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For any system �i� of particles with the trajectories xi�t� in Rd on a finite time
interval �0,�� we define the interaction graph G. Vertices of G are the particles,
there is an edge between two particles i and j iff for some t� �0,�� the distance
between particles i and j is not greater than some constant. We undertake a detailed
study of this graph for infinite particle dynamics and prove exponential estimates
for its finite connected components. This also solves continuous percolation prob-
lem for complicated geometrical objects—the tubes around particle trajectories. ©
2005 American Institute of Physics. �DOI: 10.1063/1.1955513�

I. INTRODUCTION

We undertake a detailed study of the interaction graph for infinite particle dynamics and prove
exponential estimates for its finite clusters. Cluster properties of classical infinite-particle dynam-
ics is a folklor notion now, cluster dynamics was discussed in Ref. 1. In more general sense, weak
dependence of far away particle trajectories plays substantial role in many papers, see e.g., Refs.
2–5. For classical �deterministic or stochastic� dynamics, the cluster property reveals a clear
geometric picture, where the system of infinite particles is subdivided into random finite subsets
�clusters� which do not interact with each other on a fixed time interval. Thus the dynamics is
reduced to finite particle dynamics. The new feature of this article is that we describe clusters in
detail combinatorially and give combinatorial estimates of their probabilities. This solves continu-
ous percolation problem for complicated geometrical objects—the tubes around particle trajecto-
ries.

Note that cluster property can have also different �but related� meaning: decay of correlations,
existence of quasiparticles, especially for the quantum case, see Ref. 6, we do not pursue this issue
here.

We assume that at time 0, for any cube �, Poisson point field with density � is given. Thus the
number N��� of particles in � has Poisson distribution with �N���� / 	�	=�. The initial velocities
vi�0� of the particles are assumed to be independently and identically distributed. Random initial
configuration of coordinates xi�0� and velocities vi�0� is denoted by �=��.

We assume that for any cube � and any fixed number of particles N��� some finite particle
dynamics in � is given. Here we mean by this that for �almost� any initial coordinates xi�0� and
velocities vi�0� the trajectories xi�t�=xi

����t� are uniquely defined on the time interval �0,��, they
are assumed to be piecewise smooth �then the velocities vi�t�=dxi�t� /dt are defined a.e.�.

We further fix on some r�0. We call the tube �or r tube� Ti��� of the particle i the
r-neighborhood of its trajectory xi�t ,��, 0� t��. We say that two particles i, j interact at time t
if

dist�xi�t�,xj�t�� � 2r

that is if the closed r neighborhoods of xi�t� and xj�t� �the time t slices of the corresponding tubes�
intersect. Then
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sij = min�t:dist�xi�t�,xj�t�� � 2r�

is called the first interaction time of particles i and j.
To define dynamical clusters we consider �for any �� the following finite random graphs G�

=G����=G��� ,��. Vertices of G� are the particles. We can assume that they are labelled by the
initial coordinates of the particles. Two vertices are connected by an edge if on the time interval
�0,�� these two particles interact at least at one time moment. The sets of vertices of connected
components of G�=G���� are called dynamical clusters in � �or simply clusters� if � and � are
fixed. Equivalently, the connected components are the same as the topological connected compo-
nents of the union of all tubes T= �Ti��� in �� �0,��.

Within this general setting, sufficient for our purpose, we have to do three additional assump-
tions:

�1� For simplicity of presentation we assume translation invariance of the dynamics and periodic
boundary conditions and that the particle i moves freely on the time interval �t , t+s�

xi�t + s� = xi�t� + vi�t + 0�s

if for any t�� �t , t+s� this particle does not interact with other particles.
�2� We assume that for any two particles i,j their first interaction times sij =sij��� are all different

a.s. This holds trivially in many known dynamical models.
�3� Our main assumption is that the velocities are uniformly bounded, that is for some constant

v0�0 and any i and t� �0,��

	vi�t�	 � v0.

This is a very simplifying assumption. However, even under such condition the combinator-
ics of clusters is not easy. I hope that the obtained estimates allow to weaken essentially this
condition.

Remark 1.1: Note that our dynamics is very general—we do not even assume that the particle
trajectories are related for different �. We could even take, with some precautions. any metric
space instead of Rd with trajectories satisfying Lipschitz condition

dist�x�t�,x�t��� � v0	t − t�	 .

At the same time we could consider the infinite particle system directly in Rd with the same
existence assumptions �1�–�3�.

Physical intuition and percolation theory: If the velocities are uniformly bounded then on the
time interval �0,�� the tube of a particle belongs to the ball of radius v0�+r with the center in its
initial coordinate. The results from continuous percolation theory, see Refs. 7–9, tell us that the
infinite system of balls of radius v0�+r around Poisson points in Rd a.s. has no infinite clusters for
� small. More exactly, simple space scaling shows that if � does not exceed �0�v0�+r�−d for some
fixed factor �0�0 sufficiently small, then all clusters are finite a.s. Moreover, exponential cluster
estimates hold. However this result is too rough for our purpose.

Physics tells us that the correct answer is given by the Boltzman–Grad �BG� scaling. Note that
the volume 	 swept up by the particle, that is the volume of its tube, is of the order v0�rd−1, where
v0� is the length of the trajectory and rd−1 is of the order of the circular section of the tube.
Heuristically, for the densities smaller than �0	−1, the limiting dynamical clusters should be finite
a.s. The reason is that N��� particles sweep up the volume v0�rd−1N��� which should be small
compared to �.

We give the proof here. As far as I know, this does not follow from the existing results in
continuous percolation theory. One of the reasons is that the particle tubes are not independent
volumes around the Poisson points.

For obvious reasons we assume that v0�
r, that is v0��C1r for some C1 sufficiently large.
Otherwise, the percolation properties of the initial configuration of balls of radius r would prevail.
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Moreover, exactly under this condition the BG volume v0�rd−1+rd is much smaller than the
volume �v0�+r�d, and our result is stronger than the one obtained from continuous percolation
theory.

Result: Denote Pk
��� 	x� the conditional probability that, under the condition that there is a

particle at the point x, the cluster, containing this particle, has exactly k particles. Then the
following exponential estimate holds.

Theorem 1.2: There are constants C, �0�0 such that for any �, v0, r and

� =
N���

�
= ���v0rd−1�−1 �1.1�

with 0����0 and any k we have, uniformly in � and in x,

Pk
���	x� � �C��k−1. �1.2�

Corollary: If for any t� �0,�� the thermodynamic limit of the dynamics �that is lim�→�x���

��t� exists, then all clusters in Rd are finite and the exponential estimates �1.2� hold for Pk���
=lim�→� Pk

��� 	x�.
Under our general dynamics one cannot prove the existence of thermodynamic limit �it may

not even exist�. However, there are many results, obtained in a different way, concerning the
existence of the thermodynamic limit.2,4,10,11 In the last section we give an example of the �ran-
dom� dynamics which satisfies our conditions.

To prove the theorem one has to decribe somehow the set of possible clusters. There are
combinatorial and geometric aspects in the description of the set of clusters. The idea of the proof
is to separate these two aspects. Combinatorial part consists of describing possible “collision
schemes,” that is the order in which particles interact at the first time. The central difficulty lies in
the estimation of the number of such schemes.

II. TREES DESCRIBING THE DYNAMICS OF CLUSTERS

Dynamical clusters grow in time. Here we describe this growth in combinatorial terms.

A. Labeled trees

Assume that N��� particles together with their initial coordinates and velocities �that is a point
� in our probability space� are given in the volume �. Then by assumption 1 the trajectories of
particles are uniquely defined. For given �, any t� �0,�� and any set A of N=N�A��N���
particles consider the subgraph GA�t�=GA�t ,�� of G�t�=G���. Then there is a finite number of
moments t when the structure of this subgraph changes �the number of edges increases�. We will
be interested only in the moments when some connected components join together.

Denote A−j , j=1,2 , . . . ,N1�N, the connected components of GA�0�. Assume first, for conve-
nience, that N1=N, that is all these connected components are the one-point subsets of A.

Denote

0 � t1 � ¯ � tl � ¯ � tN−1 � �

all moments when the number of connected components decreases �by assumption 2 it decreases
by 1�. Denote Ak, k�0, the connected component which appeared at time tk. It is a union of two
nonintersecting connected components Ai�k� and Aj�k� for some i�k�, j�k��k. One can say that tk is
the first collision time of the clusters Ai�k� and Aj�k�. For example, t1= t1��� is the first moment
when a pair of particles from A begin to interact. Thus the cluster A1 consists of two vertices.

Now define the tree T�A�=T�A ,�� with 2N−1 vertices. N vertices of this tree are labeled by
the initial coordinates x1�0� , . . . ,xN�0�, that is by clusters of GA�0�. Denote this set of vertices V0.
Let us agree that to all vertices of V0 time moment 0 is assigned. Other N−1 vertices are labeled
by time moments ti �or by the clusters Ai�. Denote this set of vertices V1= �1, . . . ,N−1�. If Ak is the
union of connected components Ai�k� and Aj�k� then we draw a directed edge from i�k� to k and
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directed edge from j�k� to k. Now V0 can be defined as the set of vertices having no ingoing edges.
The level of the vertex w is defined to be the maximal length of the �directed� paths from V0 to w.
Thus the vertices of level 0 are exactly the vertices of V0.

Define the complete order R on V1: w�w� iff t�w�� t�w��. Note that this complete order is
compatible with the natural partial order on the tree defined as: w�w� iff Aw�Aw�.

At time tk the connected component Ak appears because some particle from Ai�k� and some
particle from Aj�k� interact at time tk. Denote the pair of vertices from V0, corresponding to these
two particles, as f�i�k��, f�j�k���V0, where f :V1→V0 is the function, which to any w�V1 assigns
an element of Aw.

Thus, each cluster with N points defines a tree T, some complete order relation R, defined by
the time moments tk, on the set V1, and a function f�w�, which assigns to each vertex w a vertex
f�w� of level 0, lying under w.

Formally we did not assume that the particles from A do not interact with particles outside A
on time interval �0,��. However further we will consider the trees only for this case.

B. Unlabeled structured trees

There is a continuum of the labeled trees, introduced previously. Note that all trees T�A ,��
have the following property: each vertex �except those of level 0� has exactly two adjacent vertices
of lower level. Denote the corresponding class of unlabeled trees T�N�, N is thus the number of
zero level vertices. Note that the number of trees in T�N� does not exceed CN for some absolute
constant C�0 and that for any �directed� unlabeled tree T�T�N� the sets V0=V0�T�, V1=V1�T�
are uniquely defined.

The triple

B = �T,R, f�

will be our underlying combinatorial structure. Here T�T�N�, R is a complete order on V1�T� and
function f on V1�T�, where f�w� is a directed path p from V0 to w.

Now consider the set B�N� of equivalence classes of such triples under isomorphisms  of
trees respecting the complete order R and such that f = f. Note that the number of elements in
B�N� is finite for any N. The elements of B�N� can be called collision schemes �of cluster
formation�.

The following diagram shows unique collision schemes for N=2,3 and all 3 collision schemes
for N=4:
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On the first two isomorphic trees for N=4 the small circles show the particle of the left-most
cluster which interacts at time t3 with the right-most particle.

C. Main combinatorial estimate

Note first, that in the following sections one of the vertices of V0 will be specified. This vertex
will correspond to the particle situated in some fixed point x. One could agree that the isomor-
phisms, introduced previously, respect the specified vertices. Choice of the specified vertex gives
factor N in combinatorial estimates. It is neglectable in the foregoing estimates, and we do not
consider it in this section.

For any T we shall get an upper bound for 	B�T ,N�	, the number of triples from B�N� with
given T.

Let K�T�� �N−1�! be the number of ordering R. For any vertex w let Dw be the number of
elements in the subcluster Aw In total this gives the factor

D�T� = 

w=1

N−1

Dw.

The main combinatorial estimate is the following result, which is interesting in its own.
Lemma 2.1: For any tree T

	B�T,N�	 � Q�T,N� = K�T�D�T� � CNN! �2.1�

for some absolute constant C�0.
Proof: The first inequality is evident. To prove the second we need the following notation. Let

Sk, Sl be two completely ordered sets with k and l elements correspondingly. Denote R�k , l� the
number of complete orderings of the set Sk�Sl which do not change the order inside Sk and inside
Sl. Take, for example, k� l, then

R�k,l� = 2�
i=1

k

Ck−1
i−1 Cl−1

i−1.

In fact, we can split each of Sk and Sl on i=1, . . . ,k consecutive nonempty groups and arrange
these groups in a sequence in alternative order. For example, Sk can be split on i consecutive parts
by putting i−1 walls on k−1 empty places between consecutive elements of Sk, that gives the
factor Ck−1

i−1 .
For any tree T, 	T	=N, we have the recurrent relation

Q�T,N� = NQ�k,T1�Q�N − k,T2�R�k,N − k� �2.2�

if under the root vertex of T there are trees T1 and T2 with 	T1	=k, 	T2	=N−k correspondingly. For
q=log2 Q we have

q�T,N� = log N + q�k,T1� + q�N − k,T2� + log R�k,N − k� . �2.3�

One can easily get uniform estimates separately for K�T��N! and D�T��N!, but it is too
rough, because there are cases where K�T�=N!, D�T�=CN and vice versa. This is seen from the
following two examples. In the first one for the sequence of subclusters

�1,2�,�1,2,3�, . . . ,�1,2, . . . ,N − 1�

we have K�T�=1, D�T�= �N−1�!.
From the second example one sees, moreover, that the estimate �2.1� cannot be improved. Put

N=2n and consider the tree T with 2n−k vertices on levels k=0, . . . ,n. Denote Q�n�=K�T�D�T�. We
have the recurrent relation
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Q�n� = 22nQ2�n − 1�R�2n−1,2n−1� .

It follows

Q�n� � 22nQ2�n − 1�a
2N

�N

for some constant a�0. For q�n�=log2 Q�n� this gives for n�2

q�n� � 2q�n − 1� + 2n + bn,q�1� = 1

for some constant b�0. The solution of this inequality is

q�n� � �
k=1

n

2k�2n−k + b�n − k�� = n2n + b2n�
k=1

n

�n − k�2−n+k = �n + c�2n

for some c�0. This gives

Q�N� � 2N log N+cN.

Now we come to the general case. Put Q�N�= P�N�N!, then from �2.2� we get

P�N� � NP�k�P�N − k�r�k,N − k� ,

where

r�k,N − k� =
2�i=1

k
Ck−1

i−1 CN−k−1
i−1

CN
k

for some k� �N /2�. For p�N�=log P�N� we have

p�N� = p�k� + p�N − k� + a�v� ,

a�v� = a�k,N − k� = log�Nr�k,N − k�� .

This equation can be solved explicitely as

p�N� = �
v

a�v� .

To make estimation of this sum we need some notation and results. In the inductive procedure
for a given tree T we will distinguish vertices of type A or B, where correspondingly k
� ���N /2� , �N /2�� and k� �0,��N /2�� where �=1−� for some small ��0. Denote their numbers
NA and NB correspondingly. We have NA+NB=N−1.

Introduce the depth m�v� of the vertex v of the tree—the distance from the root vertex. It is
clear that log N�m�v��N. The A-depth mA�v� of the A-vertex v is the number of A vertices on
the path from it to the root. We have

mA�v� � logb N, b = 1
2 �1 + �� . �2.4�

The number

��v:mA�v� = m� � cm, c = 2�1 + �� . �2.5�

Denote N�v� the number of level 0 vertices under v. We have

c−
m�v� � N�v� � Nc+

m�v�, �2.6�

where
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c− = 1
2 �1 − ��, c+ = 1

2 �1 + �� .

We will need some inequalities.

�1� For any k,N

2�i=1

k
Ck−1

i−1 CN−k−1
i−1

CN
k � 1. �2.7�

This can be proved by simple combinatorial argument. Take four intervals 1 ,2 , �3,k
+1� , �k+2;N�. Then we choose k elements from these two intervals. The number
2Ck−1

i−1 CN−k−1
i−1 gives only restricted choice: we choose one of the first two elements �factor of

2�, i−1 elements from the last interval �factor CN−k−1
i−1 � and k− i elements from the third

interval �factor Ck−1
i−1 �.

�2� �Large deviation estimate� We will use the asymptotics

log CN
�N  H���N,H��� = − � log � − �1 − ��log�1 − �� .

Then for ����
1
2 the maximum of

log C�N
�N + log C�1−��N

�N

is attained for � satisfying

1

�
log

� − �

�
+

1

1 − �
log

1 − � − �

�
= 0.

In fact,

log C�N
�N + log C�1−��N

�N  N�H��

�
�� + H� �

1 − �
��1 − ��� ,

d

d�
�H��

�
�� + H� �

1 − �
��1 − ��� =

1

�
log

� − �

�
+

1

1 − �
log

1 − � − �

�
.

Then by large deviation principle for any k�N, ��
1
2

log r�k,N − k� � �1 − ��N. �2.8�

We estimate av�N for B vertices and av�N�v�c+
m�v� for A vertices. Using the bounds

�2.4�–�2.7� we get the proof. �

III. GEOMETRY AND PROBABILITY OF CLUSTERS

In the previous section we assigned to any � and any cluster A the triple B=B�� ,A�. Here we
follow inverse way: for any triple B�B�N� we describe the set of � and the set of clusters A,
containing given point x, such that B=B�� ,A�.

Note that in finite volume � any cluster is finite, thus for any x

�
k=1

�

Pk
���	x� = 1.

To prove the theorem we will describe the set of initial configurations containing k particles X
= �x1�0� ,v1�0� , . . . ,xk�0� ,vk�0�� which would give a cluster with exactly k particles, if other par-
ticles in � were not taken into account. We estimate by 1 the conditional probability �given X� that
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there are no other particles, which could interact with the particles of the cluster on the time
interval �0,��. We get these estimates uniformly in � and x.

For any B= �T ,R , f� and any sequence 0� t1� ¯ � tN−1�� define the set I�B , t1 , . . . , tN−1� of
initial configurations � of particles such that there exists a set A , 	A	=N, among them �containing
some particle at x� such that A defines a cluster, N�A�=N and B�A ,��=B. The order of tk, of
course, should be compatible with the order R. Denote

I�B� = �t1,. . .,tN−1
I�B,t1, . . . ,tN−1� .

We use the estimate

PN
���	x� � �

B
P�I�B�	x� .

In the previous section we have proved the factorial estimate of the number of terms in the sum
�B. Thus from Lemma 1 and the following Lemma 2 the theorem follows.

Lemma 3.1: The following bound holds uniformly in B

P�I�B�	x� �
�C��N−1

N!

for some absolute constant C�0.
The proof of this lemma is an easy �but unwieldy� matter and will be given in the next section.

It is based on simple geometric considerations with piecewise smooth trajectories and simple facts
about Poisson point fields.

IV. PROOF OF LEMMA 2

It is very instructive to understand first the proof for N=2,3. Anyway, this is the first step of
the inductive procedure below.

A. Two particle cluster

For N=2 we have the only tree and the only B. We have to describe geometrically all two
particle clusters

Let two particles 1 and 2 have initial velocities v1 and v2 correspondingly. Assume that the
initial coordinate of particle 1 is x1�0�=x. For any r denote Sr�x� the �d−1�-dimensional sphere of
radius r and centre x�Rd, let Br�x� be the corresponding d-dimensional ball. Put Sr=Sr�0� and
Br=Br�0�.

At the first collision time t1 the particles 1 and 2 should be at the points x1�t1�=x1�0�+ t1v1 and
x2�t1�=x1�0�+ t1v1+y1 correspondingly, where y1 is any point on the sphere S2r, such that for any
0� t� t1 the spheres Sr�x1�0�+ tv1� and Sr�x2�0�+ tv2� do not intersect. This event G1�t1 ,y1� can
also be defined as the event that initially at the point x2�0�=x+y1+ t1�v1−v2� there is a particle. In
other words the relative initial coordinate x2�0�−x1�0� of the particle 2 is

z12�0� = x2�0� − x1�0� = y1 + t1�v1 − v2� .

Thus x2�0�, for given v1,v2,t1,x1�0�, should be in a subset of the sphere

u1�t1� = S2r�x + t1�v1 − v2�� = S2r + x + t1�v1 − v2�

in Rd.
Consider the majorizing event

G1�t1� = �y1�S2r
G1�t1,y1�

that there is at least one particle in u1�t1�. The union
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G = �t1��0,��G�t1�

is the event that initially there is at least one particle in the union

U = �t1��0,��u1�t1�

which is a closed subset of �, parametrized �not one-to-one� by �0,���S2r. The volume of U does
not exceed C�v0rd−1, uniformly in v1,v2 �here the boundedness of velocities is used�, where Cd is
some absolute constant. That is obtained by integration in t1. Thus the probability that initially
there is a particle in this volume does not exceed

1 − exp�− Cd�� .

This gives the bound Cd� if � is small.
Note that we estimated the conditional probability for given v1 and v2, we should now

integrate over the velocity distributions

� � d��v1���v2� ,

where � is the initial velocity distribution.
Given the initial coordinates of the two particles, we estimate from above the conditional

probability that there are no more particles in their vicinity so that they could interact with them
on the time interval �0,��, by 1.

B. Three particle cluster

For general N, and in particular for N=3, we should only describe the set of relative coordi-
nates of all particles. Then we choose one particle and put its coordinate equal x �this will give a
nonessential factor N�, thus shifting correspondingly all configuration.

For N=3 we also have the unique B= �T ,R , f�. Denote velocities of the particles �say 1 and 2�
colliding at time t1 correspondingly v1,v2. We can assume that at time t2 the particle 3, having
velocity v3 collides with particle 1.

Introduce the events G1�y1 , t1� ,G1�t1� exactly as in the case of two particles. Let x1�s�
=x1�s ;y1� be the trajectory of particle 1 for s� �t1 , t2�, it depends on y1 �or on x2�0��. Introduce the
conditional �given t1,y1� event G2�t2 ,y2 ; t1 ,y1� that at the moment of collision of the particle 3
with particle 1

x3�t2� = x1�t2� + y2,y2 � S2r.

In other words

x3�0� = x1�t2� + y2 − v3t2.

Consider the events

G2�t2;y1,t1� = �y2�S2r
G2�t2,y2;t1,y1� ,

G2��s,s��;t1,y1� = �t2��s,s��G2�t2;t1,y1� .

Using the independence property of Poisson point field, we can estimate, uniformly in y1, the
probability of the event G2��t2 , t2+dt2� ; t1 ,y1� as

�Cv0rd−1dt2.

Thus the probability of the event
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�s1��t1,t1+dt1��s2��t2,t2+dt2��G1�y1,s1� � G2�s2;t1,y1��

can be estimated as

�Cv0rd−1dt1�Cv0rd−1dt2.

Put also

G = �t1��0,���G1�y1,t1� � G2�t1,y1�� = �t1��0,���t2��t1,���G1�y1,t1� � G2�t2;t1,y1�� .

Then the probability of the latter event G is estimated by

�
0

�

C�v0rd−1dt1�
t1

�

C�v0rd−1dt2 = �C�v0rd−1�2 �2

2!
.

C. General case

Assume now for any N that B and the velocities v1 , . . . ,vN of the particles are fixed. We
should describe the possible initial coordinates x1�0� , . . . ,xN�0� which give rise to a cluster with N
particles. The emergence of the cluster occurs as a sequence of N−1 conditional events

G1�t1,y1�, . . . ,Gk�tk,yk;tk−1,yk−1; . . . ;t1,y1�, . . . ,GN−1�tN−1,yN−1;tN−2,yN−2; . . . ;t1,y1�

at the moments t1 , . . . , tN−1. We define these events inductively.
Our inductive assumption is that after step k the vectors y1 , . . . ,yk�S2r and the events

G1 , . . . ,Gk are defined. Moreover, there are m�k�=N−k maximal �that is not contained in other
clusters� clusters Ak,1 , . . . ,Ak,m�k� at time tk, as on each step the number of clusters decreases by 1.
For each i=1, . . . ,m�k�, denote a vertex of the tree, corresponding to the cluster Ak,i, by i. Assume
that at time moment tk+1 the clusters Ak,i�k+1� and Ak,j�k+1� �the choice of these clusters is unique as
dictated by B� collide and the colliding particles be f�i�k+1�� and f�j�k+1��. Moreover, after k
steps the initial relative coordinates inside all maximal clusters are fixed, they enter the definition
of the events G1 , . . . ,Gk.

Thus at time tk+1 the particle f�i�k+1�� will be at the point xf�i�k+1���tk+1�, the trajectory
xf�i�k+1���s� on the time interval �tk , tk+1� depends in a rather complicated way on the relative
coordinates inside the cluster Ai�k+1� and in a simple way �translation invariance� on the initial
coordinate xf�i�k+1���0�. Then the particle f�j�k+1�� will be at the point xf�i�k+1���tk+1�+yk+1. Thus
the initial coordinate of the particle f�j�k+1�� is

xf�i�k+1���tk+1� + yk+1 − xf�j�k+1��
�0� �tk+1� ,

where the upper index 0 means that the initial coordinate of the particle f�j�k+1�� is 0, and the
relative coordinates inside this cluster were fixed in the inductive process. Here we use the
translation invariance of the dynamics. It follows that we know now the initial relative coordinate
of the particles f�i�k+1�� and f�j�k+1��, thus all relative initial coordinates inside the new cluster
Ak+1=Ak,i�k+1��Ak,j�k+1�.

We have, as in case N=3, the inductive estimates

�Cv0rd−1dtk

for the probabilites of the events

Gk��tk,tk + dtk�� = �yk�S2r
�sk��tk,tk+dtk�Gk�sk,yk;tk−1,yk−1; . . . ;t1,y1�

uniformly in tk−1 ,yk−1 , . . . , t1 ,y1. Then for the product of events
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�k=1
N−1Gk��tk,tk + dtk��

we get the estimate



k=1

N−1

�Cv0rd−1dtk.

Then, using the known formula

�
0

�

¯ �
tN−3

� �
tN−2

�

dtN−1 ¯ dt1 = �
0

�

¯ �
0

t3 �
0

t2

dt1 ¯ dtN−1 =
�N−2

�N − 2�!

we get the estimate of Lemma 2.
We assumed throughout the proof that the graph GA�0� has no clusters other than one-point

clusters. If however there are some clusters at time zero, then the proof proceeds along the same
lines. Moreover, it is easy to see, using our assumption r�v0�, that the cluster probability will be
even smaller.

V. EXAMPLE OF DYNAMICS

Here we give an example of dynamics “with chemical reactions,” satisfying the above general
conditions. This dynamics however will be a random dynamics. In this dynamics randomness
occurs because of random initial conditions and random interaction rules of dynamics.

Define first the finite volume dynamics. There are N����� particles in the cube �, each
particle is characterized at time t�R+ by its coordinate x�t����Rd, velocity v�t��Rd and type
q�t�� �1, . . . ,Q�. Initial coordinates xi�0� are distributed uniformly in �. The vectors �qi�0� ,vi�0��
are independently distributed with densities pq�v�

�
q
� pq�v�dv = 1.

We will define a continuous time Markov process �xi�t� ,vi�t� ,qi�t� : i=1,2 , . . . ,N� together with
initial data �xi�0� ,vi�0� ,qi�0� : i=1,2 , . . . ,N�. It is a mixture of piecewise linear movement for the
coordinates and random jumps for the velocities and types. We will not write down the generator
of this process, but rather describe it more intuitively. The coordinates are defined as

xi�t,�� = xi�0,�� + �
0

t

vi�t,��dt .

At the same time, any pair of particles i and j �independently of other pairs� at any time interval
�t , t+dt� can change their types and velocities with rates

	�qi�t� . vi�t�,qj�t� . v j�t�,xi�t� − xj�t���2r�xi�t� − xj�t�� ,

where �2r�x�=1 if 	x	�2r, and 0 otherwise. Functions 	 are assumed to be bounded. As a result
of this jump coordinates do not change, but types and velocities change

�qi,vi,qj,v j� = �qi,vi,qj,v j��t� → �qi�,vi�,qj�,v j�� = �qi�,vi�,qj�,v j���t + 0�

via conditional probability densities P�qi� ,vi� ,qj� ,v j� 	qi ,vi ,qj ,v j� so that for any qi,vi,qj,v j we have

�
qi�,qj�

� P�qi�,vi�,qj�,v j�	qi,vi,qj,v j�dvi�dv j� = 1.

Our main assumption that velocities are uniformly bounded that is
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P�qi�,vi�,qj�,v j�	qi,vi,qj,v j� = 0

if vi� or v j� exceed some constant v0�0.
Thus, the velocities and types are piecewise constant on �0,��, jumps occur at discrete time

moments

0 � t1��� � ¯ � tk��� � ¯ .

The process is well defined—xi�t ,�� exist for any initial data and are piecewise linear a.s. This
means that between the jumps the particles move freely with constant velocities vi�t�=dxi�t� /dt
defined a.e.

All previous results for the deterministic dynamics hold for this random dynamics with piece-
wise random trajectories as well. In this example, from this one can easily prove, in particular, the
existence of the thermodynamic limit for small times. This limit coincides with the directly and
similarly defined infinite particle dynamics.
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