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Abstract. We consider infinite harmonic chain with completely deterministic
dynamics. Initial data are assumed absolutely bounded. Nevertheless maxi-
mum of the variables can grow infinitely in time. We give conditions for this
phenomenon. It coincides with intuitive guess that the main condition for this
growth is sufficient chaos in the initial conditions.
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1. Introduction

Our goal is to study models of various qualitative phenomena in non equilib-
rium infinite particle systems. Normally such models use stochastic dynamics.
The goal of our project is to show that completely different approach could
be chosen — with minimum possible probability. Here we consider the simplest
deterministic example of such models. We assume that initially the deviations
from equilibrium are uniformly bounded. Could they grow in time and how?
The same problem of course exists for finite but large number of particles, but it
demands some scaling for time, number of particles etc. In recent papers [2—4]
we considered problems related to convergence to equilibrium for finite number
of particles.

We consider trajectories zx(t), k € Z, for standard countable linear chain of
particles defined by the formal interaction energy

2
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U= (o —ax)’ + 5 D (@rir — 2 — (k41 — ax))?
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where wy > 0, and
e<ap < aggr <.

where ar — +o0 if K — fo0o. Normally only the case when ax = ka for some a,
is considered but we will see that it is almost the same. What is more important,
we consider here only the case when wy = 0, seemingly in case wg > 0 less chaos
is expected as any particle is tightly bounded to a fixed place. This case will be
considered elsewhere.

If we introduce deviations gy = x, — ag, then the energy can be written as

2

w
U= 71 %:(Qkﬂ - Qk)2~

The equilibrium corresponds to ¢ = 0, and we consider the equations
d*qp.
dt?

with some initial conditions gz (0), ¢x(0).

= W (qry1 — 20k + qr—1) = Wi (AQ)k (1.1)

2. Results

Remind the following two spaces of functions on Z:

loo =loo(Z) ={f : Z—=R: sup[f(k)| <00}, |[floec=sup|f(k)I,
kEZ kEZ

b=1a(2) = {f:Z=R: Y IfR <oof Ifl= [ IFR)P.
keZ kez

Put p(t) = 4(t).
Proposition 2.1. Assume ¢(0) € I2(Z), p(0) =0, then
9()loo < q(0)]2-

Thus here the solution is uniformly bounded (in particle’s index &k and time
t). The situation drastically changes if the initial conditions belong to l,,. The
next statements show that growth cannot exceed the order v/t and that there
exist initial conditions with this order of growth.

Theorem 2.1. The following statements hold:
1. Let q(0) € loo(Z), p(0) = 0, then for any t > 0 the following inequality

holds:
@) < (V2701E +2) [a(0) o,

where v > 0 is the unique positive root of the equation:

lel/v - 1

Yy €
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2. For any n € Z there exist: a constant ¢ > 0, initial conditions ¢(0) €
loo(Z), p(0) = 0 and an increasing sequence of time moments t; < to <
..., tx = 00 as k — oo, such that

Qn(tar) = cViog,  qnltars1) < —cy/tagpr
for any k=1,2,...

Corollary 2.1. For any n € Z there exist initial conditions q(0) € l.(Z),
p(0) = 0 such that

qn(?)

n(t
limsup —== = ¢; > 0, litminfq (*)

t—00 \/% —00 \/1?

for some constants cy, co.

=cy <0

Next theorem claims that if the initial conditions are sufficiently random,
then any ¢, (t) can be arbitrary big with ¢.

Theorem 2.2. Suppose that q;(0), k € Z, is a sequence of i.i.d. random vari-
ables such that Eqx(0) = 0, EqZ(0) > 0 and E|qo(0)|* < co. Then for alln € Z
the following formula holds

P{iggqn(t) = +oo} = P{inf gu(t) = —oo} = 1, (2.1)

where by P(-) we denote the probability of the corresponding event.

Next theorem explains in some way the formal nature of the previous results.
The following operator on I,

(V@) = —wi(AQ)k = —wi(qr+1 — 2qk + q—1)

is bounded, namely |V < 4w%. Then the following operator is also bounded
on ls:
> . 12k )k
C(t) = cos(tvVV) = > (-1) T

k=0

(2.2)

From (the proofs of) theorems 2.1 and 3.1 the following statement follows.

Theorem 2.3. There exist constants a,b > 0 such that for allt > 0 the follow-
ing inequalities hold:

avt+1< ‘cos(tﬁ)‘ < bVt + 1.
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3. Proofs

3.1. Various expressions for the dynamics

Lemma 3.1. The solution of the main system (1.1) can be written as

Qn(t) = Z ak(t)Qn—k(O) + Z bk(t)pn—k(o)? (31)

keZ keZ

where

a(t) = 1 /27r oS 2w1tsini e d\
2T 0 2 ’

1 /2” sin (2w1tsin(A/2))
= - . e dA-
27 Jo 2wy sin(A/2)

br(t)

Proof. Let us prove that infinite vectors a = {a} and b satisfy the system (1.1).
We have

2o A\ 2 A
ag(t) = e (2 sin f) cos (2w1t sin f)e”‘”\ dA.
21 Jo 2 2
From o o
)\ X3 —1
2811125:170%)\:17i
it follows

i (t) = =i (2ak(t) = aps1(t) — ap-1 (1)) = wi(Aa)y.
Similarly for b. Moreover,

1, k=0,

ax(0) = by, (0) =
(0) =B (0) {o, k# 0.

It follows that the series in (3.1) formally satisfies the system (1.1) with corre-
sponding initial conditions. It remains to prove that it is absolutely convergent
and defines the solution from [.,. Integrating by parts we get:

2 1 2m

1 AN A A\
2may(t) = = cos (letsin 5)6”“‘ o + A ; w1t cos 5 sin(?wlt sin E)elk’\ d\

wlt 2
wlt 2 d

= Tz ; Y (cos g sin (2w1t sin g) ) e .

AN
cos 5 sin <2w1t sin 5) eFA g\

It follows that |ax(t)| < ¢/k? for some constant ¢ not depending on k. Sim-
ilar bound exists for by. Thus the series in (3.1) are uniformly bounded by
¢(t)|q(0)|o for some function ¢(t). The lemma is thus proved. a
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We will need the following integral presentation for Bessel functions of integer
index:

Jn(t) = i/oﬂ cos(tsin ¢ — ne) do.

Lemma 3.2. Let p(0) = 0, then we have:
(1) = Jak(2w1t)gn_1(0). (3.2)
k

Proof. We use the equality

1 27
ap(t) +a_i(t) = ;/ cos (2w1tsin /2\> cos(kX) dA
0

= %/W cos (2w1 t sin @) cos(2ke) do
0
= % /W (cos (2w tsin ¢ + 2k¢) + cos (2wit sin ¢ — 2ke)) dd
0
= Jgk(2w1t) + szk(let) = 2ok (2w1t).

In the last equality we exploited the relation Jo(t) = J_ox(t). Using formula
(3.1) and the fact that a;(t) — a_x(t) is either zero or pure imaginary, we can
get

(ar(t) +a—r(t)) + %(ak(t) - G—k(t)))qn—k(o)

N |

qMﬂZXX
=2

Lemma 3.2 is proved. O

(ak(t) + a_1(1)) gur(0) = 3 Jou(2w10)gu 1 (0)
k

N =

Note that (3.2) is the Neumann series (see [7]) for the solution ¢, (¢) with
coefficients determined by initial conditions.

Lemma 3.3. The following formula holds:
q(t) = C(t)q(0) + S(t)p(0),
where C(t) is defined in (2.2), and for any t

is the operator in l,, continuous in t.
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Proof. Tt is clear that the power series in ¢ for C(t) and S(t) can be differentiated
term by term, and we have the equalities:

& & t2k72vk

Ct) = ;(*1) @ —2) -Ve(), C(0)=E,
. > t2k‘71
= — ki k = — =
S(t) = ,;( DV = Vs, s =0,
where E is the unit operator. ]

Lemma 3.4. Let ¢(0) € I, p(0) = 0, and moreover q,(0) = 0 for all |n| < M
for some M. Then for any t > 0 the following inequality holds:
M 4

19(0)|oc, @ =wioz.

a+1 2
lgo(t)] < (e*Ta) i

Proof. This statement easily follows from formula (3.2) and classical bounds
for the Bessel functions (for example, from Poisson’s integral for the Bessel
function, [7]). But we will give a proof without using a presentation of solution
via the Neumann series. So our proof can be easily generalized to more common
quadratic interaction potential.

We estimate ¢(t) using lemma 3.3. We have:

q(t) = q(0) + Y _(-1)* (Qk)!VkCJ(O)

For any k£ > 1 the following holds:

(qu(()))o = Z Vvio-,h Vvhﬂé te V;k—l,ikqik (0)7 ig = 0.

11,82,...,ik €L

If (V*q(0))o # 0 for some k, then one can find a sequence iy, ..., of indices
such that |i, —i,—1| < 1forall r =1,...,k and |ix| > M. Thus

k k
M < il = D iy —inoa| < Y lir —dpoa| <Ko
r=1 r=1
It follows that
— p Pk
k=M

Then for the operator norm we have

VFq(0)]s < [VI5]a(0)lso < (4w7)"19(0)] .



Uniformly bounded initial chaos in large system often intensifies infinitely 219

The following inequalities hold:

X (2, ) 2k sy (2010)2M
WO < Y T < = O
k=M
0 ()

exp{wit/M }wite\2M
()] < (CREAATALN T g
The lemma is proved. O

Since for any integer n

we have

Proof of Proposition 2.1 As the function cos (2witsin(A/2)) is infinitely
smooth in A and periodic with period 27, we have

cos (2w1t sin — ) Z a(t e~

keZ

for all A € [0,27] and all ¢ > 0. By formula (3.1) and Parseval’s equality

| (1) \/Zak ¢qu

1 [ A
— 2 in — <
(0)]2 \/27 /O cos (letsm 2) dX < |q(0)]2.

3.2. Proof of Theorem 2.1

3.2.1. Upper bound

Equivalent statement is that for all t > 0 and all n € Z the inequality

lgn (t) (\/2W1 + 2) lq(0)

holds. Without loss of generality we can put n = 0. The idea of the proof is the
following. Write the initial condition as the sum of two terms. The first one is
the restriction of ¢(0) on finite interval of Z containing 0 and having length of
order ¢t. The second one is the restriction of ¢(0) on the remaining part of Z.
By Proposition 2.1 the solution corresponding to the first term is of the order
Vt. It remains to show that the influence of the second term for time of the
order t is small. Now the formal proof.

Fix some time moment 7" > 0 and a constant p > 0. Write the initial vector
as:

q(0) = ¢*(0) + ¢>(0),
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In| < pT,
In| > uT,
In| < T,
[n| > pT.

Let ¢*(t),¢*(t) be the solutions of the system (1.1) corresponding to the initial
conditions ¢2(0),p?(0) = 0 and ¢°°(0),p>°(0) = 0. For all ¢ > 0:

q(t) = ¢*(t) + ¢ (1).
Since ¢2(0) € lo, by Proposition 2.1 the following inequality holds for all ¢ > 0:

12(t)]oo < 12(0)]2 < ¢(0)|oor/2uT + 1.

By Lemma 3.4 we have also the inequality:

@1 < (0 a®) ™" 1g(0)].
t
a(t) = wy )

where m(T") = [pT] + 1, and [z] is the integer part of x. Since pT'/m(T) < 1
for all T' > 0, we have

w1
a(T) < —.
I
It follows w
M o(T) < e/ e,
I
Put g = yw;, where  satisfies the equation
1
e/ Ze=1
Y

(and thus it is uniquely defined). For given p the following inequality holds:

a6 (T)] < q(0)|so-

Thus, we have proved that for any T' > 0 and p = yw;, the following inequality
holds:

[9(T)loo < (V26T + 1+ 1)]g(0)]e0 < (V271 T + 2)[4(0) oo

The proof is finished.
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3.2.2. Lower bound

Like in the proof of item 1, without loss of generality we take n = 0. If
q € lso, then define the support of ¢ as follows:

supp(q) ={n € Z: qn # 0}.

The idea of the proof is also simple. Firstly we prove that for any T' there exists
initial vector having support of the order 7', and moreover such that maximum
of the corresponding solution is bounded from below by ¢v/T for some ¢, not
depending on T'. Then, for some increasing sequence of T we sum up these
initial conditions so that their supports do not intersect. Now the formal proof.

Theorem 3.1. There is Ty such that for any T' > T} there are initial conditions
q(0) € lwo, 19(0)|co < 1,p(0) = 0 with the following properties:

1. qo(T) = /T for some constant ¢ > 0 not depending on T’;

2. supp(q(0)) C [aT, bT] for some positive constants a,b > 0 not depending
onT.

Proof. For this proof we need some lemmas. For the number p € R define the
functions:

J(t,p) = 71r/07f cos(t(sing — pg)) do.

Lemma 3.5. For all |u| < 1 the following asymptotic formula holds as t — co:

J(t, p) = t\/%cos(tg(“) - %) (1 +O<%>)

where O() is uniform in p on any segment [a,b] C (—1,1) and

9(n) = /1 — p? — parccos(p).

Proof. This assertion is a well-known result about the Bessel functions (see
[1,7]). Nevertheless we will write the proof for completeness. We use stationary
phase method for the function J(¢, 1) in case when the phase function contains
additional parameter ([1], p. 107, theorem 1.6). In our case the phase function
is:

S(¢,p) = sing — ug.

We have the following equalities for the derivatives:

S, 1) = €056 — s Sy 1) = —sin 6.
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Tt follows that S has the unique critical point on [0, 7], which for |u| < 1 is equal
to

60 = do(1) = arccos(u).

Spg(Po(p), ) = —/1 — p2.

It follows that ¢o(u) is a non-degenerate stationary point for p € [—=1 49,1 — 4]
for any 0 < § < 1. Thus all conditions of the mentioned theorem hold together
with the following formula:

Then

it =1

2w
T\ /1 — p?

as t — oo, where O() is uniform in u € [a,b] for any segment [a,b] C (—1,1).
We have the equality:

S(o(u)s 1) = /1= i — parccos(n).

So the lemma is proved. O

cos(ts(tﬁo(u)vﬂ) - %) (1 T O(%))

From the proven lemma it follows that, if ut = k € Z > 0 for some p such
that p < 1/2, then:

Jor(t) = J(t,21) = ,Wf—TMZCOS(tQ(2H) — %) (1 +O(%)>, "= %

as t — oo, where O() is uniform in all k& belonging to the segment [at, bt] for all
1
0<a<b< 3

Denote the main term in this asymptotic formula for Jo(t) by fi(t):

fe(t) = \/ECOS(W(QM) - g), = %

Jan(t) = fult) (1+ 0(%)) (3.3)

where O() has the properties as above.

Then

Lemma 3.6. There exist numbers 0 < a < b < 1/2 and t, > 0 such that for
any t > to there is a subset I C ([at,bt] N Z) with the property:

ka(t) > Vi,

kel
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and moreover
|I| g Czt

for some positive constants ci, cy not depending on t.

Proof. Denote

o (t) = tg(2p) = tg(vy) = tg<2§> e = 2? (3.4)
Then
2 ™
fk(t): WCOS(Z';C@)—Z).

To prove the lemma we need to examine the points zy(t) modulo 27. Tt is
sufficient to prove that the number of points xj in the interval (0,7/2) has
order ¢.

We use the equality

9 4
9(vks1) = g(vr) + ;g’(wc) + ;29”(91«),

for some 0, € [k, vi+1]. Whence

4
i1 (1) = wn(t) + 29" () + 29" (On).
Thus, xi+1 and zy differ on some angle, which for large t equals approximately
2¢'(vi). Let us find the derivative of g:
v v

(V) = ———— — arccos(V) + ——
g = - R —

Thus for v € (0,1), ¢’(v) is negative and ¢’(1) = 0. Fix some small number
e. It is clear that there exist interval (a,b) C (0,1) and tg such that for all
x,y € (a,b) and all ¢ > t; the following inequality holds:

= —arccos(v).

—2¢ < 2¢'(z) + %g"(y) < —e.
Then for all k € [at/2,bt/2]
—2e < xpy1(t) — zi(t) < —e. (3.5)
Consider the set

I= {k € [gt, gt} s ap(t) € (0, g) mod 27r}.
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By (3.5) we have:
Clt g |I| g Cgt,

for some positive constants ci, ca not depending on ¢. Then,

/ 2 1
kzelfk(t) Zcl mﬁt = c;;x/%,

and the lemma is proved. O

Now we come back to the proof of Theorem 3.1. Using Lemma 3.1 we put

)1, kel
*=0, ker

Then by formula (3.3) and Lemma 3.6 we have

40(2%}1) = %Jzk(t) = %ka(t)(l +O(%)) > 01\/£+02\%.

kel

Theorem 3.1 is thus proved. O

Now we prove part 2 of Theorem 2.1. For the sequence of time moments 77 <
Ty < ...<Ty...denote by ¢'(t),¢%(t),...,q"(t),... the solutions corresponding
to those in the formulation of Theorem 3.1. We shall assume that T7; > Ty and

b1y, < CLT;C+1
for all k =1,2,.... This inequality guaranties that
supp(q*(0)) N supp(¢’ (0)) = 0

for i # j, and we can define the sum:
4(0) =) ai(0).
i=1

Due to linearity for the solution with the initial condition ¢(0),p(0) = 0 we
have:

q(t) = Z a(t).

To estimate ¢(T}) write

N

—1 o]

9(Te) = > ¢"(Te) + ¢ (Te) + D '(T)-

=1 i=k+1
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By Proposition 2.1 _
lg6(Ti)| < /(b —a)T;.

Whence

k—1 k-1
>_a(T)| < vb—a) VT
i=1 i=1

We estimate the third term above using Lemma 3.4 and get:

oo

Z ()

i=k+1

Ty

1 2M
< (6ak+ ak) y Qg ZW1M

where M = [aTy41] + 1. Choose Tj41 > T} so that
e oy < 1.

Then we have the estimate:
k—1
qo(Ti) = /T — Vb — az VT — 1.
i=1

The final condition for T}, is

k—1
\/b—az\/i+1<g\/ﬂ.

i=1

With such choice of the sequence T} we have:

c
qo0(Ty) = 3V T.

Thus the constructed sequence T} provides initial condition and sequence tg,

satisfying the assertion of the second part of Theorem 2.1. Thus the theorem is

proved.

4. Proof of Theorem 2.2

Plan of the proof is the following. First we will prove that finite dimensional
distributions of go(t + s) weakly converge as t — oo to the finite dimensional
distribution of some Gaussian stationary random process for s € [0, +oc]. This
fact allows us to prove (2.1) in quite straightforward manner. Next without loss
of generality we will suppose that wy = 1/2.

Define a family (parametrized by ¢ > 0) of processes with smooth trajecto-
ries:

Qi(s) = qo(t +s), s € [07 +00).
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Define a process X (s) as a series:

X(s) =Y &nduls), (4.1)

neZ

where &, are independent standard Gaussian random variables. Lemma 4.4

gives us:
Z J2(s) = 1.
neEZ

Therefore from Kolmogorov’s two-series theorem follows the almost sure con-
vergence of series in (4.1) for all s € R. Obviously X (s) is a zero mean Gaussian
random process. Let us calculate its covariance function again using lemma 4.4:

cov(X(£), X () = > Ju(s)Ju(t) = Jo(t — 5).

neEZ

Therefore X (s) is a stationary (in a wide sense) process with covariance function
Cx(s) = cov(X(s), X(0)) = Jo(s).

Lemma 4.1 states that finite dimensional distribution of Q:(s) converges as
t — 00 to the finite dimensional distribution of (¢2/2)X (s). Further on without
loss of generality we will assume that v = 02/2 = 1. The fact that maximum of
X(s) over s > 0 is infinite almost sure easily follows from the classical theory
of stationary Gaussian process (see [8]). Therefore intuitively it is clear that
maximum of go(¢) is infinite with probability one. But we can not use this
arguments in strong way while we will not prove a weak convergence of the
corresponding processes. We will not follow this way. Instead of proving weak
convergence we derive (2.1) directly from Lemma 4.1.

We have the following equalities:

+oo
P{supqo(t) = +oo} = P{ n{supqo(t) > a}} = lim P{supqo(t) > a}.
t>0 gy t20 a—r+0o0 t>0
Now we prove that
P{sup qo(t) = a} =1 (4.2)
>0

for all a.
Fix an arbitrary € > 0. Note that due to lemma 4.3 for all &’ > 0 and all
N > 1 there exist sq,...5 such that

|cov(X (s:), X (55))| = [C(si — 55)| < &’ (4.3)
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for all ¢+ # j. In other words, X(s1),...,X(sy) are “almost” independent.
Indeed, put s, = ké where 61/3 < ¢/. Then using lemma 4.3 we obtain:

lcov (X (s:), X (5)))| = |Jo(si — s;)| < i = j| 72672 <&,

Further we will choose ¢’ and N explicitly and they will depend on . Now
let s1,...,sy satisfy (4.3). For all T > 0 we have the bound

P{supqo(t) > a} > P{ sup  qo(T + s) = a}. (4.4)
>0 k=1,..,N

From lemma 4.1 it follows that there is Tg > 0 such that for all T > T the
following inequality holds:

‘P{ sup  qo(T + sg) > a} - P{ sup  X(s) = a}’ <e. (4.5)
k=1,..,N k=1,..,N

Now we want to use lemma 4.2 to estimate P {sup,_, _n X(sr)>a}. Note
that since p(0) = ®(a) < 1 and p(J) is an increasing continuous function (p(¢)
is defined in (4.10)), there exist small ¢’ and a number ¢ < 1 such that for all
0 < ¢ the following inequality holds: p(d) < ¢. Now suppose that Ne' < ¢’
Lemma 4.2 gives us

P{ sup X (sx) > a} >1—q"
k=1,...,N

which is greater than 1 — e for sufficiently large N. Using (4.4) and (4.5) we
obtain
P{supqg(t) > a} >1—2e.
>0
Since ¢ is arbitrary, we have proved (4.2). The proof for the inf is the same.
This completes the proof of the theorem.

Lemma 4.1. For all s1,...,8, = 0 the following convergence of distributions
holds:

0.2

Law(Q:(s1), .-, Qt(8m)) = Law(vX (s1),...,vX (8m)), 7 = 5

ast — oo.

The proof is straightforward and based on the continuity theorem for charac-
teristic function. From formula (3.2) we have:

qO(t) = Z qn(O)J2n(t)

neZ
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Consider the characteristic function of the random vector Q¢(s1), ..., Q:(Sm):

Folu, ) = EeXp(iiuth(sj)).

=1

Due to dominated convergence theorem and independence of g (0) we obtain:

filug, ... um Eexp( an )Zungn(t—i—sj)) = H h(dn(t, @

nez j=1 nez

where h(u) = Eexp(igo(0)u) is the characteristic function of go(0), and

Gn(t,) =D ujon(t+s;),

Jj=1

with @ = (u1,...,um). Fix uq,...,u,. Because of lemma 4.3 for all ¢ > 0
we can choose tg > 0 such that for all ¢ > ¢y all points ¢,(t,u), n € Z lie
in e-neighborhood of zero. And since h(0) = 1, we can consider the principal
branch of logarithm:

fe(ur, ... um) = exp(z Log(h(¢n(t u)))) (4.6)
nez

From smoothness it follows that for sufficiently small u the following formula
holds

Log(h(u)) = —%O’QUQ + O(u?).

Hence we have

Log(h(n(t,)) = ~ 50* 6% (1,8) + 063 (¢, ). (47

Using lemma 4.4 we get

pCAG ST wur S ot + 55) Jan(t + 1)

nez 7,k=1,..., m ne”Z
1
=5 2w (Jo2+ s+ si) + Jols; — se)
jk=1
1
— 3 Z wjurJo(s; — Sk)
Jk=1,...m

as t — oo. Next we study the sum of cubes. Note that due to Holder inequality
we have an estimate:

|05 (8, @) < m® Y udd3, (t+s)).

Jj=1
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From this bound and lemma 4.3 we obtain:

S| <m S SR sl < m Y D e+ s,)
j=1 1

nez j = nez Jj= nez
) = 2(t + s,
J=1

as t — 0o. In equality (4.8) we applied lemma 4.4.
Thus formulas (4.6) and (4.7) give us:

0.2

tli>rro10 fltur,. . um) = eXp(—Z Z ujugJo(s; — sk))

J.k=1,....m

Applying the continuity theorem for characteristic functions we obtain the as-
sertion of lemma 4.1. This completes the proof of the lemma.

Lemma 4.2. Let Xi,...,Xnx be a zero mean Gaussian random vector with
N > 2 such that:

DX =1, |cov(X;, X;)| <€,
forall k = 1,...,N and all i # j and some ¢ > 0. Assume the following
inequality holds:

1
Ne'<6 <3 (4.9)
Then there is the estimate:
N 1406
P{ sup Xk>a}>1fp , p=p0)=4/——=d(avV1+9) (4.10)
k=1,...,N 1-96
where ®(x) is a cumulative distribution function of standard normal distribu-
tion: ) "
2
O(z) = — e " /2 du.
@=-—=/
We have:

P{ sup X 2&}:1—P{ sup Xj <a}.
k=1,...,N k=1,...,N

Denote by C' the covariance matrix of the random vector X,
C= (COV(Xij))i,j:l,...,N.

Due to Gershgorin circle theorem all eigenvalues of C' lye in the circle with
radius (N — 1)¢’ < 1/2 and center at 1. Therefore C is invertible and we can
write

P{ sup Xp <ap= M}dw,

1
k=1,...,N } (vV2m)N\/det(C) /[_OO,G]N exp{— 2
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where by (, ) we denoted the standard Euclidean scalar product in RV. We have
an obvious inequality:

1
(2,C70) > S laf?

where |x| is standard Euclidean norm of the vector z in RY and ) is the maximal
eigenvalue of C. Hence we obtain for the probability

=?
V2r N,/det /m 2 }dx
= ﬂqﬂv(ﬁa). (4.11)
det(C)

P{ sup Xk<a}
k=1,....N

Evidently we have det(C) = A1 ...Ax where A1,..., Ay are eigenvalues of C.
Thus applying Gershgorin circle theorem we get:

det(C) > (1 -6, A<140.

Putting these inequalities to (4.11) we obtain (4.10). This completes the proof
of the lemma.

Lemma 4.3. For all n € Z and every t € R the following inequality holds
| ()] < minn| 712, 111/,
For the proof see [5,6].

Lemma 4.4 (Neumann’s additional theorem). For all ¢,t1,t2 € R the
following formula holds :

Z Jn(t1) I (t2) cos(ny), (4.12)
nez

where t = \/t? + 13 — 2t;t5 cos . As a particular case of (4.12) we have:

(Jo(t1 +t2) + Jo(t1 — t2)). (4.13)

1
Z Jon (t1)Jon(t2) = 3

nez

One can find Neumann’s additional theorem (4.12) in classical book [7],
p. 358-359. Equality (4.13) immediately follows from (4.12) if we put ¢ = 0 and
then ¢ = 7 and next sum up two expressions. Here we used that Jy(t) = Jo(—t).

Let us make a remark about weak convergence of the process qo(t + s). Due
to additional theorem [7, p. 30], we have :

Jgk t + 5 Z In( J2k n(
nez
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Therefore due to formula (3.2) we obtain

Gt +5) =3 T(s)yn(),

neZ

where

n(t) =D qi(0)Jok—n ().

kEZ

It is not hard to prove that y,(t) converges to &, in distribution as ¢ — oo,
where §,, are standard normal independent random variables. At the next step
one can prove the relative compactness of the family go(t+s), s € [0, S] for some
S > 0, parametrized by t. We have no need for weak convergence so we have
omitted this proof.
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