, k;) with ¢; € A, k; and integer, and ¢; # t; for i # j. We set

ko= 5 TS (Fasyof

kly :l

where R = {t,...,t,}. It follows from (4) that

(Fa) =by(Fa)+ D br(Fa), (5)
RCA,R#0

and from (3) we imply that the numbers bg(F,) obey the conditions (18)
and (19) of §1 in Chapter 1. Since for each A C T the function hs(z) =
Ytea h(2(t)), z € S4, is a compact function on S4 and it follows from the
hypothesis of the theorem and the preceding estimates that (hq)a < My,
where M, depends only on A and does not depend on A, we may conclude
from Lemma 3, §1, Chapter 1, that the family {us,A C T} is locally weakly
compact. The theorem is proved.

Remark. Expansion (5) can also be obtained for the potentials {®4,4 C T}
ofa genera.l form, if we write the Hamiltonian U, in the form Uy = ) oA {,},
where &% {,} =Y acatea(1/IA])®4. Supposing that Qg‘:}) obeys the estimate
(2) and uniformly in A the estimate (3), we again get (5).

Theorem 1 may be applied only rarely since the estimate (3) can be deduced,
roughly speaking, only for bounded potentials ®(,;. But even in this case,
difficulties arise with an estimation of semi-invariants of the form (3) for k; > 1

(coinciding points). The following approach is free of both deficiencies.
Let for each s > 0 the moment

(e7** ) <00, tE€T, (6a)
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be defined. Then for any A, the partition function Z5, < oo, which may be
represented in the cluster form (1) of §1, Chapter 3, with the quantities

ka=(¥y), ACT, (6b)

Where ¥/, is the system of variables {¥; = exp{—f%®,},t € A}. This fact
follows from the formula for the expansion of moments in semi-invariants:

Zp= <I'[ \Ir,> = Y (a)e--(¥a)o (6¢)
tEA 0 {Al,...,Ah}
(see (6), §1, Chapter 2).
We now consider a local function F,4 of the form
FA = H fh (7)
tEA

where f; is a 3°,,,-measurable function such that

((1£s1 e)*)o < 0 (8a)
forallte A,k > 0.
Introducing the notation
_ [ fi¥, te€A,
R‘ - { ‘Ph t G A\A,

and expanding (F4)a into semi-invariants, we get

<ch> = ;1<HR,> =2Z;! Z (R4, )o... (R4, )o
A 0

teA teA {Alv"»Ak}
W (A)
-5 () 2 @)
r BeT

with the sum taken over all collections I' = {B4, ..., B¢}, B; C A, B;NA # 0,
BiNBj#0,i#jand ACT.
Here, also

98 = (Rp)o H (¥1)o, 9

teB

and f‘(‘A) is a correlation function in the ensemble of subsets defined by the
quantities (6b).
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Lemma 2. Let condition (6a) hold and suppose that the following conditions
are also satisfied:

1) (¥e)o> k>0 (10)
for eacht €T.
2) Y ¥l <er”, (11)
A:t€A A|=n

for all n and with parameters ¢ and A\, 0 < A < k < 00, obeying the cluster
condition (23), §1, Chapter 3.

3) For any Z{,}-measurable function f, obeying the condition (8a), there
ezists a constant c(fy) > 0 such that, whenever {f,,t € A} is a finite collection
of such functions and to € T and n > 1 are arbitrary, one has

) (R'B)o/ II e(f) <badm, (12)

B:to€B, teEBNA
|B|=n

with by not depending on the functlions f;, the number n, and the pointto € T.
4) There ezists a compact function h on S such that for each t the function
hy = h(z(t)) obeys the condition (8a).
Then the system of measures {upr,A C T} admits a cluster ezpansion.

Proof. From the conditions (10) and (11) and with the help of (6b), we
obtain a cluster representation of Z5. From (8b) and (12), we find that the
expansion (5) in §3, Chapter 3, holds with

(A)
kr(Fa)= Y]] 95,
rf=r B€T
and that the estimate (6) in §3, Chapter 3, is satisfied with

[{RB)ol
m(F4) = 1), TrB= .
(P =T v =370 Twne

tEANB teB

Since condition (8a) is satisfied for all bounded continuous functions f; and
the linear span of finite products [],c 4 fi of such functions is everywhere
dense in ¢(f2) (the Stone theorem [16]), we may conclude from condition 4)
that the family of measures {u,A € T} is weakly locally compact, and thus
our lemma is implied by Lemma 2 of §3, Chapter 3.

We make use of this lemma to get cluster expansions of Gibbs modifications
of a Gaussian field.

Let po be a Gaussian measure on the space RT so that for each t € T one
has

(z¢)o =0, (zf) =1,
Z [(2¢,ze)ol < d < 1, (13)

t/:t! £t
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and let the Hamiltonian Uy be of the form (1), where ®; = ®(z(t)) obeys the
condition (6a).

Theorem 3. Under the assumptions formulated above and for sufficiently
small B > 0, the partition funclion Zx admils a cluster representation, and
the measures pp admit a cluster expansion.

Proof. It suffices to verify the assumptions of Lemma 2. Condition 1) is
obvious and condition 2) follows from Theorem 1 in §2, Chapter 2, where
A = C§(B), C = C(d) is a constant and §(8) = (|¥; — 1|*)o. It follows from
(6a) that 8(8) — 0 as B — 0.

Condition 3) is verified in a similar way for all functions
f€ N Lp(R!,e*"/2dz) (these functions obey (8a)). Here, we have to set
p>1

c(f:) = |IfellL,, where p is any number larger than two. As a compact func-
tion from 4), one may choose h(z) = z2.

§7 Perturbation of a Gaussian Field with Slow Decay of Correlations

Here, we present another method of cluster expansion of Gibbs modification
of a Gaussian field in Z¥ by means of a Hamiltonian of the form (1) of §6.
The conditions to be satisfied by the covariance of the unperturbed field are
less restrictive for this method than it was above (see (13) and Theorem 3 in
§6). However, the interaction potential ®;(z) has to be a sufficiently smooth
(analytic) function in z € R!.

Let thus T = Z¥, S = R!, and pg be the distribution of the Gaussian field
{z:,t € Z"}, z; € R, with vanishing mean, (z;)o = 0, and with the covariance
matrix

B = {bt,gl,t,t’ € Zy},

with b, ¢ = (z:24)0, such that for each t € Z" one has

bs=1, sup Z |be,er| < o0. (1)
geZv ‘,GZ"

We consider the Gibbs modifications {a, A C Z”} of the measure y, specified
by means of a Hamiltonian of the form (1) of §6 with a potential

®1)(z) = P(z:), )

where P(z) = z! + a12"~! 4 ... is a polynomial of an even order, with the
coefficient of the leading power being equal to 1.
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Theorem 1. For sufficiently small 8, 0 < B < Bo (with Bp depending on
the covariance B and on the polynomial P), the partition functions Z, cor-
responding to Gibbs modifications up admit a cluster representation, and the
measures pp admit a cluster ezpansion.

Proof. For any set D C Z” and any number s, 0 < s < 1, we use L(D, s) to
denote the mapping acting in the set of infinite symmetric matrices

C = {Ct,t'}t,tlezv
according to the formula

Ci, ift,t' € Dort,t' € 2"\D,
sCyp otherwise.

[L(D, 5)Cls,er = { 3)

It is easy to verify that L(D,s) transforms a positive definite matrix again
into a positive definite matrix.

Further, let {f;,t € A}, A C Z", be a collection of infinitely differentiable
functions in z € R!, bounded together with all their derivatives. Applying
the formula of integration per partes (23) of §2, Chapter2, to the means
(]'[,e A f,(z(t)))o, we get for an arbitrarily chosen site ¢o € A the equality

<Hf:(z(t))> =(f:o(2(to)))o< II f:(z(t))>
0

teA t€A\{to} 0

1
+ / [ > (z(tO)z(tl))o<f:'o(z(10))f:',(z(tx))
0

t1€A\{to}

x I f:(z(t))>{‘ } ] ds, 0

teA\{to,t1}

where we use (-)p,, to denote the mean under the Gaussian measure with the
covariance matrix L(D,s)B and f' = df/dz. By successively applying this
device, we derive the following formula:

(fado = (Fodolfavi})o+ D, ki (fas)o, (5)
BCA:to€B,
18132

where we denote f4 = [],c4 fi for each A C A, and the quantities kg’ are
defined in the following way. Let us use

T= {(to»tl)’(tia’t2)a""(tiu’tﬂ)} (5,)

to denote a sequence of n pairs (;,,, ¢, ) of lattice sites of Z” such that ¢; # ¢;
fori#j,4,j=1,...,n,im <m, m=2,...,n, and s = (s1,...,8,) to
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denote a sequence of n numbers 0 < s; € 1. For any sequence 7 and any
k < n, we use Di(r) = Dy to denote the set Dy = {to,...,t} and p,, to
denote the Gaussian measure with vanishing mean and the covariance matrix
B;,s = L(Dpn-1,8s) ... L(Dg,81)B (here, we use the notation (-),,,, = (*),s)-
In this notation

ke _Z"gl(z(t,,)z(tm))o / (r,s)(-a% I_j([)f,‘> ds, (6)

where the sum is taken over all 7 such that Do(7) = {to} and

Du(r)=D, =B (|B|=n+1).

Here also
m-~1
p(r,8) = H H 8 ()
m=2i=i,+1

(we put l'[‘_,m,,,l 8; = 1for iy, + 1 =m) and

= H o (8)
627 m=1 63“3“)83(‘"‘) Ha (t )'l|.

where n; is the number of pairs in 7 containing the site ¢. Finally,

i=1
N e’

n times

We now introduce a lexicographic order in the lattice Z¥ and from the
recursive relation (5) derive

Zn =k Znite} + D, kBZA\B, (9)
BCA10€B,
18132

where 1 is the smallest site in A, and the quantity kp = kg, |B| 2 2, is
defined according to formula (6) with

fi(z) = exp{-GP(2)},

ko) = {exp{=BP(z(t0))})o. (10)
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Formula (9) is equivalent (see Lemma 1 of §1, Chapter 3) to the cluster
representation (1) in §1, Chapter 3, of the partition function Z, with the
quantities kp.

We pass now to the cluster estimate.

In the first place, with the help of the Jensen inequality, we get for suffi-
ciently small 8 > 0 the bound

k() > exp{—B(P(z(t)))o} > K > 0. (11)

Secondly, we observe that for any n, one has

0" o) _ g O -PPe) _ g P / exp(~PP (£ + 2))
ozn© =F 3£”e = 211':'I ; i+l dz, (12)
z|=1

where £ = g1z, PP(z) = &' + a1 B1/€-1 + a28?/'¢ -2 4 ...
Since Re P?(s) > —C in the strip |[Im z| < 1, we get from the representation
(12) the estimate

;%exp{-ﬁP(r)} <plleCnl. (13)

From this estimate, we get

<aa H e—ﬁP(z'(t))> | < (Clﬂlll)zn H n!, C = C. (14)
Ty te D(7) e teD(7)

For each sequence 7, we use 7(7) to denote the tree with the set D(7) of
vertices among which the vertex ¢y € D(7) is singled out, and with the set of
edges {ti,.,tm} € 7.

Lemma 2. Let a set D C Z¥ (with a site to € D singled out) and a tree T
whose set of vertices coincides with D, be fired. Then,

T T(‘r):f

1
/(p(r, s)ds=1. (15)
0

Proof. We notice that for a fixed 7 and a selected site tp, a sequence 7 such
that 7(r) = 7 is uniquely determined by an enumeration 7 : ¢,...,t, of
the points of the set D\{to}; here the enumeration should be such that for
each site t,, € D, there exists a unique edge of the tree T that joins t,, with
some ¢; € D labelled by a smaller number: j < m. Each such enumeration 7
may be viewed as a trajectory of a random walk on D that starts at ¢y and
is determined by the following rule: Supposing that during the first k steps
we visited sites ¢1,...,tx € D, the next, (k + 1)-st, site is chosen with the
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uniform probability among the vertices of 7 that have not been visited up to
now and that are joined by an edge with at least one of the sites #,,...,%.
The number of such vertices is ny, +n¢, + - - - +ny, — 2k, with n; denoting the
degree of the vertex t € T, and thus the probability of a trajectory 7 equals

1 1 1
Pr(7) = —- R . 16
@) Ny, Ny + 10y, — 2 N+ +ng,_, —2(n-1) (16)
On the other hand, it is easy to verify that
o(r,8) = 8:40-18n¢°+m1-3 s?.'°+"'+""‘“-2("-l)-l (17)
y - 2 cee )

where 7 is a sequence of the form (5') corresponding to the enumeration 7.
From (16) and (17), we conclude that

1
Pr(7) = / (7, 8)ds,
0

which implies (15).
Using (6), (14), and (15), we find the bound

ksl < Y _(CIB*YBIY T Ibew| T (ne), (18)
T

(t,t)eT teB

where the summation is taken over all trees 7, with the set of vertices coin-
ciding with B. From the estimate (1) and Lemma 10 in §4, Chapter 2, we get
a cluster estimate for the quantities kp with the cluster parameter C8/%.

To deduce a cluster expansion of the measures u,, we consider the functions
F,4 of the form

Fa = [ a=2)), (19)

t€EA

where g¢(z), z € R!, is an analytic and bounded function in the half plane
(Im2)< 1:
l9:(2)|] < L, |Imz|<1, te€A. (20)
Repeating the preceding arguments we obtain a cluster expansion of the mean
(Fa)a of the form (5) of §3, Chapter 3, with the bound (6) of §3, Chapter 3
with
ma(Fa) = L',

rp = Z(Clﬂm)ﬁ H [Be,| H !,

(tt)er teB

and
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where the sum }°, has the same meaning as in (18) and 7 = } ,cpy\4 nt-
Since #i 2 |B — A|, we get, again with the help of Lemma 10 in §4 of Chapter
2, the estimate (7), §3, Chapter 3.

Linear combinations of functions of the form (19) obey the condition (20)
and are everywhere dense in the space C(2) (the Stone theorem). Besides,
with the help of the preceding construction, we find that for the function
h(z) = z%, the mean is bounded:

(h(z(a < C,

with the constant C not depending on either ¢t or A. Thus, the family of
measures {ux,A C T} is weakly locally compact, and by applying Lemma 2
of §3, Chapter 3, we get the assertion of the theorem.

§8 Modifications of d-Markov Gaussian Fields (Interpolation of Inverse
Covariance)

The method presented here allows us to obtain a cluster expansion of the
mean (Fa)a of a function F4 without any assumption about smoothness
of interactions that was needed in the preceding section. Nevertheless, we
suppose that the correlations (z(t)z(t'))o of the original Gaussian field decay
exponentially: (z(t)z(t'))o ~ e~ as p(t,t') — 0o with an arbitrary small
exponent a > 0.

The method of interpolations presented here is based on the following simple
formula.

Lemma 1. Let f(s1,...,8,) be a smooth real function defined for 0 < s; < 1,
i=1,...,n; then

1
[/}
f(l,‘..,l)=f(O,...,0)+Z/E;f(sA,O)dsA, (1)
49
where the summation is over all nonemply subsets A C {1,...,n}, and we

use the notation
5o = gw dosa=Tds S64,0)= J(shyeoeroh)
Osq % 0s;’ ] i J Lyesor%nls
.eA teA
and

,_{s;, i€A,
Tlo i¢a
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The proof is obtained by applying the Newton-Leibnitz formula

1
W) =9+ [ Fas @

subsequently to each of the variables sy,...,s,.

Let us consider the Gaussian field {z(t),t € Z*} with vanishing mean and
the covariance matrix B = {by,t,t' € Z"}, by = (2(t)z(t')) o, Where po
is the measure on the space Q= Rz correspondmg to this field. We shall
suppose that the field is d-Markov; it means that the matrix A = B!
{as,1,1,t' € Z"} of the inverse covariance is of finite range, i.e.,

agy =0 for p(t,t')>d 3)

for some number d, 0 < d < co. The metric p is defined by the formula (1) of
§0, Chapter 1.

Further, we shall always suppose that the matrix A obeys the following
conditions:

D larel < 8lagyl (4)
1t/ £t
for some 0 < 6 < 1,
ae > K1 >0 (%)
and
ayt < K2 < 00 (6)

uniformly in t € Z¥

Lemma 2. Let a positive definite matriz A = {a; ¢, t,t' € T} be given, where
T is a finite or countable sel with some melric p, and A obeys the conditions
(3)-(5). Then there ezists the inverse matriz A~! = {af,', 1)} that is positively
definite. Its matriz elements satisfy the conditions

Ias;,l)| < ue""“"(""), )

with 0 > 0 and mo > 0 depending only on d, 6§, and k.
Proof. We use £ to denote the class of matrices A = {a;,,t,t' € T} with

finite norm
llAll =sup 3 las,s|. ®)
€T per
It is easy to verify that £ forms a Banach algebra with respect to this norm.
An arbitrary matrix A obeying the conditions of the lemma can be represented

in the form
A=Ap+ A = Ao(E + D), (8')
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where Ag is a diagonal matrix, the diagonal elements of A; vanish, and D =

AGlA,;.
It follows from condition (4) that
Dl < 6. (9)
Hence,
00
“'=(E+D)'45' =} (-D)" A" (10)
n=0

As follows from (3), the matrix elements
((=D)" A5 ) =0, (11)
whenever p(t,t') > nd. Hence,

_ 6*"(“‘1)
Stll)l = Z ((—D)”A(‘)'l)"‘/ < ’c—l(i—:T). (12)

n3(1/d)o(t,t')
The lemma is proved.

Remark. The expansion (10) rewritten in the form

att' “Z(ah,‘l) ( ain.‘z)(aia,iz) '(aiu.t.)-l’

where the sum is over the collections (t,...,t,) with ¢; = ¢ and t, = ¥/,
t; # tiy1, is sometimes called a representation of the covariance matrix in
terms of random walks (see [83]).

Let us consider the Gaussian measure u3 on RA A C Z?, defined by the
density (with respect to the Lebesgue measure (dz) on RA),

Dp exp{—(Apz?, z1)}, (13)
where A, is the restriction of the matrix A onto A, i.e.,

A [TRIR t)t, €A
Gy = ’ :
! 0 otherwise,

and D, is the normalization factor.

Theorem 3. Let ®(z) be a function of z € R bounded from below and let
B> 0. Then the system of measures up defined by the density

‘-jﬁ—: " exp{—ﬂ}:d>(z<t))} (14)

teEA

admits a cluster expansion.
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Proof. Let n = {An,n € Z"} be a partition of the lattice into disjoint
congruent cubes of a sufficiently large side L > d to be specified later. Let A
be a union of cubes A: A =y, A 12 C 1.

Let further § = {sa,A € A} be a collection of numbers 0 < sp < 1. For
each 3, we define the matrix
AA(8) = {al(3),t,¢ € A}, (15)
with
al(8) = aye[bacy.aq) + samsae)(l — bagy,aw))); (16)

where A(t) is the cube from 5, containing the site ¢. The matrix A,(3) is
positively definite. This fact follows from the following representation of the
matrix Ax(3):

Ar() = ( II L(A,sA)) An, (17)

A€na

where L(A,sa) is the transformation in the space of symmetric matrices in-
troduced in the preceding section (see (3), §7); the transformation L(A, sa)
preserves the positive definiteness of matrices. Moreover, A, (5) obeys the re-
quirements (3)—-(6). We shall use y3(3) to denote the Gaussian measure with
vanishing mean and the covariance matrix (4x(5))~!; clearly, ud = p3(1),
where 1 is the collection 5 with s5 = 1. We use the notation (-) W) = ()5

The partition function Zx = (exp{—Ua}),s, Ur = B3 sea B(2(1)), can be
represented in the form (see Lemma 1)

Za = (exp{-Ua})1 = (exp{~Un})s + 3 / (exp{=Un})s, diy, (18)

YCna

where the sum is taken over all nonempty ¥ C np and &, is the collection
{sa} with sao = 0 whenever A ¢ 7. We use 0 to denote the collection with
sa=0.

Two cubes A, A’ € 7 are called neighbouring if their distance does not
exceed v, p(A,A’) = mingp p(t,t') < v. A collection 7 C na of cubes is called
v-connected, if for any splitting into two disjoint collections 4’ and " we shall
find in them neighbouring cubes A’ € 4/ and A” € v".

Clearly,
(e = T (e77)s. (19)
A€na
and
1 a Z
/T —UA) ds, = H (C-UA) H/ <e- Aeb.'UA> dsp,,
J s 5y Acna\y 833 is,

(20)
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where By, ..., B, € 1, are connected components of the collection v, |B;| > 2
(in case there exists a connected component of v consisting of a single cube
A, 0/(0s,) (e"”é)" =0).

Putting now for B C 1,

/ o5n <exp{ Z UA}> dsp, if the collection B C 7 is
iB

kp = AeB v-connected and |B| > 2,
(e%)s if B ={A},
0 otherwise,
(21)
we get from (18), (19), and (20) the cluster representation of Z,:
Zn= Y, kp,...ks, JI k) (22)

{Bi1,...,Bs} A€na\(uB;)

with the sum taken over all (v + 1)-admissible unordered collections
{Bi,...,B,} of y-connected subsets B; C nx. We pass now to the deriva-
tion of a cluster estimate.

Lemma 4. For sufficiently small 8 > 0 and a suitable choice of L = L(B) for
any B Cn, |B| 2 2, we have

lks| < (=(8))'"!, (23)
|k¢a3| > K >0, (29)
with a constant K and z(8) — 0 as B — 0.

Proof. Whenever ¥ C 7 is a nonempty collection, we set k, = Maey ka,

ka = eUs — 1. Passing to the usual expansion of the exponent,
eexp{—Y AcplUa} =1+ 27c3 k., we get

k=) / (ky)s5 dop. (25)

vCB,
T#0

For any collection g = {€a,A € 95} with ¢4 sufficiently small for A € B
and €5 = 0 for A € 95 \B, we have

<E'7 exp (- Z: GA,A'GA,A')>
. (a,47) s

(ky)sgtes =
<exp (— z: aA'A:6A,A/)>
(A,A') s

; (26)
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where

apar = Z a,p |z(t)=(t)],

teA,t’eA’
ba,ar = saEar + sarEa +€atar,

and the sum }°, A, is taken over all unordered pairs of neighbouring cubes
A,A’ € B.

Usmg the formula (21) of §1, Chapter 2, we expand the mean (26) into a
formal power series in the variables 65 a::

(E‘r)i'aﬂa = (k‘v)Ia + Z ZH A;,A

o i=1

X <k‘y’aA;,A’lsaA3,A:1' '-saA.,A:.)‘B ) (27)

with the sum taken over all ordered collections o = ((Al, ). (A,.,A' )
of pairs of neighbouring cubes. Rewriting this series as a power series in
the variables €5 and observing that the derivative (8/93p)(k,)s5 equals the
coefficient of the monominal [J,¢p€a, we get

o 5 ’ 1
' ﬁ(k'y)fa = ZZ Cn,am <k‘y'aaA1,A'11 (R ;aA.,AQ),-B ) (28)
n ag

with |Cy 0| < 1 and ¥, taken over all o such that each cube A € B enters
at least one and at most (r + 1) pairs from the collection & (r is the number
of cubes A’ € 7 neighbouring the given cube A € 7).

Hence, 2n 2 |B| 2 2n/(r + 1) and the derivative (28) can be estimated:

9 & .
|5£(k7)ra QC{E" max <k-y,aA1,A",-..,aAMA;> l
7 ,z(t,.):c(t ))fa
(29)
with maxs taken over all collections & = ((t1,t}),...,(ts,t;)) of pairs of

sites such that A(t;) and A(t]) are neighbouring cubes and the collection
o = ((A(t1), At1)), .- -, (A(tn), A(t},))) enters the sum (28).

To estimate the seml-mvarlant. we expand k., in Wick polynomials. But
first we pass from the Gaussian system of random variables {z(t),t € 7} to
the system {Z(t),t € '} of independent Gaussian variables with vanishing
mean and the dispersion equaling unity:

2(t)=)_ Ciuz(t'), (30)

t'ey
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where the matrix C5 = C' = {C,¢,¢,t' € 7} should be chosen so that
CBCT = E, (31)

where B = B> = {(z:z1)s5,1,t' € 7} is the covariance matrix. Writing now
B-! as in (10),

B'= Ao+ A = Ao(E+ D), A=Al etc., (32)

we put
C; = A/Y(E + D)'1?, (33)

w1th (E+ D)l/ 2 being defined by the expansion into series in powers of D =

D". This exparsion is based on the estimate "D" || < & (see (9)), which
follows from I.emma 5 below.
With the help of the representation B = (E + D)~'Aj! and the equation

AFY(E + DT)'/? = (E + D) 451,

following from the obvious relation A;'DT Ay = D, we conclude that C sat-
isfies (31).

Lemma 5. Let the inverse covariance matriz BX = A of a Gaussian field
{z(t) t € A} in A satisfy the conditions (3)-(6). Then for each A’ C A, the
inverse covariance mairiz Ay = BA, (where By is the restriction of By to
A’) satisfies the conditions (4) and (6) with the same constanis 6 and k2 and
the condition (5) with the constant kj = K1(1 - §).
Furthermore,
|Det Ap/| < MIA, (34)

where M is a constant depending on k1, k2 and §.
Moreover, the norm (8) of the matriz Ca, constructed by the formulas (32)
and (33) from the matriz Bys, satisfies the estimate

ICh Il < Ka, (35)

with K, depending only on § and k.

Proof. To prove the first assertion, it suffices to consider tl}e case A' =
A\{to}. Straightforward computations show that for Ay = (al,,t,t' € A'),

A A
A A a‘l,‘oa'm‘o 4.t AI 36)
atl i3 — a';,tq - a‘A . ’ 1,02 € ’ (
0,0

and, in particular,
“;‘t = “u (a t.,)z/ Bto,t0° (37
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For any t; € A/, we denote

A — A
2 |ah,iz’ a2 = Z Iatn.tzl’

ta:t3€A’ t3:t2€EA
taF#ty ’ ta#th

— A
b= 'aa.‘ol ’ d= a::,‘o’ c= Z Ia"‘OI ’ d'= ah,h‘
t:teEAN’!

Then from (36) and (37), it follows that
a1 < ag = b+ (be — b?)/d < 6 (d' - b2/d) — (1 - 6)b*/d < 8alt',,

since az < 8d’, ¢ < 6d. Thus Aj: obeys condxtlon (4)
Condition (6) follows from the inequality a}} v < al,,t € A’. This and also

the estimate (12) imply a,’t 2> af‘,} = b} > ki(1 - 8), ie., condition (5).
To prove (34), we notice that

-2

Det Apr = (%)W' / exp (—- Za, wz(t)z(t’ )) H dz(t) . (38)

RAY teA’

From the condition (4), it is easy to deduce that
= 2 apz(t)z(t') < - Z ar,(1+ 8)z(t) < -nz(l +8) ) 2(b),
2, HEN e teA!

and thus,

/ exp (—% Z aa‘,x(t)z(t')) H dz(t) > (const)lA'l. (39)

R tt'en ten’

The equality (38) together with (39) implies (34). Furthermore, (4) implies
[|(A48")~2A%'|| = | DX'|| < & (see (8')) and thus | CA']| < x3/?(146)1/2, which
means (35) The lemma is proved.

From the lemma proved above and Lemma 2, it follows that

(Z()2())s5] < D |Cra] |bre]| < Kie™oot), ¢ e5, teA, (40)

fey
and
max { S IE®z())ss ], 2 (zZ(@)=(E )):,I} <7 [1BaGs)| = Ka.
iex lier ey

(41)
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By expanding l;., into normalized Wick polynomials in variables {Z(t),t € 7},
we get

% b{nt} ~ n
k, = —_— t))"t: . 42
y {'.Z;} II("‘!)U? g(z( ) (42)
tey

Writing z(t1)z(t2) = :z(t1)z(t2): + const, we get for each 7:
<E‘Y’ .’B(t1)z(t'1), SRR} z(tn)z(t:l))fa
= b{n:} <: Z(@)™:, 2 (ty)2(t)):, ..oy :z(t,.)z(t:,):>
tey

{n:} ]:[(n'!)l/2
rey

(43)

The semi-invariant in (43) equals the sum }_; I(G) over all connected di-
agrams without loops (see §2, Chapter 2). Every such diagram splits up into
N/2 chains, where N = 3=, ~n; is even; otherwise the semi-invariant (43)
vanishes. Any chain is determined by a sequence of edges

(to,t,*l),(t;ht.',),.. .,(t:",t-o),
lgi,gﬂ, ia#il'a to,t-oe‘?,

and by a label of one among n;, and n;, legs attached to the vertices to € ¥
and %y € ¥, respectively (n¢, # 0 and n, # 0). Attributing to each chain h
the contribution

J(h) = (E(to)e(tiy ))as (2(t:,)2(t:))ss - - - (2(th,)E(0))sp

we get the contribution I(G) of a diagram G in the form of the product of
the contributions of its chains. Introducing the length of the chain h by

S(h) = p(7’tix) + p(t:‘ptiz) +-+ P(tﬁ,ﬁ),
it follows from (40) and (7) that
V(B < Cexp (-Z2S(W) T2, (49)

with a constant C.

Lemma 6. If |B| > 2r|y|, where r is the number of cubes A’ € 1) neighbouring
a given cube A € ), then

3 S(h) > -217|Bl L (45)
h

for each diagram G.
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Proof. We shall consider a maximal set of cubes R={A,...,An}CB\Y
such that p(&;,&,-) > L and p(A;,¥) > L. The number of such cubes clearly
satisfies |R| 2 (|B| — r|y])(1/r). The length of each chain passing through k
cubes from R is of length of at least kL, and consequently, >, S(h) > |R|L.
Hence, the estimate (45) follows for |B| > 2r|y|. The lemma is proved.

Following (44) and (45), the contribution of any diagram, under the condi-
tion |B| > 2r|y|, does not exceed

mp 1
exp (251181 1) @), (46)

Thus, the semi-invariant in (43) does not exceed exp{—a|B|L}-> ¢ |I G)|M?
(a > 0) in case |B| > 2r|y| and }_; |I(G)| in case |B| < 2r|y|. The estimates
for the sums Y |I (G)|''? and Y_ [I(G)| are analogous to (2) of §3, Chapter 2:
T H(G)| € CV2* [1,¢(n:)!! and a similar estimate for 3 |1(G)|'/*.

Hence from (46) and (29), and observing that for Y n; > n the semi-
invariant in (43) vanishes and

1/2
-~ . 9. 1/2~
Y bgCV S(Z |"{n.}|2) V¥l = (|&, "), C'7,

{n,}:E:.(n {”g}
tey
we find that
~ 12.1/2
o - (CL*e= LB, ), for B| > 2,
g(kV)«fB = -~ 19 1/2 o (47)
B (cLv) Bk, ), for |B| < 2rly|-
Lemma 7. With a suitable choice of L = L(B) > d, the estimate
~ 2.1/2
(&%), < RBM, (48)

with K(8) — 0 as 8 — 0, is valid for every nonempty collection v C B.

Proof. For every cube A, we introduce the set

A8 = {zA €RA:) ®(2(1)) < L"ﬂ"”} C R4,

tea

with 24 = {z(t),t € A}. Then, supposing L"3'/* < 1, we have

|7cA(zA)| < CypY* (49)




Ty

§8 Modifications of d-Markov Gaussian Fields 137

for z8 € A, and .
[ka=®)| <1, (50)

for z2 € RA\ AL = AS. Hence,
(I, € S (@B 8 Ga) et € 48,8 € 7). (1)
7'Cr

Furthermore, it is obvious that

pa(Ee){z® € A2, A e \YIS (@) max  p}(3B){Q-}, (52)

r={t1,....,tr}

where the maximum is over all collections 7 = {t;,...,t,} of points taken one
from each cube A € v\v/, and Q, is the event

r = {®(z(t1)) > ﬁ-l/2’” ., ®(2(t,)) > ﬂ-l”}-
Then,

e 2
e, = B fep {-g > a:,,w(t)z(t')} IT =t

. "'Ief te€T
< (?i-iﬁ——:.’,l” / e~ (D=0 gy | < ¢(B)M\T,
d(2)>p-1/32 (53)

Here we used the inequality (34) and the estimate
1 1 1
3 > afuz()z(t') > 3 Y 6l (1-8)2%(t) > gr1(l = 82 2(t),
tt'er 1{34 teT

following from Lemma 5. We wrote

e(B) = (M)1,2 / e~ ¥m (-8 g (54)

2r
#(2)>p-1/2

with M defined in (34).
Further, putting ¥(8) = (C?BY/2 + L¢(8))!/? and

L= L(ﬂ) = [min{ﬂ'l/“,e'l/(z”)(ﬂ), (2(ﬂ))—1/(4r)}]l/u’

we imply that for sufficiently small B the estimates L > d, ¥(8) < 1, and also
(48) are fulfilled. Lemma 7 is proved.
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From Lemma 7, the expansion (25), and the estimate (47), we get the
estimate (23) with x(8) = 2C max{&(8)Y/*", LYe~*L}. The estimate (24) is
obvious, since (¢~Y4)5 — 1 as # — 0. Lemma 4 is proved.

It follows from the estimates (23), (24), and Lemma 3 in §4, Chapter 2, that
for sufficiently small B the quantities kp and k() satisfy the conditions (2)
and (3) in §1, Chapter 3, and also the cluster condition (23) in §1, Chapter 3.

Let Fa,A C A, be a local bounded function of the form Fq = [[,¢, ft,
fi(z) = fi(z(t)),t € A. Repeating the preceding arguments, we obtain for the
mean (F4)s and expansion of the form (5), §3, Chapter 3,

(Fada = ko(Fa)- f& + 3 kr(Fa) o, (5)
RCna
R#Y

where

-1

1 -1
kr(Fa) = /% <FAe' ZAERU'IA UA> dsp ( H kA) .
0 iR

A€RUN,4

Here f‘(gA), B C 14, is the correlation function corresponding to the cluster
representation (22), n4 C n, is the collection of cubes intersecting A, and the
sum in (55) is over all collection of cubes R C 7, any of whose v-connected
components ¥ C R intersects g5 and |y| 2 2. With the help of the preceding
constructions, it is easy to get the estimate (6) in §3, Chapter 3, for kr(F4)
with
LA ted B C n,|B| > 2
rg = X or connected B C n,|B| 2 2,
0

otherwise,

and

m(Fa) = [[suplfel- ] ta,

tEA A€na
ta = max {1, (lea )3/ (1(kadoD ™'}

Choosing further the compact function hy = Y, 4 z%(t) for every finite
A C Z" and with the help of the preceding arguments, we get the estimate

(ha)a < Ca (56)
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for any A D A with a constant C4 not depending on A. Thus, the family
of measures {1}, where A is an arbitrary set composed entirely from cubes
A € ), is weakly locally compact, and thus the assertion of Theorem 3 is valid
for it. In particular, the limit

A pa = (57)
exists and
Alim (Fa)a = (Fa)u = 3 kr(Fa)fruna + ko(Fa)fya (58)
RCn

when A is running through sets of the above mentioned type.

We shall now consider a general case with A being no more a union of
cubes A € n. We shall call boundary any cube A € 7 such that
ANA#0, An(Z"\A) # 0. A cube A C A neighbouring a boundary
cube will be called a bordering cube. The remaining cubes are interior cubes
for A. Numbering now in an arbitrary way the bordering cubes Ay,...,Ap,
we shall associate with the bordering cube A; all sites in A contained in bor-
dering cubes that neighbour A;; in this way, we get the set A;. With the
cube Az, we associate all remaining points in A contained in bordering cubes
neighbouring A;; we obtain the set A;. Going on with this procedure, we
finally obtain the bordering sets Ay, ...,A,. Together with the interior cubes,
they specify a partition fjs of the set A.

Repeating now the preceding considerations, we obtain the cluster repre-
sentation (22) of the partition function Z, and the cluster expansion (55) of
the means (F4)A with the help of the quantities kg‘), B C ija, and Icg\)(FA),
R C fj, that depend, in general on A. However, these quantities satisfy (uni-
formly in A) the estimates obtained above, and moreover, kg\) and kg‘)(FA)
depend on A only for those collections B and R that contain bordering sets
Aiyi=1,...,p. For each A C Z”, the estimate (56) is also satisfied, and
consequently, according to Remark 1 in §3, Chapter 3, the limits (57) and
(58) exist for every sequence A / Z¥. The theorem is proved.

Now we shall -consider the following generalization of Theorem 3. Let
A C Z¥ and y = y°* = {y(t),t € B4A} be a boundary configuration defined
on the set d4A = {t € Z"\A, p(t,A) < d} and g , be the Gaussian measure
with the same inverse covariance matrix Ay = (B~!), as in Theorem 3 and
with the boundary conditions y. The density P, y(z) of this measure with
respect to the Lebesgue measure (dz)/M in RA is

dud _ 1 )
L dz;fxl =Diyexpi—3 D ahua(t)a(t)- z; abz(t)y@) p  (59)
{t,t }CA {éea‘,\

(here Dy is the normalization factor). For y = 0, we have |, = p}.
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Theorem 8. Let {uay} be a family of Gibbs modifications of the measures
H}y by means of the Hamiltonian Up = B3, 5 ®(2(t)) and with a boundary

configuration y = y®A obeying for every A the condition

max [u(0)] < m(8) = 5 inf{le]: ¥(z) > 57/7), (60)

with C = "AXIH ||AA|| (the norm is defined by formula (8)). Then, for suf-
ficiently small B > 0, the family {ury} admits a cluster ezpansion, and in
particular, the weak local limit

Al},nzl, BAy = p . (61)

ezists and coincides with the limit (57).

Proof. We pass to the new Gaussian field
Z(t) = z(t) —mu(y), te€A,

with
me(y) = (2O, = (=O)ag. (62)

The distribution for the new field {Z(t),t € A} coincides with the distribution
(59) for y = 0, i.e., with the measure . Here the measure p, 4 is obtained
as the Gibbs modification of 43 by means of the Hamiltonian

Un =By B(E(t) + mu(v)). (63)

teA

Thus, all arguments used in the proof of Theorem 3 in this case also apply to
the quantity £(8) defined by formula (54) replaced by the quantity

- 1 2,2
E‘(ﬂ)-x&ag / exp{-inl(l-—é) z } dz.
B(z+mi(y))>p-1/2

Since
m(y)= Y o\ auiu(d), (64)
t'€EA,
f€dqA
we find from condition (60) that |m.(y)| < Cm(B). Thus, €(3) - 0as 8 —0
(and also m(8) — oo as § — 0).

Furthermore, we may obtain a cluster representation of the partition func-
tion Z5 and a cluster expansion of the mean (F4),,y, with the quantities
kp = kg(y) and kr(F4) = kgA)(FA;y) entering the expansion that depend,
in general, on A and y uniformly in A for all y and that obey condition (60) as
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well as the estimates established in Theorem 3. Condition (56) is also fulfilled
uniformly in A and y. Moreover, (64) and (7) imply that

Ime(y)| < C1exp{—mop(t,0A)}, Ci = Ci(B).

Hence, it is easy to deduce that for any fixed B C 7 and R C 5, the limits

(0] im EMN(F, ) =
Aim, k3 (y)=kp and A, kg (Fa;y) = kr(Fa) (65)
exist with kg and kr(F4) defined in the preceding theorem. Thus, according
to Remark 1 in §3, Chapter 3, the weak local limit (61) exists and, in view of
(65) and (58), coincides with the limit (57). Theorem 8 is proved.

Let us now consider the Gaussian measure 4° on RZ" with vanishing mean
and with the covariance matrix B that is inverse to a matrix A obeying
conditions (3)—(6).

Theorem 9. Let us consider the Gibbs modifications pup of the measure u°
defined by the equalities

dpa
26 = 7 exp {—ﬂz:@(z(t))} . (66)
teA
Then the measures pp admit a cluster ezpansion, and the limit measure
u= Al/,mzl_, B

coincides with the measure (57).

Proof. In this case, we may apply all considerations used in the proofs of
Theorems 3 and 8 supplemented with the following lemma. We use the no-
tation Ax = (Ba)~! = {@},,t,t' € A}, with B, being the restriction of the
covariance matrix B to A C 2.

Lemma 10. The matriz elements a, o of the matriz A5 are of the form
&Qa =ap + Cﬁu, t,t' €A,
where ay are the matriz elements of A, and ¢}, are such that

ety =0 if max{p(t,Z"\A),p(t', Z*\A)} > d, and

, 67
efy] < Kemmor(t:t), (67)

where K and mgo are constants not depending on A.

Proof. We use A; i/, B; 1, i,i = 1,2, to denote blocks of matrices A, B, re-
spectively, corresponding to the decomposition Z¥ = AU(Z¥\A); for example
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Ay = {as,p,t,t' € A}, etc. From the equalities A1y B11 + A12B21 = Eq and
Alelz + A22321 = 0, we find that AA = Bl-ll = Au - Ale;QIAgl. Hence,
the assertion of the lemma follows with

u=- > a0, a0 (68)

t1,t2€ZV\A

To see this, one uses condition (3) and the estimate (7).

In the following chapter, we shall use the generalization of Theorem 8
presented below. Let u3 , be the Gaussian measure (59) with a boundary
configuration y on 84A and p, y its Gibbs modification by means of the Hamil-
tonian

UA,y=ﬂ(Z‘I’(l)(z(t);ﬂ)+ 3 2, (2(t),2(22); B)

tEA {t1,ta}CA
+ Y (1), 0 );ﬂ)), (69)
tEA,
fedsA

where ®(1)(-; 8) and 05-2)(-,-; B), T € Z¥, are families of single site and pair
potentials, respectively, that depend on the parameter 8, 0 < 8 < fo, are
bounded from below, and are allowed also to take the value 4+00. Moreover,
the pair potential is supposed to be of finite range d:

D=0 for |r|>d. (70)

We assume that for each C; > 0, the condition

max / e—C17’ dz,// e=C1(#*+v%) g dy 3 — 0, (71)
r'i(p) r;(8)

as # — 0, is satisfied by

rhB)={ze R!': Q(l)(z;ﬂ) > ,3'1/2}’
3(8) = {(21,22)} € R*:9)(21,22:8) > B/},

Furthermore, we use the notation

m(B) = 55 min(sO(0,11(8)),KP(O,0), T3, Il <d, (1)

where p() is the usual metric in R, i = 1,2, and the constant C is defined in
Theorem 8.
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Theorem 11. In case f is sufficiently small, the interaction potentials (1)
and & obey the condition (71), and the boundary conditions y obey the
estimate

(Jmax ly(t)] € m(B), (73)

then the measures pp y admit a cluster expansion, and in particular, the weak
local limit
B= Al}rg, BAy
erists and is the same for all configurations y = y®? satisfying condition (73).
The proof is analogous with the preceding proof.

Remark. An analogy of Theorem 9 for the case of the Hamiltonian (69)
satisfying condition (70) and (71) is also valid.



CHAPTER 5

EXPANSIONS AROUND GROUND STATES
(LoW-TEMPERATURE EXPANSIONS)

§1 Discrete Spin: Countable Number of Ground States

The cluster expansion technique was used in the previous chapter in the case
of Gaussian random fields obtained as perturbations of either independent or
Gaussian free fields. In the present chapter, we shall consider perturbations
of fields taking a constant value. Namely, perturbations of so-called ground
states. As always, let T be a countable set, S a spin space, and Ua(-/y?*),
the energy in A C T determined by an interaction potential {®4,A4 C T}
and by a fixed boundary configuration y%* outside A (or by the “empty”
boundary conditions). A ground state in a finite set A C T is any configuration
z° = z°(A, y?*) for which the Hamiltonian U (z°/y®?) reaches its minimum.
A ground state in the whole set T is a configuration z° € ST such that for
each configuration Z € ST, differing from z° only on a finite number of points
t € T, the difference of energies satisfies the inequality

AU = lim (U(Z) - Ua(z%) 2 0 (1)

(the limit in (1) in the case, say, of finite-range potential {®,} always exists).
There is a more general notion of ground state in T' (see [90]), but the above
definition will be sufficient for our purposes.

A basic heuristic rule in the theory of Gibbs random fields consists of the
assertion that (under certain additional conditions) every ground state z° in
T generates, for sufficiently large values of parameter 8, a family {us} of limit
Gibbs states on ST such that B — 650 as § — oo, where 8,0 is the probability
measure on ST concentrated on the single configuration z°.

In all the examples we shall present in this chapter, this rule will be con-
firmed and the limit Gibbs fields we shall construct for large 3 will be obtained
as a perturbation of one or the other ground state.

144
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Let us consider a Z-model on a lattice T = Z¥, i.e., a system with the spin
space S = Z (the set of all integers) and with the counting measure Ag on Z.
Let the formal Hamiltonian be of the form

U= Z O(z; — z¢r), (2

|t—-t’|=1

where ®(n) 2 0 is a nonnegative function defined on Z, attaining its unique
minimum at zero, and such that ®(0) = 0, the sum

FiB)= ) eP™M<oo (3)
is finite for all 8 > Bo, and
F(B)—1 as B —oo. 4)

We notice that every configuration

2™ =m, me€z,

is a ground state for the interaction (2).
For any A and m € Z, let us consider the Gibbs modification

dl‘ ,m -

D = Zam exp{=pU(z/m)}, (5)
corresponding to the interaction (2) with the boundary configuration
y®* =m, and

Zam= 3 exp{~pUr(z/m)}. ©)

z€ZA

We shall convince ourselves later that for sufficiently large # > 0 and any
m and A, the stability condition Z3 ., < oo is fulfilled.

Theorem 1. Whenever § > 0 is large enough and an arbitrary m € Z is
fized, the family of measures {pam} admils a cluster ezpansion. The limit
measures fiy, = Al}rgv BA,m differ for different m.

Proof. For simplicity, we shall consider the case v = 2. Let first m = 0.
For every configuration of the field z = {z(t),t € A} in A, we denote by Z
the configuration in A U §A that coincides with z in A and equals Z(¢t) = 0
at sites ¢ € &A. The collection of bonds of the dual lattice Z2 that separate
neighbouring sites ¢,¢’ € A U A for which Z(t) # Z(t') is called the boundary
v(z) of the configuration z, and its connected components I'y, ..., I, are called
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the contours of this configuration (cf. analogous definitions in §0, Chapter 1,
also in §5, Chapter 3).

Each contour T splits up the lattice Z2 into a finite number of 1-connected
subsets 61, ...,0p; exactly one among those sets, §°**, is infinite and is called
the ezterior, ExtT', of the contour I'. The remaining ones are called the
interior components of this contour, and their union is the interior, IntT,
of the contour I'. An integer-valued function n = {n;,t € Z*} such that it
is constant on each component 6;, i = 1,...,p associated with a contour T,
vanishes on its exterior component #** and takes different values on adjacent
components ; and 0;, is called a label of the contour T. A pair {T,n},
where T is a contour and n any its label, is called a labelled contour. Clearly,
to each configuration z € S* (under vanishing boundary conditions) there
corresponds a family @ = ({T'1,n1},.. ., {T,, n,}) of mutually disjoint labelled

contours, where I'y,...,T, are components of the boundary ¥(z) and labels
n;,i=1,2,...,s, are uniquely determined from the equalities
8
2(t)=) _ni(t), t€AUdA. (7

i=1

Conversely, a configuration z € SA is assigned to each such family a.
For each labelled contour (I, n), we put

W(T,n)= Y &(n(t)-n(t)). (8)
vy

Here the sum is actually taken over all pairs (¢,t') of neighbouring sites sepa-
rated by the contour T. For each configuration z, it follows from (2) and (8)

that
UA,O(‘) = UA (x/yaA = 0) = Z W(P) n)) (9)
(Tn)ea
where a = ({T'1,n1},...,{T,,n,}) is the family of labelled contours corre-

sponding to the configuration z € SA. Moreover,

Zro=Y [T expi-pw(r,m}, (10)

a (F)n)ea

with the sum taken over all families of mutually disjoint labelled contours in
A C Z? (A is the set of bonds of the dual lattice separating the sites from
AUOA). We set now

ke = 3 exp{-BW (T, )}, (11)

for any contour I’ with the sum taken over all labels n of the contour T'.
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From (10) and (11), we get the cluster representation of the partition func-

tion
Zrao= Y, kr,...kr,, (12)
{Fh 1P }
with the sum taken over all families of mutually disjoint contours I'y,...,T,
in A. From (11), the cluster estimate
kol < TT 3 exp{-B%(ne)} < (F(8) - 1) (13)
€€ n #0

follows (the product is over all bonds ¢ from the contour T').
The probability distribution on the set A, of all families of contours y =
{ly,...,T,} in A defined by

PM(y) = zx 4 ] ko (14)
revy

is called a contour ensemble in A (cf. the definition of an ensemble of sets in
§1, Chapter 3).

A contour ' € v in a family of contours ¥ = {Iy,...,I,} is called ez-
ternal if it is not contained inside any other contour I'; € y. Let 94*** =
{Ti,,-.., i, } € 7 be the family of all external contours from y. We shall
also mtroduce an external contour ensemble in A as the probability distri-
bution, on the set of families ¥ = {I'1,...,['m} consisting only of external
contours, given by

def - ex
PR®E 3 PNe) =25} [T 2(r), (15)
yiyext =4 rie¥
with
Z4(T) = kp Z H kr‘;., (16)
{ry,...rj}i=1
where the sum is taken over all configurations of contours {T'{,...,I}} inside

the contour T.
The proof of the following theorem is analogous to the proof of Theorem 1,
§1, Chapter 3 (see also [48], [49)]).

Theorem 2. Let B be sufficiently large. Then

a) there ezists a probability distribution P on the set A of all finite or
countable configurations of contoursy = {Ty,...,T,,...} in the infinite lattice
22 such that the correlation function of any finite family of mutually disjoint
contours {T'y,...,T,} is given by

=l (A)
p(I‘l,...,I‘,)_Al}né’p (Ty,...,T,), (17)
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where

p(Ty,...,T,) =PN({Ty,...,T,}Cy)= Y. PM(y)  (18)
y:{l1,...Ts}Cy

is the probability (computed in the ensemble (14)) that the family {Ty,...,T,}
is contained in a configuration v € A, and p(T'y,...,T,) is defined in an
analogous way in terms of P;

b) for almost all configurations v € A in the limit ensemble, each contour
T € v either is itself external or is contained in some ezternal contour Te v.
Thus the distribution P on A induces a probability distribution Pexy on the
set At of configurations of external contours in Z2. Moreover, the limits
analogous to (17) exist:

pext(T1, ..., T0) = Jim, pM(E,y,...,T). (19)

Here {fl, ... ,f‘,} is an arbitrary family of (mutually ezxternal) contours and

Aa@. T =PQUIT,. T} e = Y PR®.
Feag{Th,..., FIcH
(20)
To finish the proof of Theorem 1, we make an observation that for a local
function of the foom Fy = [ fi, AC 2% (fiisa ), {,}-measurable function,
teA

t € A), the mean (F4)a 0 equals

Fore= Y T f,(o)n< I f,> OE o).

{T1,...,I's} te A\UInt T; i=1 teANIntT;
IntT,0
(21)

Here the sum is taken over all families of external contours {fl, e ,F,} such
that the interior Int T'; of each of them intersects A, and (-), . is the mean
with respect to the Gibbs distribution p,;  in the set IntT C 22 with the

zero boundary configuration.

The formula (21) represents a cluster expansion for the means (F4)4 o from
which, taking into account Theorem 2 and the estimate (13), the existence of
the limit measure pq for m = 0 follows. Moreover, by Theorem 2, for almost
all configurations z € Q = Z", the set

Lo = {t: z(t) =0} (22)

has exactly one infinite 1-connected component and all 1-connected compo-
nents of the sets

Lm={t;z(t)=m}, meZ m#0, (23)

are finite.
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It is easy to see that the map
Gn:Q—9Q, z(t)—z({t)+m, teZ?

transforms the measure yj o into the measure py ,n and the limit measure
o into the measure p,, that is the limit of measures pup m. The fact that
Bm, # Pm, for m; # m, follows from the observations (22) and (23). The
theorem is proved.

§2 Continuous Spin: Unique Ground State

We now consider the case with § C R! being a finite interval of the real
axis which is symmetrical with respect to zero and dA¢ = |S|~dz being the
normalized Lebesgue measure on S (|.S| denotes the length of S). Let, for
every finite A C Z” and every boundary configuration y = y?A on A, the
energy Ux(z/y) be of the form

Ur(z/y)= Y, ®(z(tr),z(t2))+ D, &(z(t),5(), (1)
fidalchs e

where ®(z1,22), z; € S, i = 1,2, is a smooth symmetric function defined on
the square S x S such that

1. $(0,0) = 0, ®(z1,z2) > 0 in remaining points;

2. ® may be represented in the form

O(z1,22) = az? + 202125 + 22) + ¥'(21,22),
a>0, |v<1, (2)
|®'(z1,22)| < C(|z12 + |22f3), C>0. 3)

It is easy to see that the configuration z = 0 is a ground state for the
Hamiltonian (1) which is unique in the class of all periodic ground states (i.e.,
such configurations z € $2” that 7,z = z for shifts s € G from some subgroup
G C ZV of finite rank; here (7,2)(t) = z(t — s), t,8 € 2").

Let us for each finite A C Z” and each boundary configuration y = y%A
on OA consider the Gibbs modification p g of the measure u® = AZ” on the
space SZ” (a power of the measure \g):

d;——l"‘(;v = Z3} exp{BUA(z/y)}. @

Theorem 1. uFor sufficiently large B > 0, there ezisis a limil measure y on
the space SZ2° :

k= Al}nzlv Py ©)
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(the limit does not depend on the choice of a boundary configuration y®A).
The limit measure p and also the measures up , under the condition that the
boundary configuration y is small:
-1/2
max [y(t)] < 8~ *In B, (6)
admit a cluster ezpansion.

Proof. We consider first the case with a boundary configuration y satisfying
condition (6).
We go over to the field with values in S = #1/2S by substituting

£@t) = B"22(1), teA, ™
with the boundary configuration '
n(t) = B2y(t), tean, ®)
satisfying the condition
max |n(t)| < Inp. )

We use fis, to denote the measure on SA obtained from MA,y after the
substitution (7), (8).
We now take the Gaussian measure i’ on RZ” with mean 0 and the inverse
A = {a;t,t' € Z"} of the covariance matrix determined by
va, t=t,
art = 200, It - t'l = 1, (10)
0, t=t]>1.
Let ii?",, be the conditional distribution of this Gaussian field in A with a
given boundary configuration  on JA. Then

Bt _ 1 exp(— /20 T x50, (1)
dix " teA s
where R -
Ur= Y BEM,EEkB+ Y (W), n();8), (12)
t,t'€A, tEA,
le=l=1 sl
and
6(€la€2;ﬂ) = ﬂ3/201 (‘\E/_IB” %) )
e [L €€
x3(©) = { 0, £¢5, (13)
Zrg = <exp{—ﬂ-‘/’t7A} II xg(f(t))> : (14)
teEA

i‘g"
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From (3) we get
[8(€1,62; 8)| < CIa* + IEa®)- (15)

According to (11), the measure fis , is a Gibbs modification of the measure
fi‘,’m by means of the Hamiltonian from Theorem 11, §8, Chapter 4, with the

small parameter #~1/2 instead of 8 and with

0, £€8§
(¢, B) = { ’ oy
&8 oo, £¢35,
and ®?)(.,; B) coinciding with 3(, +B).
It is easy to verify that for 8 — oo the conditions (70, §8, Chapter 4) and
(71, §8, Chapter 4) are fulfilled; and for sufficiently large B, it is

Ing < m(8~1/?),

where m is determined from (72, §8, Chapter 4).
Thus according to Theorem 11, §8, Chapter 3, the measures fis , admit a
cluster expansion (constructed in §8, Chapter 3) and there exists the limit

p= lim Ban
which does not depend on the boundary configuration 7 and also admits a
cluster expansion. It is obvious that also the original family of measures
{pay} with y satisfying condition (6) admits a cluster expansion and that
the limit (5) exists.

We shall prove now that the limit (5) exists for arbitrary boundary condi-
tions y?A. By the same token, the uniqueness of the Gibbs distribution will
be proved (cf. Corollary of Proposition 1, §2, Chapter 1).

Let A C Z”_be a (hyper)cube, A=AUdA; for any configuration z € SA,
we use Z € S* to denote the configuration in A coinciding with z in A and
with A in OA. For every configuration z € SA, we write

D(z)=D={telA:|zt)>8Y*mp} CA,

and let Dy,..., D, be 1-connected components of D. A component D; C D
will be called bordering if it intersects dA; let D*°"(z) be the union of all
bordering components of D.

We use N = N(A) to denote the length of the sides of the cube A and K (A)
to denote the cube, the center of which coincides with the center of A and
the sides of which are of length [N/2] + 1. Let £ C S* be the set of those
configurations z € SA for which D®**(z) N K (A) # 0.
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Lemma 2. For any cube A and any boundary condition y = y®A, we have
Bay(Er) < Be~®N, (16)
where B > 0 and é > 0 are constants which do not depend on A and y®A.

We shall present a proof of this lemma later but now, relying on it, we shall
finish the proof of the theorem.

Let F4 be a bounded local function, and let A be a cube such that
A C K(A). Then

(Fa)uay =/FAdﬂA.y+ / Fadpypy. 17
Ea SA\Ea

It is obvious that for each z € SA\E, the set A\ DP°"(z) contains the cube
K(A), and let R(z) be the 1-connected component of A\ D°*(z) containing
K(A). Thus

Fadpny = p(SA\EA) Y _(Fa/R(z) = Ry, pay({z : R(z) = R}),
SA\Ea R
(18)
where the sum is over all 1-connected sets R C A containing the cube K(A)
and (Fa|R(z) = R),,,, is the conditional mean of F4 under the condition
R(z) = R.
Since A C K(A), and taking into account the 1-Markov property of the
distribution py 4 (see §2, Chapter 1), we get

(Fa/R@) = Run, = [(Faun, iy @/R@D =R),  (19)

where R = R\(&;RNA) and % is a configuration on @R coinciding at the sites
t € ORN OA with the boundary configuration y and taking at the remaining
sites t € OR arbitrary values satisfying the condition

[Z(t)| < B~Y?mpB, tedRNA. (20)

We use the notation fis y(-/R(z) = R) for the measure on the space of config-
urations Z on R induced by the conditional distribution pa y(-/R(z) = R)
under the condition R(z) = R. The integral in (19) is taken over the set of all
configurations Z (taking into account condition (20)). For any configuration
z € SA\E, with A large, the set R(z) is also large and thus the mean (Fa)ug,ss
by virtue of what was proved above, is near the limit mean (F4), uniformly
with respect to all Z satisfying condition (20). From this, from (17)-(19), and
from Lemma 2, the convergence

(FA)MA,y - (FA)IM A/ Z,

follows. The theorem is proved.
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Proof of Lemma 2. For simplicity of notation, we take § = [-1,1]. Let
z € &5, D; C D°"(z) be a 1-connected bordering component of D(z) inter-
secting K(A), and D ¢ D;N(A\K(A)) be a 1-connected component of the set
Dy N (A\K(A)) such that

DNnoK(A)=0 and DNa(A)#0.
We notice now that for all sufficiently small £ > 0, the inequalities

O(z1,e22) € B(21,22), |21l <e, e< |21,
B(ex,ex5) < B(21,22) - Ce2, e<|ei|<1, e<|za| <1,

(21)

are fulfilled with some constant C > 0.
Further, we put

W= max <I>(:c z') /22,
z,z'C[-1,1

where & < C; we shall choose a number 0 < x < 1/(3v) in such a way that
kN is an integer.

Lemma 3. Let N be sufficiently large. Then for each configuration z € &,
there exists a 1-connected selt B C D such that

|B| 2 &N, |Dn(8BNA)| < |B|/W. (22)

Proof. Let y = {t1,...,t,} C D be a 1-connected sequence of points from
D such that ¢ 1 €OA,...,t, € OK. Let us consider a point ¢ € 7, the distance
of which from both 8A and K is larger than 1/4N, and let T}, be the cube
{t:p(t,t) <m},m=12,... ByBmC T N D, we shall denote the

connected component of the set T' nb containing the point . One may
choose m such that kN < m < ch and

D0 (T 41\Ton)| < (sN/W)", (23)
where n = [m/(xN)). Indeed, for m = vk N < N/3 and N large enough, it is

1D N (Tr41\Tm)| < {[2(m + 1)} — (2m)*}
<2w(2m+2)"" < 2°¥(N/3+1)""! < (kN/W)*

(in fact for any fixed constant N).

Let mg 2 kN be the smallest of integers for which (23) is fulfilled and put
ngo = [mo/(kN)]. We shall show that B, satisfies the inequalities (22). Since
Bm, contains at least mq points from the chain , we have | By, | 2 mo 2 &N.
The second inequality in (22) for no = 1 follows directly from (23) and the
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first inequality in (22). Let now ng 2 2 and nok N < mg < (no + 1)kN. It
means that for all m such that kN < m < my, it is

DO (Tn41 N T)| = (kN/W)™.

Hence,
Mo-l

1Bral = 1D Tonel > 3 |BO(Tomgs\T)| > (sN/W) =2 5N
m=xN

= W(kN/W)".
Thus (23) implies (22). Lemma 3 is proved.

For each z € £A, we shall now fix a set B = B(z) indicated in the previous
lemma. Denoting by Vp C £, the set of those configurations z € £, for which
B(z) = B, where B C A is a 1-connected set, |B| > &N, we shall estimate
the probability p(Vz). To this end, we define a map GB, ¢ = f~1/21Ing, in
the space of configurations by

ez(t), t€ B,

(GO2)(t) = { 2(t), t¢B.

Notice that for any z € Vp, it is

— [Ua(z/y) - Ur(GBz/y)]
= E [®(e2(t), e2(t')) — B(=(t),2(1))]

t,t'eB

+ X [@(ee(t)=(t) - B(e(t), 2()]
teB,t’'€edBND

+ Y [#e(@),2(t) - B(2(t), 2(t)]
teBt'€dB €D

+ analogous terms containing differences

[@(e2(t), y(D) - 8(=(t),y@)], teB, i€dr  (24)

By (21), the first sum may be bounded by (—CeZN,(B)), where N(B) is
the number of pairs of nearest neighbours in B. By (22), the second sum does
not exceed 1B|

2 max |d>(z,z')|W < |B|-cé?,

and the third sum is, again due to (21), negative (analogous estimates hold
for the remaining terms in (24)).

Since one has Ny(B) 2 |B| — 1 for any 1-connected set B, we find from the
preceding estimates that

—Uxr(z) < —UA(Gf’z) - é?B,
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where é > 0 is some positive constant.
Hence

P(Va) = 2y / e=8Us=/19) T] da(t)

Ve teA

< e-Pee"IBI g1 / e~PUNGEIN [] da(t) < e~1Ble=Pec"lBI,

The number of 1-connected sets B C A of the cardinality ! does not exceed
NV&, where & is an absolute constant; thus we get

p(Er) < N* Y e Memepig,
I>kN

The estimate (16) then follows easily.

§3 Continuous Spin: Two Ground States

Let, as above, S C R! be an interval symmetrical with respect to zero, pg =
AZ", Ao = dz/|S|, and the Hamiltonians Uy, for finite A C Z* and for a
boundary condition y, be of the form (1) in §2. We shall suppose here that
®(zy1,z2) in (1) in §2 is a symmetric even function with exactly two minima at
the points (zo, 2¢) and (—zo, —2¢), zo > 0. Moreover, let ®(zo,zo) = 0, and
suppose that in a small neighbourhood U} = U} x U} of the point (zo, zo),
where U} = {z : |z — zo| < €}, the function ®(z;,z,) may be expressed in
the form

®(z1,22) = a((z1 — 20)? + (22 — 20)? + 20(z1 — 20)(22 — 20)) + ¥’ (21, 22),
a>0, |v<1, (1)
|@'(22, 22)| < C(lz1,~20f* + |22 = 20*), ¢ >0.

In view of the fact that @ is even, a similar expression holds in a neighbourhood
U; of the point (—z¢,—zo). We shall suppose that UYU; = 0 and that
®(z1,z2) > 6§ > 0 outside those neighbourhoods.

It is easy to see that the configurations y* € SZ" defined by

yt=20, ¥y =-20

are ground states for the Hamiltonians Uj.
Whenever A C Z¥, we use pp,+ to denote the Gibbs modification corre-
sponding to the boundary configurations y*, respectively,

dZA'* = (Za+) "  exp{—BUA(z/y*)}. 2)
Ho
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Notice that the space SA as well as the measure yg are invariant with respect
to the mapping G : A — —zA; hence,

Zr+ = Za-,  Ba+(A) = pa~(GA), Un(z*/y*)=Ur(=2"/y"). (3)

Theorem 1. For large enough B > 0, the partition functions Z, ; admit
a cluster representation and the measures pp + and py = limp szv pp + @
cluster ezpansion. Moreover, the measures py and p_ differ.

Proof. By the symmetry (3), it is enough to consider any of the measures
(2), say, pa,+-

Let z € SAbea conﬁguratxon in A and £ the conﬁguratlon inA=AUdOA
equal to z in A and to yt in OA.

We shall put € = C8~1/21In g, with C > 0 to be chosen later, and call a
site t € A a plus-regular site of the configuration z if |z(t) — zo| < € and
|£(#") — zo| < € for all nearest neighbours ¢’ € A of ¢. In a similar way, minus-
regular sites are defined. The set of remaining sites is called the boundary
of the configuration z and is denoted by 4(z). Its 1-connected components
Iy,...,I', are called contours.

Whenever I is a contour, we use 6,(T'),...,0,(T') to denote the 1-connected
components of the set A\I‘. Obviously, the values attained by the configura-
tion z on each of the sets IT'NG;(T") belong either all to the neighbourhood U}
of the point zg or all to the neighbourhood U, of the point —zo. Accordingly,
we shall assign to each component 6;(T') the sign o; = 1. The family of signs
o(T) = {oj,j =1,...,p} is called a label of the contour I' and the pair (T, )
a labelled contour. The labels ¢(T) and o(T'3) of two contours I'y, T2 C ¥(2)
are clearly matching in the sense that if I'y C 6;(T'z) and T’z C 6;(T'1), then

0;(T1) = oi(T'3). 4)

Thus, to every configuration z, there corresponds a family {(Ty,o4),...,
(T5,05)} of labelled contours with matching labels.

Let D,,...,D; be 1-connected components of the complement of the bound-
ary of a configuration z, i.e., components of A\y(z).

We say that a component D is bordering a contour I' C y(z) if DNT # 0.
We put o(D) = ¢j(T) if D C 6;(T') and observe that all values attained by
the configuration z in D belong either to U} or to U~ according to the sign
(D).

The partition function Z, 4 may be expressed in the form

2= ¥ [ Hexp{ ~Ur, " /3*) } [T 20" da(a, )
{(Ti,0:)}

where the sum is over all 1-admissible families of labelled contours (with
matching labels) and the integration is over the set of all configurations z7 in
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v = UT;, consistent with a given label; the partition function

Zp(2") = / exp{-BUp(zP/z" U yH)}dpo(zP),
$p (6)

SP = {«P :2(t) e U7®,t e D},

depends only on the values of configuration z” in the set 8D C «.

Breaking up the Hamiltonian Up in (6) into the quadratic part Ul(,q) and a
new Hamiltonian U}, defined by the potential ®’ in the expression (1) and per-
forming the substitution £(t) = (z(t) —z0)B/2, analogous to the substitutions
(7) in §2 and (8) in §2, we rewrite the integral (6) in the form

ZD(€8D) = ﬂ—|D|/2

, (€2 /€°P 0 (0D
x{ [ xe€®exp { -8V (75 /5 Z5(),
teD 0,D 2P (7)
where (-)o p ¢op is the mean under the conditional Gaussian measure pp cop

on RP, with the inverse covariance matrix (10) in §2 and the boundary con-
figuration £20; Z9 (¢9P) is the normalization factor of this Gaussian measure

Z3(€%°) = / exp{~UP(EP /6°P)} de®, (™)

RD

where US') is the quadratic part of the Hamiltonian Up; x. is the characterstic
function of the interval [-81/2¢, 81/2¢]. Moreover, in view of the definition of
D, one has

622 (t)| <€B'/%, tedD. (™)

For the mean (-)o p ¢op in (7), we shall derive a cluster expansion similar to
that obtained in the proof of Theorem 3 in §8, Chapter 4 (cf. (22), §8, Chapter
4).

Let Bp = {bf,,,t,t’ €D} = ABI be the covariance matrix of the Gaussian
field pOD,f,D, where, according to ((7), §8, Chapter 4),

b2y | < Ce~™elt=*1, ¢ € D, (8)

and C > 0, mg > 0 are constants. We shall choose a number d > 0 such that
Ce~™4 < 1/2 and consider for each component D its interior d-boundary
layer

88D = {t € D;p(t,2"\D) < d}.

Let us split up the lattice Z” into cubes 7 = {A} as shown in §8, Chapter 4,
and represent the Hamiltonian in the form

Up=Upp+ Y Usa+) U, (9)
A,A! A
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where Ug, 24D denotes the energy of a configuration inside the d-boundary layer
due to self-interaction and interaction with a configuration outside the layer;
UA,a: is the interaction energy of the configurations in neighbouring cubes
A, A’ C D\3?D, and U}, is the energy inside the cube A C D\&¢D.
Further, using again the interpolation formula ((1), §8, Chapter 4), and

repeating with some modifications the derivation of the formula ((22), §8,
Chapter 4), we obtain the equality

Zp(€%P) = 2(¢°") Y [1 %35,(¢°2) I ] %5, (10)
i j

where the sum is over families {B;,...,B,} of connected sets B; consisting
of interior cubes A € D\o¢D (i.e., such that they are placed outside the
boundary layer D and are not bordering the cubes intersecting the layer;
cf. the final part of the proof of Theorem 3 in §8, Chapter 4) and over families
{ﬁl, cee, §,} of mutually disjoint sets ﬁ,- of cubes such that:

(1) there exists a family o = {Ay,...,4;} of connected sets of cubes, each
of which contains at least one bordering cube (i.e., a cube bordering a cube
intersecting 6,4D), and such that each ﬁj is a union of some A; € a;

(2) ﬁj contains with each A; € a all other connected sets of cubes A; € a
adjoining every contour I which, in its turn, adjoins A;;

(3) there is no smaller subset of cubes in §,- fulfilling the conditions (1)
and (2).

The sets §, will be called bordering. The quantities kp are defined similarly
as in ((21), §8, Chapter 4); they do not depend on the boundary configuration
€2D. The quantities k5(¢2P) are also introduced in analogy with ((21), §8,

Chapter 4), with the only change that the factor exp{— ﬂme.(B)} is added

to the exponent exp{—B(3_5 ' Up ar + 24 UL)}, where Ul..(B) is part of
the Hamiltonian U’ 24D associated with the contours T' C v adjoining the set

~

B.

The bounds on the quantities kg are obtained in exactly the same way as
they were derived in §8, Chapter 4. When deriving the bounds on I-cg, one
passes to the Gaussian field £(t) = £(t) — (€(¢)) in B with vanishing mean.
Moreover, at the sites t € ﬁ, the distance of which from D is smaller than
d, one has |(£())] < e8Y/2/2 (accordmg to (7) and the choice of d); and thus
the condition (71) in §8, Chapter 4, is satisfied and the estimate on k3 ({"D )
turns out to be the same as in §8, Chapter 4. Thus, we get

I120, (%) =11 28, () > TI%s Hka, (11)
j {Bi,..,B.} i
{Bl’ ,B,}




§3 Continuous Spin: Two Ground States 159

It is easy to verify that

Zp(€°P) = Zp(0)exp { E Ct,t'ftft'} ) (12)

t,'€dD

where the matrix {Ci} is of a form similar to (68) in §8, Chapter 4), and
[Ceer| < K e~molt=*'| with some constant K.

To get a cluster representation Z3(0) we use again Lemma 1, §8, Chapter
4, and write down

nz0) =3 anA(0)+Z / 53 028, 0) diy, (13)

acb

where & are introduced in the same way as in §8, Chapter 4. We notice that
the sum Z is taken only over connected families ¥ C np of cubes (since for
the remaining (nonconnected) families the integrand vanishes).

The integrand may be split up into a sum of semi-invariants with respect
to the Gaussian measure pJ(55) (see §8, Chapter 4). Hence, with the help of
estimates from §8, Chapter 4, we get the expression for the logarithm:

InZ3(0) = CN(D) + 3" a(3), (14

a?

where N(D) is the number of interior cubes in D, Zg" is taken over all
connected families of cubes ¥ containing bordering cubes, and

w1 [
=l 22(0)+)_ i) o In 23 ;. (0) d3y, (15)
oi

with the sum over all connected families ¥ C 7 containing (an arbitrary) given
site ¢; the “residual” term a(¥5) admits an obvious estimate

|a(?)| < [BLve-(llz)moL] 191 ’ (16)

where L is the length of side of cube A and B is an absolute constant.

We choose further a constant L’ and call two contours I' and I neighbouring
if p(T',T') < L’. With the help of this notion, we define the L’-connectedness
of a set of contours. It is clear that any collection v of labelled contours splits
up into L’-connected components g1, ..., d,.

Substituting (14) into (12), we get

H Z° (€%P) = CN(D)H V(f")H V(£%ig9) H eVtah) (17)

‘ k {g}g{’lr"'yﬂc}
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with the product [](,, taken over all finite subsets {g} of the collection of

components {g1,...,9,} with |[{g}| > 2.
Further,

V() = Z Civéibe + Z( )a(’y), (18)

tt'eg

with the sum Eg’ ) taken over all collections of cubes, ¥, which contain only
cubes adjoining contours from g,

vEne')= Y C'w&&'+z(M) a(3), (19)

teg t'eg’

where we use E(”' ) to denote the sum over all connected components ¥
contammg cubes ad_]ommg contours from g as well as cubes adjoining contours
from ¢’. Finally,

vish =" a3), (20)
‘y

with the sum over all connected collections 7 that, for each g from the family
{g}, contain at least one cube adjoining some contour from g.
Let us introduce the quantities

HE,Er) = e €D 1, k({g)) = VWD -1, (21)

They obey, as is not difficult to verify, the following estimates:

lk(€?,€)| < k(in ﬂ)z(Cﬁ")Eregw' M (Aryp(.89,

(22)
k({g})] < k - Coreus T (xr)dte}

Here the constant o = a(L’) > 0 can be made suﬂic1ently small by an appro-
priate choice of L/, and also M = BL¥e~(mo/2)L jg gmall if L is sufficiently
large; we use d(,) to denote the length of a minimal tree constructed on
the elements of the collection {g} where we measure the length of edges by
the distance p(§,3’), 9,9’ € {9}. We notice that p(§,§') = L’. Further, by
expanding the exponents, we get

[[ere e [[ D=1+ ¥ H k(€% ¢%) H k({g}m)

ik ({g}) {91191}’ v{’ng.} j=1
{91}, {95}
Y Ry Fms
{m,...m}

where 7, is a connected collection consisting of groups of components of con-
tours, m: = {{g}1,...,{g}m;}, and %,, is the product of the corresponding
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quantities k({g}) or k(¢9¢,£9%) (some quantities %, thus depend on configura-
tion £7). Thus,

I 25, (e2P) = CN® (Ha"“”) Y oo R (23)
j

{m,-..m}

Substituting now, for a given labelled boundary ¥ = {(T'1,01),...,(Ts,05)},
the expansion (23) into (11), we fix any term of the expression obtained when
multiplying out the right-hand side of (11). This term is labelled by the
collections {m,...,m}, {§1,...,§p}, and {B,...,B,}. Without changing
the collection {B,...,B,}, we shall unite the elements of the collections
{m,...,m} and {Bl,...,ﬁp} into connected components (;,...,{k, where
each (; together with any connected collection n = {{g}:} contains all bor-
dering collections of cubes ﬁ,-, which include at least one cube adjoining some
contour in 7.

After that, averaging in (5) over boundary configurations z7, we get the
final cluster representation of partition functions

4= WG N ke ke, kB, ..o kB,,  (24)

{(l 1’“:(7'!}:
{B,...,Ba}

with mutually disjoint sets {1,...,Cm, B, ..., Bn such that different B; have
no neighbouring cubes and no cubes adjoining those which intersect (;.

We notice that this representation is more general than that of Remark 1
in §1, Chapter 3: The admissible mutual distance of clusters depends on their
label. The quantities kg in (24) were introduced earlier and k, equals

ke = /Hn,, Hexp{ V(€%) - BU; (ﬂ)} H kg(€nan™ (ﬁm()

1133 y
(25)
with the integration performed over the set of those configurations in y N ¢
that are admitted by the condition that 4 N ¢ is included in the boundary
with a given label; the product [] ; 18 taken over all g entering the elements
of collections n € .

From (25) and the preceding estimates, we get the bound on k¢:

kel < (Cp)™oW AZec Py Toec . (26)

with 0 < A’ < 1, A > 0, X > 0 sufficiently small. In the derivation of (26),
one uses the fact that the matrix a;, ¢, = a@1,,1, — Ct,,1, is positive-definite
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and, consequently, for each g one has

exp § —BU; Ll + ) Copb)E(t)
VB

tLt'eg

< exp {-hlnﬂz IFI} =g TreM,
Tey

with h > 0 being a constant, depending on the choice of the constant C in the

definition of ¢, which may be made sufficiently large. Hence, choosing L, L',

and g sufficiently large, we may achieve that the cluster estimate and cluster

condition are fulfilled.

If Fyu is a local function of the form F4 = [],¢ 4 F{s}, we may obtain a
cluster expansion of the mean (F,4) by repeating the preceding constructions
and considerations leading to formula (21) in §1.

Weak local compactness of the set {ua, 4} of the measures is implied by the
fact that the space $Z” is compact (see [16]). The theorem is proved.




CHAPTER 6

DECAY OF CORRELATIONS

§1 Hierarchy of the Properties of Decay of Correlations

We shall consider a translation invariant random field {z(t),t € Z"} in the
lattice Z¥ with values in a space S determined by a probability distribution
u on the space Q = $%°. Translation invariance of the field means that

p(riA) = p(A)

for each set A = B(Q) and each t € Z”. Here (1;z)(s) = (s — t) is the shift
of the configuration z € S%” by the vector ¢t € Z”. For any bounded local
function F4 we use the notation Fa4: = 77 F4 for a shift of this function

(17 Fa)(z) = Fa(r ).

We shall indicate here several properties evaluating the rate of decrease of
dependence between values of the field {(t),t € Z*} at mutually distant
sites that are expressed in terms of decay of semi-invariants (or mean values).
These properties are listed in the order of their strength.

The first three properties are well known and are presented here for com-
pleteness. More essential for Gibbs fields are the latter four properties of
decay of correlations.

I. Ergodicity

Whenever F4, and F,, are bounded local functions, let

-I%T Z(FAl FA:-H)[J —_ (FAx)Il(FAz)I‘ (l)
tEA

163
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with A /' Z" running over expanding sequence of cubes. The condition (1)
is called the ergodicity property of the field {z(t),t € Z¥}. With the help of
the equality (F4,) = (Fa), it may be rewritten in the form

1
Al Z(FAI’FA:'f'f)Il -0, A/S2Z. 2)

teA

We notice that (1) is equivalent to the usual definition of ergodicity: the
measure of any set G € B(Q) that is invariant with respect to translations,
7:G = G for all t € Z", is either zero or one. A proof of this equivalence may
be found, e.g., in [32].

II. Mixing
We say that a field satisfies the property of mizing if

(Fa,Fas4t)u — (Fay)u(Fas)us [t] = oo, (3

for any bounded local functions F4, and F4,. In the same way as in the
preceding case, the condition (3) may be rewritten in the form

(Fay, Fag4t)u =0,  [t| — oo. 4)

III. Mixing of Higher Orders
Let for any n and any collection Fy,,...,Fy, of bounded local functions

(Fayet,Fagty - Fagsr)u = (Fadu(Fag)u - (Fadu (5)
if min; j [t; — t;]| — oo.
Using the properties D) and E) of semi-invariants (cf. §1.II), it is easy to
show that (5) is equivalent to

(FAan Fappey ... FA»-H.)I‘ -0 (6)
for any fixed collection of functions Fy,,...,Fs, and min;; |t; — t;| — oo.
The following properties are related to more explicit estimates of the rate

of decay of semi-invariants and do not suppose, in general, the translation
invariance of the field {z(¢),t € Z"}.

IV. Strong Decay of Correlations

It consists in the assumption that for any n > 2, any bounded functions
fi,..., Jn defined on the space S, any integers k; 2 1,...,k, 2 1, and any
t € Z¥, one has

Y i), | <0 ™)
(t3,--1tn)
with t; = t. Here the sum is over all ordered collections (2, .. .,,) of distinct

points t; € Z¥ and the constant C = C(ky,...,kn, fi,...,fn) does not depend
ont.
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V. Strong Cluster Estimate

A typical estimate on semi-invariants (fi*,..., fk=), implying (7) has the
form

( lkl(z(tl)), o )f:;k“(z(tn))>u < C(fl) oo ,fn; kl) oo ;kn) Z H ‘P(thtj),
T (i,j)eT
©)
where the sum is taken over all trees 7 on the set of vertices (1,...,n) and
the product []; ;)e7 is over all edges of the tree T'; the function <p(t1, t3) >0
is symmetrical and satisfies the condition

sup z p(t1,t2) < oo. 9)
h€Z% 1620\ (1)

The estimates (7) and (8), and also the following estimate (11), are called the
best (maximal) ones if the constants C(f1,..., fa,k1,...,kn) involved are of
the form (with some constant Cy > 0):

C(fl) eee :fn; kl, kn) - (n - 1)'Ckl+k2+ Hea Hk |H (sup Ift(z)l)

i=l  i=1
(10)
in the case (7) and

C(f1,- - fnskrye.. kn) = CEr¥thn Hk nH (sup |f.(z)|) (10"

i=1 i=1

in the cases (8) and (11).

VI. Strong Exponential Estimate of Semi-Invariants

Let there exist a connected family & of subsets of Z" satisfying the condition
1) and 2) of §4.1I and let, for any collection of bounded functions fi,..., f, on
S, any collection of integers ky > 1,...,k, = 1, and collection T = {ti,...,t,}
of distinct points, the estimate

(FB @) S~ (2((t))) |<C(f1, o Faiksy e kAT (1)

be fulfilled with 0 < A < 1, C(fi,..., fa; k1, ..., kn) a constant not depending
on T, and dr(?) the quantity defined by the formula (1.1.4.I). We notice
that if the assumptions of Lemma 7.4.II are fulfilled, we have

cdr < dr(2) < ddr, (12)

where ¢ < ¢’ are constants and dr denotes the minimal length of the tree
T with the set of vertices T'; the length of edges from 7 is measured in the
metric (14’.4.IT).
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VII. Uniformly Strong Exponential Estimate of Semi-Invariants

Let again 2 be a connected family of subsets of Z¥ as above and let the
estimate

n n R i
|<F'h ..,Ff:>“| < H3k‘!Hc:nu.«i(“)Aa(a.{Al,...,A.}) [1(sup 1Fa,))¥

i=1 i=1 i=1

(13)
be satisfied for some family G of bounded local function F4. Here Fy,,...,F4,
is an arbitrary collection of distinct function from G, k3 2 1,...,k, 2 lisan

arbitrary sequence of integers, ¢p is a constant, 0 < A < 1, and the number
d(%,{A,,...,A,}) is defined by the formula (12 4.11). If the assumptions of
Lemma 7.4. II are satisfied, we have

ddia,,...a0y SAH;{Ar,..., An}) S cdia,,. a0}

where ¢’ < c are constants and d{4,, . 4,} is the minimal length of the tree
T constructed on the set of vertices (1,...,n) with p(A;, A;), where p is the
metric (14'.4.IT) on Z¥, taken for the length of the edge (i, j).

It is not difficult to show that each of the listed properties implies the
preceding ones. Actually, the first property (ergodicity) is truly weaker than
the second one (mixing), the second is weaker than the third (mixing of an
order n, n > 2), and the third is weaker than the forth (strong decay of
correlations). Concerning relations between the remaining properties, it is
unknown if they constitute a strictly reinforcing sequence; it is just possible
to assume that the last property is actually stronger than all the remaining
ones. An example of a field satisfying the estimate (10) but failing to satisfy
(7) is the field determining a pure phase for the ferromagnetic Ising model
with h = 0 and at low temperatures T = B~! (see below, §5).

Remark 1. In all preceding formulations we supposed for simplicity that the
functions F4 (resp. f;) are bounded. The estimates introduced here make
sense also for unbounded functions F4 (or f;) possessing moments of a suf-
ficiently high order: F4 € Ly(Q, p) for some p > 1. In this case the factors
I1;-,(sup |Fa,])¥ (or ]'L_l(sup |£:])%¢) on the right hand side of (13) (or (10)
and (10)) are replaced by some quantities depending on moments of the func-
tions Fy4; (or f;), e.g., by the quantity
> 1/q

maxH< . | A(:)

with ¢ 2> 1 and the maximum taken over all partitions of the collection of
integers (ky,...,ky) into sums of collections

(k1y... kn) = (p(ll), S;l))+"'+(P(1‘),- (c)),
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where p! > 0 are integers and s = 1,2,.... (An analogous estimate is possible
in the case (10) and (10')).

Remark 2. In all the definitions of this section one may conceive, instead
of lattice Z¥, and arbitrary countable set T' with a metric p(-,-) satisfying
the condition (14.4.1I): all the balls of any fixed diameter are of bounded
cardinality. Moreover, in the case of properties I, II, and III, one has to
suppose that a group G, preserving the metric, is acting transitively on T
so that the little group of any point ¢ € T is finite and the measure x is
G-invariant.

§2 An Analytic Method of Estimation of Semi-Invariants of Bounded
Quasi-Local Functionals

We consider a Gibbs field in Z¥ constructed in §1 or 2.IV in the form of a
limit modification pu of an independent field with distribution po by means of
a Hamiltonian Up = B ®4. Here 8 is supposed to be small and {®,} is a
potential bounded from below satisfying the conditions (2.1.IV) and (2'.1.1V)
and, possibly, also the conditions (1.2.IV) and (2.2.IV).

Let, further, G be a family of bounded local functions F4 satisfying the
condition

Z sup |Fa(z)| < BA" 1)
Fa€G:tea, *
|Al=n

for each t € Z¥ and n > 1. Here B > 0 is a constant not depending on ¢ and
n, and A, 0 < X < 1, is the same parameter as that in the estimate (2.1.IV)
for the potential &4 (we stress that, if the family G contains several (or even
infinitely many) quantities F4 corresponding to a single A C Z¥, then all of
them enter the left-hand side of the sum (1)).

Lemma 2. Let p be the measure on Q = SZ° defined in §1.1V (or §2.1V) with
the help of the Hamiltonian Ux = BY 4 p Pa with B sufficiently small, and
let G be a family of bounded local functions satisfying the condition (1). Then
Jor each finite collection {Fy,,i = 1,...,8} C G of mutually distinct functions
Fa, € G, and for an arbitrary sequence ky 2 1,...,k, 2 1 of integers, the
estimate

(FL",‘, oy FQ":)”I < KCht ¥kt |k, ©@)

is fulfilled with some constants K > 0 and Co > 0 (not depending on the
collection {Fy4,} and on the numbers ky,. .., k,).

Proof. Let us, for each A C Z”, consider the characteristic functional of the
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family {Fa,;,i =1,...,s} computed with the measure y,:

\I’A({BA.'}) = <exP {2‘: ﬂAiFAi}>
* )
<exp{ -B Z ®a+ ZﬂA.FA.> = 2—:,

ACA i=1

where

ACA i=1

Zr= <exp{—ﬂ Y ea+ EﬂA;FAg>l‘0-

We shall introduce a new potential

Sa=®a—F" Y BaFa (4)

A=A
with the sum taken over those i for which A; = A. Then, if

max |f,| < 6 (%)

with a fixed small §, the potential {ﬂaA;} with sufficiently large @ satisfies
all the conditions (2.1.IV), (2'.1.IV) (or (1.2.IV), (2'.2.1V)), and the partition
functions ZA and Z, admit a cluster expansion with quantities kp satisfy-
ing the cluster condition. Hence, according to Theorem 4.4.III, the function
In¥p =InZ), —InZ, is an analytic function of complex parameters {84}
from the domain (5).

Moreover, for any A; on has

Oln¥, i
aﬂA.' = (FAi)IlA (6)

with the Gibbs modification fip of uo by means of the energy function U =
B3 aca & 4. Taking into account the cluster expansion (6.1.IV) for the means
(Fa,)sa, the estimate (1) implies

dln ‘I’A
6ﬂA.‘

sup
A.’»IﬂA; |<5

<K M

with an absolute constant K which does not depend on the collection
{Fa,,--.,Fa,} and on A C Z". Hence, with the help the Cauchy inequality
(see §1.I1.(H)), we find that the semi-invariant

gkt -tk |n g
rk 1k, —- A
<FA:,...,FA. >m\ = %10, ... 0% B4,

Ba,==Pa,=0
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obeys the estimate (2) for all A C Z*.
Passing to the limit A /* Z¥ we finally get the assertion of the lemma.

Lemma 2. Let the potential {®4} determining a measure p be bounded (the
condition 2.1.1V), satisfy the assumption of the preceding lemma and let 3
be sufficiently small. Let G be a family of bounded local quantities as in the
preceding lemma. Then one has the estimate

8
(Fi,..., FI«":),,| <K@y itrmaNgpt-tt [Tkt (8)

i=1

Here ky 2 1,...,k, 2 1, the constanis K and C are the same as in the
estimate (2), C is an absolute constant, A is a collection of supports of the
potential {4}, and the number d(A;{A,,... A,}) is defined by the formula
(12.4.11).

Proof. Repeating the reasoning from the preceding proof we show that the
semi-invariant

v@)z(ﬂbp”,W?>“

is, for |8| < Bo, an analytic function of B and satisfies the estimate (2):

le(B)l < KCg** ¥ ] kit. 9)

Al

Thus, with the help of the Cauchy inequalities, we get for the coefficients of
the power series ¢(8) = 3, b, 8" the estimate

lba] < &K Cgr+ 4 T kit (10)

with & = 85!, On the other hand, from the formula (21.1.IT) (the condition
K), we find that,

m
by = $<FQ’?,...,FQ";, (Z @1) >
‘ ng Ho

1
=E Z <F"‘ﬁ"""F,k:’¢jv""¢1u>#o.

-(jl,...j.):
AiCAi=1,..n

Since the semi-invariant <Fg‘“ ooy F"‘"" N FRTIN o >“o vanishes for a non-
connected collection (4y,...,4,, A, ... ,fi,.) (the condition C, §1.II), we get
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b, =0forn < d(2A: {A;,...,A,}). From it and the estimate (10) we conclude
that

le(B) < KCgr+** T k! >, (©pr

n3d(%A:{A,,...,A,})
< 70(];1.'....4*, Hki!(aﬁ)d(ﬂ,{An,...,A.})

for |8| < Bo. The lemma is proved.

We shall now suppose that the potential {®,} is bounded and of finite
range: ® = 0 for diam A > d, and that the family # of its supports satisfies
the condition 2') of Lemma 7.4.I (i.e., the number dy;, ;,}(2) is uniformly
bounded for all neighbouring pairs t;,t2 € Z”). Let, further, a family G =
{F‘(“),t € Z",|A| < oo} of mutually distinct bounded local variables (Ff") is
measurable with respect to the g-algebra 3" ,) be given so that the condition

sup |F(@)| < BA-daen® (11)

is satisfied. Here B > 0 is a constant, X, 0 < X < Xy, is sufficiently small,
and dp(2), D C 27, is defined by the formula (11.4.II). As follows from (11)
and Lemma 5.4.11, the family G satisfies the condition (1) with A = CX and
C = C(2) being an absclute constant.

We shall examine a family {W;,t € Z"} of quasi-local variables

wi= Y F), tez. (12)
AC2Zv

Again, due to (11) and the estimate of Lemma 5.4.11, the series (12) absolutely
converges, and for each t € Z” one has

sup [Wi(z)| < K
z

with some constant K.

Theorem 3. Let u be the measure obtained with the help of a potential {®,}
Jor a sufficiently small B and let the family of variables {Wy,t € Z¥} be defined

by the formula (12). Then, for any collection (ky 2> 1,...,k, > 1) and any

T = {t,...,t,}, the semi-invariant W,’f‘, . ,W,’f') obeys the estimate
m

8
I(w,’fl veres W,’f'>”| < RXIr®cht-+k T kyt (13)
i-1

with constants K > 0,Co>0, and X = :\(X,ﬂ) <1l
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Proof. We put .
Fﬁt) = (:\-llz)d..u(n)(’)p‘(“), (14)

With the help of, once more, the estimates (11) and the one from Lemma

5.4.11, we may show that the family of variables {F‘("),t € 2¥,A C 2¥}
satisfies the condition (1) with A = CAY2. Further, since the potential
{®4} is of finite range, for sufficiently small B the condition (2.1.IV) and
(2'.1.1V) are satisfied with the same A. Thus, whenever ¢,,...,t, is a col-
lection of distinct points, p1,...,p, is a collection of integers, and {A;j,j =
L...,m}...,{Asj,J = 1,...,p,} are s collection of mutually distinct sets,
and also {k;;}, j=1,...,p;, i =1,...,8, is a collection of integers, we get,
by Lemma 2, the estimate

(ﬁz((tll;)'k“ F(‘l) Wk1py F(‘z),kn fv(‘l)'kﬁn F(io) ko,,>

Arp,y ©0 7 Aap, Asp,

. (15)
<K H kij !Cozii kij (6ﬂ)d(’,{“ij})_
ij

Inserting further the expansion (12) and the representation (14) in the semi-
invariant <W,’:c 1. W"") and using the condition of multilinearity (B, §1.IT)
and the estimate (15), we get

(wiks,..., Wik

<k ¥ T Y Hk,ch Tl )d(a,{A.,})I'IAk.,/sz.Ju("

(Ph »Pa) {Au} {ku} ij
l‘p'<k‘ ‘_ ’ ,.’
j—l,---,P.

(16)
where the sum Z{k .} is over all collections {k;;} such that 3. kij = ki,
i=1,...,s. Further

(‘C«'ﬂ)d(ﬁ;{Ae;}) H Neis/ 2d450(4:) < \dr(%) H :\”-‘:‘/43A.~,~u(c.~). (17)
N ‘o' 33

with X = max{Cp, A1/4} < 1. Besides,

[Ikit<kt, i=1,...,s.
J

Inserting these inequalities into (16), summing over {k;;} with fixed collections
{P1,...,P,} and {A;;}, then over collections of sets {A;;} (bearing in mind
the estunates from §4.IT and supposing that X is sufficiently small), and finally
over collection of numbers (py, . ..,p,), we get the estimate (13) and bring thus
the proof of the theorem to an end.
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§3 A Combinatorial Method of Estimation of Semi-Invariants in the Case of
Exponentially-Regular Cluster Expansion

Let T be a countable set, 4 be a measure on ST, and suppose that, for
some class G of local functions F, in general unbounded but summable with
respect to the measure yu, the means (F,), admit an exponentially-regular
cluster expansion (see §3.III):

(Fa)u=)_ br(Fa), 1)
RCT
br(Fa)| < C(Fa)AI{®), . ¢0)

Theorem 1. Let the family G be such that the product Fy - F» € G if Fy
and Fo € G and let the parameter A in the estimate (I') of the quantities
br(F4) be sufficiently small. Then, for each collection F = {Fa,,...,Fay}
of (not necessarily distinct) functions from G, the following estimate of the
semi-invariant (Fa,,...,Fa,), is valid

N s N
Faus- o, Fadul < GrCim MO @n)i@itnean) [T ny.  (2)

i=1

Here A is a class of sets entering the definition of ezponentially-regular cluster
ezpansion (§3.1II), do(A) and d(A,{A:,...,AN}) are the numbers defined
by the formulas (11.4.1I) and (12.4.1I), respectively, Cy and C are absolute
constants, ) is the parameter from (1'), n; = ni(Ay,...,An), i =1,...,N,
are the numbers of the sets Aj, 1 < j < N, such that A; = Aj, and

ér=mpx ][ © (1‘[ FA,.) , ®)

Deés i€D

with the mazimum taken over all partition § = {D:,..., D¢} of the set N =
{1,...,N} and C(Fy), Fa € G, the constants from (I').

Remark. In the case of bounded variables Fy,, i = 1,..., N, with the esti-
mate (1) in the form

br(Fa)| < sup |F| A4%(®), (3)

the estimate (2) implies the uniformly strong exponential estimate (1.13) for
the semi-invariant (Fy,,..., Fa,). If some F4, are unbounded and the factor
sup |F4,| in (3') is replaced by the quantity (IFA,.l")},/ ? ¢ > 1, the estimate
(2) implies a changed estimate (1.13) with a factor of the form (1.14).




. U S——" e A AT S— - S o e -

3 A Combinatorial Method of Estimation of Semi-Invariants 173

Proof of the theorem. Let D C N = {1,...,N} be a subset of indices
{1,...,N}; we introduce the notation

br(D) = b (H FA,.) : (4)

i€D

ﬂMsCDu>=2mwy (5)
B R

ieD

Due to the condition 1) in the definition of exponentially-regular expansion
we have bg(D) # 0 only if R is an %-composable set (see §4.II) and the
collection {Ry, ..., Rjp, A(D)} is connected. Here A(D) = |J;¢p Ai and we use
R},...,Rp to denote the components with respect to the A-connectedness of
the set R. Connected components 'y = {{R},i € Ka},{4j,j € Da}}, Ka C
[1,...,p], a=1,...,m of the collection T = {{R},i =1,...,p}, {4;,j € D}}
yield the partitions {Dy,a = 1,...,m} and {R4,a =1,...,m} of the sets D
and R, respectively; here

R, = U R;, a=1,...,m. (6)

i€EKqo

These partitions will be called canonical partition of a pair of sets (D, R),
D C N, R C T with bg(D) # 0. Moreover, A(Dy) # 8, a = 1,...,m, and
the condition 2) in the definition of exponentially-regular expansion implies

br(D) = [] br.(Da)- (7)
a=1

A mapping £ = €0 : i £(3) = Ry(€), i € D, from the set D into a family
of A-composable subsets of T such that for each i € D the set R;(§) is ™A-
connected with respect to A; will be called a section over D C N. For each
D’ C D we put
£2(D) = | €°G)-
ieD’

Whenever £ is a section over D C N, we define the graph G¢ = G¢(D) with
D playing the role of the set of vertices and with the edges connecting those
pairs (i,7) C D, (i # j), for which the set R;(§) U R;j(§) is A=connected
with respect to {A;, A;}. We use Gg, a = 1,...,m, to denote the connected
components of the graph G¢ and D, = D,(§) C D the set of vertices of G¢,
and R, = R,(€) = €(D.), R(§) = £(D). It is easy to see that the partitions
{D:,...,Dp} and {Ry,..., Ry} are canonical partitions of the pair of sets
{D, R(¢)}.
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Let now € = £” be a section over N. We define a virtual field { ff(D) DC
N} (see §1.IT) on subsets of A by the following rule: if a subgraph G of the

graph G{ constructed on the set of vertices D is disconnected, we put
m
fe(D) = I] fe(Da), ®)
a=1
with D, C D denoting the sets of vertices of connected components of the
graph GP. If GP is a connected graph, we put

ff(D) = (D)bf(D)(D)’ ) (9)

where m¢(D) is the number of distinct sections £ = €2 over the set D such
that the graph GD (D) is connected and £(D) = £(D). It is easy to see that

the virtual field { fe(D), D C N} does not depend on the graph G"" for all
sections € over N (see §1.II I) For a virtual field {f¢(D), D C N'} we define
its semi-invariants {g¢(D), D C N'} by the formula (16.1.II).

Lemma 2. The equality

(Fays-o o Fan)u =Y 9¢(N) (10)
¢

holds true with the sum 3, taken over all sections over the set N.

Proof. According to the formula (9.1.II) we have

(Fayooon Faydu= Y f(D)... f(D)(-1)* 1k —-1)!  (11)

§={D,,...,Dx}

with the sum taken over all partitions § = {D;,..., D¢} of the set A'. On the
other hand

gN)= Y. fe(D1)... fe(De)(=1)F (k= 1) (12)

§={D,,...,Dx}

Thus, (10) follows from the equality

f(D1)...f(D) =) fe(D1). .. fe(Dx) (13)
13

for each partition é of the set V.
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To prove (13) we notice that for a given partition § = {Dy,..., Dz} of
the set A, each section ¢ over N is uniquely determined by a sequence
(€P1,...,€P*) of sections over the sets D; such that

£|D'.=£Di1 i=11'°'1ka

where § | D: is the restriction of & over A to the set D; C N and the order in
{€¢P1,...,£P*} is arbitrary. Since also
fg(D;') = feb,-(D.‘), i=1,...,k,

the right-hand side of the equality (13) equals

k
HZfeDi(Di)

i=1 fD‘

with the sum Y _,p, taken over all sections over the set D;,i=1,...,k. Thus
the equality (13) is implied by the following one:

f(D) =3 fe(D) (14)
4

whenever D C N and with the sum taken over all sections over the set D.
Further, from (8) and (9) we get

Efs(D) E =

where Dy = Do(€) C D, a = 1,...,m, are the sets of vertices of the connected
components G¢ of the graph Ge, Ra = R.(§) = &(D.), and §|D is the
restriction of the section & to the set D, C D.

As already said, the collections

{Dl(£)7"'7Dm(£)}v {Rl(f),,Rm(ﬁ)} (16)

form a canonical partition of the pair of sets (D, R), R = R(), and the
number of distinct sections £ for which the collection {Dq(€)} and {Ra(£)}
coincide with the collections (16) is [T, m¢| p,(Da). Hence, from (15) and

(7), ¢ fe(D) = X g br(D) = f(D). The lemma is proved.

Since for any section £ over N the virtual field {f¢(D), D C N} does not
depend on the graph G, we have

9%(D)=0 (17)

EI (D H Ra( a)s (15)
Do \Pa) a=1
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if the subgraph GD C G¢ spanned on the vertices D C N is disconnected (see
Lemma 2.1.IT). Hence using the Mébius inversion formula in the same way
as in §7.II, we may write

9e(N) =) pe(8, 1) fe(Dy) ... fe(Dx) (18)
3

with the sum taken over all partitions § = {D;,..., D¢} € Ag, of the set N
such that all subgraphs GD ¢ of the graph G¢ are connected we use UAg, to
denote the lattice of such partltlons and p¢ to denote its Mdbius function.

Further, using (17) with D = N, Lemma 2, Lemma 2.7.II, and the formula
(14.7.11), we get

! k ‘
[(Fass- s Fan)ul €Y Y. ITuwEdirm) (9

¢ §={Dy,..,Di}€%q, i=1

with the sum taken over all sections ¢ = ¢V over N for which the graph Ge is
connected; v;(¢,6), 1 < i < k, equals the number of edges (¢, j) attached to the
vertex i in the connected graph G® = Gg with the set of vertices (1,...,k) and
with the edges (i, j) for which the set £(D;)Ué(D;) is A-connected w1th respect
to {A(D;), A(D;)}. Fixing a partition § and sets R; = &(D;), i = 1,...,k,
and summing in (19) over all sections ¢ for which G¢ is a connected graph,
6 € Ag,, £(D;) = R;, we estimate, with the help of (9), the right-hand side
of (19) by

I1 bR, (D) (G Ry, ..., Rn), (20)

{(Rl ’Dl)r""(nk ’Dk)}

where § = {Dy,...,D;} is a partition of the set N, {R;,..., R} is a col-
lection of A-composable subsets, and G®(Ry,..., Rx) is the graph with ver-
tices (1,...,k) and edges (i, ) for which the set R. U R; is A-connected with
respect to {A(d.) A(Dj)}. The sum in (20) is over all collections of pairs
{(R1,Dy),...,(Rk, D)} such that:

1) the graph G*(Ry, ..., Ry) is connected:

2) the set R; is A-connected with respect to the collection {4;,j € D;} for
eachi=1,...,k.

According to the estimate (1’) and the last condition we get

k k
H br,(D;) € Cr H IR, (%;{4;,j€D:}) (21)
i= i=1
The conditions 1) and 2) imply
k
> dr,(%;{4j,5 € D;}) < d(R: {Ay,...,AN)). (21)

i=1
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We consider now some ordering in the set T' and, whenever D C N, we
use (D) € A(D) to denote the point that is minimal in A(D) with respect
to this order in T'. Whenever § = {Dy,...,D;} is a partition, we use s(§) to
denote the set of all points ¢(D;) for all elements D; of the partition § and let
u{ = u; be the number of those elements for which t = ¢(D;), 1 < i < k. We
shall introduce the notation

E@)= ] u (22)
teS(6)
Notice now that PA-connectedness of the set R; U R; with respect to
{A(D;), A(D;)} means that
Q:NnQ; #0, (23)

where Q = A(D;)U R;and R; = Usea BnR,#¢ B is the union of all sets in 2
that intersect R;. The estimate (14.5.I) together with (23) implies

2 . .
[T v(G (R, ..., Ri)) < E(6)CTimr 40D (24)

i=1
with an absolute C and the number dg(%) defined in (11.4.IT). Further,
dQi() € dap,)(R) + dg, (%)
< Y da,(M)+d(%,{4;,5 € D)) + KDr,(%,{4;,j € Di}) )
j€D;

with a constant K = K(%).

When estimating d #,(A) we used the condition 2) form §3.1II, the equality
(10.4.IT), and also the conditions 1) and 2) from §4.II which imply that for
each A-composable set R one has

dz(A) < KIR|S KM dp, (%), (26)

where {R},,m = 1,...,p} are the A-connected components of R, K is the
maximal number of sets b € A that contain a fixed point t € T, and M is the
maximal cardinality of the set B € 2.

Thus, according to (25), (24), (22), (21), (21'), (20), and (19), we get

KFays-- - Fan)ul
N -
< 6'}' H CdAf(u)(Clz\)D(ﬁ;{A'”"'A"})
i=1
k
X > E(8) [](Cy)~/2n:(®:{A5,i€ DD cd(%{4;.5€D:D)

{(R1,Dy),...,(Rx,Ds)} i=1
(27
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with a sufficiently large constant C; > 1 and the summation taken over all
collections of pairs {(R;, D;),...,(Rk, D)}, satisfying the conditions 1) and
2) with § = {D,...,D}. Fixing a partition § we sum in the right-hand
side of (27) over all ordered collections of sets (Ry, ..., Ri) satisfying only the
condition 2). Then

k k
z ]:[(C1 A)dri(Fi{45.5€D:}) ¢ HE(CI A)dri(%{4;.5€D:)  (28)

(Ra,...,Ry)i=1 i=1 R;
Using now Lemma 6.4.1I and the estimate
|A] < Mda (%) ‘ (29)
analogous to (26), we bound, for Cy 3» C, the right-hand side of (27) by

& H 34 g,y K AL ,An})z E(5) (30)

ji=1

with constants Cy and C;.

Now, we shall pass to the estimate of the sum ), E(§). Let So =
{t1,...,t1} = S(6 = 0) be the set of points corresponding to the partition
0 of the sets A into one-point subsets, where the points ¢; are enumerated
according to the order in T. Notice that each point t; € Sp is the minimal
point for a family of subsets A;,j € N; we shall use D? to denote the corre-
sponding set of indices j € N, and 6y = {DY,..., D{} to denote the partition
of N generated by these sets. Each partition 6 = {Dl, ., D¢} induces the
partitions §; of elements D?: §; = {D?,,..., D, }, where

u.
DY =D'nD;, i=1,...,1, j=1 k
iy — Yi ¢ B =L..,§ J=1,..,8

under the condition DJ; # 0. Moreover, S(§) C So and a point t € S(6)
coincides with some t; € Sp if the partition §; contains at least one element
of the form DJ; = D N D; such that t = #(D;) and the element D; does not
intersect any of the elements DY, with m < i. We shall use 6/ C §; to denote
for each i = 1,...,1, the collection of all such elements D° € &; (for i = 1 one

has §; = §1). Clearly, u = |6!] where |6!| is the cardlnallty of the set 8/, and
t =t; € So. Hence the following estimate follows

ZE@) ZH S > ﬁl&:l"”=2ﬁzlsﬂ"”,

5§ teS(s) {61,(6-2,83),...,(81,8])} i=1 6y i=2(6;,6!
(31)

where the sum 26, is taken over all partitions of the set D? and the sum
Z(s 1)1 for i > 2, is over all pairs {§;,6}} with & an arbltrary partition of

the set D? and 6/ C 6; an arbitrary subset of elements of the partitions §;.
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Lemma 3. For each set D C N one has
> 1171 < o212, (32)

(4,8")

where c is an absolute constant, |D| is the cardinalily of the set D and the
sum 3= 51y 18 defined above.

The proof of the lemma will be given below. But first we notice that the
estimate (32) implies

! o
Y E@) < N T |o?|P*L.
§ i=1

Further,
1 lD?I N
II1D?17 < I v,
i=1 j=1
where v; is the number of sets A, in the collection A = {4;,..., Ax} that in-

tersect the set A; € A (see §5.II). Hence by Theorem 2.5.1I and the inequality

(15.4.I1) we have

N J

Z E(6) < (H n,-) CZ.‘=1 da (%) (33)
6 i=1

with an absolute constant C. Then (30) and (33) imply (2). The theorem is

proved.

Proof of Lemma 3. We shall use Sy, ; to denote the number of partitions 6
of a set of cardinality m consisting of k elements. Denoting |D| = j, we easily

- find that
s j1
PDLIEED DI 1D DI DICAEL S D)
65 ST T

For each partition § of a set of cardinality m we define the numbers {p(n),n =
1,2,...} that equal the number of elements of the partition § of cardinality

n. One has
Y np(a)=m, 3 P(n)=k= 6]
n n
It is easy to count the number of partitions § with a fixed collection {p(n),n =

1,2,...}. It equals m!
325000t equals ——mmm ™
[ [ p(n)!(nt)y™)
n

Smi = ™ 35
* {,{%}; T 2(m)!(nty?®™ )

Inp(n)=m, n
Zp(n)=k

and thus
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We notice that, by (35), the generating function is of the form

Smk »
KX om_ k __ we
E ——T—Z w =e .

m,k

From here it is easy to show that Sy, + < mle¥/k!. Inserting this estimate
into (34) we get (32). Lemma 3 is proved.

§4 Slow (Power) Decay of Correlations
Let {a,A C Z"} be the Gibbs modification

%—%: ;lexp{—ﬂZQA}, (1)

where 1 is the probability distribution on SZ” of the values of an independent
field {z(t),t € Z*} and {®4,A = {t,t'},t # t'} is a pair potential: &4, =0
for |A| # 2. Let

sup |®a(z),| = ja=J(t,t') <0 2)

for each A = {¢,t'}.
We shall consider here two cases: for each t € Z¥ suppose

A) Y Ja=Di<oo, 3)
A:t€EA

B) Y 1P =D:< oo (4)
AteA

The condition B) clearly implies the condition A).
As follows from Theorem 1.1.IV, a limit Gibbs modification x on the space
S7" exists for both cases A) and B) providing that g is sufficiently small.
Let f = {f1,...,fa} be acollection of bounded real functions defined on the
space S, k = (k1 2 1,...,kn 2 1) be a collection of integers, and (t1,...,t,)
be an ordered collection of distinct lattices sites. We shall consider the semi-
invariant

(i), S t)) - (5)

In both cases (3) and (4) above we shall establish a strong decay of correla-
tions, i.e., an estimate of the form (1.7) for semi-invariants (5) with the best
constant having the form (1.10). In the case (4) we shall actually get an even
stronger cluster estimate similar to the cluster estimate (1.8) (with the best
constant (1.10%)).
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Theorem 1. Let the condition (4) be satisfied and let B be sufficiently small.
Then the estimate

(A @), fi (x(tn)),
<[Ickkieuwln Y I ©837we), @

i=1 T (,t')eT

holds true with some absolute constants Co > 0, C > 0, and with the sum
taken over all trees T constructed on latlice siles from Z¥ so that the set of
their vertices conlains the sites tq,...,1,.

Corollary. The estimate (6) implies the property of strong decay of correla-
tion (1.7) with @ mazimal constant of the form (1.10).

Indeed, fix a tree 7 and carry out the summation over all ordered collections
(t2,...,ta), ti € 2%, i = 2,...,n, of sites from the set A(T) of vertices of the
tree T It leads to the factor (n-1) C';(T)l—l < (n — 1)12M4MI-1 o the
right-hand side of (6). Summing over all trees 7 such that t € A(T), we get,
with the help of the conclusion 1) from Lemma 10.4.II, the estimates (1.7)
and (1.10) with a small factor (C8)"~! appearing in the right-hand side of
(1.10).

Remark. If J(t,t') satisfies the estimate

t,t)<e/lt-¢"

with some constants £ > 4v and ¢, we may deduce from (6) the strong cluster
estimate (1.8) with the function

o(t,t') =/ |t - t|"* (¢ is a constant)
with the best constant (1.10) (see [93]).

Proof of Theorem 1. We shall introduce the family of functions

|f@)| < 1. (6)

fi= sup |f.(z)|

As follows from the proof of Lemma 1.2, the semi-invariant
” -~
I+ <H L‘ii(z(t-'))>

is an analytic function of the parameter 8 in a circle || < Bo with Bo > 0 not
depending on sites ty,...,t, and numbers ki,...,k,. The formula (21.1.IT)

yields
=y AS(HReesz) o
Mo

{(A1,r1),....(Ap,rp)}i=t it \i=1
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with the sum taken over all unordered collection of pairs {(Ai,r1),...,
(Ap,7p)}, where for each j = 1,...,p, A; = (t;,1;) denotes a pair of sites
and r; > 1 is an integer, such that the sets A; are mutually distinct, the col-
lection T' = {Ay,...,4,} is connected, and ¢; € |J; 4j, i =1,...,n (otherwise

<H?=1 f,-'"‘,]'[fﬂ Q:;) = 0; see the condition C, §1.II).
bo

To evaluate the semi-invariants
i 1k L4 P
IT 7% 119%)
i=1 j=1 to

we consider with each finite A C Z" the following function of complex variables
A={N,i=1,...,n},and p={ps, A= {t,t'} C At #1'},

n
FA(A,p)=In <exP {E Afiz)+ Y I‘A‘I’A}>
i=1 ACA 4o
with the notation
dy= (PAJ;Uz, A={t,t'}c 2"

Theorem 1.1.IV and Lemma 2.4.III imply that F(), ) is analytic in the
domain

“}ﬁxﬂl\ih lnal} < Ao,

where Ap > 0 does not depend on A and on the set {t3,...,t,}. Moreover, in
this domain OF oF.
A A
l’?ﬁx{ 0Xi || Bua }< M,

where the constant M does not depend on A and {t4,...,t,} (see again §4.III).
From here and from the Cauchy inequalities we get

- / L4 /
ki Ir;
(I 710 o)
muo

i=1 i=1

olxl+lol
9"\o%u

< MG Rl

FL(A,[I)

A=0
u=0

where & = (k1,...,kn), p=(r1,...,7n), |K| = k1 + -+ + kn, ! =[] ki! (and
analogously for |p| and p!), and

gist+lel alsl+lel
9=\drp — 1

H ak‘Ai fI 8”"44,’

i=1 i=1
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This estimate and (7) imply, substituting f; for f;, the estimate

<1'I' f;""’(r(ts))>

i=1
MHk'(,\ol)""H(supr D > H(Cﬂ"l/z

i=1 r={4,,..,4,}j=1
t;€eli=1,..n
with the sum taken over collections I' = {4}, ..., Ap} described above. Asso-

ciating with each such a collection the connected graph with the set of vertices
T and with the edges {t;,t;} = A;, and passing from the summation over con-
nected graphs to the summation over trees (Lemma 8.4.IT), we get (6). The
theorem is proved.

Theorem 2. If the condition (3) is fulfilled and B is sufficiently small, the
following estimate holds true: whenevert = t;, € Z¥ and n is an arbitrary
integer,

i=1
< M(jn — )] k:l(sup |fil)sChr++5 (8)

2

(fg,...,t.)

<1‘[ Al el ))>
i=1

with some constant M and C.

Proof. We pass again to the functions (6’) and consider the logarithm of their
characteristic function with respect to the distribution pa corresponding to a
finite set A C Z":

FA())=In <exp {Z z\.-f-'(f(ts))}> : (9)
A

i=1
Heret; € A, i =1,...,n, and, as above, we use the notation A = (Ay,...,A).
Clearly,
FA(QD) =InZp(A) —In Z,, (10)

where Z, is the partition function of the distribution u,, and
Za(N) = <exp {2 Mfilz(t) -8 <I’A}> : (11)

ACA Ho
Repeating the arguments from §1.IV, we obtain, for sufficiently small 8 and

[Ai] < Ao (12)
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with some constant Ao, a cluster representation (1.1.III) of the partition func-
tion Z4(A) in terms of quantities kg(A) of the form (13):

1 if B={t},t#t foral i=j...,n
Xifi(=(t:)) , if B={t},
ks(\) = (e >uo t} (13)
> kr(h), |B| > 2
T=B

where the sum is taken over all connected collections T' = {4,,...,4p} of
two-point sets A; = {t;,t}}, and

kr()) = <H(e FRa; — 1) H e »f(==<‘»>>> . (14)

i: t.el‘ so

The quantities kp()) satisfy, in the domain (12), the estimates (1.2.III)
and the cluster condition (23.1.III). Thus In Z5(A) admits an expansion (see
(9.4.III) and (7.4.I11))

(A)
In ZA(\) = Z dygy(A) - Zln( J-) , (15)
=1
where 7 = {By,...,B,} are connected collections of sets, B; C A, |B;| 2 2,
ks(A
oM = [I 98:%), 98() = )
Bien H k()
teB

and d, are coefficients.
The equalities (15) and (10) imply

o A fFA(N) ) , dlxlg, ()
ey = — = dy — = , 16)
forn > 2. The sum in ( 16) is taken over all collections 7 = {Bl, .,B,} such
that ¢; € U,-l ,n.
Then
dl*lg, () dl*ilgp. (N
9 ) _ i
3} D 'H 2 N (a7
(K1yeeeiks)
where «; = (k Ic(j)), ji=1,...,s I:(’) 20, s =l k|6l =

i ki, and the sum in (17) is taken over all ordered collections (K1y--2yKs)
such tha.t K=K+ -+ kK,. Here,

KD #0 (18)
only if ¢; € B;.
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Further, the quantity gp(X) is an analytic function of A = (A1,...,A) in
the domain (12), and, according to (13) and (14), satisfies the estimate

14
IO B | (<279} (19)
1"={.i,,...,.4,}, I=1
=B

with the sum taken over all connected collections T = {A;,...,Ap} of two-
point sets, I' = B. Since |I'| > |B|/2, the estimate (19) may be replaced
by lgs(2)| < BIBW/4gp with the notation g = T4, 4.3 [1-1(CBY2J4,).
Hence,

0"""93, (A)

FI75) < Ct*ilu; p1P3l/4gg,

A=0
Inserting the last estimate into (17) we get

8"‘|gBj (,\)
g%

1Bl/4

< O,  k1plsen BN, (20)

A=0

where we use N, « to denote the number of ordered collections («1,...,&,)
that satisfy the condition (18) and £y +- - -+ &, = &. Let further, the collection
n contain s, sets B containing the site ¢;, s2 sets containing the site ¢, etc.
It is easy to estimate

NIM g2t tee, (21)

We shall use n; to denote the number of sites from the collection {ty,...,t,}
that fall into B; € 7. Then

s
sl+~-+s,.=z:nj<2|3j|. (22)
j=1 j

For sufficiently small 8 we get, by (22), (21), (20), and (16), the estimate

(),

(the summation here is the same as in (16)). Since for every fixed 7 there is

at most (n — l)!2z:‘3€'vuBI of ordered collections (ti,...,t,) such that t; = ¢
and t; € Upe, B, i =1,...,n, we get, by (23), the estimate

= ),

(‘2)'"'1»)

< Co)+ -+ I ko) (B)ndy G, B2en P (23)

n,t€7
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with the sum taken over all collections  such that ¢ € #}. Since the quantities
{gB} satisfy the cluster conditions for 8 small enough, we have

A
lz‘ dyia| < M

"eﬁ

uniformly in A and ¢ (see §4.IIT). Hence, passing in (24) to the limit A / Z¥
and replacing the functions f; by f;, we get (8). The theorem is proved.

Remark. We may present another proof of Theorem 2 suitable also for un-
bounded functions f; on S with finite moments:

(1fi(z@))Puo <0, p21.

Let us represent the semi-invariant < fil ., f"“) in the form (fi(z(f1)),

,fN(z(tN))) where N = k; + --- + ky and the site t; is met k; times in

Ehe collection {tl, .,in}, t2 is met k, times there, etc., and f, fi whenever
t; = t;. We shall expand this semi-invariant into moments

N
Hlfi>= Y Fn))FE -1, (25)
.

{Tl t"'ka}

where {T,...,Ti} is an arbitrary partition of the set N' = {1,...,N} and
fr= ]'[ jer f,, T C N. Each moment (fr) can be, with the help of cluster
expansions from §1.IV and §3.1I1, represented in the form

(Frdu=)_b,(fr), TCN (26)
Y

where the sum is taken over all the class v = (I‘l, .,T';) of connected col-
lections I; = {A(‘) A( )} of two-pomt sets A (with possible repeti-
tions) such that the collectlons of sets {T Fa,.. I‘,} is connected. Here,

T C {t1,...,ts} is the set of all those sites t; that coincide with some i,
JET. Moreover the quantities b,(fr) obey the estimate

b, ()| < (72" TT (X874 @)
Al"eet"yr

(C is an absolute constant).
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Inserting the expansion (26) for each moment (fr), into the right-hand side
of the formula (25) we may conclude, with the help of the arguments from the
preceding section using formal semi-invariants, that one may cancel all terms
of the form

b‘h(an) Teeet b'Yk(f-Tk)’

for which the collection

r= J r, (28)
l"er

obtained as the union of all collections I from |J7; is unconnected.

Further, with the help of a combinatorial estimate on the number of se-
quences (71,...,7k) such that the collection T in (28) is fixed and sum-
ming over all T', we get, using the estimate (27), the final result (8). How-
ever, one has to keep in mind that the factor [];-,(sup |fi(z)|)** has to be

n @\ /2
replaced (cf. (14.1)) by the factor supyy,, 3 max[];_, <l'[,-=1 |f.~|2k" > ,

where (lc? ). KY )) = &; is a collection of integers; the maximum is taken
over all collections (ki,...,%;), 8 = 1,2,..., such that x; + -+ + K, =
k = (k1,...,k,) and the supremum is over all collections of lattice sites
t1,...,tn € ZY.

§5 Low-Temperature Region

We shall consider now the limit Gibbs field {o,t € Z"}, 0y = %1, for the fer-
romagnetic Ising model on a square lattice Z? with h = 0 and for large values
B > 0, corresponding to the pure (+)-phase. The probability distribution u*
on the space {—1,1}2" of the values of this field is obtained as the limit, as
A / Z2, of the Gibbs measures p} under (+)-boundary conditions (see §0.I
and §5. III) Let us recall that in §0.1 we introduced a contour as a connected
closed polygon composed of bonds of the dual lattice Z?2. 72 Every such contour
T splits up the lattice into 1-connected components — one external compo-
nent and one or several internal ones. We say that a contour I is encircling a
lattice site ¢ € Z2 if this site belongs to any of its internal components.

Theorem 1. If B > 0 is sufficiently large, n is arbitrary, {t;,...,1,} is a
collection of mutually distinct lattice sites, and ky 2 1,...,k, 2 1 are integers,
then the estimate

(Ulkl, . o-‘“->“+| < C(n ky,.. ,.)(Coe'p)'(""“""), (1)
holds true with

C(n, kl, ey k _ n) = ﬂkl+m+k" H k'!(cl )2k1+-..+ku , (1,)
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where Cy and C; are absoluie constants and

r(t1,...,th) = min{ci{,h__,,g,}, minT|}.

Here, J{,,,m,t.} is the minimal length of trees constructed on the set of sites
{t1,...,ta} (see §4.II) and min |T'| is the minimal length of contours encircling
all sites t;,...,t,

From the estimate (1) we get the following conclusions.

Corollary 1. For a fized collection k,,...,k, and a fized site t =ty one has

Y [t ot <E= Ok k). @
(‘2: ,n)

Corollary 2. The estimate
|(0"ht1, . ’U;i.)“"'l < 51(526—2ﬂln)¢i(g,.....t.) , 3)

with absolute constants Cp and Cy = 51(7;, k1,...,kn) holds true.

Before proving Theorem 1 with both its Corollaries we shall notice that it
is not possible to get the estimates (1) and (2) with a best constant of the
form (1.10) or (1.10"). More precisely, we have the following statement.

Theorem 2. There is no constant & > 0 such that the series

1 /
Siln 5T ekl o

(‘9! ".)(klt »ku) i=1
would converge for some (and, consequently, for all) lattice sites t, € Z".

Proof. Let the contrary hold: the series (4) converges for some & > 0.

Let pgn, b # 0, be the limit measure for the Ising model. Due to the
uniqueness of such a measure for h # 0 (see §0.1), one has pg ) = jip =
limp szv fia,n, Where fip 5 are Gibbs modifications of measures pf\':

d”“' A exp{hza,}. (5)

du} teA

We expand the mean values (0¢)z,, in terms of semi-invariants of the
measure pu}:

() inn = z(n D H '<a;';,+1 ot o) o

(‘3- ata) (k1. ,k.)t— M
t, =1t.

(6)
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From the assumption about the convergence of the series (4), it is easy to
conclude, passing to the limit A 7 Z2, that the mean values (o¢), = (0¢)s,n
can be expanded in power series in h, |k| < &, that is similar to the series (6)
(containing, however, semi-invariants of the measure ut) and, consequently,
it is an analytic function in h for |h| < k. On the other hand, from the proof
of existence of the two limit measures y* and p~ for h = 0 (see the end of
§0.1) it follows that the mean

m(h) = (o1)p,n

has a discontinuity in h for h = 0. This contradiction proves Theorem 2.

Proof of Theorem 1. We shall consider the ensemble of contours on the dual
lattice Z3, i.e., a probability distribution on the set of finite or countable
configurations a = {Iy,i = 1,2,...} of contours in Z2, that was mentioned
in §0.I (see also §5.IIT and §1.V). We define a random field {x;} on bonds f of
the lattice Z2 with values in the set {0,1} by putting

1 if a contains a contour I' passing through the bond ¢,

xi(a) = {

0 otherwise.

Using the cluster representation of the partition function Z, of the con-
tour ensemble (see §5.IIT), one may prove, with the help of the methods of
Chapter III, that the cluster expansion for the correlation function f4 and
for the mean (F4) of any bounded local function of the field {x:} satisfies the
assumptions of Lemma 4.3.II whenever § is sufficiently large. These mean
values thus admit an exponentially-regular cluster expansion (see §3.1II, Def-
inition 1) with parameter A = Ce~#?, where C is an absolute constant, and
with the set of all bonds of the lattice Z?2 taken for the family 2 appearing in
the definition of an exponentially-regular expansion.

Now we shall introduce the functions xr defined on configurations of con-
tours:

1 fT€a,
0 otherwise.

xr(e) =

For each finite collection ¥ = {Ty,...,T,} of contours (that may be, in general,
repeated in the collection v several times) we put

x+(@) = I] xr(a).

Cevy

It is easy to see that xr, and also ., are local functions of the field {x;}.
Applying again arguments similar to those from Chapter III (see also [49]),
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it is easy to show that for any collection of contours ¥y = {I'y,...,I[,} the
estimate

ltx+)1 € JJ(Ce?)M (7

ey

holds true with C' an absolute constant and the product []p¢; taken over
the set 4 C v of all mutually distinct contours from 4. Thus, applying
Theorem 1.3 to the collection of functions G = {x,} and taking into ac-
count the inequality (7), we get the following estimate of the semi-invariants
(Xv1s---sXvn ), Where 11,...,9n is an arbitrary sequence of collections of con-
tours: 5 = {T{),... (')}

Theorem 3. The estimate

(i) <H(Ce-")“IIc‘*-(Ce"’>“"' "'"’Hm (8)

i=1 i=1

holds true with some constants C > 1 and C > 1 and the product [ taken
over the famzly ¥ of all mutually distinct contours T from the collection v =
7U--Uyn, ¥ = UI‘, is the set of vertices of contours entering ¥; d.,, = d.,,(ﬂ)
and d(711,...,78) = d(A,11,...,TN) _are the numbers defined in §4.1I, A is
the family of all bonds of the lattice Z2, and finally n;, i = 1,..., N, is the
multiplicity of the collection ; in the sequence {71,...,YN}.

In a particular case, to be needed later, when all the collections ¥; from
{m,...,¥N} consist of mutually distinct contours that successively encircle
each other, the quantity d; may be bounded by Er‘e-y |IT| and thus the factor

;. C% may be omitted in the estimate (8) (replacing the constant C by
CC)

We shall pass to the derivation of the estimates (1) and (1’). For each lattice
site t € Z? we shall single out, from a configuration a of contours, the set
of those that encircle the site ¢. Clearly, these contours successively encircle
each other and for almost all a their number is finite. In addition, for almost
all (with respect to the measure ut) configurations of spins {o¢,t € Z2}, one
has

o = [J(-1* = T](1 - 2xr), )
r r

where the product is taken over all contours T in Z2 encircling the site ¢.
Rewriting (9) in the form

o =1-2 th‘-l-‘l Z Xr, Xr,+: - -+(-2)" Z XDy -+ XD+ -
r {r1,3} T #T, {I'1,...Ta},
Li#Cj,i#5

(10)
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and inserting (10) into (1), we conclude that the semi-invariant a{f‘ yerns 6;f">

equals
i) ’
Y. IIe-2 '(1'[ xy(,.~>>, (11)
vV, y Dy, o
1
{7}‘)1-“)7£:)}1
where the sum is over all sequences {7}‘)}, i = 1,...,n, of collections of

contours such that each of them consists of mutually distinct contours and
that all contours from the collections {7}') }, i =1,...,k; encircle the site ¢;.
It is easy to verify that for each term in (11) one has the bound

r(tlr cer ,tn) s E Irl + d{‘ygl)" L )7£?) see ’7£:)}r
rey

where 7 C 7 is the set of mutually distinct contours I' in the collection v =
U ; 7}'). For a fixed collection {I', ..., } of distinct contours, each of which
encircles some site from the set ¢,,...,1,, the number Nyr, . r,.}(k1,...,kn)
of sequences {71(-'.),(1', 7)} over which the sum (11) is taken and for which
4 = {I'1,...,T;m}, does not exceed 2(¥1++k)m Indeed, this follows from
the representation

Niry,..ta}(k1ee k) = ) BEiroks (12)
nigl,...,nmal

where the numbers BE:+%» are defined from the expansion

m
, .
[IITa+x) = 3 Bambowm.pm (1)

g=1 i n;30,...,n,, 30

here, the product [T; is taken over those i, for which the site t; is encircled
by the contour I'y. We select further in the collection T'y,...,Ty, all those
contours that encircle the site ¢; and denote their number s;, then select
among the remaining ones all those contours that encircle ¢2 and denote their
number s3, etc. In this way we get, with the help of (8), the estimate

/k 1k
|<a’,!‘,...,a,.">

< (C'c-lﬂ)r(t;,...,t.)(kl R kn)k‘+"'+k“

X E ﬁ2(k1+...+k.)ai Z in(r,),

(82,0080 ) =1 {Ty,...0;} i=1 (14)

3
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where the sum 3" . ) is taken over unordered collections {Ti,...,[,;}

of mutually distinct contours T'; encircling the lattice site ¢; and « is some
sufficiently small constant. Furthermore,

Y [ < % (Z"’ n"") = c;:i (15)
it \‘T i

{Pl v'wrl.' }

with the sum Eg) &l taken over all contours I' encircling a given site ¢ (for
a suitable choice of x this series converges). On account of (15), (14), and the
inequality

n
(kl 4+ + k,,)kl"'"""k" < npkittka H k!,
i=1

the estimate (1) with the equality (1’) follows. Theorem 1 is proved.
Proof of Corollary 1. Since

(Ce—ﬂ)r(t;,...,t.) < (Ce-p)i{h,...,t"} + (Cc-p)min 13|

and the sum E{hw,,"}(Ce"")&{'l"""*} converges, as follows by Lemma
10.4.11, it is sufficient to prove that

Y (CePyminill < oo, (16)
{tq,...,fN}
Since a fixed contour I' cannot encircle more than |©(T")|~! of different col-

lections {t3,...,t,}, where O(T) is used to denote the interior of the contour
T and, since |O(T')| < |T'|2, we conclude that the sum (16) is bounded by

r:o(r')3n
where the sum is taken over all contours I encircling the site ?.

Proof of Corollary 2. The estimate (3) follows from

4 nmin |T
dity,..ta) € 2 ' I
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§6 Scaling Limit of a Random Field

In this section we will show a simple application of the estimates concerning
the decay of semi-invariants that is associated with a limit theorem for the
so-called renormalization group.

Let 2 = {z(t),t € Z"} be a translation invariant random field taking values
in real numbers and with vanishing means: (z(t)) = 0. We suppose further
that all its moments are finite

(lz@®)*) <00, t€ 2, k>0, (1)

(and, consequently, all mixed moments {(z(t1))** ...(z(tn))**) for arbitrary
ti,...,tp and ky 20,...,k, > 0, are finite).

Let Ap = AY = {0 < t®) < N} be a cube Z” (N is an integer) and
A = ASN) = Ag + Nt be its shift by the vector Nt with t € Z”. Clearly,
Uiezv At = Z2” and A;N Ay = 0 if t # t'. We define a new random field
& = &) = {#(t),t € Z"} by putting

2(t) = &(t) = s{VINV2, oM = 3 2(t). 2)
t'€A,

Clearly, the new random field is translation-invariant, has all moments, and
(2(t)) = 0. The mapping (2): z — #V) in the space of random fields is called
a renormalization transformation and will be denoted by Gy. It is easy to
verify that Gn,Gn, = Gn, N,, i.e., that renormalization transformations form
a semigroup.

Let the limit

= Nli_xgo Gnz )

exist (and, consequently, also the limit lim;..m(Gf\,o )z = £ with an arbitrary
field Ny). It is called the scaling limit! of the original field z. The convergence
in (3) is in the sense of the weak local convergence (convergence of finite-
dimensional distributions, see §1.I) of probability distributions yx on RZ" of
values of the field #V) towards the distribution y of the field .

Theorem 1. Let a translation-invariant field z = {z(t),t € Z*} with van-
ishing mean, (z(t)) = 0, satisfy the condition (1) and the condition of sirong
decay of correlations: for any n and ky, ..., k, suppose

D Kz)™, ... z(ta)* )] < oo. (4)

(tg,...,f")

! Translator’s remark: the term “self-similar field” is also used in the literature.
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Then the scaling limit (3) of the field z ezists and the limit field & =
{Z(t),t € Z*} is an independent, translation-invariant, Gaussian field with
vanishing means, (£(t)) = 0, and the variance

oM
D = D(a() = Jim D2t~ = 3" (o(2),=(¢). )
‘Ie ZV

Proof. We use the following lemma.

Lemma 2. Let uy be a sequence of probability distributions on the space R"
with finite moments and vanishing means, (z;) anv =0,i=1,...,n, such that
the semi-invarianis .

<z;’:‘,.. . ’z;"‘.>u~ —0, N—>oo (6)

for any colleclions of indices, 1 € i3 < i, < --- < i, € n, and numbers
ky21,...,k, 21 such thatky; +---+k, > 2, and also

(z,-,z,'),‘,, —b; as N — oo. (7

(Here, (21,...,%s) are coordinates in R™).
Then pun weakly converges towards the Gaussian distribution on R™ with
vanishing means and the covariance matriz {b;;,i,j=1,...,n}.

The proof is based on a similar assertion about convergence of measures
with converging moments (see, e.g., [58]) and on the observation that only for
a Gaussian measure all higher semi-invariants are vanishing (see §1.II).

The condition (6) for fields (V) of the form (2) follows easily from (4):
one must represent the semi-invariant (2" (¢,)*,...,2V(t,)"**) in the form
of a sum of semi-invariants of the original field z with the factor
(N "/2(k1+...+k..))'1, and then observe that the whole sum is of the order
~ NV,

Further for t # ¢/, one has

(D0, E0) = 75 2 (et),2(6). ®)
tleA(N’
heA:{

In each cube A, we single out a narrow layer 8ﬁAfv of the width N'/2
around the boundary AAY and denote AY = AM\& /yAY. Then, fort; € AY,
we get by (4):

Y (2(t1),2(t})) =0 as N —oo (9)

1, €Al
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uniformly in ¢;, and

Y (a(tr), a(ty) ~ N2, (10)

hGAf',
t;&aml\ff

By (8), (9), and (10), we conclude that (2" (t),£V)(t')) — 0 as N — co. One
derives the equality (5) in a similar way. The theorem is proved.

Corollary 1. In the case of positive variance, D > 0, (i.e., Ds{™ = o(Nv)),
the field

(N) Ny —1/2
) = e =570 (G2
(D)7 >

converges towards the Gaussian independent field with the variance one.

Corollary 2. Let a field in the lattice be of the form {f(z(t)),t € Z"}, where
{z(t),t € Z"} is a Gibbs translation invariant field studied in Theorem 2.4
and f is a bounded real function on the space S such that (f(z(t))), = 0 with
p being the distribution for the field {z(t),t € Z¥}. Then the scaling limit
of the field {f(z(t)),t € Z"} is a Gaussian independent field with positive
variance.

This follows from the results of Section 4 and also from the expansion

2 (=), £(=())) = (£ (=(t))uo + O(B),

.rl

that may be also easily derived from the considerations of Section 4 (here
()uo is the mean under the distribution yg of the original independent field).
According to the remark at the end of Section 4, this result holds also for an

unbounded function f whose all moments are finite: <| f(z(t))l"> < oo.
. Ho



CHAPTER 7

SUPPLEMENTARY TOPICS AND APPLICATIONS

§1 Gibbs Quasistates

The theory of cluster expansions for classical systems developed in the pre-
ceding chapters may be, in may aspects, carried over to the case of quantum
systems. Here we will dwell on it only briefly.

Let A be an associative algebra with a unit element 1 over the field of
complex numbers C. A linear functional (-) on 9, such that (1) = 1, is called
a quasistate. For the case where an involution *:z +— z*, z € 9, is defined
on the algebra A, a quasistate is called a state if it is nonnegative on positive
elements (i.e., on elements of the form zz*, z € A). We recall that an algebra
A is called a superalgebra if it can be represented in the form of a direct sum
A = Ao ® Ay where Ay C A is a superalgebra of A and A; C A a subspace
of A such that ApA; C Ay, A;Ag C Ay, and A1 A; C Ap. Elements from Ay
are called even and elements from A; odd. Even and odd elements are called
homogeneous. We notice that each algebra A may be regarded as a trivial
superalgebra by letting %o = A, A; = {0}. In this way, all constructions
given below for superalgebras can be automatically applied to an arbitrary
algebra.

A quasistate () on a superalgebra 2 is called even if (z) = 0 for each odd
x € 21.

A local algebra on a countable set T. Let a (super) algebra A, with unit
15 be associated with each finite subset A C T so that for each pair of sets
A’ C A, a homomorphic imbedding ¢}, 5:Ar» — A, is defined. Then the
algebra A% = Upcr A, (more precisely, the inductive limit of the algebras
Ap, see [10]) is called a local (super)algebra in T. For the case where the
algebras A, are normed and the imbeddings ¢, 5, are isometries, one may
introduce a norm on 2A° in a natural way and define the closure A° of the
algebra A° with respect to this norm called a quasilocal algebra (superalgebra).

196
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Superalgebra A5 and imbeddings paa are usually introduced in the fol-
lowing way. Let {2, t € T'} be a family of superalgebras assigned to points

t € T, and put
=@, (1)
teA

where @ is the tensor product of the superalgebras A, (see [33]), with the
tEA
imbeddings taken in the form

¢A',A(zl\') =z ®1A\A'1 ) € ﬁAl. (2)

We do not give the definition of the tensor product A; ® A, of superalgebras,

observing only that the image 2 = 2 @ 14, € A1 ® Az of an odd element

z € A; commutes with the image § =14, ® y of an even element y € A, and

anticommutes, (£j) = — (), with the image of an odd element y € A;. The
images of even elements commute.

Examples. 1. Let 2A; = A" be the C*-algebra of n x n complex matrices
with the norm induced by the usual scalar product in C” (see [17]). Then the
C*-algebra 0 is called the spin algebra in T

2. Let 9A; be a Grassmann superalgebra (see [5]) with a finite number of
generators (in physical applications, one usually chooses their number to be
even). Then A° is also a Grassmann algebra.

3. Let A; be a Clifford superalgebra with unity 1, and generators a,, a;:

2 — (a*\2 = =
a; =(a;)* =0, a:a; +aja; =1,.

From these relations, it follows that one may choose in 2, the basis (1, a¢, a7 ,
a;a}), and the algebra 2, is thus isomorphic to the superalgebras M C A? of

the algebra of 2 x 2 matrices spanned on the generators 1,e; = (g (1)) ,€2 =

(2 g). Hence, one may introduce in the algebras 2A; and A, a norm (pre-

served under imbeddings ¢, ) so that all of them turn into C*-algebras. The
quasilocal Clifford superalgebra 2 is called the algebra of canonical anticom-
mutation relations (or, abbreviated, the CAR-algebra).

4. The case of classical systems is included in the present scheme if we take
for A; = A the commutative C*-algebra of bounded continuous functions on a
metric space S. Then the algebra A0 coincides with the algebra of all bounded
fun;:;li‘ons on ST that are continuous with respect to the Tikhonov topology
on

Independent quasistates on A°. Let a local superalgebra in 2° be obtained
from a family of superalgebras {2, ¢t € T'} with the help of the construction
described by (1) and (2), and let (-), be even quasistates on the superalgebras
A;. We define the quasistate ( ) on A° by letting

<®z,> =[G}, =€, 3)

teEA teA
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and then extending it by linearity onto the whole algebra 2° (and, if possible,
by continuity onto the algebra 20).

The quasistate on 2A° obtained in this way is called independent. (We notice
that for states (-), on A, that are not even, the definition (3) is incorrect.)

Semi-invariants. Let 2 be a superalgebra, () an even quasistate on %,
and (£1,... ,€N), & € 9, a sequence of (possibility repeating) homogeneous
elements.

For any subset T' C N, we write its elements in the order of their growth,
T = (§1,... ,3p), i1 <42 < ... < ip, and in the following, we shall identify T
with the sequence (i1,... ,3p). Put

ér =&, f.’

We now define semi-invariants (§7) = (f,-,, cee ,&,) for all T C N in the

following way. We use T C T to denote the subset of those i € T for which
the element &; is odd. Put

(&) =0  if |T|is odd.

For the case where the number [T is even, the semi-invariant (¢}) is defined
by an inductive formula analogous to definition (6), §1, Chapter 2:

€ry=" Y (&) (&n) (=D, (4)

6={T1,...,Tx}

where the sum is taken over all partitions § = {T,... ,T;} of the set N such
that all |f",| are even, and 7 = (6) is the number of order inversions in the
sequence (ﬁ, ... ,ﬁ) of indices of even elements written in the same order
as they are placed in successive elements T}, T3, etc., of the partition & (due
to evenness of |f".|, the sign (—1)* does not depend on the order of these
elements).

The semi-invariant (£);) = (§1,...,&n) for a sequence of arbitrary (non-
homogeneous) elements §; € 2 is then defined as a multilinear (unsymmetric)
function of elements §;,i=1,...,N.

We shall establish a series of properties of semi-invariants.

I. Let a state (-) on a local superalgebra %° be independent (and, conse-
quently, even), §; € Aa,,... ,éN € Ap,,, and the sets A;,... ,Ay C T be
mutually disjoint. Then

(61)'-- )£N)=0- (5)

The proof repeats that one of a similar property of semi-invariants of a
virtual field (see §1, Chapter 2).

B
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II. The inversion formula (for the case of homogeneous elements &;):

b= Y En) - n) (D)) R - 1), (6)

6={T1,....Tx}

where the sum is the same as in (4).
The proof reduces itself to the Mobius inversion formula. For any partition
§={T,...,T;} of the set N, we put

£©6) = (-1)"D (¢} .- (€n) »
9(8) = (=1)"® (1,) ... (¢7.) -

From (4), we get
9(8) =Y f(B).
LS

Hence, by means of the M&bius inversion formula (see §5, Chapter 2), we get
(6).

III. Generalized ezpansion over connected groups. Let (£1,...,6N) be a se-
quence of homogeneous elements, and 8o = {T1,...,T:} be a partition:
Tv=(1,...,HL4),

T2=(11-I-1,... ,12),... s Tk=(l;-_1+l,... ,N).

Then
€reobn) = Y (&) (8r) (-7, (M)

8:8'Véo=1

where the sum is taken over all partitions §’ that are connected with respect
to 8 (see §1, Chapter 2).

The proof of (7) is analogous to that of Formula (10), §1, Chapter 2, for
ordinary semi-invariants.

IV. Gaussian quasistates. Let & = {n,, 7, € A} be a collection of generators
of a superalgebra 2 with all 9, (except 1) being odd. An even quasistate (-)
on the superalgebra 2 is called Gaussian or generalized free (with respect to
the selected system @) if all semi-invariants

(Mays--- sMan) =0 for n>2.
In other words, only pair (two-particle) semi-invariants are nonvanishing, and

any moment (9 ...7N), 1 = 14, is expressed in terms of them with the help
of formula (6):

(e n) = D (i3 - (s ) (=), ®
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where the sum is taken over all partitions of the set (1,...,N) into k pairs
(N =2k): (¢, 51), 4 < J1, 1 =1,... ,k, and 7 is the parity of the permutation
(ilajla i2aj2’ ey ik,jk)-

V. Formal series. (a) Consider first the case, where all §;,... ,{n are even

elements of A. Then the semi-invariant (§;,... ,n) is the coefficient of the

product A;...An in the expansion into the formal power series in {);,i =
., N} of the quantity

In (e*1ér .. ervén) 9)

(here e*¢ is also defined with the help of a formal expansion into a series).
This statement is obvious.

Furthermore, the quantity In (ef ) where £ = A€y + -+ + ANEn serves as
the generating function for symmetrized semi-invariants:

Am
In (ef) = Z m_' (f’ml e };nN sym , (10)
{m,,...,mn} 1
where )
(fly'-' ’fM)sym = F <£0(l))"' ’so(M)>’ (ll)
4
and the sum is over all permuations & of the set (1,... ,M).

(b) Let now the elements (§1,... ,&n) be odd. Then one may obtain the
formulas similar to (9) and (10) with the help of formal series in “Grassmann
variables.” To this end, we introduce the Grassmann algebra & with unity
1; and generators 7;,...,nn and let A ® & be the tensor product of the
superalgebras (in which 7; commutes with even and anticommutes with odd
elements of the algebra 2A). Any element A € A ® & can be written in the
form

A= Z Aiyrnine Miy oo Miny  Biy . i € A

(81,00 488)

With the help of a quasistate (-) on ¥, we define the mapping AQ & — & by

the formula
A (A)q = Z (ail,... ,ik) Miy oo Mg~

(81, 48k)

Consider the polynomial in 7,... ,gn:
In (™1 ... e™EN) € B. (12)

Since n;&; are even elements of the superalgebra % @ &, we may argue in
the same way as when proving (9) to conclude that the term containing the
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product 7; ...nn in (12), which we shall denote by (mé1,... ,nvén)q, is of
the form

('7151, (] a"”eN)! = z (_l)k_l(k - l)' ((ﬂf)Tl)ﬁ ((ﬂf)Tg)n ) (13)

6={T1,... ,Tk}
where the sum is taken over all partitions § = {T7,... ,T;} of the set A to the
elements of even cardinality |T;|, and for T = {iy,... ,ip}, i1 < i2 < ... < ip,

we use the notation
(”E)T = ﬂilfﬁ cee 77‘,&'; = (_l)pr"T’
where T denotes the sequence T in the reversed order: N7 = i, - - - M, - Hence,

(1)) - ((M)n)a = (En) - n) m . (=)"®,  (19)
and by (4) and (13), we find that

(mér, ... ,anEn)g = (€1, €M) M - 0N,

i.e., the semi-invariant ({1, ... ,£n) is the coefficient of 7; ... 7n in the polyno-
mial (12). If we introduce the quasistate wo on the algebra & by the formulas
wo(’]N) =1, wO(’TI’) =0a N= {lv )N}s TCN’

(the so-called Berezin anticommuting integral, see[4]), then (14) implies

(51,... ,fN) =Wwo (ln (e"‘f‘ ...e""f")) . (15)
This formula may be used for estimates of semi-invariants.

Gibbs modifications of a quasistate. Let ( ), be a quasis:tate defined on a local
algebra A% in T, and {Us,A C T} be a family of “Hamiltonians”: U, € 4.
We define the quasistate (-), on A° by the formula

(F)a= 23! (Fexp{~Up})y, Fe’, (16)
under the assumption that the stability condition is satisfied

Zp = (exp{-Up})y # 0, o,
and also that the exponent exp{—U,} is defined on the algebra A, (this
condition is satisfied, e.g., for a Banach algebra ®,). The quasistate (:), is
called a finite Gibbs modification of the quasistate (-);. For the case where
the thermodynamic limit exists,

for all F € 29, it defines the quasistate (-) on A° called a limit Gibbs modifi-
cation of the quasistate (-),. Hamiltonians U are most often given, as in the
classical case, with the help of a potential {®4,4 C T}, &4 € A,
Ur=) ®a. (17)
ACA
Many notions and methods of the preceding chapters may be carried over

to the case of Gibbs modifications of quasistates (cluster representations of
partition functions, cluster expansions of mean values (Fy), etc.).
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Theorem 1. Let all (super)algebras {2A,,t € T} defining a local algebra A°
coincide: A, = A, where A is a Banach (super)algebra and let an independent
quasistate (), on A° be given in the form of the product of a single even
quasistate () on A. Furthermore, let Hamiltonians Up be of the form (17)
where we suppose that for any pointt € T and any n 2 2, the condition (||-||
is the norm in 2A°)

Y ll®all <A™ and @y =0, teT, (18)
A:t€A,|A|=n

is satisfied with 0 < A < 1 and a sufficiently small constant ¢, ¢ < co(A). Then
the corresponding limit Gibbs modification ( ) on A° erists, and whenever F =
Fp is an element of Ap, B C T, its mean (Fp) admits a cluster ezpansion

(Fs) = ) _ br(F), (19)

RCT

similar to the ezpansion in (8), §3, Chapter 3, or in (11), §3, Chapter 3.

The proof of this theorem repeats that of Theorem (1), §1, Chapter 4; one
has to use the expansion

exp{-Ua} = Z( UA)

n
n=0 n=0 (Axy...,AR)

B, ... 04 (20)

and then to gather together all terms with the same (unordered) collection of
supports {A,...,An}.

Perturbation of a Hamiltonian and series in means and semi-invariants. Let
(-)o be a quasistate on an algebra A%, and ( ),, ( ), be its Gibbs modifications
(16) by means of Hamiltonians U; and U = Uy + V, respectively.

We notice that, in a general case (as opposed to the classical one), the
condition of transitivity of Gibbs modifications is not satisfied, i.e., in general

(F)zié'('{;_:v"’)‘)—l', Fe2.

Nevertheless, one may represent (F), in the form of a series into which the
means (or semi-invariants) of the perturbation V enter. We shall introduce
the notation
I[(s) = e~*Wi1+V)eln, (21)
Then
py, < (FECE),  (FT(),
(F)y = (e_(u,:,V)eU,e-Ul)o T (rQ),

(22)
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It is easy to verify that

T e TV, V(= Ve,

Hence,
ray=1- / o)V (s)ds
0

—14 31 // V(s1)...V(sn)dss...dsn  (23)
n=1 0€6:<...Ksn K1

(the integral in (23) is understood in the sense of Bochner; see [28]).
Whenever z = {s1,...,8,} is a finite subset of the segment [0,1] with
51 < 83 < ...< 8y, we define the element

V(z)=V(s1)V(s2)...V(sn)-

Then the formula (23) can be rewritten in the form

W= [ DFVEia), (24)

Nin

where v is the measure on the space Qg of finite subsets of the segment [0, 1]
defined in §1.

With the help of the representation (22) one may, taking into account (23)
and (24), in many cases, obtain a cluster representation for the mean (F),.
Moreover, one has a direct expansion for the mean (F), which is analogous
to the expansion in semi-invariants in the classical case (see §1, Chapter 2).

Lemma 2. Let Uy, and V be even elements of a superalgebra A and (-), be an
even quasistate. Then

(F)y=(F) +)_(-1)" / (F,V(81),...,V(8n)), X ds1,...,ds,. (25)

81<...<8p

Proof. Introducing the function ®p(z) defined on the subsets z = {s1,...,8n},
0< 8 <...< s, <1, by the formula

QF(z) = (F’ V(81)$ cee ’V(sn))l )

we rewrite (25) in the form

(P = [ (D25 (a)iv(a). (26)
in
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On the other hand, by (24) we get

(FEW), = [ (-)¥Gr(2)iv(a),
Q6a

), = [(-D)g(a)av(z), (20

where
Cr(z)=(FV(z)),, g9(z)=(V(2));, =€ Qpn.

Furthermore, by definition (4) of semi-invariants (for the case of even ele-
ments), it follows that

Gr(z) = (FV(s1)...V(s0)),
= Z (Fr V(s.',), sy V(S,',,))l (V(sjl) so V(sjn-k ))1

{I'| <...<l'k}

=Y ®r(y)e(z\y).

yCrz

Now by using Lemma (1), §6, Chapter 3, we get
JEvHer@aa = [(-0Merwat) [ -Ho()ane).
Qqn Qga
Hence, by (22) and (27), the formula (26) follows. The lemma is proved.

§2 Uniqueness of Gibbs Fields

In §8, Chapter 4, we established the existence and proved a cluster expansion
of limit Gibbs fields with real values that were obtained as small perturbations
of a Gaussian field in finite sets A C Z¥ with arbitrary uniformly bounded
boundary configurations y?A. The following question arises: Is it true that
arbitrary (no longer bounded) boundary configurations y®* lead to the same
limit measure, i.e., that there is a unique Gibbs distribution in Z¥ (in the sense
of DLR, see §2, Chapter 1)? A similar question also appears in connection
with the theorem about the uniqueness of a Gibbs field for the case of bounded
spins that was proved in §2, Chapter 5: Is it possible to extend the theorem
to the case of unbounded spins? A difficulty stems here from the fact that for
boundary configurations y®* taking sufficiently large values, it may happen
that the measures p) yoa do not admit cluster expansions anymore. One may
overcome this difficulty in a similar way as in the proof of Theorem (1), §2,
Chapter 5, where we passed from an arbitrary boundary configuration 3% on
the boundary of a large cube A to a sufficiently small boundary configuration
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on the boundary of some random (but sufficiently large) volume A’ C A.
Nevertheless, one needs some a priori estimate on the probability of large
values of boundary configurations (increasing with growth of A). In other
words, we shall prove the uniqueness of Gibbs fields for a certain class of
random fields in Z”; namely, the fields {z(t),t € Z"} such that

Pr(jz(t)| > M) =o[(lnln M)*~Y]™', M —o0, v>1, (1)

for each t € Z¥ with the estimate o( ) uniform with respect to t € Z¥.
Let the Hamiltonian Ua(z/y) be of the form

Ua(z/y)

=bh| Y (®O-ze)+ Y (2(t)-ut))
LUEA, |t-t!|=1 tft,'\_,‘t,"eg\
+mY 22 (t)+ 1) P(z()), (2

teEA teEA

where A = Ay is a cube of side N,z € RA, y = y?A is a boundary configura-
tion, Ip > 0,m > 0,A > 0, and P is a polynomial of a degree > 4 bounded
from below.

We shall use pp 404 to denote the Gibbs modification of the Lebesgue mea-
sure 3 = (dz)* on RA by means of the Hamiltonian (2) with the boundary
configuration y%A:

d .
%}yj{_’: = Z; 4 on e7UnC v, (3)
where
Zagor = / e=UE/Y* M) (dg)h, 3"
RA

Theorem 1. Let a Hamiltonian of the form (2) be given, and suppose that
either

a) A > 0 is sufficiently small: 0 < A < Ao(lp,v,m, P), or

b) ly is sufficiently large: lo > ly()\, v, m, P),
and the polynomial P contains only the powers z* with k > 3. Then there
ezists a unique limit Gibbs field in the lattice Z¥ that is generated by the
conditional distributions (3) (in the sense of the DLR definition; see §2.1)
and that belongs to the class of random fields (1). The distribution p of this
field admits a cluster expansion.

Remark. Case a) is a generalization of results from §8, Chapter 4, and case
b) a generalization of Theorem 1, §2, Chapter 5.
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The proof of the theorem is based on the following lemma that is of interest
in itself. Let us consider a Hamiltonian of a more general type than (2).
Namely,

Ua/v)=lo | 3 le@=-zt)"+ D =) -y@)* [+ _P(=()),
e e

(4
where .
P(z) =) ljlz"
i=1

(or a similar sum in which some |z["/, j < k, may be replaced by |z|"/ sign z),

>0, U§L>0,
T"Z2a>1, TS Ve=1>...>71>0.

We denote A = A U JA and use Z to denote the configuration in A that
coincides with z in A and with y®A in JA. Whenever B is a positive number
and Z a configuration, we use Dp(Z) = D(Z) to denote the set of “B-sites” of
this configuration:

Dg(z) = {t € A:|z(t)| > B}.

Let Dy(Z),...,Di(Z) be 1-connected components of D(Z). A component
D;(Z) is called bordering if it intersects JA. We use D" (%) to denote the
union of all bordering components and £KB C RA to denote the set of config-
urations z € R? for which

DPr(z)N Ansia # 0,

where A4 is the cube of side [N/4] + 1 that is concentric with the cube Ax.

Lemma 2. Let A = AN be a cube of side N and pp yon be the Gibbs modifi-
cation of the measure Y by means of the Hamiltonian (4):_
1) Let ¢ > a. Then there ezist the numbers B > 0 and é > 1 such that if

5N
gghd<b, (5)
then
P(£8) < Cy exp{—C,N}, (6)

where C; > 0 and Ca > 0 are constants depending on B,8,P,ly, and v.
2) For v = a, the estimate (6) is valid under the condition

max Iytl < BAN’ (61)
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where A > 1 is some constant (and Cy and C, in (6) depend on A).

Proof of Theorem 1. In case a), the convergence of uj yoa to the limit mea-
sure u and also its cluster expansion was proved under the condition that the
boundary configurations y?A are uniformly bounded for all A. This fact can
also be established in case b) by repeating, with some changes, the proof of
Theorem 1, §2, Chapter 5. Furthermore, relying on the estimate (6), we get,
with the help of similar arguments to those in the proof of Theorem 1, §2,
Chapter 5, that for any local function Fj4, one has

(Fa)u, on = (Fa)y, A/ Z, ]

with an arbitrary choice of boundary configurations y?A obeying condition
(5) (or (6')). The measure p belongs to class (1), as may easily be concluded
from the estimate _

Pr(z(t) > M) < Ce~M", (7)

where C,C > 0 are constants and n is the degree of the polynomial P(z) (the
estimate (7’)) is obtained with the help of a cluster expansion). Further, any
Gibbs measure /i (from class (1)) satisfies the equality

= [ Fyy o i+ [ E,, L G, ®

where A is a cube containing A, the integration [ " is over the set of configura-
tions y®A obeying condition (5), and the integral [ " is over the complementary
set of configurations y®A for which condition (5) fails. Due to (1), the integral
[” tends to zero as A / Z¥ and the integral [* — (F) » according to (7) and
(1). The theorem is proved.

Proof of Lemma 2. We represent the Hamiltonian (4) in the form

Unz/y) = Y. @4 (2(2),2(t) + Ha(y), 9)
. t,7€R,
Jt=-t'|=1

where the configuration Z is defined as above, and

 Q— 1 —
@53,)(3:1,1:2) = |z — 22|* + V_AP(‘”I) + V—AP(zz),
t t!

with v} denoting the number of sites from A neighbouring with t, Hx(y)
depends only on y.
Now we choose B > 0 such that if |z| > B/2, then

?(z)>l—;-|z|7" and F(z)>1k%|z|7*'l (10)
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and define the mapping gZ: R — R by

z2—BJ2, z>B,
gB(z) = g(z) = =, |lz| < B,
z+ Bf2, z<-B.

Lemma 3. A) Let |z,|,|x2| > B. Then

g " (31, 32) > Qt t! (g(zl)»g(z2)) + COB‘“

for any t,t' € K, with Co > 0 being some constant.

B) Let |z2| 2 B and
7 —1
a-1

|21 < |22l + Cileal®, 6= 21, (11)
with a sufficiently small constant Cy. Then for allt,t’ € A, one has

e, t'(zls z2) > ‘I’t t ) (21,9(22)). (12)
Proof. A) From (10), we get for |z4|, |z2| 2 B

&) (21,2)

> 82 (0(0).0(22) + 55 [Plar) - Platen)] + oz [Ple) - Plo(e))]
t t' (9(31) 9(z2 N+ ——— knB {|:p:1 + 3

1&—1}
t t’ (9(31) 9(z2)) + CoB™.
Here the signs + are determined by the signs of z, and z;, and Cp =
e (1)'"-1
B) We shall consider two cases.
1) 7 > a. Then

-1
B + |zo £ E

2

,Auxa-ﬁﬂuh(n»+Ma—mr

T -z | + u_,: [P(z2) — P(9(z2))] -

-1 5

From (11), we get |z, — 25| < Cy|z2|*,C1 = C, — pe=t. Consequently

a
> -«

a-1
Cilz2l® + 5 B

|21 — 22|* — 5

131—1‘2:!:?

2

1 a-1
—|:cz|""'1—C C= a(Cl+ 555= l) .
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On the other hand,
1 -1 B
P [P(z2) — P(9(z2))] > Colzz| 7

Hence, (12) follows for sufficiently small C; and large B.

2) 7x = . Let 22 > B and z; < 0. Then |z, — 2;|* > |23 — z; — B/2|*
and (12) is obvious. If z; > B and z; > 0, we have |z; — 22| < C}|z2| and
the preceding arguments apply. The lemma is proved.

Now let z € £ and Df(z) C DB (z) be a bordering component of the set
D®(z) that reaches the cube Ayy4. Consider the sequence of numbers

Bo=B, By=By+C B}, B;=B,+CB.,....

For 6 > 1, we choose B such that C; B(6—1)/2 > 1 and put § = 1+ (6—1)/2.
Then it is easy to see that

B, > Bin. (13)
For the case of § = 1, we have
B, = B(1+C1)". (14)
We consider now the sequence of crowns
Sk = Anj2+:\AN/24 k-1, k=1,2,...,

and let
Ti(z) = {t € Sk N DE(2); |z(t)| < B:}.

We use the notation

[N/2]+1
. R(=)=Df’(z)n{A~\ U Tk(z)}

k=1

and let ﬁ(z) be any 1-connected component of the set R(z) that contains the

set Dy N (Any2\Anya)-
Clearly,

|1”z(z)| > N/4. (15)

Further, as follows from (5) and (6'), for § = /2 for case 74 > a and for
A=(1+ 01)1/2 for case ;. = a, we have

ly(t)| < Bnya-
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Thus, if |z(t)] > Bm,t €~I~i(z), then at all the sites ' € A neighbouring
on t and not belonging to R(z), we have |Z(t)| € Bm41. Consider now the
mapping Gg: RA — RA defined by

_ z(t) téﬁ(z),
It follows from Lemma 3 that

Co

BY |~
Un(z/y) > U(Ggz/y) + =5— | ()| . (16)

For any 1-connected set R intersecting dAn/4 we use X(R) C £F to denote

the set of all configurations z € £Z for which some of the sets R(z) = R. We
shall estimate the probability pr = Pr(z € X(R)). From (16), we get

J exp{-U(z/y®*)}dul

_%(R)
- ZA’yDA
[ ep{-UGre/™ My
< X(R) o~ IR (17)
Zp yon

Further, the mapping Gg:z — Ggrz, ¢ € X(R), preserves the measure u3,
and thus the substitution Z = Ggrz, z € X(R), in the integral (17) leads to
the estimate -

pr<e 7 IRl (18)

The number of sets R of the cardinality M does not exceed const -|0An/4| .CM
with an absolute constant C > 0 (see Lemma 4, §4, Chapter 2). Thus, by (18)
and (15), we get estimate (6) for sufficiently large B. Lemma 2 is proved.

§3 Compactness of Gibbs Modifications

In this section, the idea of isolating “clusters” is applied in the proof of the
local weak compactness of the set of Gibbs modifications u, (see §1.1). Here
we consider Hamiltonians of a general form without any “small” or “large”
parameters.

Let {z(t),t € Z'} be a real field in the one-dimensional lattice Z! with a
Hamiltonian with (pair) interaction of nearest neighbours:

U(@) =) fz®)+ ) @(=(t)=(t)), (1)
s R




§3 Compaciness of Gibbs Modifications 211

where A C Z!, f and ® are functions bounded from below. Moreover, & is a
locally bounded symmetric function and f obeys the condition

(2]
/ e/ @dz < oo. 2)
-00

We use p, to denote the Gibbs modification of the measure 43 = (dz)? on
the space RA that is given by means of the Hamiltonian (1):

j—ﬁﬁ = 25 exp{-=Un(2)}. 3)

Theorem 1. Under the condition specified above, the set of Gibbs modifica-
tions {pr} is locally weakly compact.

Remark 1. The theorem and its proof may be directly generalized to the
case of an arbitrary pair potential bounded from below and of finite range
{®e,00, It —'| < d}.

Proof. As follows from Lemma 3, §1, Chapter 1, it is enough to prove that
for any finite set A9 C Z! and any € > 0, there exists N such that for all
A D Ay, one has

pY =Pr{z € RM:|z(t)| > N, t € Ao} <, 4)

where the probability Pr is computed with the help of the distribution ux.
Furthermore, it is enough to establish (4) for the case of an arbitrary one-point
set Ao = {to}. Let, for definiteness, to = 0 and A = [Ly, Ls], Ly < 0 < L,.

We shall choose a number B < N, and for each configuration z € RA, we
use DB(z) to denote the following set of sites of A:

D®(z) = {t€ A,|z| > B}.

Let further I'®(z) C DB(z) be the “B-cluster”: a 1-connected component of
D3(z) containing the site 0 € Z* (under the condition that such a component
exists).
For each I' = [ry, 73] C A, ry < rp, We use pg N to denote the probability
pEN = Pr {z:1z(0)| > N, TB(z)=T}. (5)

This probability equals: for the case Ly +1 < ry, r2 < Ly —1,

2=z [ ewl-fw) - ) 2, 0m)
lv1l<Blyal<B

x ZBN (y1,92) Za,(v2, 0)dyrdys, (6)
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for the case Ly = ry,ra < Ly — 1,
e = 2y / 28N (0,9)Za (v, 0)e ™ ay, ()
lvi<B

and similarly, for the case Ly +1< ry,ro = Ls and L; = ry, Ly = r5. Here we
use the notation Ay = [Ly, ry—2]forr1—2 2 L;,and Ay =@ for ry = Ly +1;
similarly, A, = [1'2 +2, Lz] for ro4+2< Lg, Ay = Oforry =Ly—1. ZA,(@, y)
is the partition function on the segment A; # @ under the empty boundary
condition on the left and the boundary condition y on the right and Zy = 1;
similarly, one defines Za,(y, 0). Finally,

ZBN (g, ) = / exp [~Ur(z/v1, v2)] did, )

B,N
s!‘

where Ur(z/y1,y2) = Ur(z) + ®(y1,z(r1)) + ®(2(r2), y2), and Sf?’N C RT is
the set of configurations in T,

SEN = {z:|z(t)] > B, teT, |z(0)| > N}.
Similarly, one introduces the partition functions
2 ®.9), 22N w9, 22N 0.0).

We notice now that

ZI?,N(yl)!h) <V. 6lrl-l51, (8)
where
V = max e‘q’("lﬂ'z)’
71,22
§=6B)=V / e IWdy, & =60N)=V / eI Way,
lvl>B lyI>N

Furthermore, the estimate z,‘? 'N(ﬂ,y) < 6l71-15, holds, and similarly for
ZB¥(y,0) and ZB¥(9,0).
For each T = [ry, 73], r1 2 L1 + 1, ro € Ly — 1, we have

Za> / / 260, 3)Z (1, ¥2) Za(v2, ) exp [ (1) — f(v2)] duadye.  (9)

Similar estimates hold for the case r; = L; or r3 = Ls.
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Here, we use 7}‘(3/1 ,¥2) to denote the partition function that is analogous to
(7) but is computed over the set of configurations {z € RT: |z(t)| < 1,t € T}.
It is easy to see that for |y;| < B, |y2| < B, one has

—1 _
Zr(n,92) > C™lalTIK?, (10)
where
- e—@(z;,z,)’
|z11€1,|22]<1
a=C / e"f(z)dz, K = K(B) = min e—2(=1,22),
|=1]€1,
lzl<1 |z3|<B

From (6) (or (6’)) and the estimates (8) and (10), we conclude that
PEN < M(6/a)"-1 K24y,

where M = VC~1a. We shall suppose now that B is chosen sufficiently large
so that §/a < 1/2. Then

PN =" PPN < MK~%,;.
r

Since K depends only on B, and §; — 0 as N — oo, we may choose N
sufficiently large so that M K26, < €. The theorem is proved.

We shall indicate a simple generalization of our method to the case of fields
in a many-dimensional lattice Z¥.

Theorem 2. Let a Hamiltonian be given of the form (1) and let all the preced-
ing assumptions concerning the potentials f and ® be fulfilled, and moreover,
let the condition

e/@)dz =0 | min e *C1*) | B oo (11)

lzl'<lv
|lz|>B |za| KB

be satisfied.
Then the set of Gibbs modifications {us, A C Z"} is weakly locally compact.

The proof of this theorem is analogous to the proof of Theorem 1. However,
it seems that the established result is valid also in a more general case.
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§4 Gauge Field with Gauge Group Z,

We recall (see §0, Qhapter 1) that by a lattife gauge Z,-model we mean the
Gibbs field {o(7),Z"} defined on the set Z¥ of bonds of the v-dimension
lattice Z¥ taking values in the group Z, and with the Hamiltonian of the
form

UA = ﬂ Z Op, (1)

p:8pCA

where A C Z is a finite set of bonds and the sum is taken over all plaquettes
of the lattice Z¥ (elementary two-dimensional faces), the boundary of which
is in A,0p C A, and 0p = [],cp, or. As a free measure po in the space

Q= (Zz)i *, one takes the infinite product of the normalized Haar measures
v(1) = vo(—1) = 1/2 on Z,. The Gibbs modification y, is as usually defined
by the formula

dpr _

If 8 > 0, the Hamiltonian (1) is ferromagnetic (see §0.1) and one may prove,
with the help of the Griffith inequalities, that the thermodynamic limit
lim, yr (o)A, T C 2%, of correlation functions exists. Thus, we also have
the existence of the limit

lim pp =p, 2)
A/ 2

similarly as in §0, Chapter 1, for the case of the Ising model. Here, we denoted

or = H Oy (3)

7€T

for any finite set T of bonds.

Besides, the existence of the limit (2) for all small 8,|8| < Bo(v), follows
from the results of §1, Chapter 4. The limit measure y, moreover, obeys the
condition of exponential decay of correlations (see §2, Chapter 6).

Let C C Z” be a closed contour (i.e., a connected set of bonds such that
each site t € Z¥ belongs to an even number of bonds from C).

The Wilson functional for the contour C is the mean

W(C) = (oc), - 4)

For the sake of simplicity, we shall consider only planar contours C' without
self-intersections (i.e., contours contained entirely in some of the coordinate
planes). We use S(C) to denote the set of plaquettes on this plane encircled
by the contour C.
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Theorem 1. 1. For all sufficiently small B,|B| < B,, there exist constants
Ci = C1(B,v) and by = by(v) such that

IW(C)| < bye=CHSCO (5)

for any arbitrary planar contour C without self-intersections.
2. For v = 3 and all sufficiently large positive 3,8 > 1 > 0, there ezist
constants Cy = Cy(B1) and by such that

[W(C)| > bye=C3I¢! (6)

for any planar contour C without intersections.

Remark 1. It is clear from the theorem stated above that the means of form
(4) have, for large and small 3, different asymptotic behaviour with expand-
ing contours C. It seems that there exists a critical value ¢ at which the
asymptotic behaviour (5) changes into behaviour (6) (or, possibly, into some
intermediate behaviour). The phase transition that thus arises at the point
Bc is of a completely different nature than the first-order phase transition for
the Ising model described in §0, Chapter 1. In the latter case, at the critical
value h = 0, there is a discontinuous change of the mean value of the spin
at each site of the lattice Z¥, i.e., of a local functional of the field, while the
assumed phase transition for the gauge model reveals itself in a change of the
asymptotics of W(C), which is already a nonlocal property of the field.

Remark 2. Theorem 1, and also its proof presented below, may be easily
generalized to the case of a gauge field with an arbitrary finite abelian group
G and with a Hamiltonian of the form

Un=8 Y, Rex(s)

p:8pCA
where x is some character of the group G such that x(g) # 1forg #e(e €G
is the unity in G).

Proof of Theorem 1.
1. Clearly

oc = H Op = 05(C),
PES(C)

and thus, for small B, one has the expansion (see §1, Chapter 2, and §2,
Chapter 6)

W(C) = Z (——'";ﬂil': z (US(C)’ Opyye-e sdp.)o ) (7)

n=0 ) (Pl)“‘lpl)
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where the summation is over all ordered collections of plaquettes (py,... ,pn)
and the sum converges for |8| < Bp. Using formula (9), §1, Chapter 2, repre-
senting semi-invariants in terms of moments, and observing that ([],¢o 95) =

0 for any set Q of plaquettes with the nonempty boundary 8Q (9Q is the set of
bonds 7 € Upeq Op contained in the boundary of an odd number of plaquettes
from Q), it is easy to show that

(as(c),op,,.. . 10p,) =0
for n < S(C): From this and from (7), we get the estimate
IW(C)l < M(CB)¥©,

which is equivalent to (5).

2. For each configuration {0, € Z”} of the gauge field, the collection of
variables {0,}, 0p = [],¢op 07, defines a configuration of a random field on
plaquettes p with values in Z;. Clearly, for any elementary cube ¢ with the
corners at sites of the lattice Z3, the condition

Ha',,:l ®)

p€dq

is satisfied, with the product being taken over all plaquettes of the cube g¢.
It is easy to show that also conversely, for each A C Z3 and any function
(configuration) §= {Sp}, defined on the set A of plaquettes p such that
dp C A and taking values in Z, that obeys the condition (8), a configuration
{0, T € A} of the gauge field can be bound so that o, = S, for all p € A?).

Hence,
Zr= Y 'ePESINA(S) )
5={S,}

and

W(C)——; > ( I1 sp) PESrNA(S), (10)
P

5={S,} \r€S(C)

where 3 5_ {s,} denotes the sum over all configurations S = (Sp) defined on
the set A(® of plaquettes p,p C A, such that the condition (8) is satisfied for
all cubes ¢ whose boundary 8¢ C A® (we use A(®) to denote the set of those
cubes). Such configurations will be called admissible. If S is an admissible
configuration defined on plaquettes p € A(®), we use Nx(S) to denote the
number of configurations {o,, 7 € A} of the original field for which the values
of functionals o, are fixed and

0p = Sp, pE AD,
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Lemma 2. The number NA(S) is constant for all admissible configurations
S={Sp,pe A®}.

Proof. The number N, (S) is the number of solutions of the system of equa-

tions
[[o-=5, peA®. (11)
TEJp

Each solution ¢ = {0, 7 € A} of this system is of the form
Oy = 0. 231,

where 0® = {00,7 € A} is an arbitrary fixed solution and & = {G,,7 € A} is
a solution of the system (11) with S, = 1. Hence, NA(S) = Na(S =1). The
lemma is proved.

Thus, it follows from (9) and (10) that
w(C)=2ZY ! (Hs,) exp {ﬂzs,} (12)
s ? P
and
Z\:E'exp {ﬂzsp}. (13)

For each admissible configuration S = {S,,P € A(z)}, we use Q = Q(S) to
denote the set of plaquettes for which Sp = —1. Let Q(S) C A® be the set
of bonds of the dual lattice Z(3) (the lat.tlce shifted with respect to Z° by the
vector (1/2,1/2,1/2)) that intersects the plaquettes from Q(S). We use A®
to denote the set of all bonds from 73 that intersect plaquettes from the set
A®, and A®) to denote the set of centers of cubes ¢ € A®). According to
the condltlon (8), each site t € A® belongs to an even number of bonds from

(.S') Thus, the connected components Ty,... ,T'y, of Q(S) turn out to be
contours on the dual lattice Z3.

The correspondence S — {I,... ,I'n} between admissible configurations
S in A® and the collections {Iy,... ,I'n} of mutually disjoint contours I'; C
A® js clearly one-to-one. Moreover,

¥ 5= [A0]-23 I, (14)
pCA@ i=1

and

II s= ﬁ(-l)vc(l“o, (15)

peES(C) i=1
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where g¢(I') is the number of intersections of the contour I' C A® with the
set S(C).

We say that a contour I is linked with a contour C if g¢(I') is odd. Thus,
from (12), (13), (14), and (15), we get

W(C) = 23/, (16)
where
Zi= Y. k(y)-...-k(Tw), i=12 (17)
{T1,..Tm}
The sum in both cases is taken over all collections {T'y,... ,I'n } of mutually

disjoint contours T; C A, and

ky(T) = { —ky(T), if the contour T is linked with C
= ki(T)  otherwise.

Consider now the one-parameter family of variables

ko(T) = { ¢i®ky(T) for T linked with C,
T U ki(r)  otherwise,

where 0 < 0 < . Clearly, k1(T) = kg=0(T), k2(T') = ko=x(T).
Thus,

In W(C) =lnZ;-lnz, = /"' (:0 ano) de, (18)
0
where
Zo= ) ke(T)...ke(Tm). (19)

{T1,...,Lm}
It is easy to see that

—ln Zg = ;Zp,(r),

where the sum ) is taken over all contours T' C A® linked with C, and
r

po(T) = 3 Tke(T)/ 20,
{ri}
where the sum in the numerator is over all collections {I';} containing the
contour T (i.e., pg(T) is the “probability” of the appearance of the contour T

in the contour ensemble in X(z))_ With the help of methods from Chapter 3,
it is easy to show that for large 8 > 0, one has

les(T)] < (be=2%)I1, (20)
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with an absolute constant b.

Furthermore, since each contour I' linked with C intersects both the interior
of the contour C and its exterior (in the plane containing C), we conclude
from (18), (19), and (20) that

ln (W] < ) (be~2#)IM, (21)
r

where the sum is taken over contours intersecting the plane of the contour C,
both inside and outside C.

For such a contour I', we use p(T') to denote anyone of the plaquettes p €
S(C) intersected by T, and we notice that the length |I'| > d(p(T'), C), where
d(p,C) is the distance of the centre of p from the contour C. Thus, the
right-hand side of (21) does not exceed

Yo X GeNLY 3 Brbe®) <K Y (Bhem¥)ie)

p€ES(C) I: p(D)=p P n>d(p,c) PES(C)
<K Y Y (Bbe )P < MC), (22)
7€C p

with some constants B, K, and M. Here, B" yields an estimate of the number
of contours of the length n that intersect a given plaquette p (see Lemma 1,
§4, Chapter 2). The bound (22) thus implies (6). The theorem is proved.

§5 Markov Processes with Local Interaction

Here, we will examine a particular class of Markov processes (chains) with
an infinite space of states, the so-called processes with a local interaction for
which cluster expansions can be easily derived. We shall consider two cases
separately—those of discrete and those of continuous time.

1. Discrete time. Let T = Z¥ x Z, and Q = ST, where S is some finite
set. For a point (t,7) € T, t € Z", 7 € Z, we call t and 7 its space and time
coordinates, respectively. A set of points Y, = Z¥ x {r} C T will be called
the layer at the time 7 € Z,. Each configuration z = {z(¢,7),(¢,7) € T} may
be regarded as a sequence of configurations {z¢, z1,... ,2r,...} in the layers
Y, 7=0,1,.... We shall often identify the layer Y, with Z¥ and view the
configurations z, in Y, as configurations in Z*.

Let a finite set Ap C 2Z” be singled out and let a family
{p(s/z4°),s € S,z4 € S4°} of probability distributions on the set S be
given such that they depend on the configuration z4° € S4¢ in the set A,.
Further, let Py be a probability distribution on S = Y,. We shall define a
homogeneous Markov chain (i.e., a measure u on the space Q = ST; for the
notions from the theory of Markov chains used here, see [51] or [58]), with the
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initial distribution P and with the transition probability P(-/z), # € SZ",
that equals the infinite product of measures on S:

P(/z) = [] »(-/2la)), )

tezv

where A = Ao+t C ZV is the shift of the set Ap by the vector t € Z¥, and
Z|4, is the restriction of the configuration Z onto the set A; (a configuration
#|4, in A; may be naturally identified with the configuration £4° on the set
Ao:

gho(t") = Z(t' + 1), t' € Ag;

the measure p(-/Z|4,) in (1) may then be understood as p(-/34°)).

Definition (1) means that, with respect to the conditional distribution that
is induced by the measure u and is defined on the space SY of configurations
z, in the layer Y, 7 > 0, under the condition that a configuration z,_; = Z in
the preceding layer Y;_, is fixed, the values z,(t),t € Y;, of a configuration
z, in different points ¢ are independent and distributed with probabilities
p(z+(t)/%|a,,,_,), where A;,_, is the set obtained from Ap by the shift by
the vector (t,7 — 1) € Z¥ x Z,. We use P, = ply, to denote the probability
distribution of configurations z, in the layer Y; induced by the distribution u
(as agreed above, the distribution P, will sometimes be regarded as defined
on the space S2").

We suppose that p(s/z4°) # 0 for all s € S and z4° € S4° and denote

8€ES,
z‘:°,z;°eS“°

p(s/z1°) | _
(e/z2%) ‘l = @

Theorem 1. Let A be sufficiently small: X < Ao, where Ao does not depend
on v, |s|, and |Ao|. Then the Markov chain p is ergodic: For any inilial
distribution Py, the distribution P, weakly converges, as T — oo, toward some
distribution = on SZ (that does not depend on P,).

Moreover, for any local function Fp, the rate of convergence of the mean
(FB)p, to (FB), is exponential:

|(FB)p, — (FB),| < K(FB)(C))", ®3)

where C is an absolute constant, and K(Fp) is a constant that depends on the
function Fp. The measure ¥ on SZ° obeys the condition of mazimal strong
exponential decay of correlations (see §1, Chapter 6).

Proof. For each point (¢,7),7 > 0, we use D;; C T to denote the set
{(t,7)} U A; ,—1 and call the point (Z,7) its vertex. The collection of all sets
Dy, (t,7) € T, 7 > 0, will be denoted by A. Let ' = {Dy, 5,,... , D¢, r.}
be a finite collection of mutually distinct sets from ®; the vertex (¢;,7;) of
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the set Dy, ,, € T' will be called free if it is not contained in any other of the
sets Dy, ;., j # i. Let B C T be a finite set. A collection T' = {Dy, r,, 1 =
1,...,n} will be called chronologically-connected with respect to B if all its
free vertices are contained in B. We use I'p to denote a maximal collection
of sets D;, € A that is chronologically-connected with respect to B. Let
F = Fp be a bounded local function defined on €, and measurable with
respect to the o-algebra £ g, where B C Y,, is a finite set contained in the
layer Y;,. As easily follows from (1), the mean

(FB), = (FB)p,, (4)

can be represented in the form

Fohy= Y PEGo) [T II #(r@/2r-1lar,-0) Fa(er),  6)

(%0, 1% rg) r=1 teL,

where we denote L, = fa nY,, r=0,...,7,and P(f' ° is the restriction of the
original distribution Py onto the set SL°. The summation is over collections
of configurations (zo,... ,Zr,), where z, € SL+ is a configuration in the set
L-y .

Further, we fix any configuration Z4° € S4° and denote by ¢ the probability
distribution on S:

a(s) = p(s/z*),
and by A(s/z4°) the quantity

A(s/zf0) = p—(;/(:;o) -1

We now introduce a probability distribution on Q defined by
po = Po x qT\¥°
as the product of the measure P, on SY° with the infinite product of measures

g on S over all points (¢,7), 7 > 0.
Further, for each set D, , € ™, we denote

A(D1,r) = A (2 ()/2r-1laq,,0), T>0

and represent

p (z-,(t)/z,-lh,’,_l) = q(z-(t)) [1 + A(Dy,r)] - (6)



222 Supplementary Topics and Applications Chapter 7
First we sum over configurations z,, € S in (5); by inserting (6) into (5)
and by multiplying, we get

To—1

Fade, =S L 11 II pG0/ela..)

B1CB (20, 1®rg~1) 7=1 teL,(B,))

X <F(B) II ,\(D,,,o)> ,

teB;

where uf = ¢¥* is the measure on SY, and L,(B) = I'p, NY;. If we continue
this way, we finally get

(FB)p,, = 3 (FSIA(Dy,r)) = Y WR(Fs), (7)
P={Dq,,ry s 1Dty,rs} RCTs

where the sum } . is taken over all unordered collections I' = {D, r,,...,
Dy, +,} of mutually distinct sets from 2 that are chronologically-connected
with respect to B, and the ) is taken over all A-composable sets R such

that R = T for at least one T entering the sum 3. Here also,

bR(Fe)= )Y, <F3 II A(D,,,)> . (8)

I: F—‘-R Dl,rel" Ho

Since each collection I' formed by the set Dy, r, is uniquely defined by the
set of their vertices (¢;,7;), the number of collections I' such that I' = R does
not exceed 2!fl. Hence and from (8), we get

|6 (FB)| < sup |Fp|- (CA)*™), 9)

where the quantity dgr(?) equals the minimal cardinality of collections I' such
that T = R, and C = 214ol+1,

Let us remark that whenever R does not intersect the zero layer Y, the
quantities by (Fp) depend neither on the initial distribution Po nor on 7o (here
Fp is regarded as a fixed function on the space S2”). Thus, the following
limits exist:

- _
Jim b3 (Fp) = br(Fs)
and

Jim (Fg)p, = ZR:"R(FB) = (Fs).
Hence, it follows that the weak limit 'lim P, = 7 of measures P, exists and
—00

(FB) = (FB),
(see §1, Chapter 1).
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It is easy to see that = is a stationary distribution of the considered Markov
chain, i.e., if Py = 7 is chosen as an initial distribution, then for any 7 > 0,
we have again P, = x. Furthermore, from the representation (7) and the
estimate (9), we may show that for any two initial distributions Py and Py,
one has

(F)p; — (Fa)py| < (C))" sup |Fi,

where P! and P! are the distributions on SY* obtained from the initial dis-
tributions Py and Py, respectively. Setting now Py = 7 = P; and Py = Po,
we get (3). Further, from the definition of bgr(Fp) and the estimate (9), it is
easy to see that the cluster expansion (7) of the means (Fg), is exponentially
regular (see §3, Chapter 3) with respect to the family of sets A, and by the
same token, according to Theorem 1, §3, Chapter 6, the measure 7 satisfies
the condition of maximal strong decay of correlations. Theorem 1 is proved.

2. Continuous time. Let T = Z” x Ry and Q = ST be the space of step
functions {z,(t), t € Z¥, r € Ry} on T with values in S. We define a Markov
process with values in $2”, with a transition probability P,(-/z) of the form
(1) for small 7 (up to o()). Let Ao C Z” be a finite set, 0 € Ag, and h(s, z4°)
be a function defined on the set S x S4° so that

h(s,z4°) >0 if z4°(0) # s,

h(s,z4°) = - Z h(s',z4°) for s = z4°(0). (10)
8'€S:s'#s

For each site ¢ € Z¥, we define an infinite matrix H; = {H;(z,z’)} whose
matrix elements H,(z,z’) are “labelled” by the configurations z,2’ € SZ°
and are defined by

0 if z(t) # /(1) for at least one t # ¢
h(z(t),z’'|a,) otherwise,

H(z,7') = { (11)

where A, is the shift of Ag by the vector t and z’|4, is the restriction of z’
onto the set A;.

For each finite subset A C Z”, we define the matrix Hx = ) ,c, Hi. We
shall now construct a one-parametric (weakly continuous) semigroup of trans-
formations {G?; > 0} acting on the space of probability measures defined
on (S%", Bo) (Bo is the Borel o-algebra in the space $Z ¥ equipped with, as
usually, the Tikhonov product topology) so that

Gr =¢Ha (11"

(the sense of this equality will be clarified below).
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Let H} be the operator acting on the space C(S%") of continuous functions
on §%¥ accordmg to the formula

HiF =) H}F,
teEA

where

(HiF)@)= )_'Hi(y,2)F(y) = ) h(s,zla,)F(z*), (12)

yeSZ” €S

where )’ denotes the sum over all configurations y that coincide outside
the site ¢ € Z¥ with the configuration z, and z* is the one among such
configurations that takes the value z*(t) = s.

It follows from (11) that

IHZN < Y NETI< 1AL 18] - e lh(8 z4)|,
tEA

and thus a bounded semigroup
GA = ¢THA (13)

acting on the space C(S%") is well defined.

Moreover, as follows from (10), GA =1, and G* - F > 0 if F > 0. Thus,
the adjoint semigroup (G1)*, acting on the space C* (S%") of all bounded
countably-additive functions on the sets {v(A4),A € By} (see, e.g., [16]),
leaves invariant the set of probability measures on ®Bg. The restriction of the
semigroup (GA)* to this set will be denoted by GA. The equality (11') is
formally obtained from (13) when passing to adjomt operators.

Let P, be an initial probability distribution on S%”. Then the value of the
distribution PA = GA P, for a cylinder set K = K4 € 4, where AC Z¥ is a
finite set, equals

PAK) = / (e xc) (2)dPo(c), (14)
szv

where xx is the characteristic function of the cylinder set K (clearly, xx €
C(8%")).

Theorem 2. There ezists 7o = 1o(h, S) such that, for each probability measure
Py on SZ° and each T < To, the limit

Al}nzlv GAPy =P,

ezists (in the sense of the weak convergence). Here, P, is a probability measure
on the o-algebra By.
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The mapping G,: Py — P, is weakly continuous and the family {G,,0 <
T < 10} of these mappings is multiplicative:

Gy, -Gr,=Gri4ryy, T, T, i+ 1< T (14')

Proof. We shall show that for a sufficiently small + > 0 and for any local
function Fp € C ($% "), there exists the limit Al}nzlv e"HAFg. We write

. T” -
C'HAFB=(E+1'HX+'--+ﬁ(HA)”+---)FB- (15)
Let us observe that H; Fg = ( for t€B. Thus,

T eyn ™ » .
—(H) Fp=— 3 H ...H;Fp,

: (h poos ,‘.)

where the sum is taken over all sequences (t1,...,%,), ti € A, such that
ti E BNA, t, e(BUA,,)nA,... , tn € (BlJAgl U...UA;__,)nA.
It is easy to see that the number of such terms for all A does not exceed

|B| - (IB] + | 4ol) (IB| + 2l 4cl) - .- (IB] + (n — 1)|40])
< |Ao*k(k+1)...(k+n—-1) < |4|" (“(tﬁ;)})')

where k = [IIA%II] + 1. Thus,

Tn *\N Liad n
SR Fo| < 2GRl (16)

where C = 2|Ag| - |S| max |h(S, z4°)|. It follows from the estimate (16) and
the expansion (15) that for 7 < C~! the limit

li THyp — prddf s
R }mzv e’"aFp = Fgp =G, Fp
exists for each local function Fg. Moreover, the operator 6'7 is bounded on

any subspace Cp = C (SZ . 23) of continuous functions Fp measurable with
respect to the o-algebra g C By:

G:les " < 0. (17)
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With the help of formula (14), we conclude that the limit

iy, PA(Cs) = [ (Grxx,) ()P0 = Pr(Kn)
exists for each cylinder set Kp and that, in view of (17), the values {P:(KB),
Kp € 2} form a probability cylinder measure on the algebra of cylinder sets,
A = Up Ip (see §1, Chapter 1). This cylinder measure can be extended to a
probability measure P, on the o-algebra By (the Kolmogorov theorem). The
remaining assertions of the theorem follow easily.

For each 7 > 0, we define the mapping G, in the space of measures by the
formula G, = G% G-, where k = [r/7], 7* = 7 — k7. It is easy to infer
from (14’) that the family of transformations {G;, 7 > 0} forms a semigroup.

We notice that if A = {0} and the function h (s,z4°) = h(s,s') # 0,
&' = z4¢(0), the Markov process z, = {z,(t), t € 2"}, 7 > 0 on T constructed
above can be represented in the form of a collection z} = {z,(t), 7 > 0} of
conditionally independent (with fixed initial points zo(t),t € Z") ergodic
Markov processes with values in S. There exists a stationary distribution
o = q‘z (for this process, ¢ is a stationary distribution for each compo-
nent); we use o to denote the corresponding distribution of the whole process
determined by the initial distribution Py = .

We shall now assume that

h (8, IAO) = ho(s:s') +2A (s’on) ’ §'= 3A°(0)’ (18)

where ho(s, 8) # 0 obeys the conditions (10) and thus generates a condition-
ally independent ergodic Markov chain. The following analogy of Theorem 1
holds:

Theorem 3. In the decomposition (18), let max [A (s,24°) | < Ao, where Ao =
s, x40

Ao(ho) is sufficiently small. Then the Markov process constructed above in
ergodic, its distribution u on the space Q (with an arbitrary initial distribution
Py) admits a cluster ezpansion, and the stationary distribution 7 satisfies the
condition of mazimal strong decay of correlations.

§6 Ensemble of External Contours

In §1, Chapter 5, an ensemble of external contours induced by an ensemble of
all contours was mentioned. Here we shall consider an ensemble of external
contours of a general form and show that, under certain conditions, it is
induced by some ensemble of all contours. -

Let Z?2 be the set of bonds of the lattice Z2 and A C Z?2 be a finite subset
of bonds. We shall use 2, to denote the set of collections (configurations)
a = {I;}i_, of mutually disjoint contours I'; C 72 such that T; UIntT; C A,
i=1,...,s, where IntT' C Z2 is the set of bonds encircled by the contour T'.
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In each configuration a = 24, we single out the family a®** C a of external
contours I' € a, i.e., of those not encircled by any other contour IV € a. A
configuration a € 2, is called a configuration of external contours, if a®** = a,
and we use AX* C A, to denote the set of such configurations.

Let now {¥(T)} be a real function defined on all contours I' C Z? so that

a) sup (|¥(T)|/|T|) < oo,

b) ¥(T') > mo|T'| for each T, where 75 > 0 is an absolute constant;

¢) ¥(T +t) = ¥(T), where t € Z2, and T + ¢ is the shift of the contour T'
by the vector t.

We shall define the probability distribution on the set A$** by the formula

@) = go [ (UM +AV(D),  a€2, (1)
A rea
where
zr= Y J]exe(-¥(T)+hV(T)), (1)
a€A'I'Ea

V(T) = |IntT|, and h is a real parameter. The distribution (1) is called an
ensemble of exlernal contours in A.

We notice that, for h < 0 and a sufficiently large 79 >> 1, the expression in
(1) for the partition function Z§** is a cluster representation (in the sense of
the definition from §1, Chapter 3) with the quantities

kr = kr(¥,h) = exp (—¥(T) + RV (I"), 2)
obeying the cluster condition (2), §1, Chapter 3. Hence, in particular, one
derives in a standard manner the existence of a limit ensemble of external
contours in Z2 (i.e., a probability distribution on the set of finite or countable
configurations of external contours 2(2)) such that the correlation functions
of finite families (1) converge, as A Z(®), to the correlation functions of the
limit ensemble (see §1, Chapter 5).

Let us now consider the case h > 0. Then the quantities (2) do not satisfy
the cluster condition any longer and direct application of the cluster technique
to the ensemble (1) is not possible. Nevertheless, we shall show that, for
sufficiently small h, the ensemble (1) may be reduced to an ensemble of all
contours in A which admits a cluster expansion.

Let {®(T')} be a function defined on the contours I' C () obeying the
conditions a), b), and ¢); £ > 0 is an arbitrary parameter. Let us define a
probability distribution on the set A, of configurations of all contours in A
by the formula

1 1
Pp(a) = 7 [L exp (-9(T) - V(1)) = 7 [I#r(2,-5), (3)
where kr are defined by the formula (2), and

Zy=)Y_ ] #r 3)

a Iea
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The distribution (3) is called an ensemble of contours in A. The distribution
(3) induces the probability distribution on the set Ag*:

Pta(a) =Pr{Be:f™ =0}, acA}"

With the help of (3), it is easy to show that this distribution is of the form

Pitha(e) = - H Zrke (8,-¢) = 23" [] ke (@, -x), (4)
I‘Ea léa
where Zr = Zi:?f‘ is the partition function of the ensemble of contours in

Int T C Z2, which is the set of bonds laying inside the contour I' and not
intersecting I, and

kr(®,—«) = Zrkr(®, —K). @)

Theorem 1. For each function {¥(T)} obeying the conditions a), b), and c),
there is a number ho(¥) > 0 such that, whenever h < ho(¥), there ezists a
function {®(T)}, ®(T) = <I>(I‘; W, h) satisfying the conditions a), b), c) (with
the constant Ty = T9—coe™™ in condition b), where co is an absolute constant)
and a parameter k = k(¥, h) so that, for each A C Z2, the distribution Py

on A specified by (4) and induced by the ensemble (3) of contours in A
comczdes with the ensemble PYX* of external contours given by (1).

Corollary. For all h < ho(¥), there ezists an ensemble of external contours
in Z? that is the limit of ensembles of external contours (1) as A /* Z2.

Indeed, for sufficiently latge 7o and & 2> 0, the ensemble (3) of contours in
A admits a cluster exg_ansmn Hence, we again conclude that a limit ensemble
of contours exists in Z2 (see [49] for more details).

Proof of the theorem. With the help of the methods developed in Chapter 3,
we infer that for each T C Z2, the partition function Zr in (4) is of the form

Zrexp (SV(T) + A(T)). (5)

Here S = S(®, k) is a parameter that is an analytic functional with respect
to the variables {kp(®, —«)}:

5@,x) =" M, [] kr, (6)

i ey

where the sum is over all connected collections ¥ = {I';} of contours (possibly
with repetitions); for more details, see §4, Chapter 3. The boundary term

A(T) = A(T; 8, ), T C Z2, obeys the estimate

|A(T)| < Coe™*"|r| (7)
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and admits an expansion similar to (6):

A(T;8,6) =Y M) [] #rv-

r'ey
Thus, the quantities kr(®,—«) equal
k(®, —x) = kp(¥, h),
where
¥(T) = ®(T) + A(T; @, %), (8)
and
h=5(®,k)-«. (8"

For fixed ¥ and h, one may consider these relations as equations with respect
to ® and . These equations are called the Pirogov-Sinai equations (see [64]).

For any fixed x 2> 0 (and a sufficiently large 7o), the equation (8) is uniquely
solvable as far as the function ® = {®(T')} is concerned, and the solution
® = ®(x,¥) depends continuously on x. This may be proved by relying
on the expansion (7) with the help of the well-known infinite-dimensional
version of the theorem on implicit functions due to L. V. Kantorovich (for
more details, see [49] or [64]). Substituting the found solution ®(x,¥) into
equation (8'), we get the equation

h=S(®(x,¥),K) — & = ve(x). 9)

The function vy (k) is continuous and, varying « from 0 to oo, it ranges from
vg(0) = S(®(0,¥),0) = ho(¥) > 0 to —oo (moreover, it is easy to show that
it is monotone). Thus, for A < ho(¥), equation (9) has the unique solution
& 2 0. The theorem is proved.



CONCLUDING REMARKS

At the end we briefly, almost in the form of allusions, mention some topics,
problems, and examples from the theory of cluster expansions not included
in this book, and we also indicate some prospects of the development of this
theory.

1. Lattice systems with an unbounded infinite-range potential. As an ex-
ample may serve the problem of development of cluster expansions for the
following Gibbs field in the lattice Z¥ with real values z = {z;, t € Z*}. In
a finite set A C Z", the distribution p, of this field is given by

du(z) = Z lexp{-AU(z) - E |z¢|™ }dz, (1)
teA
with ]
U(z) = ‘§A e e (2)

A>0, m>0, e >0, k an integer.
In [86] it is
m > 4k, €> 4, 3)

and the parameter A is sufficiently small.

In [2*], a completely different idea for obtaining a cluster expansion for
the interaction (1) was presented. At the same time, the results of [86] were
improved.

2. Gibbs modifications of (generalized) Gaussian fields in R*. These modi-
fications were studied in connection with the problem of construction of Eu-
clidean quantum fields in R” (see [15]). A lot of results were obtained and a
powerful cluster expansion technique was developed. A lattice analogy of this
technique is presented in our book (see Chapters 4 and 5). As regards the
ideas, they do not differ from the case of continuous fields.

3. Duality transformations. The idea of passing to the so-called dual system
often turns out to be fruitful. It enables one to carry over low temperature
expansions to high temperature ones, to pass from long-range potentials to
short-range ones, and to replace the study of spin systems by the study of
continuous gases, and conversely. A remarkable example of application of the
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duality, in connection with cluster expansions, is the proof of the so-called
screening, i.e., appearance of rapid decay of correlations in neutral systems of
charged particles with slowly decaying (Coulomb) interaction [81].

For the duality and screening see the review [142] containing an extensive
bibliography.

4. Equilibrium quantum ensembles. When studying Gibbs states for quan-
tum gases or quantum spin systems, most often one carries them over, using
the Feynman—Kac formulae, to classical ensembles of Markov trajectories
(we examine an example of such an ensemble in §4.5). Furthermore, this en-
semble is investigated by the standard cluster technique described in our book
(for quantum gases see, e.g., the book [6*]; for the transcription of quantum
systems in terms of ensembles of random trajectories see an old survey [7*]).

5. Dynamics of quantum systems in equilibrium states. The dynamics of
infinite particle systems in states close to the equilibrium (both the ground
state and that at non-zero temperature) will be the subject of another book
by the authors. It turns out that the most important application of cluster
expansions in this connection is the study of low lying branches of the spec-
trum of Hamiltonians of lattice models of quantum field theory (in the ground
state). Mathematically, this is reduced to the study of spectral properties of
so-called cluster operators (an important class of linear operators, acting in a
Fock space, introduced recently).

Moreover, the cluster expansion techniques begin to be used at present also
when studying the dynamics of the Gibbs (with temperature) state, and also
in the problems regarding the movement of a single particle in a random field
of force.

6. Dynamics of open systems. The cluster expansions for open quantum
systems with an infinite number of particles have not been actually studied.
In particular, this concerns general Markov processes with a local interaction
and non-compact space of spins, and also their continuous analogies—partial
differential equations. The results of §5.7 can be generalized to a number of
similar systems.

7. Communication and queueing networks. Here, the applications of cluster
expansions are now at the very beginning stage.

8. Combinatorics. For cluster expansions in the problem of graph enumer-
ation, see [73].

9. Other applications in probability theory. The applications of cluster ex-
pansions in the classical probability theory are connected with the ability of
obtaining asymptotic expansions of the logarithm of the mean, or conditional
mean, values of the form (I}, exp A;¢;), with a random vector (£1,...¢n).
The examples of such applications include: central limit theorems, limit theo-
rems on large condensations, ergodic properties of random processes, statistics
of random processes, investigation of local properties of Brownian trajecto-
ries, and properties of self-avoiding random walks [3*], percolation theory for
random fields, e-entropy of random fields.
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10. Analytic extensions of cluster expansions. Some cluster expansions can
sometimes be extended to a larger domain of parameters than that prescribed
in the standard scheme (see Chapter 3). The fact is connected with a group of
ideas and methods coming back to the well-known Lee-Yang theorem on zeros
of the partition function (an introduction to this topic is in [40]). In a recent
work [4*], a new technique of establishing an exact boundary of analyticity
has been developed.

11. Completely integrable systems. One of the methods of the exact solu-
tion of the two-dimensional Ising model consists of a cluster expansion of the
logarithm of the partition function which can be explicitly summed up [5*].

12. Multiscale cluster ezpansions. This new method is an essential ex-
tension of the devices described in this book. It is adjusted to the study of
so-called ultraviolet (behaviour of fields on small scales) and infrared (large
scale) problems of quantum field theory and statistical physics. It also al-
lows investigation of critical phenomena and phase transitions for systems
with a continuous symmetry group. This method is now at the development
stage, and it is too early to evaluate its limitations. One may learn about
this method and its achievement from [1#], see also review [8%] with complete
bibliography.
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with the level of exactness accepted in physics a long time ago. Mathematical
reformulations of these ideas can be found in a number of papers, see, e.g., N.
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§6. The results of this section are a slight generalization of well-known facts.
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§5. The results of this section are new.

§6. Theorem 1 comes from the paper [92] by M. Duneau, D. Iagolnitzer, and
B. Souillard. The cluster representation (6c) was used, for the first time, by
G. S. Sylvester [142] int the case of Gibbs modifications of an independent
field. Theorem 2 is proved in the paper by V. A. Malyshev [38].

§7. The exposition follows the paper [2] by R. R. Akhmitzyanov, V. A. Maly-
shev, and E. N. Petrova. Close results were obtained in the papers [69], [71]
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by G. Battle and P. G. Federbush. The method of interpolation used here is
due to J. Glimm, A. Jaffe, and T. Spencer [108].

§8. The results of this section are new. The main sense of the method used here
consists of the following: it enables an investigation of non-smooth perturba-
tions. The method of interpolation applied in this section is a modification of
the method due also to J. Glimm, A. Jaffe, and T. Spencer [14].

Chapter 5

§1. Low temperature expansions (in the contour ensemble) were first obtained
in the work of R. A. Minlos and Ya. G. Sinai [47], [48], [49] for the case of the
Ising model. The result presented here is due to E. N. Petrova [54], see also
the paper [42] by V. A. Malyshev and E. N. Petrova. A similar model was
discussed in [11] by F. F. Galeb.

§2. The presented result is a case of a result of G. Zoladek [25]. The method
used here was employed in a number of previous papers; e.g. in [50] by Nasr
Alj, and also in the review [41] by V. A. Malyshev, R. A. Minlos, E. N. Petrova,
and Yu. A. Terletskii [41].

§3. The result of this section is a particular case of results due to J. Glimm,
A. Jaffe, and T. Spencer [109] (P(y)2-model), D. C. Brydges [81], and J. Z.
Imbrie [119], [120], and [122] (continuous field with a countable number of
states). Our constructions are essentially based upon the results of §8.IV. The
same case is analyzed in the paper [91] by R. L. Dobrushin and M. Zahradnik.
In the paper [41] by R. A. Minlos, E. N. Petrova, and Yu. A. Terletskii, an
analogous case of a perturbation with a “sharp” minimum is examined.

Chapter 6

§1. The notion of rapid decay of correlations was introduced in [93] by M.
Duneau and B. Souillard and in [92], [94], and [95] by M. Duneau, B. Souillard,
and D. Iagolnitzer. A number of results concerning the estimates on semi-
invariants for point fields is also due to them. As regards the connections of
various concepts of decay of correlations introduced here, see J. Slawny [141].

§2. We follow here the paper [39] by Malyshev. Some of the methods, related to
those we use, can be found in the paper [95] by M. Duneau, B. Souillard, and
D. Iagolnitzer. R. L. Dobrushin suggested a method of a proof of analyticity
of partition functions which does not use cluster expansions (unpublished).

§3. We follow here V. A. Malyshev [38].

§4. The results presented here are due to V. A. Malyshev, E. N. Petrova,
and L. A. Umirbekova (unpublished). Compare also the paper by M. Duneau,
B. Souillard, and D. Iagolnitzer [95].

§5. See the paper [38] by A. Malyshev.
§6. See V. A. Malyshev and B. Tirozzi [134].
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Chapter 7

§1. Semi-invariants for algebras were introduced in the book [10] by O. Bratteli
and D. W. Robinson. For general super-algebras these notions are introduced
for the first time here. Applications of these constructions can be found in the
papers [29] and [132] by I. A. Koshapov.

§2. The result of this section is due to V. A. Malyshev and I. Nikolaev [133].
§3. The result is published for the first time here.

§4. One may learn about lattice gauge fields and estimates of Wilson’s func-
tional in the reviews [136] by K. Osterwalder and E. Seiler, [74] by Ch. Borgs
and E. Seiler, and [140] by E. Seiler.

§5. For Markov processes with local interaction, see the survey [96] by R.
Durrett (see also D. Griffeath [113]). The results of this section were obtained
by S. A. Pirogov (unpublished).

§6. The result of this section is new. The method applied here is due to S. A.
Pirogov and Ya. G. Sinai [55], [56] (cf. also the book [64] by Ya. G. Sinai).
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This volume contains the first complete presentation of the method of
cluster expansions, which is one of the most powerful methods of inves-
tigation of Gibbs random fields. This method yields expressions for local
random field characteristics in terms of expansions depending only on a
finite set of random field variables. The first chapter gives an introduction
to Gibbs fields. Chapter Two collects together some subsidiary material
dealing with semi-invariants and combinatorics. The general scheme of
cluster expansions is presented in Chapter Three and numerous ex-
amples are given in Chapters Four and Five. The final two chapters are
devoted to applications — both probability-theoretic and mathematical-
physical in nature.
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