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Abstract. This is the first part of the shortest course which has various goals.
Firstly, to confront somehow the growing fragmentation of mathematics. Also
to create a feeling that mathematics is a very simple science, if one starts to
study it not with very formal and complicated general theories but with simplest
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1. Introduction

This text has various goals. Firstly, to confront somehow the growing frag-
mentation of mathematics. Also to create a feeling that mathematics is a very
simple science, if one starts to study it not with very formal and complicated
general theories but with simplest examples. An idea of structure of the mathe-
matics as the (Egyptian) pyramid should not be brought in from outside, but to
appear step-by-step from many intuitively evident assertions. And if something
is not quite evident then it should be brought out from the mind.

Mathematics is immense, you can develop it in depth, width, as well as in
other, as yet unknown, directions. But it is difficult to get rid of the desire to
cover more at a glance and understand what is more important and what is
less. This desire is also pushed by the fact that mathematics becomes more and
more fragmented on many domains, far apart from each other. And the picture
of mathematical life resembles groups-clans of gold diggers, digging deeper and
deeper, but do not know what neighboring clan is doing. Basically, new problems
arise as natural (unfortunately, often formal) generalizations of already known
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problems. And these deep caves can devour the digger for life. What is even
worse – many areas remain untouched.

How to connect different areas of mathematics is a difficult question. It seems
impossible to do this in the framework of pure mathematics, but surprisingly
relation with other sciences, and primarily with physics, help a lot.First of all,
because in physics there are global axioms. However, their rigorous formulations
are absent. And if they exist in mathematical physics, their consistency is
mostly not proved. Nevertheless, development of mathematical physics demands
development of various areas of mathematics.

One of the goals of this text is to gather background information and more
structured overview of very beginnings of mathematics, necessary for wide par-
ticipation in development of mathematical physics. In particular, to involve
students in this.

But, besides this, there are other goals:
1. This can raise interest to the mathematical structure of other sciences,

including biology.
2. To understand what is needed to clearly imagine the mathematical struc-

ture of theoretical physics.
3. We tried to avoid excessive reliance on the school curriculum of mathemat-

ics, which often interferes with logical clarity. Therefore, the logical structure of
the theory itself must always be visible before the eyes (partial order in the set
of theorems). In other words, for any statement, the return path to the main
axioms must be visible. On the other side, the intuition is always explicitly or
implicitly present, which helps to see logical transitions.

4. Such text might look like a summary. That is why was our main problem
was to combine brevity with accessibility. The thicker the book, even small
logical steps are described in great detail. In our text logical transitions are
described mostly without details but so that the reader could fill in the details
without consulting with great monographs. But nevertheless, especially young
mathematicians, should, looking through many mathematical books, choose
themselves those that are more suitable for their perception.

5. Also this text can be useful for our Project [11] and be introduction to
courses [9, 10].

2. Entering the language of mathematics

2.1. Sets

The basis of the mathematical language (i.e. the language in which mathe-
maticians communicate and in which mathematical articles and books are writ-
ten) are (besides natural numbers) two concepts: set and element of a set,
sometimes referred to as undefinable (all the other concepts of mathematics can
be defined through these):
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1. Element – from the word elementary. Elements can be any objects.
This term is used when we forget that element consists of something, has its
own structure, but we know that he belongs to a particular set. Not to be
confused: in physics there is the term “elementary particle” – but physicists
mean that we do not know yet what does it consists of. The elements may
be called points, objects, etc. and be labeled, for example, with Latin letters
x, y, . . ., or letters with indices x1, x2, . . ., as if to emphasize that they are from
the same set. It is important to keep in mind that the equality x = y does not
mean that elements x and y are similar but only that we used different letters
to designate the same item. So. in the molecule or in the electric current there
are many quite similar electrons, but they can be enumerated: to be able to
follow trajectories of any of them.

2. Set (sometimes interchangeably used with other words – class, etc.). For
example, the set of all trees in the wood, all letters of the Russian alphabet, all
natural numbers greater than 5, etc. If the element x belongs to the set A, it is
written x ∈ A. If, for example, the set A consists of three elements x1, x2, x3,
then it is written as

A = {x1, x2, x3} = {xi : i = 1, 2, 3}.

The simplest constructions of set theory A subset B of the set A is a
set, elements of which can only be elements of A, but not necessarily all. More
precisely, if x ∈ B. then necessarily x ∈ A. Write B ⊂ A or B ⊆ A.

The empty set, denoted ∅, is a set which has no elements. It is a subset of
any set, including itself.

Union A ∪ B of sets A and B is a set consisting of those and only those
elements that belong to at least one of them. Similarly is defined the union of
a greater number of sets.

Intersection A ∩B of sets A and B is the set consisting of those and only
those elements that belong to both, that is to A and B. Similarly can be defined
the intersection of a larger number of sets.

The difference A \B of sets A and B is a set consisting of those and only
those elements that belong to A but do not belong to B. If B ⊂ A, then A \B
is sometimes called the complement of B in A.

Say that a set of pairwise disjoint subsets A1, . . . , An of the set A (that is
Ai ∩Aj = ∅ for all i 6= j) define a partition of A into subsets, if

A1 ∪ . . . ∪An = A.

Cartesian product X×Y of two sets X and Y the set of all possible pairs
(x, y) where x ∈ X and y ∈ Y . In accordance with the notation X × Y , the
pairs are designated with the same order of elements, that is, in the first place
(left) is element of X, and the second (right) – element of Y . Similarly is defined
Cartesian product X1 ×X2 × . . .×XN for any number of sets.
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Any subset A ⊂ X × Y is called relation. If (x, y) ∈ A one can imagine
that x and y are related by some rule, denoted by A.

A function f from set X to Y (or a mapping of the set X to Y ), often
denoted as f : X → Y , is defined as the subset Cf ⊂ X × Y such that any
element x ∈ X occurs in pairs of Cf exactly once. It would be more accurate
to talk about single-valued function (or map), but the word single-valued is
usually omitted. Then, if the pair (x, y) belongs to Cf , it is said that the
function f maps x ∈ X to y = f(x) ∈ Y , which is called value of the function
f at point x.

Below we will see that in some exactly defined cases, the functions are called
differently: operators, functionals, measures, etc.

Two sets A and B are called isomorphic, if there exists a subset F of the set
A×B such that in its pairs each element ofA and each element ofB occur exactly
once. In other words, a subset F defines a function f : A→ B for which there
exists a unique (called inverse) function f (−1) such that f (−1)(f(a)) = a for
all a ∈ A. Such a function f is called one-to-one. One can say that isomorphic
sets have the same power (generalization of the concept of number of elements).
The set is called finite with number of elements N if it is isomorphic to the set
{1, 2, . . . , N}. The set is called countable if it is isomorphic to the set of all
natural numbers N = {1, 2, . . . , N, . . .}.

Note that the extended set of natural numbers 0, 1, 2, . . . , N, . . . is obtained
by adding zero element and is denoted by N0.

2.2. Structures on sets

Structures on any set A often can be defined as special subsets of Cartesian
products A×A,A×A×A, . . .. Examples:

1. Element of the N -fold Cartesian product A × A × . . . × A is called an
ordered set or a sequence (a1, a2, . . . , aN ) = a1, a2, . . . , aN of elements ai ∈
A, or words a1a2 . . . aN from the alphabet A.

2. Any subset G ⊂ A × A defines a graph. The elements of set A are
called vertices, while elements of the set G, that is the pairs (a1, a2) ∈ G are
called its edges connecting vertices a1 and a2. Geometrically one can imagine
the edge as a (line) segment, connecting two points (vertices). The edge can be
considered as directed from a1 to a2, and the graph is called oriented graph
(without multiple directed edges, that is not more than one directed edge from
a1 to a2).

3. A partial order on the set A is a subset T ⊂ A × A such that the
following conditions hold:

3a) pairs with the same elements, i.e. of the form (a, a) cannot belong to T ;
3b) if (a, b) ∈ T then (b, a) does not belong to T . Then we say that a is

greater (higher, more important, precedes) b (or b less a) and write a > b (or
b < a);
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3c) if a > b and b > c then a > c.
If for every two elements we can say which one is greater, then this set is

called well ordered. These are, for example, the sets N and N0.
If the set A is finite or countable, then with the partial order it is possible

to associate a graph G as follows. The set (graph) G is obtained from the set T
by deleting all pairs (a1, a2) such for which there is an “intermediate” element
of a, that is such that a1 > a > a2. If each a, except one, called root, can occur
in pairs (from G) on the right exactly once , then such partial order is called
a tree. It is very intuitive to think that each element has at most one direct
superior. Or to each node (except the root-source) there is only one incoming
flow.

Algebraic operations. A set A is called a group if a function (operation)
f : A×A→ A is defined, denoted by, for example, as multiplication

a = f(a1, a2) = a1a2.

Under such notation, this operation is natural to call multiplication (a1 multi-
plied from the right by a2). It is required that the following conditions (axioms)
hold:

1. there is a unit element 1 ∈ A such that 1a = a1 = a;
2. for each a ∈ A, there exists its inverse element a−1 ∈ A such that

aa−1 = a−1a = 1;
3. associativity – for all a1, a2, a3 ∈ A

(a1a2)a3 = a1(a2a3).

A subset of a group is called a subgroup if it is a group relative to the same
multiplication operation. Most of the groups are constructed as subgroups of
the set Λ = ΛX of all one-to-one transformations f of some set X, which is the
group under multiplication f1f2 = f1(f2). The unit of this group is the identical
mapping I from X to itself, that is I(x) = x for all x ∈ X.

If X is finite, then ΛX is called the permutation group. A permutation is a
bijective function f : A→ A, where A = {1, 2, . . . , N}. Intuitively it determines
on which place f(k) will be placed the element which is on place k. There are
N ! of such functions, and the product of two functions f1 and f2 is defined as
(f1f2)(k) = f1(f2(k)).

Problem 1. Elementary permutation is the permutation of two elements, that
is, there exist a1, a2 ∈ A, such that f(a1) = a2, f(a2) = a1, and for the rest
of a we have f(a) = a. Prove that any permutation f can be obtained as the
product of such elementary permutations. The parity of the number of such
permutations depends only on f . It is called the parity of permutation f and
is denoted by σ(f).
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The group is called commutative, if f1f2 = f2f1 for all f1, f2. Often the
operation in a commutative group is (or is called) the addition and is denoted
by f1 + f2. For example, in the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}, ,
which are obtained by adding zero and negative integers to the set of natural
numbers. The integers form a group (under addition), where a unit is called
zero, and inverse element to a is −a.

Another important algebraic object is a (commutative) field. A field is
a commutative group with addition and zero element 0. Also A \ {0} is a
commutative group with multiplication and unit element 1. Moreover, also the
distributivity axiom is assumed to hold:

a1(a2 + a3) = a1a2 + a1a3.

The first example is the field of rational numbers, denoted by Q. If
addition and multiplication exist for the integers, rational numbers arise from
defining what is division. Intuitively we introduce one half, one third etc. of
the whole, that is, numbers of the form 1

n (where n is an integer) as the number
such that n 1

n = 1
nn = 1. Formally, we introduce the set of formal symbols of

the form p
q , where p and q 6= 0 are integers, and define operations on them as

we were taught at school

p1

q1
+
p2

q2
=
p1q2 + q1p2

q1q2
,

p1

q1

p2

q2
=
p1p2

q1q2
, −p

q
=
−p
q

=
p

−q
,
p1q

qp2
=
p1

p2
.

Problem 2. Define when p1
q1

= p2
q2

and prove that the set of all rational numbers
is countable.

Remark 1. Many types of algebraic operations were invented. We are not going
here to define them precisely, but only briefly describe the main ones (in addition
to groups and fields):

linear space (commutative) – addition and multiplication by a number;
semigroup – only multiplication (no division);
ring – addition and multiplication;
algebra – addition, multiplication and multiplication by a number,
module is an abelian (i.e. commutative) group with the multiplication by
elements of some ring.

Metrics and topology. Here all numbers (in particular, ε) are rational.
Metrics (or distance) on the set X is a symmetric function ρ : X ×X →

Q, that is, the function ρ(x1, x2) = ρ(x2, x1) on X × X with values in the
field of rational numbers, which is positive for x1 6= x2 and is zero for x1 =
x2. Moreover, it is required that the so-called triangle inequality holds: for all
x1, x2, x3 ∈ X

ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3).

A set with such metrics is called metric space.
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Remark 2. It might seem strange that the metrics is introduced using the field
of rational numbers. There are at least two reasons. The first is that we have
not yet defined what is a real number. The second, more important, is that all
existing physical theories are only approximations, and, for the practice, finite
number of digits in the decimal representation of real number are sufficient.
Although the field of real numbers is extremely convenient object, but doubtfully
can be considered as physically real.

Neighborhood (more precisely, ε-neighborhood, where ε > 0) of the point
x is the set Oε(x) = {y : ρ(x, y) < ε}. It is a frequent notation which reads –
the set of all y ∈ X, which are at a distance less than ε from x.

Now we come to two major concepts that permeate all mathematics.
A sequence of elements (points)

x1.x2, . . . , xk, . . . (2.1)

of some metric space X has the limit (limiting point) x ∈ X, if for any neigh-
borhood Oε of the point x there exists a natural number N = N(ε) such that
for all k > N elements xk belong to this neighborhood. It is said then that the
sequence (2.1) converges to x (or is convergent).

A sequence of points (2.1) in a metric space X satisfies the Cauchy condi-
tion (or is called a Cauchy sequence) if for any ε > 0 there exists a natural
number N = N(ε) such that ρ(xk, xm) < ε for all k,m > N . Figuratively
speaking, the points cluster and group densely together.

Both of these definitions are automatically generalized from countable se-
quence to any well ordered set. So, assume that we have introduced full or-
der on some subset X ′ ⊂ X. Then X’ has the limit point x ∈ X if for any
neighborhood Oε of the point x there is an element xε ∈ X’ such that any
x′ > xε, x

′ ∈ X ′, belongs to Oε.
Metric space X is called complete if any Cauchy sequence has some limit

x ∈ X.
Open set in the metric space X is defined to be either any neighborhood

or any union of neighborhoods in any number.

Problem 3. Prove that the intersection of any finite number of open sets is an
open set.

The boundary ∂A of open set A ⊂ X is defined as the set of points x ∈
X not belonging to A but such that any neighborhood of x has nonempty
intersection with A. Subset A of the metric space X is called closed if its
complement X \A is open.

A subset A of complete metric space is called compact set (or simply a com-
pact) if any sequence of its points has a convergent subsequence. Equivalent
definition (to prove !): from any coverage of set A by open sets, one can choose
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a finite covering. The system of sets is called a covering of the set A. if their
union contains A.

The system of open sets defines topology on the set X. Topology (i.e. open
sets) can be introduced in more general way (without metrics) but we will not
need this here.

Remark 3. (This is a general remark) There are two sources for development of
mathematics:

1) Mathematical language with its structure of concepts. The number of
people fluent in this mathematical language is very small, unlike for example
Russian or English languages. However, the mathematical language is far from
exhausting the mathematics.

2) Intuition in mathematics is based largely on non-mathematical disciplines
(primarily physics), and life itself. Completely new concepts can arise from
intuition. However, many deep developments, seemingly not associated with any
life, appeared and gradually faded afterwards. Examples can be – the famous
continuum hypothesis, analytic set theory. However, this does not mean that
they will be forgotten or that they have nothing to do with our project. It is
not excluded that someday they will form the basis of new theories. Moreover,
such books as [1–3] will help to develop sense of logic in the life, and also to
better understand the structure and depth of mathematics.

2.3. Real and complex numbers

We will give three definitions of real numbers. In each of them the most
important thing is to state the conditions for equality of two objects, which we
will call real numbers. So, real number is:

1. A Cauchy sequence x1, x2, . . . , xn, . . . of rational numbers. Two such
sequences xn and yn define the same number iff for any (rational) ε > 0 there
is such N = N(ε) that for all n > N,m > N

|xn − ym| < ε

If Cauchy sequence has a limit in Q, then the so defined real number is rational.
Thus, any rational number is real.

2. Cross section of the set of rational numbers, that is, a decomposition
of the set of rational numbers Q into two subsets Q1 and Q2 such that, for
all x1 ∈ Q1, x2 ∈ Q2 we have x1 < x2. All these real numbers are different
and, moreover, are not rational except in the following cases: 1) there exists
maximum of the set Q1, that is a rational number r ∈ Q1 such that x < r
for all other x ∈ Q1; 2) there exists minimum of the set Q2, that is a rational
number r ∈ Q2 such that x > r for all other x ∈ Q2. In these cases the section
determines a rational number. Therefore, all rational numbers are real numbers.
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3. Bilateral infinite sequence of ten digits, an = 0, 1 . . . , 9, of the form

α = . . . a−m . . . a−2a−1, a0a1a2 . . . an . . . , (2.2)

where m,n > 0 and only finite number of digits a−k, with k > 0, are different
from zero. Typically, the zeros a−k, k > 1, to the left of all nonzero digits are
not written, that is, decimal representation has the form

α, a0a1 . . . ,

where α ≥ 0 is an integer. All numbers defined by these sequences are considered
different, with one exception: any two numbers α and β like

α = . . . an−1anan+1 . . . , β = . . . bn−1bnbn+1 . . .

are considered equal if for some n the following 5 conditions hold: 1) ak = bk
for all k < n; 2) bn 6= 9; 3) an = bn + 1; 4) ak = 0 for all k > n; 5) bk = 9 for
all k > n. Speaking shortly, they are considered different except for the pairs of
numbers of the form

α, β0000 . . . = α, (β − 1)9999 . . .

where α, β are natural numbers in decimal representation (in β the last digit is
not zero). In particular,

1 = 0, 999 . . .

Otherwise, the real numbers form well-ordered set: α > β if there is (minimal)
n such that an > bn and ak = bk for all k < n.

Problem 4. Prove equivalence of all three definitions. That is, for every real
number in the sense of one definition, specify the corresponding number in the
sense of the other.

Problem 5. Define metrics ρ(x.y) = |x− y| on the set of real numbers. Using
each of these three definitions, prove that the unit interval [0, 1] is compact in
the sense of two definitions of compactness.

Real numbers form a field. To show this, for any real number (2.2) let
α(N) = . . . bnbn+1 . . . be the rational number such that bn = an when n ≤ N ,
and bn = 0 for n > N . Then addition, multiplication and division which are
defined as the limits of operations on rational numbers of the form α(N) as
N →∞.

Consider for example addition. We define the sum of two real numbers α
and β:

α+ β = lim
N→∞

(αN + βN ),
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where the symbol limN→∞ is called the limit as N →∞ in the following sense.
For any number γ and any n ≤ N , denote γn(N) the term with number n in
the sequence γ(N). Let α and β be given. Then for any n and for all N > n+ 1
the digits γn(N) are the same.

The set of rational numbers Q can be considered as a subset of the set R of
real numbers. For this it is necessary to use a decimal representation of rational
numbers. For rational numbers p

q . performing standard division, it is easy to
see that we get an infinite sequence of the form

α, βγγγ . . .

where α, β > 0, γ > 0 are integers in decimal representation. Vice versa, let
us prove that any such sequence defines a rational number. Assume that the
integer γ has exactly k digits:

0, γγγ . . . = lim
N→∞

N∑
n=1

γ

10kn
=

1

1− 10−n
γ

10n
.

remembering algebraic formula from school

1− xn

1− x
= 1 + x+ . . .+ xn−1 (2.3)

which in the limit gives

lim
n→∞

1− xn

1− x
=

1

1− x
. (2.4)

Complex numbers. A complex number is written as an expression of the
form x+ iy, where x, y are real and i is a formal symbol called the imaginary
unit.

Addition and multiplication of complex numbers are defined as follows:

(x1 + iyi) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iyi)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

(it is sufficient to remember that i2 = −1). The set of all complex numbers is
denoted C, and to check the (commutative) field axioms, it is sufficient to check
that every element a+ bi has an inverse

1

a2 + b2
(a− bi)

and of course 0 = 0 + 0i, 1 = 1 + 0i. Metrically, C is identified with the plane
R2: a complex number x+ iy is identified with the point (x, y) ∈ R2 = R×R.
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The unit circle S = {a+ bi : a2 + b2 = 1}, as a subset of the set of complex
numbers, is invariant under multiplication and division but not addition. That
is, it is a commutative group w.r.t. multiplication. For example, squaring gives

(a+ bi)2 = a2 − b2 + 2abi =⇒ (a2 − b2)2 + 4a2b2 = (a2 + b2)2 = 1,

and also for multiplication and division

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i

=⇒ a2c2 + b2d2 − 2abcd+ a2d2 + b2c2 + 2abcd =

= a2c2 + (1− a2)d2 + a2d2 + (1− a2)c2 = 1,

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

= a− bi.

The absolute value (module) of the complex number z = x + iy is defined
as, see the definition of the square root in (6),

r = |z| =
√
x2 + y2.

Metrics in C, or on two-dimensional plane, is defined as

ρ(z, y)−
√

(x1 − y1)2 + (x2 − y2)2,

where x = x1 + ix2, y = y1 + iy2.

3. Basics of analysis

3.1. Derivatives and integrals

One-dimensional real analysis deals with functions f : A → R, and com-
plex analysis – with functions f : A → C, where A is some subset of R or C
respectively. Most often, these subsets are open or closed.

Remind that in any metric space an open set is a union of neighborhoods of
its points. And on the real line, every open set is the union of finite or countable
set of open intervals, that is sets of the form (a, b) = {x : a < x < b} for some
a < b.

The first ideas on the function under consideration usually appear in the
form of this function graph. If, for example, it is a function on R then the
function graph is a curve in the plane along the real axis. The simplest functions
are constant and piece-wise constant functions. This means that the domain is
divided into finite or countable number of subsets, on each of which the function
is constant. More complicated curves can have different degrees of smoothness.
However, this requires more detailed definitions.
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3.1.1. Scales of function behavior

Often, it is necessary to compare functions through the rate of growth or
decrease. For example, it is clear that. xn+1 grows faster than xn as x→∞.

But try, using only the definitions of addition and multiplication, to prove
that n10002−n → 0 when n → ∞. Or, for example, how to compare speed of
growth of the following functions (with a constant a > 0), as N →∞:

a, logaN,N
a, 2aN , NaN , . . .

But of course, we should start with rigorous definition of these functions (see
below in this Chapter). And the analysis develops methods to solve much more
complicated problems.

There are three commonly used notations. For example, consider the behav-
ior of two functions f, g, defined in some neighborhood of point a:

1. f(x) is said to be O-large of g(x) as x → a, and write f(x) = O(g(x)) if
there exists C > 0 such that for all x in some neighborhood of the point a

|f(x)| ≤ C|g(x)|.

2. Let g 6= 0 as x→ a. Then f is said to be o-small of g as x→ a, and write
f = o(g), if

lim
x→a

f(x)

g(x)
= 0.

3. f and g 6= 0 are asymptotically equivalent as x→ a ( f(x) ∼ g(x)) if

lim
x→a

f(x)

g(x)
= 1.

But often you need a more accurate comparison, called an asymptotic ex-
pansion. For example, the formula

f(N) = N2 +N + 1 + o(1)

for the asymptotic expansion of the function f(N) up to o(1) as N → ∞.
This means that f(N)−(N2+N+1)→ 0. From this it follows that f(N) ∼ N2.

Continuity and limits The function f , defined in some neighborhood of the
point x, is called continuous at x if for any (sometimes it is said “arbitrarily
small”) δ > 0 there exists ε = ε(δ, x) > 0 such that for all y ∈ Oε(δx)(x)

|f(x)− f(y)| < δ.

Shortly one can say that

f(y)− f(x)→y→x 0.
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Function defined on open or closed set A is called continuous on A if it is
continuous at each point x ∈ A. If for all δ > 0 there exists ε = ε(δ), independent
of x, then we say that f is uniformly continuous on the set A.

It is not difficult to prove, using the second definition of compactness, that
continuous function on the segment [a, b] is uniformly continuous on it.

More generally, right (left) limits on the real axis are defined respectively as

lim
y→x+0

f(y) = f(x), lim
y→x−0

f(y) = f(x),

where y → x + 0 (y → x − 0) means that only sequences yk such that yk > x
(yk < x) are considered. If these limits exist but are different, then their
difference is called the jump at this point. There can be more complicated
system of breaks:

1) at a given point it is possible that both right and left limits do not
exist. For example, limits at zero the function sin 1

x (see below the definition of
trigonometric functions);

2) limits may not exist at each point. An example is a function equal 1 in
every rational and 0 at every irrational point.

The set of all continuous functions on A is denoted by C0(A).
Function f is called monotone, if it is either increasing or decreasing,

that is for all x < y either f(x) < f(y) or f(x) > f(y).

Problem 6. Prove that the function x2 maps the segment [0,∞) to itself is
one-to-one. And that inverse function to it, denoted

√
x, on the same segment

is continuous.

Smoothness. Significantly stronger constraint (than continuity) is the Lips-
chitz condition on the function f on some set Λ, where it is defined: there exists
C > 0 such that for all x, y ∈ Λ we have |f(x)−f(y)| < C|x−y|. Even stronger
condition – the existence of the following limit (differentiability at x)

lim
ε→0

f(x+ ε)− f(x)

ε
= lim
ε=∆x→0

f(x+ ∆x)− f(x)

∆x
= lim

∆x→0

∆f(x)

∆x
, (3.1)

where ∆x = ε is called the increment of the argument, and ∆f = f(x+ ∆x)−
f(x) is the increment of the function (for a given increment of the argument).
This limit is called the derivative of the function at the point x and is denoted
by

df

dx
(x) = f ′(x) = fx(x) = f (1)(x),

where the notation dx, df is often called the infinitely small (as if in the limit)
increments. Then the function f is called differentiable at the point x. The
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condition of differentiability can be reformulated in the form of a Taylor de-
composition

f(x+ ∆x) = f(x) + f ′(x)∆x+ o(∆x).

Indeed, if we denote the difference

g(∆x) =
f(x+ ∆x)− f(x)

∆x
− f ′(x),

then g(∆x) = o(1), and hence g(∆x)∆x = o(∆x).
A function is called differentiable (smooth) on some interval if it is differ-

entiable at each point of this interval.
If the function f ′(x) also has a derivative, it is called the second derivative,

and is denoted by

d2f

dx2
(x) = f”(x) = fxx(x) = f (2)(x).

Then we say that f is twice differentiable. By induction the derivatives of any
order n = 3, 4, . . . can be defined, if they exist.

3.1.2. Calculation of derivatives

Polynomials

d(xn)

dx
= lim

(x+ ε)n − xn

ε
= lim

1

ε
(εnxn−1 +O(ε2)) = nxn−1

and then by induction in k ≤ n
dkxn

dxk
= n(n− 1) . . . (n− k + 1)xn−k.

Due to linearity of differentiation (derivative of sum of functions is equal to
the sum of the derivatives), polynomials of degree n are differentiable arbitrary
number of times, with all derivatives, since the degree n+ 1, equal zero.

Assume that the function f(x) is defined in a neighborhood of point x0.
Then the following expression is called Taylor expansion of order n of f(x) at
x0, if there exist constants d0, d1, . . . , dn such that for x− x0 → 0

f(x) =

n∑
k=0

dk(x− x0)k + o((x− x0)n. (3.2)

Then the derivatives f (k)(x0) exist for all k ≤ n, and are equal to k!dk. Vice-
versa, denote the difference

ξ(x) = f(x)−
n∑
k=0

f (k)(x0)

k!
(x− x0)k,

and differentiating, we get that all derivatives dkξ(x)
dxk

are equal to zero for k =
0, 1, . . . , n.
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Derivative of the product Assume that f and g are both differentiable at
x. Then

1

ε
(f(x+ ε)g(x+ ε)− f(x)g(x)) =

=
1

ε
(f(x+ ε)g(x+ ε)− f(x)g(x+ ε)) +

1

ε
(f(x)g(x+ ε)− f(x)g(x)) =

=
1

ε
g(x+ ε)(f(x+ ε)− f(x)) +

1

ε
f(x)(g(x+ ε)− g(x))→ f ′(x)g(x) + f(x)g′(x).

As an example let us find the derivative of 1
q(x) at the point x, where the function

q(x) 6= 0:

0 =
(
q

1

q

)′
= q′

1

q
+ q
(1

q

)′
=⇒

(1

q

)′
= − q

′

q2
.

The derivative of composite function Let f and g be differentiable re-
spectively in the points g(x) and x. Then

f(g(x+ ε))− f(g(x))

ε
=

=
f(g(x) + g′(x)ε+ o(ε)))− f(g(x))

ε
=

=
f(g(x)) + f ′(g(x))(g′(x)ε+ o(ε)) + o(g′(x)ε+ o(ε)))− f(g(x))

ε

→ε→0 f
′(g(x))g′(x).

Derivative of inverse function. Let y(x) maps the interval (a, b) one-to-
one onto some other interval (a1, b1), and let x(y) be the inverse the function
on (a1, b1). Both functions are assumed to be continuously differentiable,
that is, having continuous derivatives. Then x(y(x)) = x and, as above,

d(x(y(x)))

dx
=
dx

dy

dy

dx
= 1 =⇒ x′(y) =

1

y′(x)
.

3.1.3. Sums, series, integrals

Series is a formal expression of the form
∑∞
k=0 ak, where ak can be real (or

complex) numbers or functions. In the latter case, the series called a functional
series. Series is called convergent, if the sequence of partial sums

SN =

N∑
k=0

ak

converges.



Short course on fundamentals of mathematics. Part I 261

Remark 4. If all ak have the same sign, then the order of terms in the series
does not play role for convergence. Otherwise, the order of terms of the series
may be important. Moreover, sometimes you need to talk about the sum of a
countable number of terms regardless of their enumeration. Then it is necessary
first to sum up all ak which are non-negative and secondly – all negative. If at
least one of these two sums is finite, then the integral is defined as their sum.
When both are infinite you should invent different way of summation. A series
is called absolutely convergent if an increasing sequence of positive numbers∑N
k=0 |ak| is bounded. In this case, the order of its terms does not matter.
In the theory of cluster expansions the series are more complicated – their

terms are numerated by finite subsets of vertices of countable graphs.

Integral of piece-wise constant function. Consider an increasing sequence
of real numbers x0 < x1 < x2 < . . . and the (piece-wise-constant) function f(x)
on [x0,∞) equal to ak on half-intervals [xk, xk+1), where k = 0, 1, . . .. Integrals
of this function over the intervals [x0, xN ) (or the whole [x0,∞)) are by definition
the following sums (or series)

ˆ xN

x0

f(x)dx =

N−1∑
k=0

ak(xk+1 − xk),

ˆ ∞
x0

f(x)dx =

∞∑
k=0

ak(xk+1 − xk).

The last integral is said to be convergent if the series converges.

The integral of a continuous function Now we want to extend the defini-
tion of the integral to functions that are not piece-wise constant. For example,
consider the function f(x) = x on the interval [0, y]. The natural desire is to
find a sequence of piece-wise constant functions fN (x) on [0, y], y ≥ 0, uniformly
converging to f(x) as N → ∞. And define the integral of f(x) as the limit of
integrals of piece wise constant functionsˆ y

0

f(x)dx = lim
N→∞

ˆ y

0

fN (x)dx.

In this case it is very easy to prove the convergence, and even to calculate this
limit. Put fN (x) = xk = k

N if xk = k
N ≤ x < xk+1 = k+1

N . Then, for any 0 ≤ y
there exists m such that 0 ≤ y − m

N ≤
1
N . Then

SN (y) =

ˆ y

0

fN (x)dx =

m∑
k=0

k

N

1

N
+O

( 1

N

)
=

=
1
N2

m2

2
+O

( 1

N

)
=
y2

2
+O

( 1

N

)
→ y2

2
. (3.3)
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Similarly, for any continuous (say on the interval [0, 1]) function f(x) one
can prove existence of the limit of integrals of piece wise continuous functions
fN (x) = f(xk), where xk – point of the form k

N . nearest to x from the left.

Problem 7. Consider again a continuous function f(x) on finite interval [a, b].
We call R(f,B) = supx∈B f(x)− infx∈B f(x) the scope of function f on the set
B ⊂ [a, b]. Here supremum supx∈B f(x) is defined as the minimal number,
greater than any f(x), x ∈ B. Similarly, infimum infx∈B f(x) is the maximal
number, less than any f(x), x ∈ B.

Prove that for any ε > 0, any segment A can be divided into finite number
of half-intervals Ak(ε), k = 1, . . . , N = N(ε) so that R(f,Ak(ε)) < ε for all k .
Use the uniform continuity of f on A.

However we cannot calculate this integral as above. Let us come back to

the formula (3.3) and note that the function x is a derivative of its integral x
2

2 .
It turns out that this miracle is the rule in the general case. For this note two
properties of additivity of the integral, which are derived from the definition:ˆ y

0

(f1(x) + f2(x))dx =

ˆ y

0

f1(x)dx+

ˆ y

0

f2(x)dx,

ˆ y

0

f(x)dx =

ˆ y1

0

f(x)dx+

ˆ y

y1

f(x)dx, 0 ≤ y1 ≤ y.

In the one-dimensional case, anti-derivative (or indefinite integral) of
function f(x), x ∈ A = [a, b] ⊂ R, is called any function (if they exist) on A
whose derivative is f(x).

Problem 8. Prove the uniqueness of indefinite integral (up to addition of a
constant), that is, if the function is differentiable and its derivative is identically
zero on A, then the function is a constant.

In order to understand the connection of the integral with the anti-derivative
we should always remember that the derivative corresponds to the difference and
the integral – to the sum of the function values. Therefore, we divide the interval
[a, b) into N parts

a = x0 < x1 < . . . < xN = b,

where there exist constants 0 < C1 < C2 such that for all k

C1

N
< xk+1 − xk <

C2

N
.

Take the function fN equal to f(xk) on the interval [xk, xk+1), k = 0, 1, . . . , N−
1. Then its integral can be written as

ˆ b

a

f(x)dx = lim

N−1∑
k=0

f(xk)(xk+1 − xk).
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If f(x) is continuous on [a, b], the limit clearly exists. Put b = x and find the
derivative at x of the integral as the limit

lim
ε→0

1

ε

ˆ x+ε

x

f(t)dt = lim
ε→0

1

ε

ˆ x+ε

x

(f(x) +O(ε))dt = lim
ε→0

1

ε
(εf(x) + o(ε)) = f(x)

(3.4)
Therefore, this integral is anti derivative of f(x). But the easiest way to re-
member the formula for the sum of the differences

f(xN )− f(x0) =

N−1∑
k=0

(f(xk+1)− f(xk)) =

N−1∑
k=0

f(xk+1)− f(xk)

xk+1 − xk
(xk+1 − xk)

and its limit

f(b)− f(a) =

ˆ
A

f ′(x)dx =

ˆ b

a

f ′(x)dx.

Due to this, often the evaluation of the integral will be reduced to the corre-
sponding methods of calculating the derivatives. For example, the method of
integration by parts allows to reduce the calculation of one of the integrals
in the left part to another

ˆ b

a

fgdx+

ˆ b

a

fg′dx =

ˆ b

a

(fg)′dx = f(b)g(b)− f(a)g(a).

3.1.4. Length of a curve

We define d-dimensional space Rd = {(x1, . . . , xn)} as the set of all sequences
(x1, . . . , xn) of real numbers xk ∈ R. We can consider it as complete metric space

with the euclidean distance ρ(x, y) =
√∑d

k=1(yk − xk)2.

Here, the curve in Rd={(x1, . . . ,xn)} is a map of the interval [a,b] to Rd. It
can be defined by a continuous vector function x(t) = (x1(t), . . . , xn(t)), that is
all functions xk(t) are continuous, where t ∈ [a, b]. A curve is called a straight
line if all the functions xk(t) are linear. A curve is called broken (or piece
wise linear) if it consists of a finite number of straight lines, that is, if for some

points a = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = b it is a straight on each of the segments

[tk−1, tk] for k = 1, . . . , N . The length of a straight line is the distance between
its start and end points. The length of broken line is the sum of the lengths
of its straight segments. A curve is called smooth if the functions xk(t) are
smooth. The length of such a curve is the limit of the lengths of piece wise linear

curves defined by the functions x(N)(t) = (x
(N)
1 (t), . . . x

(N)
d (t)) if for N →∞ we

have maxk|t(N)
k − t(N)

k−1| → 0 and uniformly in t and k

|xk(t)− x(N)
k (t)| → 0.
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We first consider the length L of the curve f(x) in R2 along the real axis
x. Let f(x) be given on the interval [a.b] with the continuous derivative f ′(x).
In our case of the curve defined by the function f(x), when constructing the
broken lines, divide the segment into segments of the same length ∆x − b−a

N .

Then the length LN of the broken line defined by the points (a+ k
N (b−a), f(a+

k
N (b− a))), k = 0, 1, . . . , N will be

LN =
∑
k

√
(∆x)2 + (∆f)2 =

∑√
(∆x)2 + (∆f)2

∆x

∆x
=

=
∑√

1 +
(∆f)2

(∆x)2
∆x→ L =

ˆ b

a

√
1 +

( df
dx

)2

dx.

Now let a curve be given on R2 = (x1, x2)} by two equations x1(t), x2(t),
where the parameter varies within 0 ≤ t ≤ s. Then its length is defined as the
limit of the lengths of broken lines approximating this curve. And similarly,

L =

ˆ s

0

√(dx1

dt

)2

+
(dx2

dt

)2

dt.

Generalizing to larger dimensions is simple.

3.1.5. Multiple integrals and measures

Algebra of sets and measures. Consider arbitrary set Ω with the elements
ω ∈ Ω and some set Σ of its subsets. The latter will be called algebra of sets,
if Ω ∈ Σ and for any subsets A,B ∈ Σ their union, intersection and difference
also belong to Σ. Measure is defined, for given pair (Ω,Σ) as a real valued
function µ(A), A ∈ Σ, on Σ, if the following property (finite additivity) holds:
µ(∪Ak) =

∑
µ(Ak) for any finite number of non intersecting sets Ak ∈ Σ.

Examples:
1. Let Ω = ΩN = [−N,N ] ⊂ R with arbitrary N . Here Σ is the minimal

algebra, containing all points and all intervals (a, b) ⊂ Ω. Their measures will
be correspondingly 0 and b− a. Then Σ will contain all segments, half-intervals
and their finite unions. It is easy to prove that this measure can be uniquely
defined on all Σ. This measure is called Lebesgue measure on ΩN , and in the
limit N →∞ Lebesgue measure on R.

2. Let Ω = ΩN × ΩN = [−N,N ] × [−N,N ] ⊂ R2. Remind that open set
O ⊂ Rd is called connected, if for any two points x, y ∈ O there exists con-
tinuous line inside O, connecting these two points. Here Σ will be the minimal
algebra, containing all, belonging to Ω, points, segments and connected open
sets-polygons, the boundary of which is a closed piece-wise straight line. Their
measure is defined to be 0 for points and segments, and the area in the latter
case. This measure is also called Lebesgue measure (on R2).
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Now we can define the integral of continuous function f(x, y) over any
bounded open set D ∈ Σ. Consider any partition Qε of D on finite number
sets Ak ∈ Σ with diameter less than ε > 0 (prove that such partitions exist)
and with measures µk = µ(Ak). Define the integral sum

S(Qε) =
∑
k

f(xk, yk)µ(Ak),

where (xk, yk) ∈ Ak for all k. Then for any sequence εk, any partitions Qεnand
any choice of points (xk, yk) ∈ Ak, the sequence S(Qεn) is the Cauchy sequence
(the proof is completely the same as in one-dimensional case). It follows that
the limit ˆ ˆ

D

f(x, y)dxdy = lim
n→∞

S(Qεn)

exists. It is called the integral of f in measure µ over the set D.
It is easy to generalize all these definitions to open domains with piece wise

smooth boundary. Namely, it is sufficient to approximate such boundary by
piece-wise linear curves.

Now very important question – how to calculate or estimate such two-
dimensional integrals. Consider, for example, the rectangle D = {a1 ≤ x ≤
b1, a2 ≤ y ≤ b2} in the plane and a continuous function f(x, y) on it. Sets Ak
here will be rectangles with each side parallel to one of the coordinate axes.
Then the integral is defined as the limit, when N1, N2 →∞, of the sum

N1−1∑
k=0

N2−1∑
m=0

f
(
a1 +

kL1

N1
, a2 +

mL2

N2

) 1

N1

1

N2

where Li = bi − ai, wherein the double limit N1, N2 → ∞ can be understood
whatever. For example, as N1 = N2 →∞.

But another approach is more useful. We saw above that we can fix suffi-
ciently largeN2 an then chooseN1 even much larger, that is to consider very nar-
row rectangles. Even more, for given N2,m we pass to the limit N1 →∞. Oth-
erwise, you can say that we compute one-dimensional integrals of f(x, a2 + mL2

N2
)

in x, or even the integral of f(x, y) for each y ∈ [a2, b2]. The result is a function
F (a2 + mL2

N2
) or F (y), and then we calculate the integral over y. And we get

ˆ ˆ
D

f(x, y)dxdy =

ˆ b2

a2

(ˆ b1

a1

f(x, y)dx

)
dy.

This method is called iterated integration. It is very important as to find
integral it allows to use (much easier) calculation of derivatives.

Everywhere above our sets were bounded, and our partitions and sums were
finite. It is possible to develop more general constructions. The algebra is called
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σ-algebra if Σ contains Ω itself and is closed relatively to countable unions and
intersections. In the latter case, the pair (Ω,Σ) is called a measurable space.

Structure of σ-algebras is very complicated, although its elements (called
measurable sets) have interesting hierarchical structure, which was studied in
the science called “Analytic set theory”. Usually, σ-algebras are constructed as
minimal σ-algebra, containing some class Σ0 of subsets, called the base. If Σ0

is all open sets, then this σ-algebra is called .
For given (Ω,Σ) measure is a real function µ(A), A ∈ Σ on Σ such that

the property of countable additive holds: µ(∪Ak) =
∑
µ(Ak) for countable

number of non-intersecting sets Ak∞Σ. Here of course one should avoid cases
when there are two sets A1, A2 such that µ(A1) = ∞, µ(A2) = −∞. Just
because we do not know then the measure of their union.

3.2. Power series

Formal power series is the following expression

f(z) =

∞∑
n=0

anz
n. (3.5)

The simplest example of such a series is a geometric progression with the an ≡ 1.
Below, we mainly consider the case when an and z are complex numbers.

The series (3.5) converges in some neighborhood of zero, if for some ε > 0 it
converges for all z with |z| < ε. For example, a geometric progression converges
for all z with |z|<1.

Suppose that we are given a series (3.5). Then the formal n-fold differenti-
ation at zero yields

an =
f (n)(0)

n!
.

Vice-versa, if we can calculate or estimate the modules of derivatives of f at
point 0, it is possible to check the convergence of the Taylor series

f(z) =

∞∑
n=0

f (n)(0)

n!
zn.

In the case of convergence we will get what is called the expansion of f in a
series at the point 0.

Let us now consider the complex valued function f(z) defined on some open
set A of complex plane. If for the point z0 ∈ A there exists the limit of

f(z)− f(z0)

z − z0

as z → z0 (more exactly |z− z0| → 0), it is called the complex derivative and is
denoted f ′(z0) = df

dz (z0).
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Remark 5. The function f(z) of complex variable z can be regarded as a complex
function f(x + iy) of two real variables x, y. Its partial derivatives in x and y
are defined as

∂f

∂x
= lim
x→0

f(z0 + x)− f(z0)

x
,

∂f

∂y
= lim
y→0

f(z0 + iy)− f(z0)

y
.

If the complex derivative of f(z) exists, then

∂f

∂x
=
df

dz
,

∂f

∂y
= i

df

dz
,

and therefore the following condition holds

∂f

∂x
+ i

∂f

∂y
= 0.

Complex function f(z), z ∈ C, is called analytic at the point z0, if it coin-
cides with a power series in z− z0, converging when |z− z0| < ε for some ε > 0.
It turns out that then f(z) is analytic at any point z of this neighborhood. But
there is a much stronger statement.

Theorem 1. If f(z) is complex differentiable at every point of some open set
A, it is analytic at each point z of the set A, and moreover, the corresponding
power series converges in any circular neighborhood O(z) such that O(z) ⊂ A.

This statement will be proved below.

3.2.1. Main functions

Rational functions. These are functions of form P (z)
Q(z) , where P = p0 +p1z+

. . .+ pmz
m and Q = q0 + q1z + . . .+ qnz

n are polynomials. If Q(0) 6= 0, that is
if q0 6= 0, then Q−1 (and therefore also P

Q ) is expanded in a power series in z in
some neighborhood of the point 0

Q−1 =
1

q0

1

1− y
=

1

q0

∞∑
k=0

yn, y = −
(q1

q0
z + . . .+

qn
q0
zn
)
,

which converges for |y| < 1, and therefore also for sufficiently small |z|. Similarly,
if Q(z0) 6= 0 for some point z0 then Q−1 can be expanded in a power series in
z − z0 in some neighborhood of z0.

Remark 6. Note that any polynomial Q can be represented (as for z1 = 0) as
Q = (z − z1)Qn−1 + C, where Qn−1 is some polynomial of degree n− 1 and C
is a constant. But if Q(z1) = 0, then is divisible by z − z1, that is C = 0. It
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follows by induction (assuming also that each polynomial has at least one root)
that Q can be represented in the form

Q = C(z − q1) . . . (z − qn) (3.6)

for some complex numbers C, q1, . . . , qn, where qk are not necessary different.
It follows that Q cannot have more than n roots. Below we prove that Q has
exactly n roots, that is, it can be represented in the form (3.6) (the main theorem
of algebra).

The number e. There are two equivalent definitions of the number e:

e =

∞∑
n=0

1

n!
⇐⇒ e = lim

n→∞

(
1 +

1

n

)n
. (3.7)

Convergence of the series is proved majorizing it by geometric progression

1 +

∞∑
n=0

1

2n
= 3.

For the proof of the formula (3.7) it is easy to estimate from above the modulus
of the difference

N∑
n=0

1

n!
−
(

1 +
1

N

)N
.

To do this one should perform some (±)-cancellations.

The function ez. Absolutely similarly we introduce the function z(t) = et

et =

∞∑
n=0

tn

n!
⇐⇒ et = lim

n→∞

(
1 +

t

n

)n
or as a function z = z(t) satisfying the equation

dz

dt
= z,

that is, as (the only, up to a constant multiplier) function which coincides with
its derivative, and hence with all its derivatives.

The main property is
ex+y = exey (3.8)

that can be prove by multiplication of series.on the right side and using obvious
combinatorial formulas

xmyn
1

(m+ n)!
Cmm+n = xmyn

1

m!n!
.
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In particular, eze−z = 1, which implies that ez never vanishes, and e−z = 1
ez .

In addition, et is increasing on [0,∞) from 1 to ∞, and on [0,−∞) decreases
from 1 to 0. And thus, it takes all positive values. Below we show that it takes
all complex values except zero.

Trigonometric functions. Functions cosx, sinx are introduced as, respec-
tively, the real and imaginary parts of the series for eix

cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
, sinx =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
,

It follows that they are real for real x, and by differentiation of the series we get
the formulas

(sinx)′ = cosx, (cosx)′ = − sinx. (3.9)

Let us check the formula

sin2 x+ cos2 x = 1, (3.10)

which implies the boundedness of these functions for real x. To prove this one
should square the two series, write the formula for the coefficient of x2n and to
show that they are canceled for any n > 0

2

n∑
k=0

(−1)k
x2k

(2k)!
(−1)n−k

x2(n−k)

(2n− 2k)!
= (−1)n2x2n 1

(2n)!

n∑
k=0

C2k
2n,

2

n−1∑
k=0

(−1)k
x2k+1

(2k + 1)!
(−1)n−k−1 x2(n−k)−1

(2n−2k−1)!
= (−1)n−12x2n 1

(2n)!

n−1∑
k=0

C2k+1
2n .

The last sum corresponds to the decomposition of (1 − 1)2n, according to the
binomial theorem.

Formula (3.10) shows that any real ϕ defines a point (x, y) = (cosϕ, sinϕ)
of the unit circle S in the plane, and this number formally can be called the
angle. Then this angle is zero for the point (1,0). Usually the angle is measured
from point (1,0) counterclockwise. Then the angle corresponds to the length of
the corresponding arc of the circle from the point (1,0) to the point (x,y).

The length of the curve y = f(x) (e.g. the length ϕ(x) of the segment of the
unit circle over the interval [0, x] ⊂ R, in the positive quarter plane) is equal to

ϕ(x) =

ˆ x

0

√
1 + (

dy

dx
)2dx =

ˆ x

0

1√
1− x2

dx = arcsinx, |x| < 1,

since it is possible to compute the derivative of the arc sine (the function inverse
to the sine on the interval (−π/2, π/2) as the derivative of the inverse function

d(arcsin y)

dy
=

1

cos(arcsin y)
=

1√
1− sin2(arcsin y)

=
1√

1− y2
. (3.11)
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Then the first derivative

dϕ

dx
=

1√
1− x2

, |x| < 1,

and hence the rest derivatives look simple and you can write the series for ϕ(x),
that is actually series for solutions of the equation cosϕ = x or the series for
arccosϕ.

Note the invariance of the lengths on the circle relative to the rotation group
of the circle.

The number π. There are various definitions:
1) The length of the circle of unit radius

x2 + y2 = 1⇐⇒ y =
√

1− x2

is 2π. Or you can define the number π as the integral

π

2
=

ˆ 1

0

1√
1− x2

dx. (3.12)

2) Quarter of the area of the unit circle

π

4
= S = lim

N→∞

1

N

N∑
n=1

√
1− n2

N2
= lim
N→∞

1

N2

N∑
n=1

√
N2 − n2

from where we get the Gregory series

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

3) One more definition, see (4.10), known to any probabilist,

√
2π =

ˆ ∞
−∞

exp
{
−x

2

2

}
dx.

Periodicity. We prove the periodicity of trigonometric functions. Note that
from their series it follows

sin 0 = 0, cos 0 = 1

and from (3.11) and (3.12) it follows that

sin
π

2
= 1, cos

π

2
= 0, . . . , cos 2π = 1, sin 2π = 0.
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Then
e2πi = cos 2π + i sin 2π = 1,

and we obtain periodicity of the exponent

e2πi+x = e2πiex = ex

and also that the function f(x) = ex+iπ, x ∈ R takes all negative values. Sim-
ilarly, considering the straight lines on the plane, passing through zero, we see
that et takes all values except zero.

Logarithm and power. The function lnx is defined first for x > 0 as the
function inverse to ex. Then. from (3.8) we have

ln(xy) = lnx+ ln y

and

x = eln x =⇒ 1 = (eln x)′ = eln x(lnx)′ =⇒ (lnx)′ =
1

x
.

Now it is easy to find all derivatives and the series for the logarithm at the point
1

ln(! + x) = x+

∞∑
k=2

xk

k
(−1)k−1.

Because of periodicity of the exponent, at any point z 6= 0 logarithm is a mul-
tivalued function. In particular, on the circle |z| = 1 it takes imaginary values
ln eiϕ = i(ϕ+ 2πk) with integer k.

For any complex x 6= 0, the power function is defined as xa = ea ln x. From
this it is easy to derive all its properties, and in particular,

(xa)′ = (ea lnx)′ = xa
a

x
= axa−1.

3.2.2. Analytic functions

Complex integral along a curve in the complex plane. Let now be given
a connected open set Λ ⊂ C in the complex plane, a (complex) differentiable
function f(z) on Λ and the curve Γ : z(t), t ∈ [0, T ), in Λ, where z(t) is differ-
entiable in t. Choose N + 1 points zk = z(k TN ), k = 0, 1, . . . , N, on this curve,
so that z0 = z(0), zN = z(T ) = z and

FN (z) =

N∑
k=1

f(zk)(zk − zk−1). (3.13)

There exists the limit
F (z) = lim

N→∞
FN (z) (3.14)
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as in fact we integrate separately the real and imaginary parts of f(z) on the
interval [0, T ].

However, we can even forget about parametrization and define this integral
as the limit (3.14) under the condition that

∆(N) = max
k=1,...,N

|zk − zk−1| → 0,

as N → ∞. It helps to intuitively understand the integral as the sum of dif-
ferences and how to calculate the integral. Simplest example is the constant
function, for example function f(z) ≡ 1. Then in the sum (3.13) occurs great
cancellation and the answer is zN − z0. In particular, this integral is zero for
any closed contour Γ. In the general case we substitute

f(zk)(zk − zk−1) = F (zk)− F (zk−1) + o(|zk − zk−1|),

where F (z) is the anti-derivative of f(z) “in a complex sense”, and get the same
cancellations, except the sum

∑
k o(|zk−zk−1|), but it tends to 0 as N →∞. It

is proved exactly as in (3.4), as a derivative “in the complex sense” exists and
is the same in any direction (including the direction of the curve Γ at the point
z). And so

F (z) =

ˆ
Γ

f(z)dz =

ˆ T

0

f(z(t))z′(t)dt =⇒ dF (z)

dz
= f(z).

Let the anti derivative is known and single-valued on Λ. For example, the anti
derivative of zn, n 6= −1, is the function 1

n+1z
n+1. Then, for any curve (contour)

Γ with a start and end points z0 and z, respectively, we have
ˆ

Γ

zndz =
1

n+ 1
zn+1 − 1

n+ 1
zn+1

0 , n 6= −1.

If the contour is closed, i.e. z = z0, then the integral is equal to zero. Instead of a
polynomial we could consider any function f(z), single valued and differentiable
at each point of some simply connected area, and then for any closed loop Γ

ˆ
Γ

f(z)dz = 0,

where by a simply connected area Λ we mean that Λ itself and its complement
are connected.

At the same time, if n = −1, and Γ is any circle with center at the point 0,
then ˆ

Γ

1

z
dz = ln(ze2πi)− ln z = 2πi,

and anti derivative for 1/z will be ln z. We agree, that further such integrals
are taken counterclockwise.
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Let f(z) be analytic at the point zero. Denote Γ(r) = {z : |z| = r} the circle
of radius r. Then for sufficiently small r

f(0) =
1

2πi

ˆ
Γ(r)

f(z)

z
dz, (3.15)

which follows from the previous formulas and term integration of the series. The
last formula is called the Cauchy formula.

Another example. Let, in a small neighborhood of a point z0, the function
is represented in the form (with m ≤ −1)

f(z) =

∞∑
k=m

ak(z − z0)k. (3.16)

Then a−1 is called the residue at the point z0, and if Γ(r) is the circle of
sufficiently small radius r around the point z0, then

1

2πi

ˆ
Γ(r)

f(z)dz = a−1.

Analyticity and differentiability.

Proposition 1. Assume that the function f is complex differentiable in a
neighborhood of zero of a certain radius 0 < R <∞. Then

1) Cauchy’s formula at the point z = 0 holds for any r < R,
2) the function f has all derivatives at the point 0, and its Taylor series

converges absolutely for all z : |z| < R.

For the proof we need the following frequently used construction. Fix two
numbers 0 < r1 < r2 < R. Define two closed contours on C: 1) Γ+ = Γ+(r1, r2)
that starts at the point (r1, 0), goes along the real axis to the point (r2, 0), then
along the circumference of radius r2 counterclockwise to the point (−r2, 0), then
along the real axis to the point (−r1, 0), and finally along the circle of radius r1

clockwise it comes back to the point (r1, 0). 2) A symmetric (with respect to
the real axis) contour Γ− = {(r2, 0)→ (r1, 0)→ (−r1, 0)→ (−r2, 0)→ (r2, 0)}.
We want to prove that ˆ

Γ(r1)

=

ˆ
Γ(r2)

.

In fact, the integrals over the contours Γ+ and Γ− are equal to zero (no singular
points inside), and therefore 0 =

´
Γ+

+
´

Γ−
= −

´
Γ(r1)

+
´

Γ(r2)
, as in the left

sum the integrals over both intervals of the real axis cancel each other.
To prove 1) note that when |z| = r1 → 0 one can write

f(z) = f(0) + f ′(0)z + o(r1).
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Then the Cauchy integral from the second term of the sum will give 0, and
the third will tend to zero. So in the limit there will be only f(0). Since r1 is
arbitrary, the integral over the circumference of radius r2 is equal to this limit.

2) Assume now that z0 is an arbitrary point, f is differentiable in this point
and Γ is a circle of sufficiently small radius r < r around z0. Then from 1) and
(3.15) it follows

f(z0) =
1

2πi

˛
Γ

f(z)

z − z0
dz.

Differentiating under the integral sign, we obtain

f ′(z0) = lim
ε→0

f ′(z0 + ε)− f ′(z0)

ε
=

=
1

2πi
lim
ε→0

ˆ
Γ

1

ε
(

1

z − z0 − ε
− 1

z − z0
)f(z)dz =

=
1

2πi
lim
ε→0

ˆ
Γ

1

(z − z0 − ε)(z − z0)
f(z)dz =

1

2πi

ˆ
Γ

f(z)

(z − z0)2
dz

and similarly

f (n)(z0) =
n!

2πi

ˆ
Γ(r)

f(z)

(z − z0)n+1
dz.

Thus, if for example z0 = 0, we have the estimate

|f (n)(0)| ≤ n!

rn+1
max
|z|=r

|f(z)|.

Now, for arbitrary z with |z| < R we choose r such that |z| < r < R. Therefore,
the Taylor series for f(z) at the point 0 absolutely converges when |z| < r.

The residue theorem: suppose that in a simply connected domain Λ a
function is analytic everywhere except for a finite number of singular points,
where it has the form (3.16). Then the integral over any closed loop without
self-intersections is equal to the sum of the residues at the singular points inside
this loop.

It is proved in the same way.
Note that such functions are called meromorphic in Λ, and the functions

(like ez) analytic at each point of the complex plane are called entire functions.

Main theorem of algebra Consider the polynomial P (z) = zn + p(z) =

zn + an−1z
n−1 + . . .+ a0, as well as the function f(z) = P ′(z)

P (z) . For example, if

P = zn, n = 0, 1, . . ., then for any r > 0

1

2πi

ˆ
Γ(r)

f(z)dz = n (3.17)
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that is equal to the multiplicity of the root z = 0. Let z0 be one of the roots of
P . Then the same integral over a circle of small radius around z0 will give the
multiplicity of this root.

Due to the dominance of the term zn for sufficiently large R, all roots will
lie inside Γ(R) for some R. But

f(z) =
P ′(z)

P (z)
=
nzn−1+p′(z)

zn + p(z)
=
nz−1 + p′(z)/zn

1 + p(z)/zn
= nz−1 1 + p′(z)/(nzn−1)

1 + p(z)/zn
=

= nz−1 1 +
∑∞
k=1 akz

−k

1 +
∑∞
k=1 bkz

−k =
n

z
+

∞∑
k=2

ckz
−k.

The last series is convergent for sufficiently large R. Therefore, the integral of
it is equal to zero. And so the formula (3.17) is correct.

But in addition, the integral of f(z) over Γ(R) is equal to the sum of the
integrals of f(z) over small circles around all zeros of P . This can be proved,
as above, by constructing small circles around each zero and the contours con-
necting them together and with Γ(R). So the sum of the multiplicities of all the
roots of P (z) is n.

3.3. Asymptotics of sums, products and integrals

Each of these methods is based on simple and clear ideas: 1). approximation
of sums by integrals, 2) cancellations in frequent changes of sign, 3) neighbor-
hood of exponentially large maximum allows to neglect everything else, 4) choice
of the path of integration.

Sums. First we prove that
n∑
k=1

1

k
= lnn+ C + o(1), (3.18)

where C > 0 is some constant. Growing members of the asymptotics (unlike
constants) in such problems one can find easier, since they do not depend on a
finite number of series terms. Consider the piece wise constant function f(x)
equal to 1

k on the interval [k, k + 1). Then our sum is equal to the area under
it in the interval [1, n+ 1). Since the difference f(x)− 1

x ≥ 0, then

n∑
k=1

1

n
>

ˆ n+1

1

dx

x
= ln(n+ 1) = lnn+ ln

(
1 +

1

n

)
= lnn+O

( 1

n

)
,

and the area between these two functions is equal to
n∑
k=1

(
1

k
−
ˆ k+1

k

dx

x

)
= C > 0,

which gives a convergent series with positive terms.
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Products – Stirling formula. Similarly, in the asymptotics of the product,
to find the multiplicative constant is significantly more difficult than increasing
multipliers. An example is the Stirling formula

n! ∼
√

2πn
(n
e

)n
. (3.19)

Everything comes down to finding the asymptotic expansion of the sum

lnn! = ln 1 + . . .+ lnn = n lnn− n+
1

2
lnn+

1

2
ln(2π) + C + o(1), (3.20)

where everything is very simple, again with the exception of finding the constant.
It seems to exist many links between the two famous numbers: π and e. For
example, one given by the formula e2πi = 1, and also Stirling formula (3.19)
itself. It is difficult to join all these links to one simple structure.

Consider sum (3.20) as the area Sn under the graph of the piece wise constant
function f(x) on (1, n], equal to ln k on half-interval (k − 1, k]. The area under
the function lnx on this interval is

ˆ n

1

lnxdx = −
ˆ n

1

xd(lnx) + (x lnx)|n1 = −n+ 1 + n ln

gives the lower bound and the basic factor (ne )n. The factor
√
n is slightly more

complicated because of the asymptotics of the difference of the two areas

Sn −
ˆ n

1

lnxdx =

n∑
k=2

[
ln k −

ˆ k

k−1

lnxdx

]
=

=

n∑
k=2

[ln k − (k ln k − (k − 1) ln(k − 1)− 1)] =
1

2
lnn+ C + o(1) (3.21)

which is easily calculated after decomposition (for large k)

ln(k − 1) = ln k + ln
(

1− 1

k

)
= ln k − 1

k
− 1

2k2
+O

( 1

k3

)
ln(k − 1) =

= ln k + ln
(

1− 1

k

)
= ln k − 1

k
− 1

2k2
+O

( 1

k3

)
,

and use the last equality of (3.21) asymptotics of sums (3.18).

Integration by parts. A typical example is the following estimate of the
integral for a function f differentiable on [a, b]: there exists a constant A > 0
such that ∣∣∣∣ˆ b

a

f(x) cos(Nx)dx

∣∣∣∣ ≤ A

N
. (3.22)
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Intuitively, this is due to fast cosine fluctuations on short intervals, where f is
almost constant, which gives plus-minus cancellations. Formally, this looks like
this:

f(x) cos(Nx) =
1

N
f(x)(sin(Nx))′ =

1

N
[(f(x) sin(Nx))′ − f ′(x) sin(Nx)] =⇒

=⇒
ˆ b

a

f(x) cosNxdx =
1

N

[
f(b) sin(Nb)− f(a) sin(Na)−

ˆ b

a

f ′(x) sin(Nx)dx

]
.

If f(b) sin(Nb) = f(a) sin(Na), then assuming twice differentiability of f , we
can apply a similar procedure to the last integral, obtaining an estimate of the
order N−2, etc.

Laplace Method. Consider the integral

ˆ b

a

f(x)eNS(x)dx,

where S has a unique non-degenerate maximum S(x0) > 0, S′(x0) = 0, S′′(x0) <
0, at the interior point x0 ∈ [a, b). First, let f = 1, put out eNS(x0) of the integral

ˆ b

a

eNS(x)dx = eNS(x0)

ˆ b

a

eN(S(x)−S(x0))dx.

We show that in the integral on the right we can asymptotically neglect the
integral outside the interval I0 = (x0 − cN−1/2, x0 + cN−1/2) for an arbitrary
constant c. Indeed, in the neighborhood of x0, we have

S(x)− S(x0) =
1

2
S
′′
(x0)(x− x0)2 +O((x− x0)3).

For sufficiently small δ > 0 we introduce a smaller interval Iδ = (x0−cN−1/2−δ,
x0 + cN−1/2−δ), ˆ

I0

>

ˆ
Iδ

≥ c1N−1/2−δ exp{Nδ}

At the same time, the integrand outside I0 does not exceed a constant. Then

ˆ
I0

exp{N(S(x)− S(x0))}dx

∼
ˆ
I0

exp
{
N

1

2
S
′′
(x0)(x− x0)2

}
dx

∼
ˆ ∞
−∞

exp
{
N

1

2
S
′′
(x0)(x− x0)2

}
dx =

√
2π

NS′′(x0)
.
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The last integral is called Gaussian and is calculated in (4.10).
In a curvilinear integral (real integral of vector field or complex of analytic

function), it is often possible to deform a path so that it passes through a
maximum point. Then they talk about the saddle point method.

Method of stationary phase. Generalization of integrals of type (3.22) are
the integrals, like ˆ

f(x) exp(iNS(x))dx.

However there is a nuance – the ends of the interval of integration also can give
essential contribution. Therefore, assume that f(x) is smooth and finite (i.e. is
zero outside a finite interval) function. If S(x) has no stationary points, i.e. the
points where S′(x) = 0, then it is estimated by integration by parts as above.
The existence of such points prevents cancellation due to sign changes.

Then in the neighborhood of stationary points the integral is treated like in
Laplace method, and outside of small neighborhood of stationary points – like
in integration by parts. Assume that at some point a we have S′(a) = 0 and,
for example, S”(a) > 0, f(a) 6= 0. Then, like in Laplace method, it is necessary
to choose a sufficiently small ε = ε(N) so that

ˆ ∞
−∞

f(x) exp(iNS(x))dx ∼

∼
ˆ a+ε

a−ε
f(x) exp(iNS(x))dx ∼

∼ f(a) exp(iNS(a))

ˆ a+ε

a−ε
exp(iN(S(x)− S(a))dx ∼

∼ f(a) exp(iNS(a))

ˆ a+ε

a−ε
exp
( iN

2
S′′(a)(x− a)2

)
dx ∼

∼ f(a) exp(iNS(a))

ˆ ∞
−∞

exp
( iN

2
S′′(a)(x− a)2

)
dx ∼

∼ C exp(iNS(a))√
N

,

C = f(a) exp
( iπ

4

)√ 2π

S′′(a)
.

Thus, the connection with Laplace method is evident and also that in asymptotic
expansions one always has to do a lot of calculations, although the methods
(algorithms) can be predictable.
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4. Linear algebra

4.1. Linear equations

4.1.1. Linear operators and matrices

Linear space L over the field C (or R) is the set of elements (called vectors),
which is the commutative (addition) group with zero element 0, so that for
any two elements x, y is defined their sum x + y. Moreover, for each vector x
multiplication λx is defined for any complex (real) number λ that satisfies the
following axioms:

0x = 0, λ(x+ y) = λx+ λy, (λ1λ2)x = λ1(λ2x),

(λ1 + λ2)x = λ1x+ λ2x.

Further on, the main field we are considering is C, but many definitions can be
literally transferred to other fields.

N vectors x1, . . . , xN are called linearly independent if there are no such
(not all zero) numbers λk that

λ1x1 + . . .+ λNxN = 0.

Maximal number of linearly independent vectors is called the dimension of L
and is denoted by dimL. Then (if the dimension is equal to N) any N such
vectors can be selected as the basis. This means that any vector y can be
represented as a linear combination of elements of this basis. In other words,
there exist numbers a 6= 0, a1, . . . , aN , such that

ay + a1x1 + . . .+ aNxN = 0,

since the vectors x1, . . . , xN , y are linearly dependent. And of course, we can
take a = 1.

Two linear spaces L1, L2 of the same dimension are (linearly) isomorphic,
i.e. there exists a bijective mapping ϕ : L1 → L2, consistent with addition and
multiplication on numbers, i.e.

ϕ(λ1x1 + λ2x2) = λ1ϕ(x1) + λ2ϕ(x2).

For the proof it is sufficient to continue linearly some one-to-one correspondence
between elements of any their bases.

Easy implementation (sometimes we will talk about the standard repre-
sentation) of linear space of dimension N is the set of all vectors (sequences)
a = (a1, . . . , aN ), of length N , where ak ∈ C are called the coordinates (or
components) of the vector a. In this representation for any two vectors a and
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b = (b1, . . . , bN ) operations of addition and multiplication by number are as
follows:

a+ b = (a1 + b1, . . . , aN + bN ), λa = (λa1, . . . , λaN ).

Convenient basis here is ek, k = 1, . . . , N , where all the coordinates of the vector
ek are equal to 0, except k-th coordinate, equal to 1.

Then the statement about the linear independence of the vectors xk =
(xk1, . . . , xkN ), k = 1, . . . , N , can be reformulated as follows: one vector equa-
tion, or equivalent system of N linear equations∑

k

xkλk = y ⇐⇒
∑
k

xklλk = yl, l = 1, 2, . . . , N,

with unknowns λk, has a unique solution {λk} for any vector y = (y1, . . . , yN ).
Direct sum of N linear spaces Lk, k = 1, . . . , N, is defined as the linear

space such that: 1) as the set it is the Cartesian product of the sets Lk, with
elements (x1, . . . , xN ), where xk ∈ Lk, 2) operations of addition and multipli-
cation by a number are defined as

(x1, . . . , xN ) + (y1, . . . , yN ) = (x1 + y1, . . . , xN + yN ),

λ(x1, . . . , xN ) = (λx1, . . . , λxN ).

In particular, any linear space of dimension N is a direct sum of N one-
dimensional spaces.

A linear functional on L is a function f : L→ C, having the properties of
linearity

f(x+ y) = f(x) + f(y), f(λx) = λf(x). (4.1)

It is obvious that in the standard representation any linear functional has the
form

f(x) = x1f(e1) + . . .+ xNf(eN ) = f1x1 + . . .+ fNxN

for some numbers fk = f(ek).
Linear operator in CN is a function A : L→ L having the same properties

of linearity (4.1). Linear functionals, linear operators (matrices, see below) in
CN also form a linear space of dimension respectively N and N2. The linear
space of operators is also an algebra with multiplication defined as (L2L1)x =
L2(L1)x. The kernel KerA of the operator A, i.e. the set of vectors x ∈ L
such that Ax = 0, is a subspace of L. Similarly, the image ImA is also a linear
space, its dimension is called the rank of the operator A.

Any linear operator can be written as (for some basis e1, . . . , eN and some
numbers akl, k, l = 1, . . . , N)

Aek =
∑
l

alkel.
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Then the vector x = (x1, . . . , xN ) is transformed to

Ax =
∑
k

xkAek =
∑
k

xk
∑
l

alkel = (ΣNk=1a1kxk, . . . ,Σ
N
k=1aNkxk).

These numbers aij can be arranged in a matrix form (square matrix) A =
(aij), i, j = 1, . . . , N , where i enumerates the rows and j – the columns. The
product of two operators AB = D corresponds (in this basis) to multiplication
of their matrices

dij =

N∑
k=1

aikbkj .

Moreover, multiplication of a vector by a matrix can be understood as matrix
multiplication, if the vector will be written as (1×N)-matrix, or as a (N × 1)-
matrix, that is

xA = (x1, . . . , xN )A = y = (y1, . . . , yN ) =
(∑

i

xiai1, . . . ,
∑
i

xiaiN

)
,

Ax = A


x1

.

.
xN

 = y =


y1

.

.
yN

 =


∑
j a1jxj
.
.∑

j aNjxj

 .

Note the summation over first indices of aij in xA and over second indices in
Ax.

If in each of Lk of the direct sum L = L1 × . . . × LN some linear operator
Ak : Lk → Lk is defined, then the direct sum of these operators is the operator
A : L→ L acting as

Ax = A(x1, . . . , xN ) = y = (y1, . . . , yN ) = (A1x1, . . . , ANxN ).

Problem 9. Similarly, define linear operators from CN to CM and the corre-
sponding matrices. For M = 1 this will be obviously linear functionals.

Multilinear forms. Let linear spaces L1, . . . , Ln of dimensions Nk be given.
The vectors of these spaces will be denoted by xk = (ak1, . . . , akNk).

A function f : L1 × . . . × Ln → C is called a multilinear form if for any
index k, e.g. k = 1, the following holds:

1) addition of vector y ∈ L1 to x1 gives

f(x1 + y, x2, . . . , xn) = f(x1, x2, . . . , xn) + f(y, x2, . . . , xn),

2) multiplication of x1 by any number λ multiplies the result by this number

f(λx1, x2, . . . , xn) = λf(x1, x2, . . . , xn).
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Further, we assume that all Lk = L of dimension n, and will write every vector
xi of L in the standard basis e1, . . . , en:

xi =

n∑
j=1

aijej .

Then the form can be considered as a function of n2 numbers aij .
The form is called skew symmetric if any permutation of two vectors

changes sign. For example,

f(x2, x1, x3, . . . , xn) = −f(x1, x2, x3, . . . , xn).

We will show now that with normalization condition

f(e1, e2, . . . , en) = 1 (4.2)

a skew symmetric form, as a function of aij , is unique and has the following
form

f({aij}) =
∑
σ

a1j1a2j2 . . . anjn(−1)|σ| (4.3)

where the sum is taken over all permutations

σ =

(
1 2 . . n
i1 i2 . . in

)
and |σ| is the parity of substitution σ. This number (4.3) is called the deter-
minant detA of the matrix A = (aij).

For the proof of (4.3), it is sufficient first to open all brackets, using property
1), and put out all aij of f , using 2) :

f(x1, . . . , xn) = f

( n∑
j=1

a1jej , . . . ,

n∑
j=1

anjej

)
=

=

n∑
j1,...,jn=1

a1j1 . . . anjnf(ej1 , . . . , ejn).

After this it is necessary to use the normalization condition and the fact that
f(ej1 , . . . , ejn) = (−1)|σ|, if all ej1 , . . . , ejn are different, and zero otherwise.
Note that (4.3) can be rewritten in the form∑

σ

aj11aj22 . . . ajnn(−1)|σ|,

which implies that the determinants of matrices A = (aij) and the transpose
of the matrix A′ = (a′ij = aji) are equal.

Problem 10. Prove by direct multiplication that det(AB) = det(A) det(B).
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4.1.2. Geometry of determinant

The scalar product (a, b) of two vectors a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈
RN and the length |a| of the vector a is defined as

(a, b) = a1b1 + . . .+ aNbN , |a| =
√

(a, a) ≥ 0.

Cosine of the angle ϕ between the vectors a and b is defined (like on the plane)
as

cosϕ =
(a, b)

|a||b|
.

It is easy to prove that this definition of the cosine does not contradict to the
earlier definition in the section on power series.

We define n-dimensional parallelepipeds inRn, generated by n vectors a1, . . . ,
an as

Pn = P (a1, . . . , an) = {s1a1 + . . .+ snan : 0 ≤ s1, . . . , sn ≤ 1}.

We want also to define their (oriented) volumes v(P (a1, . . . , an)) by induction
in n . Let Mn−1 be the subspace generated by the vectors a1, . . . , an−1. Then
the vector an can be written in the form an = h+ a, where h is perpendicular
to Mn−1, i.e. to each of the vectors a1, . . . , an−1, and a is a linear combination
of the vectors a1, . . . , an−1.

This means that Pn is the union of straight line segments ∪x∈Pn−1
[x, x+an].

Then |v(Pn)| = |v(Pn−1)||h|, as in the two-dimensional case. We have to show
now that if |v(Pn−1)| = |detAn−1|, then |v(Pn)| = |detAn|.

To do this, define the matrix A = (aij) with the vector-rows ai = (ai1, . . . ,
aiN ), Then the matrix AA′ can be written in the form of the Gram matrix
G = G(a1, . . . , aN ) of the system of vectors a1, . . . , aN with the elements gij =
(ai, aj). Then

detG = det(AA′) = (detA)2.

Since (ak, h) = 0 for k = 1, . . . , n− 1, we have

detG(a1, . . . , an−1, an) = detG(a1, . . . , an−1, h) = detG(a1, . . . , an−1)(h, h).

Remark 7. Throughout the previous we missed an important nuance: the vol-
ume could have minus sign, depending on the orientation – the sign of the deter-
minant determines the orientation change. A simple example in two-dimensional
case: the difference between P2(e1, e2) and P2(e2, e1) explains what is orienta-
tion.

We can now give a simple explanation of why

det(A1A2) = detA1 detA2.
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Indeed, the determinant can be seen not only as a volume but also as the number
showing how many times increases the volume of the unit cube generated by
the basis vectors e1, e2, . . . , en, (and also of any volume) under the action of
the matrix A : Rn → Rn. Therefore, the determinant of the product of two
matrices equals the product of their determinants.

4.1.3. Combinatorics of matrices

Solution of linear equations. To find vector x = (x1, . . . , xn) from the
equations Ax = y = (yq, . . . , yn) with (n× n)-matrix A = (aij) is a well-known
natural trick. For example, suppose that a11 6= 0, then in the system of linear
equations

n∑
j=1

aijxx = yi (4.4)

we can eliminate the unknown x1 (if it is present) from the equations with i =
2, . . . , n, by adding equation 1 to the equation i, multiplied by the corresponding
number. If a11 = 0, then find the line i with ai1 6= 0 and exchange it with the
first row, and then similarly eliminate the variable x1. After this we will have
the equation 1 and n − 1 equations with a matrix An−1, where there will not
be unknown x1. Suppose for example that the matrix A is invertible, then the
matrix An−1 is also invertible, since its rows will remain linearly independent,
Next step – we eliminate by induction x2, x3,.... On the last step n we have
one row with one unknown xn, which can be easily found. Then the inverse
procedure will find all the rest.

This procedure shows that the following 3 elementary operations leave the
equation with the same set of solutions: 1) rearrange the equations, 2) multiply
both parts of the same equation by a nonzero number, 3) adding one equation to
another. Note that each of these operations does not change in the matrix the
number of linearly independent rows, and the number of linearly independent
columns.

Instead of doing these operations “by hands”, one can use multiplication (like
A→ E(i, j)A) by the corresponding matrix (called elementary matrices): 1)
matrix E(i, j) = E−1(i, j) derived from unit matrix E by interchanging rows i
and j, 2) E(bi) = E−1(b−1i) obtained from E by multiplying its row i by the
number b, 3) E(j → i) = E−1(−j → i), received from E by adding row j to
row i. Of course, at the same time exactly the same matrix should be applied
to the right side of the equations. This approach allows to better understand
many well-known facts and formulas:

1) Any invertible matrix is a product of elementary ones – can be obtained
from unit matrix by elementary operations.

2) For a square matrix A, the maximum number of its linearly independent
rows and columns are equal. This number r(A) coincides with the rank of the
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matrix A. In fact, using elementary operations, one can make zero n − r(A)
rows and columns.

3) Also this makes clear famous Kramer formula for the solution

xk =
detAk
detA

, (4.5)

of the linear system (4.4) with detA 6= 0, where Ak is A, where the k-th col-
umn is replaced by right-side column y in (4.4). For example, assume that
we transform A to triangular form (see below) with x1, . . . , xn−1, xn on the di-
agonal, and simultaneously An (with exactly the same operations) obtaining
triangular matrix with diagonal x1, . . . , xn−1, yn, then detA = x1 . . . xn−1xn
and detAn = x1 . . . xn−1yn. Then xn = yn.

4) Formula for the inverse matrix (with nonzero determinant)

A−1 =
1

detA
((−1)i+jMij), (4.6)

where (Mij) is called minor of matrix A, that is the matrix A without i-th row
and j-th column. In fact, calculation of the inverse matrix can be reduced to
the subsequent solution of systems of equations. Thus, it is sufficient to prove
this formula for simple (see below) matrices.

4.2. Spectrum and similarity

Spectrum of linear operator A is the set of λ such that the operator A−λE
is not one-to-one (does not have inverse), that is where there exists at least one
vector ψ, called eigenvector, and λ ∈ C, called eigenvalue, such that

Aψ = λψ. (4.7)

The number of points of the spectrum does not exceed N and is not less than
1, that is there exists at least one λ and ψ, satisfying (4.7). To prove this define
the resolvent of operator A in CN as the following rational matrix function of
λ

R(λ) = (A− λE)−1, λ ∈ C.

Resolvent exists for all λ ∈ C, except those when the operator A − λE is
not invertible, that is except finite number of zeroes of the characteristic
polynomial PA(λ) = det(A− λE), that is where

P (λ) = 0. (4.8)

There can be several eigenvectors with eigenvalue λ. All of them generate
the subspace called the eigensubspace Lλ = Lλ(A). Let dλ be their dimen-
sions. Any number of eigenvectors ψk with different eigenvalues λk are linearly
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independent. For two eigenvectors this is evident. For any number n this can be
shown by induction in n. Thus, all Lλ are linearly independent but the problem
is that it can be that

∑
λ dλ < N , that is they do not generate all the space.

Now we want to understand how A acts on other vectors.

Simple types of matrices. The matrix is called a block matrix, if the set
of indices {1, . . . , n} is divided into m consecutive blocks

{1, . . . , k1}, {k1 + 1, . . . , k2}, . . . , {km−1, . . . , km = n}

so that aij = 0 if i, j belong to different blocks. Block matrix determines the
partitioning of the basis into correspondent groups that, in turn, determines the
partitioning of Cn is a direct sum of linear spaces of corresponding dimensions,
where each block of the matrix defines a linear operator. And the whole matrix
is the direct sum of these operators. Also it is easy to see that the determinant
of a block matrix is equal to the product of determinants of blocks. A special
case of a block matrix is a diagonal matrix where only the diagonal elements
aii can be nonzero.

A matrix is called upper (lower) triangular, if aij = 0 when i > j (i < j).
It is obvious that the determinant of a triangular matrix equals the product of
diagonal elements. Indeed, for example for the upper triangular matrix in any
product of (4.3) necessarily jn = n, and then by induction. The matrix is called
block-triangular if each of its block is a triangular matrix.

A matrix A of order n is called Jordan block (of order n) if for all i =
1, . . . , n− 1 we have ai,i+1 = 1, aii = λ for all i and some λ, and all the others
are null. We shall denote such Jordan block as J(N,λ). A block matrix (direct
sum of matrices) is called a Jordan (having Jordan form) if each of its blocks
is a Jordan block.

Similarity of matrices. Two matrices A and B are called similar (some-
times called also conjugate), if there is an invertible matrix C such that B =
CAC−1. We shall show that the matrices are similar, iff they represent the same
linear operator in different bases. Suppose that there are two bases consisting
of vectors-columns e1, . . . , en and g1, . . . , gn. Let the two bases be related by a
linear operation C as Cei = gi. and moreover in these bases the operators A,C
are specified by the matrices

gi = Cei =
∑
j

cijej , Aei =
∑
j

aijej , Agi =
∑
j

bijgj ,

which we denote by the same letters C,A,B respectively. Then

C−1Agi =
∑
j

bijC
−1gj =

∑
j

bijej =⇒
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=⇒ C−1ACC−1gj = C−1ACej =
∑
j

bijej =⇒ B = CAC−1.

It is easy to see that the similarity relation is symmetric, reflexive and tran-
sitive. This set of properties defines an equivalence relation, that is, parti-
tioning the entire set of matrices into classes of “similarity”. So, matrices of
different classes may not be similar to each other.

If A and B are similar, then they have the same determinants, ranks, charac-
teristic polynomials, spectrum, and also dimensions dimLλ(A) = dimLλ(B) for
any λ. This is simple to prove. However, all these conditions are not sufficient
that A and B were similar. See example in [5].

A natural question is to find in each equivalence class the matrix of the
simplest kind. But firstly, it is necessary understand what are simplest matrix
representations, for which there is no diagonal representation. For example, to
show that any matrix is similar to a triangular matrix consider any matrix A, se-
lect, as we did above, the elementary matrices Dk so that the matrix Dm . . . D1A
were triangular. For example, if the matrix has N linearly independent eigen-
vectors then it is similar to diagonal matrix with the diagonal representation,
that is with the corresponding eigenvalues on the diagonal.

Theorem 2 (Basic statement). Any matrix is similar to some Jordan ma-
trix.

Consider first an operator A in L = CN with the only eigenvector g1, and
assume that it has eigenvalue 0. We shall show that A is similar to the Jordan
block J(N, 0). More exactly, we shall show that A is nilpotent operator that
is Ln = 0 for some n (in our case minimal such n = N), and there exists vector
gN such that the following sequence

gN , gN−1 = AgN , . . . , g1 = Ag2

is a linear basis in L.
For example, let N = 2, then for any vector x, linear independent with g1,

we have Ax = ag1 + bx. There could be 4 cases: 1) a = b = 0, then there is
second eigenvector with zero eigenvalue, 2) a = 0, b 6= 0 then x is the second
eigenvector with nonzero eigenvalue, 3) a 6= 0, b 6= 0, then the vector y = a

b g1 +x
is the second eigenvector with eigenvalue b, 4) a 6= 0, b = 0, this is what we need.
Thus b = 0 and A(a−1x) = g1.

For any N , assume that for some n < N there exists sequence

gn, gn−1 = Agn, . . . , g1 = Ag2.

Let Ln be the subspace having this sequence as a basis. Choose some vectors
x1, . . . , xN−n so that they, together with g1, . . . , gn form the basis of L. Let Lx
the subspace generated by the x1, . . . , xN−n. Then there are two possibilities:
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1) there is no vector x ∈ Lx such that Ax ∈ Ln, then Ln is invariant
w.r.t. A and there exists at least one eigenvector inside it, that contradicts our
assumption;

2) there is vector x such that Ax = g = c1g1+. . .+cngn ∈ Ln. If cn = 0, then
there are two vectors x1 = x and x2 = c1g2 + . . .+ cn−1gn such that x1−x2 is a
second eigenvector. If cn 6= 0 then Ay = gn for y = c−1

n (x−c1g2− . . .−cn−1gn).
And so on, we get n = N .

In case of several eigenvectors ξ1, . . . , ξm. each with eigenvalue 0 there will
be m invariant subspaces, where A will be nilpotent with minimal degrees
n1, . . . , nm such that for k = 1, . . . ,m and some vectors ξk1 = ξk, ξk2, . . . , ξknk
(the basis of the subspace Lk)

Aξk1 = 0, Aξk2 = ξk1, . . . , Aξknk = ξk,nk−1

and L1 ⊕ . . .⊕ Lm = L.
For several eigenvectors ξ1, . . . , ξm with any eigenvalues λk the situation is

the same. The only difference is that

Aξk1 = λkξk1, Aξk2 = ξk1 + λkξk2, . . . , Aξknk = ξk,nk−1 + λkξknk .

The proof is just by reducing to the previous case. For example, let N = 2 and
the only eigenvector g1 has eigenvalue λ 6= 0. Consider the operator B = A−λE
which has the only eigenvector g1 with eigenvalue 0. Then B is similar to Jordan
block J(2, 0) and A – to J(2, λ).such that Ax = ag1 + bx, a 6= 0. If b 6= 0 then
the vector y = a

b g1 + x is an eigenvector with eigenvalue b. Thus b = 0 and
A(a−1x) = g1. If for N = 2 there is the only eigenvector g1 with eigenvalue λ,
we consider the operator B = A − λE which has the only eigenvector g1 with
eigenvalue 0. Then B is similar to Jordan block J(2, 0) and A – to J(2, λ).

4.3. Examples of local and infinite dimensional linearity

4.3.1. Local diffeomorphisms

Any smooth mapping is locally linear in some sense – the less the neigh-
borhood the better the map of this neighborhood is approximated by linear
map.

Mapping of the open region Λ1 ⊂ Rd to another open region Λ2 ⊂ Rn is
called diffeomorphism if it is one-to-one and continuously differentiable.

First, let d = 1 and the function f(x) is defined in a neighborhood of zero.
When one can affirm that it maps some neighborhood of zero one-to-one to
some neighborhood of the point f(0) ? For this it is sufficient that f(x) were
continuously differentiable on some interval containing 0, and f ′(0) 6= 0. Then
on some interval [x1, x2] that contains 0, its derivative has one sign and the
answer is obvious from monotonicity

f(x2)− f(x1) =

ˆ x2

x1

f(x)dx 6= 0. (4.9)
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Similarly for arbitrary d. Let the mapping of an open sets-polygons O1 ⊂ Rd

to Rd is given by the system of real functions fi(x1, . . . , xd), i = 1, . . . , d, which
have all continuous partial derivatives ∂fi

∂xj
, i, j = 1, . . . , d. Then, if the Jacobi

matrix (aij = ∂fi
∂xj

), at each point of O1, has a nonzero determinant (Jacobian),

then some neighborhood of each point (x0
1, . . . , x

0
d) is mapped one-to–one onto

some neighborhood of the point (f1(x0
1, . . . , x

0
d), . . . , fd(x

0
1, . . . , x

0
d)).

Indeed, suppose there are two points (x0
1, . . . , x

0
d) and (x0

1 + δ1, . . . , x
0
d + δd)

and direct path between them: x0
k + tδk, 0 ≤ t ≤ 1, k = 1, . . . , d. The derivative

of a vector function F = (f1, . . . , fd) in the direction of this path is equal to

dF

dt
=

{∑
j

δj
∂fi
∂xj

, i = 1, . . . , d

}
.

But none of these vectors can be identically equal to zero due to the linear in-
dependence of the rows and columns of the Jacobian matrix. Therefore, at
least one component is different from zero. Then, similar to (4.9), vectors
f(x0

1, . . . , x
0
d) and f(x0

1 + δ1, . . . , x
0
d + δd) are different.

Change of measure. Let µ = µ0 be Lebesgue measure on R. In mathemat-
ical statistical physics there is a popular term “change of measure”. It is easy
to understand this term on simplest examples:

1. Let a function f(x) on the segment [a, b] be given. Then, as it is known,
the Lebesgue measure of any subinterval I = [c, d] is its length d− c. Then new
measure is µ1(I) =

´
I
f(x)dx, if of course all these integrals exist.

2. If this function is increasing, then another new measure is

µ2(I) = f(d)− f(c) =

ˆ
I

f ′(x)dx = µ(f(I)).

Very important, and related to change of measure, is change of variables x →
y(x), y = x(y).

Change of variables. In one-dimensional case the change of variables under
the integral ˆ b

a

f(y)dy =

ˆ x(b)

x(a)

f(y(x))y′(x)dx

is easy to understand as the limit of sums∑
f(yk)(yk+1 − yk) ∼

∑
f(y(xk))y′x(xk)(xk+1 − xk)

or ∑
f(yk)∆k(y) ∼

∑
f(y(xk))y′x(xk)∆k(x).
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In multi-dimensional case, if Λ ⊂ Rd is an open set and y : Λ → y(Λ) is its
diffeomorphism onto y(Λ), then the corresponding formula is

ˆ
Λ

f(y)dy =

ˆ
x(Λ)

f(y(x))j(x)dx,

where J(x) is the Jacobian of the map y(x).
As an example, consider the calculation of the gaussian integral

ˆ ∞
−∞

exp
{
−x

2

2

}
dx =

√
2π (4.10)

is derived by passing in the integral to the polar coordinates.
Polar coordinates (r, ϕ) on the plane with coordinates (x, y) are given by

x = r cosϕ, y = r sinϕ,

It is enough to prove that the double integral (the square of our integral)

ˆ ∞
−∞

ˆ ∞
−∞

exp
{
−x

2 + y2

2

}
dxdy

equals 2π. When passing to the polar coordinate system, the Jacobian is equal
to r, which gives

ˆ ∞
0

(ˆ 2π

0

dϕ

)
exp
{
−r

2

2

}
rdr =

ˆ ∞
0

ˆ 2π

0

dϕ exp
{
−r

2

2

}
d
(r2

2

)
=

=

ˆ ∞
0

(2π)e−xdx = 2π.

4.3.2. Fourier transform and generalized functions

Finite cyclic groups. Consider a cyclic group IN = {0, 1, . . . , N − 1} in
addition modulo N , and the Hilbert space l2(IN ) of complex functions f(n), n ∈
IN on it with the scalar product and norm

(f, g) =

N−1∑
n=0

f(n)g∗(n), ||f ||2 =
∑
|fn|2 <∞. (4.11)

The Cauchy inequality
|(f, g)| ≤ ||f ||||g|| (4.12)

which easily follows from the inequality 2|ab| ≤ a2 +b2, if you square both parts
of (4.12) and open the brackets.
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In l2(IN ) there are two remarkable bases: 1) em(n) = δm,n, 2) ẽm(n) =
1√
N

exp(2πimN n), where the orthogonality and normalization are easily tested,

if we use the formula for n 6= 0:

N−1∑
m=0

(
exp 2πi

n

N

)m
= 0

for n 6= 0. The Fourier transform here is called the unitary operator U in
l2(IN ) that maps em on ẽm, and the inverse Fourier transform is the inverse
operator U = U−1 = U∗. Thus, the direct and inverse Fourier transform with
an arbitrary function f(m) will be

f̃(n) =
1√
N

N−1∑
m=0

f(m) exp
(

2πi
m

N
n
)
, f(m) =

1√
N

N−1∑
m=0

f̃(n) exp
(
−2πi

n

N
m
)
.

Hilbert and Banach spaces. Here, at the first time, we transcend from
finite-dimensional linear algebra to infinite dimensional. The Hilbert space
can be define as a vector space with a scalar product and orthonormal countable
basis such that the property similar to (4.11) holds with N = ∞. However,
sometimes the basis is not so easy to find, and it is necessary to introduce more
general concepts. Normed space is a linear vector space over R or C with
norm 0 ≤ ||x|| < ∞ such that: 1) ||x|| = 0 ⇐⇒ x = 0, 2) ||ax|| = |a|||x||
for any number a, 3) ||x + y|| ≤ ||x|| + ||y||. The metric in it is defined as
ρ(f, g) = ||f − g||. The space is called complete if any Cauchy sequence, under
this metrics, converges to some element of the space. A complete normed space
is called Banach space.

Two examples of Banach spaces on finite or countable sets X: l1(X) ⊂
l∞(X), respectively with the norms

||f ||1 =
∑
x∈X
|f(x)|, ||f ||∞ = sup

x∈X
|f(x)|.

A Banach space where the norm is determined by the scalar product, that is,
the bilinear form with the properties as above, is called a Hilbert space. It
is easy to show that every Hilbert space has an orthonormal basis, and if it is
countable, then the space is called separable.

The projection of vector x on vector y is defined as (x, y) y
||y|| , and on the

subspace with an orthonormal basis {gk} as
∑
k(x, gk)gk.

A classical example of Hilbert space is the set L2([0, 1]) of complex or real
functions on the interval [0, 1], the square modulus of which is integrable. Since
we, on purpose, do not consider measurable functions in all their generality,
it is convenient to define L2([0, 1]) and the like as the completion of any class
of fairly simple functions in the metric of the norm, not identifying the limit
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elements with concrete functions. For example, classes of piece-wise constant,
continuous and differentiable functions. It is easy to show that in each of these
three cases, we get the same space.

Group Z. Firstly, let us define two basic Hilbert spaces. The first one is l2(Z),
where Z is the integer lattice. Let en(k) = δnk be the standard orthonormal
basis in it. Any element (a function f on Z) of l2(Z), is, by definition, can be
represented in the form

f =
∑
n∈Z

fnen

with complex coefficients fn = f(n), with scalar product and norm defined as
above, and the Cauchy inequality also holds.

The second one is L2(S). This is a set of functions on the circle S of length
1 with finite norm and scalar product

||f ||2 =

ˆ 1

0

|f(x)|
2

dx <∞, (f, g) =

ˆ
f(x)g∗(x)dx,

where the Cauchy inequality also holds. An orthonormal basis gn = e2πinx, x ∈
[0, 1) determines the isomorphism between l2 and L2(S):

f = f(n) =
∑
n

f(n)en ⇐⇒ ϕ(x) =
∑
n

f(n)e2πinx. (4.13)

We will show the preservation of scalar products, i.e. the unitarity of the Fourier
transform:

(f̃ , g̃) =

ˆ
f̃(g̃)∗du =

ˆ 1

0

du
∑
n

f(n)e2πinu
∑
m

g∗(m)e−2πimu =

=
∑
n

f(n)
∑
m

g∗(m)

ˆ 1

0

e2πi(n−m)udu =
∑
n

f(n)g∗(n) = (f, g). (4.14)

In this case, the inverse transform will be

f(n) =

ˆ
f̃(u)e−2πinudu.

It remains to show that the Fourier transform is a map on all L2, that is, for
any function f in L2 at least one coefficient (f, gn) is not zero. In view of our
definition of L2, it is enough to prove it for example for any continuous function.
We restrict ourselves to real functions – for example, let for some f , all Fourier
coefficients are equal to zero. Note that then any sum∑

k

(ak cos 2πk + bk sin 2πk) (4.15)
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will be orthogonal to this function. Suppose that at some point the function f
is positive. For example, let f(0) = 1, f(x) < C for all x and some C > 0. Let
us prove that for sufficiently large N the function(1 + cos 2πx

2

)N
,

which is of course representable in the form (4.15), is not orthogonal to f .
Divide the interval [− 1

2 ,
1
2 ] into 3 parts: I1 = {x : |x| < ε1}, I1 = {x : ε1 ≤

|x| < ε2}, I3 = {x : ε2 ≤ |x|}. For sufficiently small (but not dependent on N)
0 < ε1 < ε2 there are small 0 < δ1 < δ2 and C1 > 0 (also independent of N)
such that f(x) > C1, x ∈ I1 ∪ I2, and

1− δ1 <
1 + cos 2πx

2
≤ 1, x ∈ I1,

1 + cos 2πx

2
≤ 1− δ2, x ∈ I1.

Divide the integral

ˆ 1

0

(1 + cos 2πx

2

)N
f(x)dx =

ˆ
I1

+

ˆ
2

+

ˆ
I3

,

where the first term is greater than 2ε1C1(1− δ1)N , the second is positive, and
the third is less than C(1− δ2)N . From here the result follows.

It also follows that the Fourier series (4.13) converges in the metrics of L2.
Fourier series were earlier an extremely popular area of mathematics, in which
many technique were developed.

Remark 8. For non-commutative groups there is a similar science – the theory
of characters and representations of groups, but its algebra is more complicated,
and in many sections of classical mathematical physics is not necessary.

Fourier integrals. Denote by S the class of functions (the Schwartz space)
on R which are infinitely smooth and all their derivatives decrease at infinity
faster than any degree. Fourier transform f̃ of function f (direct and inverse)
is usually determined as follows

f̃(u) = C1

ˆ
R

f(x)e−C2iuxdx, (4.16)

it maps S to itself, that is proved by integration by parts. Historically there were
used several types of real constants. For example, 1) when C1 = 1 = −C2 for
direct and C1 = C2 = 1 for reverse, 2) C1 = 1√

2π
, C2 = −1, C1 = 1√

2π
, C2 = 1.

Everywhere below we use option 1).
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Main results:
1. All these transformations are one-to-one on S, it is enough to prove that

there exists a constant C 6= 0 such that for any f ∈Sˆ
R

f̃(u)eiuxdu = Cf(x). (4.17)

2. For functions from S they save (up to a multiplier depending only on C1

and C2) the scalar product in L2(R).
Let us prove first (4.17) for the Gaussian density, i.e. the Fourier transform

of the function exp(−x2/2) coincides with itself, multiplied by 2π:

ˆ ∞
−∞

exp
(
−x

2

2
− itx

)
dx =

ˆ ∞
−∞

exp

(
−
( x√

2
+

it√
2

)2

+
( it√

2

)2
)
dx =

= exp
(
− t

2

2

) ˆ ∞
−∞

exp

(
−
( x√

2
+

it√
2

)2
)

= exp
(
− t

2

2

) ˆ ∞+it

−∞+it

exp
(
−z

2

2

)
dz,

where we made the change of variable z = x+ it. But

ˆ ∞+it

−∞+it

exp
(
−z

2

2

)
dz =

ˆ ∞
−∞

exp
{
−x

2

2

}
dx.

In fact, consider the complex integral of exp(−z2/2) along closed contour con-
sisting of 4 straight line segments on the complex plane

[(−N, 0), (N, 0)], [(N, 0), (N,N + it)],

[(N,N + it), (−N,−N + it)], [(−N,−N + it), (−N, 0)].

It is equal to zero. But when N → ∞ the integrals on the second and fourth
segment tend to zero. And then the first and third integrals have different signs.
It remains to use the formula(4.10) below.

Now for any f ∈ S:
ˆ
R

f̃(u)eiuxdu =

ˆ
R

(ˆ
R

f(y)e−iuydy

)
eiuxdu =

ˆ
R

ˆ
R

f(y)eiu(x−y)dudy =

= lim
N→∞

ˆ
R

f(y)dy

(ˆ N

−N
eiu(x−y)du

)
= lim
N→∞

ˆ
R

f(y)
2 sinN(x− y)

x− y
dy =

=
(
y =

z

N
+ x
)

= lim
N→∞

2

ˆ
R

f
( z
N

+ x
) sin z

z
dz = f(x). (4.18)

The last integral, as N → ∞, tends to f(x)
´∞
−∞

sin z
z dz, the latter integral is

called the integral sine (Dirichlet integral), and it is well known that
ˆ ∞
−∞

sin z

z
dz = π.
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Thus the desired constant is equal to 2π. Which, incidentally, can be verified
by ourselves if in (4.18) we take the Gaussian density for f(x), for which we
already know this.

And the fact that scalar products are preserved is verified by a similar cal-
culation.

Remark 9. In case of double limits, as for example in
´∞
−∞, there is a nuance –

in what sense to understand it. In many cases, for simplicity, we can understand

this as limN→∞
´ N
−N .

It is very helpful, in solving various equations, to know how the Fourier
transform changes after simplest transformations of the function f :

1) f(x)→ g(x) = f(x+ s) =⇒ f̃(u)→ g̃(u) = eiusf̃ ;
2) f(x)→ g(x) = df

dx =⇒ f̃(u)→ g̃(u) = iuf̃ ;
3) Convolution of two functions is defined as the function

(f ∗ g)(x) =

ˆ
f(x− y)g(y)dy,

whose Fourier transform is equal to the product of their Fourier transforms
ˆ
e−iuxf(x− y)g(y)dydx =

ˆ
[f(x− y)e−iu(x−y)d(x− y)]e−iuyg(y)dy = f̃ g̃.

Generalized functions. It is often useful to expand the space C∞, adding to
it the “worst” functions (or even not functions) without reducing the freedom of
the algebraic computations. For example, the function equal to 1 at one point
and zero in the others, is very important on Z, but is actually zero on the real
axis. And the function, equal ∞ at one point and zero in all other, it is not
known what, but appeared to be very illustrative and important. Often one has
to do with infinite integrals, and often needs to change the integrands to get
finite results.

This can be done as follows: each function f ∈ C∞ defines also linear
functional Lf on C∞:

Lf (g) =

ˆ
fgdx, g ∈ C∞.

And we shall extend the class of such linear functionals.
Let us explain this on the example of the famous δ-function. Consider the

function DN (x) = N on the interval (− 1
2N ,

1
2N ) and 0 otherwise. In the limit

N → ∞, it is equal to 0 everywhere except the point 0 where it is infinite.
Moreover, its integral with any function from C∞

ˆ
f(x)DN (x)dx −→

N→∞
f(0) =

ˆ
f(x)δ(x)dx.
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This is a linear functional on C∞ defined by the so-called δ-function δ(x) =
limDN (x). As the physicists say, “the function equal to zero everywhere except
for the point 0, where it is infinite, and its integral is equal to 1”. Instead of
simple function DN one can use many others, such as the Gaussian density

1√
2πN

exp(−x
2

N ).

Another example of a linear functional on S is

L1(f) =

ˆ
R

f(x)dx

generated by the function identically equal to 1.
In general, the Fourier transform L̃ of the linear functional L is defined as

follows: L̃f̃ = Lf . We will show in two ways that the Fourier transform of the
δ-function is the function equal to 1. First way:

D̃N (u) = N

ˆ 1/(2N)

−1/(2N)

e−iuxdx = N

ˆ 1/(2N)

−1/(2N)

cosuxdx =
N

u
(sinux)

∣∣∣1/(2N)

−1/(2N)
=

=
2N

u

(
sin

u

2N

)
→ 1.

Second way:

ˆ ∞
−∞

f̃du = lim
N→∞

ˆ N

−N
f̃du = lim

N→∞

ˆ
f(x)

(ˆ N

−N
e−iuxdu

)
dx =

= lim
N→∞

ˆ
f(x)

2

x
sinNxdx =

= lim
N→∞

ˆ
(f(0) + f(0)x+O(x2))

2

x
sinNxdx ∼ lim

N→∞
f(0)

ˆ
2

x
sinNxdx =

= lim
N→∞

f(0)

ˆ
2

Nx
sinNxd(Nx) =

1

2π
f(0)

ˆ
2

y
sin ydy = f(0).

Here are other examples of generalized functions:
1) the shifts of δ-functions δ(x − x0) give the linear functionals L(f) =´

R
f(x)δ(x− x0)dx = f(x0);
2) for generalized functions is defined their addition and multiplication by a

number and by C∞ function;
3) the derivative of a generalized function is defined as L′(f) = −L(f ′). In

particular, L′δ(f) = −Lδ(f ′) = −f ′(0);
4) the regularization of a singular (ordinary) function x−1 – its transforma-

tion into a generalized one. Two ways: the principal value integral

Lf = lim
ε→0

ˆ ε

−ε

1

x
f(x)dx,
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and

Lf =

ˆ
R

1

x
(f(x)− f(0))dx,

which is the simplest example of subtracting divergences, commonly used
in quantum field theory.

5. First models of mathematical physics

5.1. Three finite-dimensional dynamics

All our life is in time and dynamics – evolution of the states of various
systems in time. Mainly, three dynamics (and their mixtures) are considered.
Here we give simplest examples of these 3 dynamics.

5.1.1. Deterministic dynamics

Iterations of finite set transformations. We consider the map F : X → X
of finite set X = {1, . . . , N} (called the the set of states, or state space) into
itself. The graph of this mapping is called a directed graph with set of vertices
X and N directed edges lij = (i, j = F (i)). If F is one-to-one, then the graph
consists of several cycles, where cycle is a sequence of vertices i1, . . . , in such
that F (ik) = ik+1 for k = 1, . . . , n− 1 and F (in) = i1. A cycle of length n = 1
is called a fixed point.

The initial state i0 and the iterations i0,, i1 = F (i0), . . . , ik+1 = F (ik), . . . of
the map F determine the evolution of states in discrete time t = k = 0, 1, 2, . . ..

The map F induces a mapping LF : Φ(X) → Φ(X) of the set Φ(X) of
complex functions f(x) on X to itself

(LF f)(i) = f(Fi),

and also the mapping MF : M(X)→M(X), of the set M(X) of measures µ on
X to itself

(MFµ)(A) = µ(F−1A). (5.1)

A measure µ is called invariant, if MFµ = µ. The map F is called ergodic
if invariant measure is unique (up to a constant factor). In this case, for any
(initial) measure µ

1

T
(MF (µ) +M2

F (µ) + . . .+MT
F (µ)) (5.2)

tends to the invariant measure as T → ∞. In the general case, for any initial
measure µ (5.2) converges to some (dependent on µ) invariant measure.

All the following statements are almost obvious. The measure is called con-
stant on the subset A ⊂ X if it has the same value for any single point subset.
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In the case of one-to-one F the invariant measure is constant on each cycle, and
is unique (up to a constant multiplier) if there is exactly one cycle.

Similar convergence can be defined for functions f on X. As T →∞

1

T
(LF (f) + L2

F (f) + . . .+ LTF (f))

converges to some function ϕ(x) depending on f . It is of course a trivial case of
the famous theorem of Birkhoff – Khinchin. If F is ergodic, the function ϕ(x) is
constant.

5.1.2. Stochastic dynamics

Matrix (operator) series. In the set of all matrices of given dimension N
one can introduce the norm ||A||, also the distance ||A−B||, creating thus the
metric space of all matrices. For example, the norm could be this:

||A|| =
∑
i,j

|aij |.

Then for any square matrix A the matrix series (matrix exponent)

eA =

∞∑
n=0

An

n!
= E +A+

A2

2
+ . . .

converges in the sense of this norm.

The dynamics of measures on X. Now the states are not only points of the
set X, but all probability measures p on X, that is non-negative and normalized
measures p, i.e. such that p(A) ≥ 0 for all A ⊂ X and p(X) = 1. Measures of
single-point subsets {k} (single-point measures) will be denoted by pk. Thus, the
state at time t = 0, 1, . . .is defined by the row vector p(t) = (p1(t), . . . , pN (t)).

General linear dynamics on the set of probability measures on X is defined by
(N×N)-matrix P = (pij) with non-negative elements, and moreover,

∑
j pij = 1

for all i. Such matrices are called stochastic. The dynamics is determined by
multiplying the row vector

p(t) = p(0)P t

where the components pi(t) : i ∈ X are called the probabilities for the system to
be in state i at time t. If the components pi(0), i = 1, . . . , N of the initial vector

p(0) are non-negative and normalized, i.e.
∑N
i=1 pi(0) = 1, it is easy to prove

that all vectors p(t) have these properties. Simple examples: 1) if the matrix P
has identical rows (this is called Bernoulli scheme), all measures p(t) will be
the same for t > 0, 2) each row has exactly one unit, the rest are zeros, which
corresponds to the induced deterministic dynamics (5.1).
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This dynamics of measures is called a finite Markov chain with discrete
time. Probability measure π is called invariant if πP = π. Markov chain is
called ergodic if for any initial state p(0) as t→∞

p(0)P t → π.

Let us prove that any matrix P , all elements of which are positive, defines
ergodic Markov chain.

For this we need a method of successive approximations. We give now
its formulation.

Let be given complete (that is where any Cauchy sequence has a limit) metric
space M with a distance of ρ and finite diameter D = D(M) = supx,y∈M ρ(x, y),
and the mapping F : M →M is defined such that there exists number 0 < α < 1
such that for any two points x, y ∈M

ρ(Fx, Fy) < αρ(x, y). (5.3)

Then there exists a unique fixed point of F , i.e. such that Fx = x.
Indeed, then for any point the sequence

x00, x1 = F (x0), . . . , xk+1 = F (xk), . . .

is a Cauchy sequence, since

ρ(xk, xk+1) < αρ(xk−1, xk) < αkD.

That is why the sequence xk has unique limit x = Fx. Any other sequence yk,
starting from any y0 has the same limit as the points xk and yk become closer
when k →∞.

In our case define the norm |µ| of measure µ, and the distance between two
measures µ1, µ2 (not necessarily probabilistic) as

|µ| =
∑
x∈X
|µ(x)|, ρ(µ1, µ2) = |µ1 − µ2| =

∑
x∈X
|µ1(x)− µ2(x)|.

We call the carrier of measure µ the set of points where it is nonzero. Then, if two
measures µ1, µ2 have disjoint carriers, then ρ(µ1, µ2) =

∑
x∈X |µ1(x)|+ |µ2(x)|.

Measure µ1 − µ2 and (µ1 − µ2)P can be written as the difference of the two
non-negative measures ν1, ν2 with the same norm and disjoint carriers. We want
to prove that for any two such measures the norm of (µ1 − µ2)P will decrease
in comparison with the norm (µ1 − µ2)

||(µ1 − µ2)P || ≤ α||µ1 − µ2||,

where
α ≤ 1− min

i.j∈X
pij .
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Indeed, consider the points x1, x2, where νm(xm) ≥ 1
N |νm|,m = 1, 2. Then at

each point y ∈ X in the difference ν1(x1)px1y−ν2(x2)px2y will occur plus-minus
cancellation in

(min ν1(x1))(min pxy) ≥ 1

N
|ν1|(min pxy).

Summation in y gives the result.

Finite Markov chains with discrete time. Now we shall look at the dy-
namics of the measures differently. Consider the set

Ω = Ω∞ = {ω = (x0, x1, . . . , xn, . . .}

of infinite sequences of elements xn ∈ X. Its elements ω we will call elementary
events and present them as trajectories (paths) of a particle, jumping on the
set X from point xn to xn+1. While the indices 0, 1, 2, . . . we consider as a
sequence of discrete moments of time.

We call basic events A(i0, . . . , in) the set of all infinite sequences ω such that
xk = ik for k = 0, 1, . . . , n. Let us denote Σ the minimal σ-algebra, generated by
all basic events. Now let be given measure p0(x) on X and stochastic matrix P .
Define probability measure µn on events A(i {0}, . . . ,i {n}), which will define
Markov chain

µn(A(i0, . . . , in)) = p0(i0)pi0i1pi1i2 . . . pin−1in .

These measures agree in the sense that

µn(A(i0, . . . , in)) =
∑
i+1∈X

µn+1(A(i0, . . . , in+1)).

Then the Kolmogorov theorem states that on the σ-algebra Σ, generated by
the base sets, there is unique measure µ, which coincides with the measures
µn on base sets. Sets A ∈ Σ are called events, and the measures µ(A) – the
probabilities of these events. Real-valued functions ξ = ξ(ω) on Ω are called
random variables, provided they satisfy the following measurability condition:
the inverse image ξ(−1)(I) of any set I ⊂ R belongs to Σ. For example, for any
n, all functions depending only on the first n coordinates, are measurable.

Continuous time. We will start with formal definition using semigroup lan-
guage: (N ×N) matrix H = (λij) with elements

λij ≥ 0, i 6= j, λii = −
∑
j:j 6=i

λij

is called the generator of the matrix semigroup

U t = eHt =

∞∑
n=0

(Ht)n

n!
,
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where the series converges for any t. Markov property on semigroup language
is:

U t+s = U tUs.

Firstly, we shall see that all matrices U t are stochastic. It is sufficient to prove
it for all t sufficiently small, then their products show that it is also true for
all t. Assume for example that all λij > 0 for i 6= j. Positivity of all elements
follows as for small ∆t:

U∆t
ij = λij∆t+ o(∆t), i 6= j, U∆t

ii = 1 + λii∆t+ o(∆t). (5.4)

The normalization property follows as any powers of H keep the property of H
itself – zero sum of elements for every row.

If p(0) = {px(0), x ∈ X} is the initial measure, then any component of
the vector p(t) − p(0)U t is an analytic function of t. Now we will see how non
analytic trajectories miraculously appear. Similar to discrete time introduce the
so called random variables. We will consider them as functions on the set of ALL
events (we do not introduce measurable functions on purpose) events, that is
arbitrary functions ω = ω(t) : [0,∞)→ X. For example, ξ(t) = ξ(t, ω) = x ∈ X
is the event ω(t) = x, that is the event that our system at time t will be at the
state x. Elements U tij will be understood as the probabilities to be at j at tome
t, under the condition that at time 0 we were at i. More complicated events:
fix finite number of time moments 0 ≤ t1 < . . . < tk and define probabilities
(finite-dimensional distributions)

P (ω(t1) = i1, . . . , ω(tk) = ik) =
∑
i

pi(0)U t1ii1U
t2−t1
i1i2

. . . U
tk−tk−1

ik−1ik
(5.5)

of the event where we were at these discrete moments.
It is a natural desire to define and find the probability of the event that

during time t we always left at the state i, that is there was no jumps during
time t. We define it as the limit of distributions (5.5)

lim
N→∞

P
(
ω
(kt
N

)
= i, k = 1, 2, . . . , N

)
= lim
N→∞

(
1+λii

t

N
+o
( t
N

))N
=exp{λiit}.

And the probability that until time t we were at the state i, and in time interval
(t, t+ ∆t) already not, by Markov property, will be

eλiit(1− eλii∆t) = −λiieλiit∆t+ o(∆t) =

ˆ t+∆t

t

f(t)dt+ +o(∆t),

where the function f(t) = −λiieλiit is called the exponential density of the
distribution of the the moment of the first jump from state i. Note that the
probability that such jump ever occurs is 1.
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Example is the Poisson process, where X = {0, 1} and

H =

(
−λ λ
λ −λ

)
,

which describes deterministic evolution in “random time moments”. The pro-
cess jumps from 0 to 1 and back with the same “intensity” λ, that is random
lengths ξn of intervals between jumps have the same distribution. Their distri-
bution function is

F (t) = P (ξn ≤ t) = 1− e−λt,
and the distribution density is f(t) = λe−λt.

5.1.3. Quantum dynamics

Self-adjointness and unitarity. Any complex linear space L of dimension
N , can be identified with the set of complex functions ψ(i) on finite set {1, . . . ,
N}. Introducing scalar product and the norm

(ψ1, ψ2) =

N∑
i=1

ψ1(i)ψ∗2(i), ||ψ|| =
√

(ψ,ψ)

makes it a metric space with the distance ρ(ψ1, ψ2) = ||ψ1−ψ2||, that gives it the
name Hilbert space l2 = l2({1, . . . , N}). The functions ek = ek(j) = δkj = 1,
if k = j, and 0 if k 6= j, form its basis. Moreover, they are orthogonal and
normalized: (ek, el) = δkl. It is said that they form the orthonormal basis.

Spectral theorem for self-adjoint operators. Let A be linear operator in
L, then linear operator A∗ in L is called adjoint to A, if for any ψ1, ψ2

(A∗ψ1, ψ2) = (ψ1, Aψ2).

It is easy to show that it exists and unique for any A, and its matrix in the
orthonormal basis will be (a∗ji), is aij is the matrix for A in this basis.

Operator A is called self-adjoint, if A = A∗,that is aij = a∗ji for all i, j.
As any linear operator, a self-adjoint operator A has some eigenvector ψ1 (as-
sume that its norm is 1) with some eigenvalue λ1. This eigenvalue is real as
(λ1ψ1, ψ1) = (Aψ1, ψ1) = (ψ1, Aψ1) = (ψ1, λ1ψ1) =⇒ λ1 = λ∗1.

Denote L⊥1 the set of all ψ, orthogonal to ψ1, that is (ψ,ψ1) = 0. Then L⊥1
is a linear subspace of dimension N − 1. It is invariant with respect to A, as
(ψ1, Aψ) = (ψ1, λ1ψ) = 0, if (ψ1, ψ) = 0.

Then we forget about ψ1 and carry out the same reasoning in L⊥1 , We con-
struct λ2, ψ2, and similarly by induction construct eigenvectors ψ1, . . . , ψN –
orthogonal and having real eigenvalues λ1, . . . , λN . Then, in this orthonormal
basis, A is diagonal, that is the multiplication on its eigenvalues in l2{1, . . . , N}.

Self-adjoint operator is said to have simple spectrum, if the multiplicity
of each eigenvalue is 1 (that is the number of eigenvalues is N).
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Unitary operators. Linear operator U is called unitary, if one of two fol-
lowing equivalent conditions holds:

a) U is invertible and U−1 = U∗,
b) (Uψ1, Uψ2) = (U∗Uψ1, ψ2) = (ψ1, ψ2).

Thus, it conserves scalar product, orthogonality and norm. Due to norm conser-
vation, its eigenvalues belong to the unit circle, that is equal eiλ with real λ, and
the eigenvectors are orthogonal. In fact, if ψ is orthogonal to the eigenvalue ψ1,
then Uψ is also orthogonal to ψ1, as (ψ1, Uψ) = (U−1ψ1, ψ) = (e−iλψ1, ψ) = 0.
That is why there exists H = H∗ such that

U = eiH .

The matrix function eitH , t ∈ R, is called a unitary group. In quantum physics
(in infinite dimensional case) this group defines quantum dynamics (where t is
time) with Hamiltonian H.

Operator (or matrix) algebra

Trace. The trace TrA of a square matrix A is defined as the sum of its diagonal
elements. Simplest properties of the trace:

Tr(AB) =
∑
i,j

aijbji =
∑
i,j

bijaji = Tr(BA),

from where the invariance with respect to the choice of basis follows

Tr(CAC−1) = Tr(C−1CA) = TrA.

States. Consider the set of (N × N)-matrices M = MN . It is an algebra,
that is a linear space with multiplication operation satisfying the distributivity
axiom

A(B + C) = AB +AC,

(B + C)A = BA+ CA.

Any linear functional L = L(M) on the matrix algebra can be presented as

L(M) = Tr(AM)

for some matrix A.
Namely, it is defined by its values λij on the basis matrices Eij = (δij), then

defining matrix Λ = (λij), for any matrix M = (mij):

L(M) =
∑
i,j

λijmij =
∑
i,j

λ′jimij =
∑
j

∑
i

λ′jimij = TrΛ′M.
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Also, any linear functional can be also presented as

L(M) =
∑
i

(Mgi, gj)

where gi are some vectors, and the sum is finite.
Self-adjoint operator is called positive (positive definite) A > 0 or non-

negative A ≥ 0, if all its eigenvalues are positive (non-negative). Or: A ≥ 0 is
equivalent to any of the following conditions

∃B : A = BB∗ ⇔ (Aψ,ψ) ≥ 0, ∀ψ ∈ RN .

State ϕ on M is a linear functional on M with the following properties: 1)
positivity, that is ϕ(AA∗) ≥ 0 for all A ∈ M, 2) normalization – ϕ(E) = 1,
where E is the unit matrix in M. Examples: pure states – are defined by one
vector ψ ∈ CN

ϕ(A) = (Aψ,ψ),

where ||ψ||2 = (ψ,ψ) = 1. Other states are called mixed states.
Any state can be presented as

ϕ(A) = Tr(ρA) (5.6)

where ρ ∈M and moreover ρ ≥ 0, T rρ = 1. Let us show positivity

ρ = CC∗ → Tr(ρBB∗) = Tr(CC∗BB∗) = Tr(C∗BB∗C) =

= Tr((B∗C)∗B∗C) ≥ 0.

Vice-versa: if Tr(ρA) is a state, then ρ ≥ 0. It is clear that ρ for a given state
is unique.

For pure state ρ = Pψ, where Pψ is the orthogonal projector on the normal-
ized vector ψ.

Any mixed state can be presented as

ρ(A) =
∑
i

(Aψi, ψi),

where the sum is finite and∑
i

||ψi||2 =
∑
i

(ψi, ψi) = 1.

In fact, let us diagonalize

ρ = U−1
(∑

ciPi

)
U,

where Pi is the orthogonal projector on the unit vector fi. Then putting ϕi =√
cifi, we have

Tr(ρA) = Tr((
∑

ciPi)UAU
−1) =

=
∑

(ϕi, UAU
−1ϕi) =

∑
(U−1ϕi, AU

−1ϕi).
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Quantum evolution. Pure quantum states are usually called normalized vec-
tors ψ. And if they considered as complex functions ψ(x) on finite (or count-
able) set X, then they are called wave functions. It is always assumed that
ψ(x)ψ∗(x) = |ψ(x)|2 may be considered as probabilities that the system is at
the point x.

Observables (physical variables) are operators. Mean value of the observ-
able A in the state ψ is called the number

〈A〉ψ = (Aψ,ψ).

Their time evolution can be defined by two equivalent presentations.
1) Schroedinger representation, where the states change in time, and

the observables do not change. Let self-adjoint operator be given H (called
Hamiltonian) and the unitary group U t = eitH , defining the evolution of the
vector ψ(0) (and thus of the pure state ρ(0)) as

ψ(t) = U tψ(0).

Then the equation holds (called Schroedinger equation)

d

dt
ψ(t) = iHψ(t), ρ(t) = U−tρ(0)U t.

2) Heisenberg representation, where the states do not change but the ob-
servables change. Any unitary group of operators U t defines the automorphism
group of the operator algebra

αt(A) = At = U tAU−t

and satisfies the Heisenberg equation

d

dt
At = it[H,At].

Mean values are changed similarly in both presentations

(Aψ(t), ψ(t)) = (αt(A)ψ,ψ).

5.2. Linear Differential Equations

5.2.1. First and second order

It is natural firstly to understand the situation with general linear equations
of the first order

dx

dt
= a(t)x+ f(t). (5.7)

If f(t) = 0 and a does not depend on t, then the solution is Ceat, where C
is an arbitrary constant. It is uniquely determined by the initial condition
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x(0) = x0 = C. But will this solution be unique depends only on the class
of functions in which we would like to prove the uniqueness. The proof of
uniqueness is easy in the class of functions which, in some neighborhood, can
be expanded in a power series. From (5.7) we have the recurrent relation

x(t) =

∞∑
k=0

akt
k =⇒ (k + 1)ak+1 = ak, k = 0, 1, . . . ,

and substituting t = 0, we obtain a0 = x(0). Whence we obtain the uniqueness.
With an arbitrary function a(t) we also look for a solution in the form

x(t) = Ceg(t), where C = x(0). Substituting, we get a simple equation, from
where

g(t) =

ˆ t

0

a(t)dt. (5.8)

Partial solution of the inhomogeneous equation we are looking for in the form
x = D(t) exp(

´ t
0
a(t)dt), whence we obtain the equation for D, and the solution

is

Ḋ =
d

dt

(
x exp

(
−
ˆ t

0

adt

))
= f(t) exp

(
−
ˆ t

0

adt

)
=⇒

=⇒ D =

ˆ t

0

f(t) exp

(
−
ˆ t

0

a(s)ds

)
dt.

General solution is the sum of this solution (it is zero for t = 0) and the solution
of the homogeneous (with f = 0) equation with given initial condition.

Simplest second order equations. It is always useful to start with a large
number of simple examples, what we will do now. The general linear equation
of second order has the form

mẍ = F (x, ẋ, t) = −k(t)x− α(t)ẋ+ f(t) (5.9)

with the initial conditions x(0), v(0). Right part of it is the general class of
forces for linear (in x and ẋ) inhomogeneous equations. If f(t) is identically
zero, the equation is called homogeneous. Firstly, we assume that k(t) ≥ 0
and will denote it k(t) = ω2

0(t).
This is the simplest of Newton equations, on which classical mechanics is

based. Below, we shall consider the main special cases of this equation, where
physical interpretation plays important role. Here x(t) ∈ R – coordinate of
the point particle at time t, an integer m > 0 is called mass, further on to
simplify notation we take m = 1. The function F is called the force (acting on
a particle), and in the general case it depends on the particle position, velocity
and time, We only consider the cases when F is the sum of these three terms.
In the order:
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1) Potential force which keeps the particle in the potential well. This
means that this term can be written in the form −∂U∂x , where the function

U(x, t) = ω2
0(t)x

2

2 is called potential energy. It has a minimum (bottom of
the potential well) at the point x = 0. Full particle energy (or Hamiltonian)

H = T + U is the sum of potential and kinetic energy T = m v2

2 of particle,

where v = dx
dt is called the velocity of the particle. If ω2

0 is time-independent and

α = f = 0, then the energy conservation law is proved in one line: dH
dt = 0. In

this case, it is necessary to use the fact that the equation (5.9) can be written in
the form of hamiltonian system of two first-order equations ẋ = v, v̇ = −ω2

0x.
2) Dissipative force, which reduces the absolute value of the velocity, and

hence the kinetic energy.
3) f(t) is usually called the driving force.

5.2.2. Only one force

Here ω2 and α are not time-dependent.

Only potential force. The equation here

ẍ = −ω2
0x.

Its solution in the general form with constants C1, C2 determined from the initial
data

x(t) = C1 cosω0t+ C2 sinω0t, C1 = x(0), C2 =
v(0)

ω0
.

Law of energy conservation says that on the phase plane R2 = {(x, v)} the
point performs a periodic motion along the ellipse

v2(t)

2
+ ω2

0

x2(t)

2
= H(0).

Only dissipation. The equation

d2x

dt2
= −αdx

dt

has a solution

v(t) =
dx

dt
= C1 exp(−αt), C1 = v(0),=⇒

=⇒ x(t) = C2 + C1

ˆ t

0

exp(−αt)dt, C2(0) = x(0),

it follows that the particle does not escape to infinity, and its coordinate even
tends to a constant value.
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Only time dependent external force. Consider the equation

d2x

dt2
=
dv

dt
= f(t).

When there are bounded trajectories ? We have

dx

dt
= v(t) = v(0) +

ˆ t

0

f(s)ds.

The speed is bounded if and only if the last integral is bounded. For example,
if f is periodic with zero integral over a period. But for

x(t) = x(0) +

ˆ t

0

v(s)ds = x(0) + v(0)t+

ˆ t

0

du

ˆ u

0

f(s)ds

the situation is quite different. Let for example v(0) = 0, f = sin(t+A). Then

v(t) = − cos(t+A) + cosA =⇒

=⇒ x(t) = x(0) +

ˆ t

0

v(s)ds = x(0) + t cosA− sin(t+A) + sinA,

and the trajectory is bounded if and only if cosA = 0.

5.2.3. Two forces

External force and dissipation. This can be reduced to equation of the
first order

d2x

dt2
=
dv

dt
= −αv + f(t),

and, as we saw above, has the explicit solution

x(t) = x(0) +
v(0)

α
− v(0)

α
e−αt − α−1

ˆ t

0

eα(s−t)f(s)ds+ α−1

ˆ t

0

f(s)ds,

and boundedness will be for all f when the integrals are bounded.

Potential and dissipation.

ẍ = −ω2
0x− αv, α > 0.

Here two linearly independent solutions are obtained by substitution x = eλt in
the equation, which gives the quadratic equation for λ with two roots

λ = −α
2
±
√
α2

4
− ω2

0 .
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For example, if α2/4 > ω2
0 , then both root λ1 and λ2 are negative, and the

solution has the form
C1e

λ1t + C2e
λ2t,

where C1, C2 are determined from initial conditions. This implies exponential
convergence to zero for all ω and all initial conditions. The reader will easily
consider himself the cases α2/4 < ω2

0 and α2/4 = ω2
0 .

Potential and constant external force. In the case of constant force f =
const and dissipation, we have the equation

ẍ = −ω2x+ f − αv − ẍ = −ω2
0x− α

(
v − f

α

)
. (5.10)

If there is no dissipation, the solution

x =
f

ω2
0

+ C1 cosω0t+ C2 sinω0t

just shifts the point around which the oscillations occur. If α 6= 0, then the
substitution x = α/ω2

0 + y shows that there will be an exponential convergence
of x(t) to the point f/ω2

0 .

Resonance. For f = a cosωt, ω 6= ω0, the general solution has the form of
the sum of a particular solution of the inhomogeneous equation and the general
solution of the homogeneous

a

ω2
0 − ω2

cosωt+ C1 cosω0t+ C2 sinω0t. (5.11)

Moreover, the constants C1, C2 are selected so that (5.11) satisfies the initial
conditions. The closer the frequency ω of the driving force to the natural
frequency ω0, the greater the amplitude of the oscillation (resonance phe-
nomenon). When ω = ω0 > 0, the particular solution of the inhomogeneous
equation has the form

a

2ω0
t sinω0t, (5.12)

that is, the amplitude maximum increases linearly with time. Such resonant
terms (usually called secular) like (5.12) often appear and cause a lot of trouble
in much more complicated problems, for example, in the case of general external
forces f = f(x, t).

Thus, the trajectory will be unbounded only at one frequency ω = ω0. And it
may seem that the unboundedness of the trajectory due to external disturbance
is a rare phenomenon. To understand this, it is necessary to understand the
resonance mechanism less formally. It seems to be due to some synchronisation
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mechanism ? But if we shift the phase of the resonant external force f(t) =
cos(ωt+ ϕ), then the solution will again be resonant

a

2ω0
t sin(ω0t+ ϕ).

There is no complete understanding of resonance phenomenon for general sys-
tems.

Non-periodic force. Consider a more complicated example: instead of ω0

we consider arbitrary smooth function a(ω), which is zero outside some neigh-
borhood of ω0

f(t) =

ˆ
a(ω) cosωdω.

Assume that a(ω) is smooth and has a carrier on the interval (ω0 − ε, ω0 + ε),
where 0 < ε < ω0 (assuming ω0 > 0) is not necessarily small.

Proposition 2. For any initial data the solution is uniformly bounded on the
time interval [0,∞).

Proof. The solution is (denoting ω = ω0 + x)

lim
ε→0

ˆ
a(ω) cosωt

ω2
0 − ω2

dω = lim
ε→0

ˆ ˆ ε

−ε

a(ω0 + x) cos(ω0 + x)t

ω2
0 − (ω0 + x)2

dx =

= lim
ε→0

ˆ ˆ ε

−ε

a(ω0 + x)

x

1

−2ω0 − x
cos(ω0 + x)tdx =

= lim
ε→0

ˆ
a(ω0)

−2ω0

ˆ ε

−ε

cos(ω0t+ xt)

x
dx =

= lim
ε→0

ˆ
a(ω0)

−2ω0

ˆ ε

−ε

(cosω0t cosxt

x
− sinω0t sinxt

x

)
dx.

It is sufficient to consider only the case a(ω0) 6= 0. We see that unbounded-
ness in time can only arise when integrating in a small neighborhood of ω0 The
first term in the neighborhood of the point x = 0 is zero because (±)-symmetry.
At the same time ˆ ε

−ε

sinxt

x
dx =

ˆ tε

−tε

sinx

x
dx

is bounded uniformly in t. Indeed, on arbitrary period (N,N + 2π) put x =
N + y, then

1

x
=

1

N

1

1 + y/N
=

1

N
− x

N2
+ . . .

The first term gives 0 in the integrals for such periods, and the rest will give a
convergent sum.
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Remark 10. There are many other examples of bounded solutions for other driv-
ing forces f(t), including random, but it would be necessary to have a complete
overview of all available results.

5.2.4. More general linear systems

Consider a system of the form

dϕ

dt
= Aϕ+ f, ϕ(o) = ϕ0 (5.13)

where ψ = ψ(t) = {ψk(t) : k = 1, . . . , n} is unknown column vector, f = f(t) =
{fk(t) : k = 1, . . . , n} is a known column vector, and A is (n × n)-matrix with
constant coefficients. This system can easily be solved explicitly by replacing
the unknown vector by the vector C(t)

ψ(t) = eAtC(t)⇐⇒ C(t) = e−Atψ(t), ψ(0) = C(0),

whence we get the equation for the new vector and its solution

dC

dt
= e−Atf =⇒ C(t)− C(0) =

ˆ t

0

e−Asf(s)ds

from where the solution to the equation (5.13), with the initial condition ψ(0) =
C(0), is

dC

dt
= e−Atf =⇒ C(t)− C(0) =

ˆ t

0

e−Asf(s)ds.

In case of a homogeneous equation, that is if f = 0, for example if possible, we
bring matrix A to diagonal form

A = DBD−1,

where B is diagonal. Then for the vector ξ(t) = C−1ϕ(t) we obtain the equation

dξ

dt
= Bξ,

W = F1
dF2

dt
− dF1

dt
F2,

and the problem reduces to one-dimensional equations.
In case when A depends on the time, a trick similar to this only takes place

in the one-dimensional case, see equation (5.13) above. That is why, the theory,
even for the simplest system of two equations, to which reduces, for example,
the Hill equation

ẍ = −k(t)x, (5.14)
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is much more difficult, see below. The main problem is to find linearly inde-
pendent solutions of the homogeneous equation. However, if these solutions are
known, then the corresponding inhomogeneous equation is not a problem. So,
for the equation

d2x

dt2
+ g1(t)

dx

dt
+ g0(t)x = f(t)

with arbitrary g1, g0, f the general solution is

c1F1(t)+c2F2(t)+F2(t)

ˆ t

0

F1(s)f(s)W−1(s)ds−F1(t)

ˆ t

0

F2(s)f(s)W−1(s)ds,

where F1, F2 are linearly independent solutions of the homogeneous equation
and

W = F1
dF2

dt
− dF1

dt
F2.

Note that even in the case g1 = 0, f = 0, in the matrix case it is impossible to
search for a solution as in (5.8).

For the equation
d2x

dt2
= −ω2

0x+ f(t)

F1 = cosωt, F2 == sinωt, and W (t) = ω. The the general solution has the
form

x(t) = c1 cosω0t+c2 sinω0t+sinω0t

ˆ t

0

cosω0sf(s)ds−cosω0t

ˆ t

0

sinω0sf(s)ds.

From this, in many cases it is easy to find the conditions for boundedness.

Hill equation and the multiplicative integral. We discussed above two
simple cases of Hill equation when k(t) = k is a constant. If k < 0 then, as we
have seen,the solution is bounded. If k > 0, then the solution is

x(t) =
1

2

(
x(0) +

v(0)√
k

)
e
√
k +

1

2

(
x(0)− v(0)√

k

)
e−
√
k

and grows exponentially, except for the case when x(0) = −v(0)√
k

. In case of

irregular or random k(t) we can expect quite different behavior of solutions.
There is a general approach, see [6–8], based on the concept of the multiplica-
tive integral, which is a direct generalization of the usual (additive) integral.
If the latter is the limit of sums of many small terms, any of which tends to zero,
the first is the limit of products, where each factor tends to 1. Possibly, some
mathematicians did not hear about the science, but the ideas of it obviously by
various examples were understood by many of them. For example, there is a
natural approximation (belonging apparently to Euler) for solving linear vector
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equations ẋ = A(t)x on the interval [0, 1] with initial condition x(0). The seg-
ment is subdivided by points tk = k/N on N intervals of length 1/N , and we
consider linear recurrence equation:

xk+1 = xk + Ȧ(tk)(tk+1 − tk)xk = (E + Ȧ(tk)(tk+1 − tk))xk,

k = 0, 1, . . . , N − 1.

We get then the system of piece wise constant solutions on tk ≤ t < tk+1

x(N)(t) = x
(N)
k = B(k(N))x0, B(k(N)) =

k(N)/N∏
k=0

(E + Ȧ(tk)).

Moreover, under certain conditions it is possible to prove that there exist limiting
matrices B(t) such that B(t)x0 = x(t), and for k(N)/N → t,N → ∞, will be
B(k(N))→ B(t).

However, it could bring us rather to the field of computational mathematics
and computational methods in physics. Moreover, it is unclear whether all types
of solution behavior can be covered by these methods.
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