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INTRODUCTION.

WHAT THIS BOOK IS ABOUT

The subject of this book can be looked at from various points of view. From the
standpoint of functional analysis, we study the spectral properties of a certain class of
linear operators; from the viewpoint of probability theory, we are concerned with the
analysis of singular Markov processes; and finally, from the viewpoint of mathematical
physics, we study the dynamics of equilibrium systems in quantum statistical physics
and quantum field theory.

The area in which this book concentrates is still under active development, as can
be seen from the vast number of publications. However, the main concepts have
already been worked out, and the principal aim has been formulated; namely, for any
particular physical system, we want to describe the complete “corpuscular” picture
that corresponds to it that is, find all the collective oscillations (“quasiparticles”)
of the system and their “bound states”, and also describe their “scattering”. In
other words, in the language of modern scattering theory, one seeks to establish the
“asymptotic completeness” of the physical system. Of course, it is quite possible that
unexpected anomalies and surprises may be encountered in such a program.

A single technique (so far, unique) serves as the centerpiece of all the methods and
problems considered in this book. This is the cluster expansion method, which can
be applied in various forms to obtain information about the spectral properties of
the operators studied here. This technique was described quite fully in our previous
book [26], to which we shall frequently refer.

There are today three main approaches to determining the spectral properties of
infinite physical Hamiltonians:

1. The method of Bethe-Salpeter kernels, which has been developed by J. Glimm
and A. Jaffe and their coworkers and followers (see the bibliographic notes at the end
of this book).

2. The Moscow method, which we are currently developing together with our
students.

3. The method based on direct cluster expansion in “real” time, which has its
roots in the earlier “Hamiltonian approach” in the work of K. Friedrichs, K. Hepp,
J. Glimm, and A. Jaffe.

At present, the first two approaches enable one to study only the “lower” spectral
branches of the Hamiltonians, whereas the third method can be used to prove that the
Hamiltonians are asymptotically complete “in the large” (for the entire spectrum).

Our book is devoted to an exposition of the second and third approaches, which
have not previously been treated in monograph form; we also discuss one of the in-
gredients of the Bethe-Salpeter theory, the so-called Dyson equation. In addition, we
present some necessary background material along with some supplementary infor-
mation, and there are a few digressions.
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In our view, a complete and exhaustive treatise on this subject would be premature
because, as already noted, the theory is far from being complete and the principal
results expected from it have not been obtained. The present book is therefore in-
tended as an introduction to the subject which, however, covers all the main ideas.
We have tried to include in this book some new material not present in other mono-
graphs; however, to facilitate the task of the reader (and also for purely pedagogical
reasons) we have also included some well-known material in the form in which it will
be needed. We have relied on the following list of monographs. For probability theory,
see [8, 11, 16]; functional analysis and the spectral theory of operators are nicely dis-
cussed in [36], where a good treatment of quantum mechanics and scattering theory
may also be found. Finally, the theory of C∗-algebras and its applications to statis-
tical physics are discussed in detail in the two-volume work [7, 49]. The material we
need on second quantization is contained in the books [5, 36] and [44]. Finally, [12] is
also very helpful (among other things, the method of Bethe-Salpeter kernels is briefly
discussed there).

Formulas will be referred to as follows: (1) indicates equation (1) in the current
section; (2.1) means equation 2 in §1 of the current chapter; (3.2.1) denotes equation
3 in §2 of Chapter 1. A similar system will be used to refer to subsections, theorems,
and lemmas.
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CHAPTER

EXTENDED INTRODUCTION

The purpose of the present introduction is to acquaint the reader with the general
theme of the book. We also discuss here the main concepts and give an intuitive
explanation of their meaning.

§1. General outline

1. How linear operators arise in mathematical physics. In this book we
study the dynamics (or in other words, the time evolution) of various physical systems.
The dynamics is describable in terms of (infinite-dimensional) linear spaces and linear
operators that act on them.

In the case of quantum systems, such a description is predetermined by the very
language of quantum mechanics: for any quantum physical system, the states of
the system coincide with the vectors in a suitable complete Hilbert space H (more
precisely, with the rays in H), and the dynamics is given by a unitary one-parameter
group of operators {Ut, t ∈ R1} acting on H (t is the time). Sometimes one also
introduces the reduced dynamics in the algebra B(H) of bounded operators acting
on H by the formula

(1) αtA = UtAU
−1
t , t ∈ R1, A ∈ B(H).

It is easily seen that {αt, t ∈ R1} is a group of ∗-automorphisms of the algebra B(H),
i.e., it preserves the adjoint operation: αt(A∗) = (αt(A))∗.

The dynamics {Ut, t ∈ R1} in the space H is usually called the Schrödinger dynam-
ics, and the dynamics αt generated by it in the algebra B(H) (or in some subalgebra
invariant under αt) is called the Heisenberg dynamics.

In the case of a classical mechanical system, the dynamics is initially given by a
group {Tt, t ∈ R1} of invertible transformations of the state space Ω (phase space)
of the physical system into itself. However, this dynamics can also be described in
terms of the following group of linear operators Ut or U∗

t acting respectively on the
space of functions defined on Ω:

(2) (Utf)(ω) = f(T−1
t ω), ω ∈ Ω,

and on the space of measures (charges) defined on Ω:

(3) (U∗
t µ)(A) = µ(T−1

t A), A ⊆ Ω.

This approach to the dynamics on Ω is frequently simpler and more fruitful than
a direct study of the rather complicated group of transformations {Tt, t ∈ R1}. In
particular, in problems in nonequilibrium statistical mechanics, the main object of
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study is the dynamics (3) given by U∗
t in the space of measures on phase space;

the fundamental concepts used by physicists (decay of correlation functions, spectral
modes, hierarchies of moment equations, etc.) pertain specifically to the dynamics of
measures. Naturally, the study of the evolution of Ut or U∗

t does not fully obviate the
need to analyze the initial dynamics Tt in Ω, and many of its properties (the existence
of attractors, the randomness or hyperbolic behavior of the system, etc.) cannot be
expressed well in terms of the dynamics of measures or functions on Ω.

On the other hand, one often replaces the description of the full dynamics U∗
t

of measures by a reduced and simplified description, which, however, may still lead
to nonlinear equations (the Boltzmann equation, equations of hydrodynamics, etc.,
see [59]).

2. General scheme for describing a dynamics (noncommutative prob-
ability theory). The above two examples, the Heisenberg dynamics (1) and the
dynamics (2), are special cases of a more general setup, to which we shall often have
recourse in this book. Namely, suppose we are given a triple (A, 〈·〉, αt), where A
is an algebra with unit 1 and involution A �→ A∗; 〈·〉 is a state on A, i.e., a linear
functional such that 〈1〉 = 1 and 〈A∗A〉 ≥ 0 for every A ∈ A; and finally, {αt, t ∈ R1}
is a one-parameter group of ∗-automorphisms of the algebra A.

For quantum systems, where as we have seen, A = B(H) (or some subalgebra of
B(H)), and when αt is the Heisenberg dynamics (1), a state 〈·〉 is usually specified
in the form

(4) 〈A〉 = Tr(ρA),

where ρ is a positive trace-class operator acting in H such that Tr ρ = 1 (ρ is called
the density matrix of the state (4); for more details, see [46]).

In the case of classical systems, the algebra A is a (commutative) algebra of bounded
functions defined on the phase space Ω; the dynamics αt = Ut is given by (2), and a
state is given by an integral

(5) 〈f〉 =
∫

Ω

f(ω)dµ(ω),

where µ is a probability measure on Ω.
A number of concepts in probability theory can be generalized to apply to states

〈·〉 : 〈A〉 is the mean value of the element A ∈ A, 〈(A − 〈A〉1)2〉 is its variance, 〈An〉
is the nth moment of A, 〈exp{itA}〉 is the characteristic function of A, and so on.

The general theory of states on algebras is sometimes called noncommutative prob-
ability theory.

A state 〈·〉 on A is said to be invariant (or equilibrium) with respect to the dynamics
αt if 〈αtA〉 = 〈A〉 for all A ∈ A.

§2. Basic examples of physical systems

To orient the reader, and also to introduce the terminology and concepts that
will be needed, we list here the principal examples of the physical systems that are
encountered in the literature on mathematical physics.

We start by noting that in this book we focus mainly on the study of infinite
systems (consisting of infinitely many particles occupying all of the space). However,
such systems are conveniently described and studied as limits of systems with finitely
many particles. We will therefore begin with a description of finite systems.
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1. System of classical particles (classical gas). For a system of N identical
pointlike particles contained in a bounded region Λ ⊂ Rν , the phase space ΩΛ,N

consists of all sequences of pairwise distinct pairs

(1) ω = {(q1, v1), . . . , (qN , vN )}, (qi, vi) ∈ Λ ×Rν , i = 1, . . . , N.

Here qi is the position of the ith particle and vi is its velocity.
The energy (or Hamiltonian function) of the system is generally taken to be

(2) HΛ,N (ω) =
m

2

N∑
i=1

v2
i +

∑
1≤i<j≤N

U(qi, qj),

where m is the mass of each particle, and U(q1, q2) is the potential energy for two
interacting particles located at the points q1 and q2, respectively. One generally
assumes that U(q1, q2) = U(|q1 − q2|), i.e., that the interaction energy depends only
on the distance between the particles.

The dynamics

(3)
Tt : ΩΛ,N → ΩΛ,N :ω0 = {(q01 , v0

1), . . . , (q
0
N , v

0
N )}

�→ ωt = {(qt1, vt1), . . . , (qtN , vtN )}

is determined by solving the Newtonian differential equations

(4)
dqi
dt

= vi, m
dvi
dt

=
∑
j �=i

F (qi, qj)

with initial condition ω0 = {(q01 , v0
1), . . . , (q0N , v

0
N )}, where the function F (q1, q2) =

−(∇q1U)(q1, q2) is the force exerted on the first particle by the second. The system of
equations (4) must be supplemented by a “boundary condition”, i.e., one must specify
how a particle moves once it has reached the boundary ∂Λ of the region Λ. If Λ has
a smooth boundary ∂Λ, one usually imposes the “elastic reflection” condition: the
velocity component of a particle normal to ∂Λ (at the point where the particle hits the
boundary) changes sign. Sometimes, if Λ is a ν-dimensional cube, “periodic boundary
conditions” are imposed, i.e., instead of the cube one considers the torus obtained by
“gluing” together the opposite faces and replacing U(q1, q2) by the corresponding
periodic potential. If the potential U(q1, q2) is a smooth function for all q1 �= q2,
with possibly a singularity on the hyperplane q1 = q2, in a neighborhood of which it
increases monotonically to +∞ as q1 − q2 → 0, then the existence (and uniqueness)
of the solution of (4) for all initial conditions {(q01 , v0

1), . . . , (q
0
N , v

0
N )} ∈ ΩΛ,N follows

from general theorems in the theory of differential equations, and also from the energy
conservation law:

(5) H(ωt) = H(ω0).

This equality is easily derived from the equation of motion (4). For a potential
U(q1, q2) with a singularity of the above type on the hyperplane q1 = q2, equation (5)
implies that no two particles can occupy the same point. One sometimes considers
a system of solid elastic rods, i.e., a system of particles that cannot approach one
another closer than the distance δ, where δ is the diameter of a ball. The phase
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space ΩδΛ,N for such a system consists of sequences of the form (1) with the additional
condition

(6) |q1 − q2| ≥ δ, i �= j.

Here the potential U(q1, q2) of the system is defined for all pairs (q1, q2) such that
|q1 − q2| > δ. Two cases are possible:

1) The potential U(q1, q2) → +∞ as |q1−q2| → δ. Then the dynamics Tt : ΩδΛ,N →
ΩδΛ,N is determined as before by the system of differential equations (4) (with elastic
reflection as the boundary condition), because no two balls can collide.

2) The potential U(q1, q2) is a smooth, bounded function in the entire region |q1 −
q2| > δ. Here the balls can collide and the dynamics must be supplemented by
a prescription of how the particles must move after a collision. One usually first
considers the “elastic collision” condition for two balls, which means that the colliding
balls “exchange” the normal components of their velocities (i.e., the projections of
their velocities on the straight line joining their centers at the instant of collision).
When three or more balls collide simultaneously, no reasonable prescription can be
given (for ν > 1). We therefore remove from the space ΩδΛ,N all the initial states
{(q01 , v0

1), . . . , (q
0
N , v

0
N )}, whose motion would lead to triple, quadruple, and higher-

order collisions. It turns out that the 2Nν-dimensional Lebesgue measure of the set
of such initial states is equal to zero (Alexander’s theorem). On the remaining set
Ω̃δΛ,N , the dynamics Tt is given as described above. Note, however, that when ν = 1,
the dynamics Tt can be defined on the entire space ΩδΛ,N . In a simultaneous collision
of k rods centered at the points

q1 < q2 < · · · < qk, qi+1 − qi = δ, i = 1, . . . , k − 1,

which is possible only if v1 > v2 > · · · > vk, the order of these velocities must become
reversed as the first ball acquires the velocity vk, the second vk−1, and so on, and the
last ball acquires the velocity v1; after this, the balls move apart freely.

In all of the above examples, the dynamics Tt obeys Liouville’s theorem: The
Lebesgue measure

∏
dqi dvi of any subset A ⊂ ΩΛ,N (or ΩδΛ,N ) of the phase space of

the system is preserved by the motion. Thus, the transformations Ut in the space of
functions f ∈ L2(ΩΛ,N ,

∏
i dqi dvi) defined by equation (2.1) generate a unitary group

of operators in this Hilbert space.
We note at once that of the measures on ΩΛ,N that are invariant under the dynamics

Tt, the most important are the Gibbs (equilibrium) measures µβ,Λ,N . Their density
with respect to the Lebesgue measure

∏
i dqi dvi is given by the formula

dµβ,Λ,N = pβ,Λ,N ({(qi, vi), i = 1, . . . , N})
∏
i

dqi dvi,

where

(7)
pβ,Λ,N ({(q1, v1), . . . , (qN , vN )})

=
1

Zβ,Λ,N
exp{−βHΛ,N ({(q1, v1), . . . , (qN , vN )})}.

Here β > 0 is a parameter and Zβ,Λ,N a normalization factor (the partition function):

(8) Zβ,Λ,N =
∫

ΩΛ,N

exp{−βHΛ,N({(q1, v1), . . . , (qN , vN )})}
∏
i

dqi dvi.
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A discussion of the pair potentials U(q1, q2) in (2) for which the Gibbs measure density
(7) is well defined (i.e., Zβ,Λ,N �= 0,∞) can be found in [37]. Since we deal with
identical particles, it is convenient to regard them as indistinguishable, i.e., we take
the phase space to be Ωindist

Λ,N , defined as the quotient space

(9) Ωindist
Λ,N = ΩΛ,N/SN ,

where SN is the group of all permutations (relabelings) of the particles. Here we take
the Lebesgue measure of a set A ⊂ Ωindist

Λ,N to be mes(π−1(A))/N !, where π−1(A) is
the complete inverse image of the set A ⊆ Ωindist

Λ,N under the natural map π : ΩΛ,N →
Ωindist

Λ,N , and mesB is the 2νN -dimensional Lebesgue measure of B ⊂ ΩΛ,N . A state
ω ∈ Ωindist

Λ,N for a system of indistinguishable particles can be regarded as an N -point
subset of the one-particle space Λ×Rν . The dynamics T indist

t in Ωindist
Λ,N and the Gibbs

measure on this space are naturally reduced by the dynamics Tt and Gibbs measure
(7) on ΩΛ,N .

In statistical physics, for convenience, one often also considers systems with a
variable number of particles. For the case of the classical gas described in this section,
the state space is the set

(10) Ωindist
Λ =

⋃
N≥0

Ωindist
Λ,N ,

i.e., the collection of all finite subsets c ⊂ Λ × Rν . The dynamics Tt on Ωindist
Λ acts

independently on each stratum Ωindist
Λ,N , and the Lebesgue measure dc on Ωindist

Λ is
also defined as the measure (1/N !)

∏
i dqi dvi on the stratum Ωindist

Λ,N , while the Gibbs
measure µβ,µ,Λ on Ωindist

Λ,N is given by the density (with respect to the Lebesgue measure
on Ωindist

Λ )
dµβ,µ,Λ = Pβ,µ,Λ(c) dc,

where

(11) Pβ,µ,Λ(c) =
1

Ξβ,µ,Λ
exp{−β(HΛ(c) + µN(c))}.

Here c = {(qi, vi), i = 1, 2, . . . , N}, HΛ(c) = HΛ,N ({(q1, v1), . . . , (qN , vN )}), and
N(c) = N , β > 0, and µ are parameters; the normalization factor Ξβ,µ,Λ is equal to

(12) Ξβ,µ,Λ =
∞∑
N=0

e−βµN

N !
Zβ,Λ,N .

The distribution (11) is often called the Gibbs grand canonical ensemble, while (7) is
the canonical ensemble. It is easily verified that the conditional distribution generated
by the grand canonical ensemble on the stratum Ωindist

Λ,N coincides with the canonical
ensemble on this stratum. More details on all the above can be found in [37] and [30].

2. Classical lattice system. In the previous section we have described a gas
of identical particles moving in a bounded region Λ ⊂ Rν . In this section we will
describe a system of finitely many particles, each oscillating about its equilibrium
position. Let Zν be a ν-dimensional lattice, Λ ⊂ Zν a finite subset, and suppose that
to each x ∈ Λ there is assigned a particle whose displacement from the point x is qx
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and whose velocity is vx. The state space of the system is ΩΛ = (Rν × Rν)Λ; the
energy (Hamiltonian function) is taken to be

(13) HΛ =
m

2

∑
x∈Λ

v2
x +

∑
x,y⊂Λ
x �=y

Φx,y(qx, qy) +
∑
x∈Λ

U(qx).

Here U(·) is the potential energy for the interaction of particle qx with a force which is
centered at the point x ∈ Λ and tends to restore it to the equilibrium position qx = 0,
and Φx,y(qx, qy) is the interaction potential energy for two particles assigned to the
points x and y and displaced by qx and qy, respectively. If U(q) and Φx,y(qx, qy) are
quadratic forms in their variables, then the system with Hamiltonian (13) is called a
system of linear interacting oscillators.

The dynamics Tt : ΩΛ → ΩΛ, ω0 → ωt of the above system is again obtained by
solving the Newtonian differential equations

(14)
dqx
dt

= vx, m
dvx
dt

= F (1)(qx) +
∑
y �=x

F (2)
x,y(qx, qy)

with initial condition ω0 = {{q0x, v0
x}, x ∈ Λ}. Here F (1)(qx) = −(∇U)(qx), F

(2)
x,y(qx, qy) =

−(∇qxΦ)(qx, qy) are the forces acting on the particle at x exerted by the attracting
center (at x) and by the other particles.

Again, one verifies easily that the Hamiltonian function (13) and the Lebesgue
measure

∏
x∈Λ dqx dvx are preserved under the motion. The Gibbs distribution µβ,µ,Λ

in ΩΛ is again given by a formula analogous to equation (11).

3. Quantum systems. Consider a system of N particles contained in a bounded
region Λ ⊂ Rν of the space Rν . We will describe the three most important cases.

A. Distinguishable particles. The Hilbert space of the states for such a system is
the space HΛ,N = L2(ΛN ,

∏
i dqi) of functions f(q1, . . . , qN ), qi ∈ Λ. The energy

operator is given by

(15) HΛ,Nf = −
∑ 1

2mi
∆qif + U(q1, . . . , qN )f,

wheremi is the mass of the ith particle, the potential energy U(q1, . . . , qN ) is bounded
from below and depends on theN variables q1, . . . , qN , and ∆qi is the Laplace operator
(with respect to the variable qi), subject to a suitable selfadjoint boundary condition
on the boundary ∂Λ of the region Λ. One usually takes Dirichlet boundary conditions,
i.e., the functions in the domain of definition of the operator DHΛ,N HΛ,N vanish if
one or more of the arguments qi is in ∂Λ. In the case when Λ ⊂ Rν is a cube, one
also considers “periodic boundary conditions”: the values of f and its first derivatives
∂f/∂qi coincide for N -tuples (q1, . . . , qi, . . . , qN ), (q1, . . . , q′i, . . . , qN ) whenever (for
any i) qi and q′i lie on two opposite faces of the cube. One usually considers a
pairwise interaction of particles, possibly in an external field; i.e., we take

U(q1, . . . , qN ) =
∑
i<j

Φij(qi, qj) +
∑
i

Φi(qi),

where Φij is the interaction potential for particles i and j, and Φi is the potential of
the external field acting on the ith particle.
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Conditions on the potentials Φij and Φi for which the operator (15) is selfadjoint
are analyzed in detail in [36]. As usual, the dynamics UΛ,N

t : HΛ,N → HΛ,N is given
in the form

(16) UΛ,N
t f = exp{itHΛ,N}f, f ∈ HΛ,N , t ∈ R1.

Of the states on the algebra B(HΛ,N ) of bounded operators acting on HΛ,N and
invariant under the dynamics (16), the most important is the Gibbs state, defined by
the formula

(17) 〈A〉β = tr(ρA), A ∈ A(HΛ,N ),

where
ρ =

1
Zβ,Λ,N

exp{−βHΛ,N},

β > 0 is a parameter, and Zβ,Λ,N is the normalization factor,

(18) Zβ,Λ,N = Tr exp{−βHΛ,N}.

For a large class of potentials Φij and Φi, the operator ρ (the density matrix for the
state (17)) is of trace class for all N , all bounded regions Λ, and every β > 0, i.e.,
(17) and (18) are well defined. For more on this we refer to [37].

States of the form (17) are sometimes called temperature states (the parameter
β = T−1, where T is the temperature of the system). In addition to these, one also
studies the ground states on the algebra B(HΛ,N ), which are also invariant under the
dynamics (16). Let Ψgr ∈ HΛ,N be a normalized eigenvector (ground-state vector)
of the operator HΛ,N corresponding to an eigenvalue which is simple and as small as
possible. Then the ground state 〈·〉gr on B(HΛ,N ) is defined by the formula

(19) 〈A〉gr = (AΨgr,Ψgr), A ∈ B(HΛ,N ).

B. Indistinguishable particles (bosons and fermions). Let us suppose that all the
particle have the same mass: mi = m, and also that the interaction potentials are
identical:

Φij(qi, qj) = Φ(qi, qj), Φi(qi) = Φ(qi).

Then the operatorHΛ,N on HΛ,N commutes with all permutations of the particles and
the following two subspaces of HΛ,N are invariant under HΛ,N : the subspace Hsym

Λ,N

of functions f(q1, . . . , qN ) symmetric in their arguments, and the subspace Hasym
Λ,N

of functions antisymmetric in (q1, . . . , qN ) (i.e., which change sign when any pair
of particles is interchanged). The components of HΛ,N acting on Hsym

Λ,N and Hasym
Λ,N

will be denoted by Hsym
Λ,N and Hasym

Λ,N , respectively. Particles described by vectors in
Hsym

Λ,N and by the Hamiltonian Hsym
Λ,N are called Bose particles (or bosons), while those

described by vectors in Hasym
Λ,N are called Fermi particles (fermions). The dynamics

Uat on the spaces Ha
Λ,N , a = sym, asym, is given by restricting the dynamics Ut (16) on

HΛ,N to the invariant subspaces Ha
Λ,N , a = sym, asym; the temperature and ground

states are given by equations (17) and (19) with HΛ,N replaced by Hsym
Λ,N and Hasym

Λ,N ,
respectively, and with the vector Ψgr replaced by Ψsym

gr (= Ψgr) or Ψasym
gr (�= Ψgr).
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One often considers boson and fermion systems with a variable number of particles.
The Hilbert spaces in this case are taken to be

(20) F sym
Λ ≡ Hsym

Λ = C1 ⊕
( ∞⊕
N=1

Hsym
Λ,N

)
and

(21) Fasym
Λ ≡ Hasym

Λ = C1 ⊕
( ∞⊕
N=1

Hasym
Λ,N

)
which consist of infinite sequences

(22) F = {f0, f1(q1), . . . , fn(q1, . . . , qN ), . . . }

of symmetric (respectively, antisymmetric) functions in increasingly many arguments.
The norm of a sequence (22) is defined to be

(23) ‖F‖2 = |f0|2 +
∞∑
N=1

‖fN‖2
HΛ,N

.

Here Ha
Λ = Fa

Λ, a = sym, asym are called Fock spaces . The Hamiltonian Ha
Λ acting

on the space Fa
Λ is given by

(24) Ha
Λ =

∞⊕
N=0

Ha
Λ,N , a = sym, asym, (Ha

Λ,0 = 0),

and the dynamics is once again given by equation (16); it coincides on each subspace
Ha

Λ,N with the previous dynamics UΛ,N
t . The Gibbs temperature state is given by

the density matrix

(25)
ρaΛ =

1
Ξa

exp{−β(Ha
Λ + µN̂)},

Ξa = Tr exp{−β(Ha
Λ + µN̂)},

where β > 0 and µ are parameters, and N̂ is the particle-number operator, act-
ing on each subspace Ha

Λ,N as multiplication by N . The ground state is given by
equation (19), where Ψa

gr is the ground-state vector for the operator Ha
Λ +µN on Ha

Λ.
A more general construction of the Fock spaces and associated operator formalism

(the second-quantization method) will be described in §3.1. There we will also give
examples of Hamiltonians (in particular, a Hamiltonian of the form (15)) expressed
in “second-quantization” form.

4. Quantum spin (lattice) systems. Let Zν be a ν-dimensional lattice, each
point x of which corresponds to a finite-dimensional Hilbert space Hx isomorphic to
Cn. For each finite set Λ ⊂ Zν we write HΛ for the tensor product of the spaces Hx,
x ∈ Λ:

(26) HΛ =
⊗
x∈Λ

Hx.
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The vectors in HΛ describe the states of a system of “particles”, where one particle is
located at each point x ∈ Λ; their “internal degrees of freedom” (“spin”) are specified
by the elements of the space Hx. The operator algebra Ax = B(Hx) is clearly
isomorphic to the algebra M of n× n matrices, and the algebra B(HΛ) =

⊕
x∈Λ Ax.

Given two sets Λ1 ⊂ Λ2 we have an (isometric) inclusion homomorphism

(27) AΛ1 → AΛ1 ⊗ 1Λ2\Λ1 ⊂ AΛ2 ,

where 1Λ2\Λ1 ∈ AΛ2\Λ1 is the unit element of the algebra. Now suppose that for each
finite set A ⊂ Zν there corresponds a selfadjoint element ΦA ∈ AΛ, which by (27) can
be regarded as an element of AΛ with A ⊆ Λ. We now define the selfadjoint operator
HΛ ∈ AΛ

(28) HΛ =
∑
A⊆Λ

ΦA

as the Hamiltonian of our system. The dynamics is as usual given by equation (16).
The temperature and ground states are given by formulas similar to equations (17)–
(19).

5. Systems with stochastic dynamics. Models of systems in which the dy-
namics is not uniquely determined as in the previous examples, but is given instead
by stochastic mechanisms, have recently become popular in mathematical physics.
Different situations can arise here either the evolution equations of the system are
themselves random (Markov chains), or else one can consider a family of determin-
istic equations that depend on random parameters (“random medium”). One then
studies the “typical” properties of the family of dynamics that arises. Finally, an
intermediate case (random walks in a “random” medium) is also possible. We will
discuss the first situation here and consider the case of Markov chains with local in-
teraction in a finite region Λ (see [24]). The simplest examples are those for which
the transition distributions are conditionally independent. In more detail, let L ⊂ Zν

be a finite set and let the configuration (state of the system) be given by a function
{s(x), x ∈ Λ} with values in some finite set S. For a given initial state s0 ∈ SΛ of the
system at t = 0, the probability that the system will be in a state s at time t = 1 is
equal to

(29) p(s/s0) =
∏

px(s(x)/s0),

where px(·/s0) is a family of distributions on S depending on the configuration s0.
Formula (29) expresses the conditional independence of the distributions for the con-
figurations s at time t = 1 for a fixed configuration s0. The family px(·/s0) depends
on s0 as follows:

(30) px(·/s0) = px(·/s0|Qx),

where Qx = Q+x is a finite fixed neighborhood of the point x (obtained by translating
a fixed neighborhood Q of 0 to the point x), and s0|Qx is the restriction of the
configuration s0 to Qx. Formula (30) expresses the “locality of the interaction” for a
Markov chain.
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§3. Infinite systems and the thermodynamic limit

Macroscopic physical systems consist of a large number of particles and fill a region
of Rν (or of the lattice Zν) that is large compared with the characteristic dimensions
of the interaction. It is therefore convenient to pass to an idealized infinite system
infinitely many particles moving in all of space whose attributes (in particular, the
dynamics and equilibrium states) are close to those for the corresponding finite sys-
tems. Three purely mathematical arguments can also be advanced in favor of infinite
systems:

a) it is only for them that the concept of phase transition for equilibrium systems
can be formulated;

b) the dynamics has a continuous spectrum only for an infinite system, and only
for such systems are the “corpuscular” (“quasiparticle”) picture and scattering theory
meaningful (see §6 for more details);

c) finally, it is only for the limit equilibrium states that the equivalence princi-
ple for ensembles is rigorously valid. According to this principle, the limit states
obtained from the canonical and grand canonical Gibbs ensembles (and also from
the microcanonical ensemble, see [37]) coincide in “single-phase” regions of the space
of parameters on which they depend, provided the parameters are suitably related
(these are the temperature and density of the particles for the canonical ensemble,
the temperature and chemical potential for the grand canonical ensemble, and finally,
the energy and particle densities for the microcanonical ensemble).

Here we will briefly describe the infinite systems corresponding to each of the finite
systems enumerated in the preceding section, their dynamics and their equilibrium
(Gibbs) states.

1. Classical gas (of indistinguishable particles). The phase space Ω for this
system is the collection of all locally finite subsets c ⊂ Rν ×Rν of the space of states
(q, v) ∈ Rν ×Rν of a single particle, where q is the position and ν the velocity of the
particle. A subset c ⊂ Rν × Rν consisting of pairs (q, v) is said to be locally finite if
every bounded subset Λ ⊂ Rν contains only finitely many particles in c.

For a system with Hamiltonian of the form (2.2), two families of limit Gibbs dis-
tributions can be introduced in the space Ω. The first is obtained from the canonical
ensemble µβ,Λ,N (7.2) by taking the thermodynamic limit:

(1) µβ,ρ = lim
Λ↑Rν

N
|Λ|→ρ

µβ,Λ,N ,

where ρ is the limiting density of the particles and the limit in (1) is in the sense of
weak convergence of finite-dimensional distributions (see [26] for more details). The
second family of limit distributions on Ω is obtained by taking the limit of the grand
canonical Gibbs ensemble µβ,µ,Λ (11.2),

(2) µβ,µ = lim
Λ↑Rν

µβ,µ,Λ.

It turns out that for regular regions of the parameters (β, ρ) and (β, µ), in which
all the characteristics of the corresponding family of distributions — the correlation
functions, free energy, and so on (see [37]) — depend analytically on the parameters,
the two families coincide:

(3) µβ,ρ = µβ,µ
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provided µ is chosen so that the mean limit density of the particles in the large
ensemble

ρβ,µ = lim
Λ↑Rν

〈N〉β,µ,Λ
|Λ|

is equal to ρ:

(4) ρβ,µ = ρ

(here, 〈·〉β,µ,Λ denotes an average over µβ,µ,Λ). Assertion (3) together with equa-
tion (2.2) is called the equivalence principle for ensembles.

For systems with a pair interaction potential U(q1, q2) in equation (2.2), the dy-
namics in the phase space Ω is given by a infinite system of Newtonian differen-
tial equations, which is obtained by formally taking the limit of system (4.2). Let
c = {(q, v)} ∈ Ω; then for a pair (q, v) ∈ c we have

(5)

q̇ = v,

v̇ =
1
m

∑
q′ �=q

F (q, q′),

where the sum is over all particles in the configuration c not coinciding with the
given particles. In the simplest case when the potential U(q1, q2) is finite1, the sum∑

q′ F (q, q′) is finite and the right-hand side of (5) is well defined.
Even the simplest examples show that for certain initial configurations c0 = {(q0, v0)} ∈

Ω, equations (5) may fail to have a solution even for arbitrarily short time intervals
(the system may collapse instantaneously, so that a bounded region contains an arbi-
trarily large number of particles). Therefore, a fundamental difficulty in using equa-
tions (5) to construct a well-defined dynamics is to choose a sufficiently large subset
Ω̃ ⊂ Ω of initial configurations c0 for which (5) has a solution c(t) for all t ∈ R1 which
does not leave the set Ω̃ : c(t) ∈ Ω̃.

There are two approaches in the literature to constructing the set Ω̃; either it is
described explicitly (the associated dynamics in Ω̃ is said to be absolute), or else one
implicitly takes a set with the property that it has full measure relative to every
equilibrium (Gibbs) distribution in Ω. The result here is called an equilibrium dy-
namics, because every equilibrium distribution is invariant under the dynamics on Ω̃
(and also, by the way, invariant under every relatively absolute dynamics, if the set
Ω̃ is big and has full measure with respect to the equilibrium distribution). The first
(absolute) approach is convenient in leading automatically (via equations (3.1)) to a
dynamics on the space of measures on Ω̃, whereas the second approach gives such a
dynamics only on the class of measures that are absolutely continuous with respect
to some equilibrium measure.

However, we note that regardless of how the dynamics Tt on the phase space Ω
is constructed, one can define and study the dynamics Ut in the space C loc

0 (Ω) of
smooth local functions in Ω, defined by the Liouville equation

(6)
∂f

∂t
=
∑
q

(
v
∂f

∂q

)
(c) +

1
m

∑
q,q′

(
∂f

∂v
, F (q, q′)

)
, c = {(q, v)} ∈ Ω.

1Translator’s note: This means that U(q1, q2) is zero for all but finitely many q1, q2.
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In the first sum the summation is over all particles in c, while in the second it is over
all unordered pairs of particles in c. Since the function f depends only on a finite
part of the configuration c (as follows from the definition of a local function f), the
sums in (6) are finite.

One can also directly define (again, regardless of how the dynamics Tt on Ω is
constructed) a dynamics U∗

t on the space of measures on Ω. The easiest way to do
this is to use the evolution equations for the correlation functions of the measures.
This leads to an infinite system of coupled equations which has been studied by many
authors, as is reflected in its name, the BBGKY hierarchy, after Bogolyubov, Born,
Green, Kirkwood, and Yvon (for more details, see [34] and also [35]).

We note that the dynamics enumerated above (in the configuration, function, and
measure spaces) have been fully constructed only in a few very simple cases. In all
these cases, the dynamics are obtained as limits (in a natural sense) of associated finite
dynamics, that is, by taking the thermodynamic limit (see [50] for more details).

2. Classical lattice systems. The state space Ω for such a system is the space
(Rν × Rν)Z

ν

of infinite configurations {(qx, vx), x ∈ Zν}. The dynamics is given by
an infinite system of equations obtained from system (14.2) by formally taking the
limit Λ ↑ Zν :

(7) q̇x = vx, mv̇x = F (1)(qx) +
∑
y �=x

F (2)(qx, qy).

Here again the problem arises of choosing a large enough set of initial configurations
Ω̃ ⊂ Ω, for which (7) is solvable and which is invariant under the resulting dynamics.
This problem has been solved only for some special cases (e.g., for a system of linear
oscillators). The same also holds for the dynamics Ut and U∗

t on the spaces of functions
and measures on Ω which, as in the previous case, can be studied independently of
how the dynamics Tt has been constructed on the configuration space.

A family of limit Gibbs measures µβ,µ on the space Ω can be defined as the ther-
modynamic limits as Λ ↑ Zν of the finite Gibbs distributions µβ,µ,Λ. These measures
are invariant under the dynamics U∗

t .

3. Quantum systems. In the case of an infinite quantum system, the construc-
tion of the Hilbert space of states (together with a Schrödinger dynamics) is less
transparent than for infinite classical systems.

Here two approaches are used the Euclidean approach, which we will briefly de-
scribe in one of the following sections, and also an approach that directly constructs
the limiting Heisenberg dynamics starting from the finite Heisenberg dynamics on the
algebras AΛ = B(HΛ), where HΛ is the Hilbert space of states for a finite system.
This dynamics is given by a group of ∗-automorphisms of a suitable limit algebra A,
called the algebra of pseudolocal observables, to be described shortly. In most cases
the equilibrium (temperature or Gibbs) states on the algebras AΛ (as well as their
ground states) generate limit states (temperature or ground states) on the quasilocal
algebra A upon taking the thermodynamic limit, and the limit states are invariant
under the limit Heisenberg dynamics on A. The limit Hilbert space and associated
Schrödinger dynamics are then constructed by the standard Gelfand-Naimark-Segal
construction (GNS construction), which will be described in §2.1.

We now turn to the description of the quasilocal algebra A. We will define it
for the case of continuous quantum systems consisting of identical indistinguishable
particles (bosons, say). We note that, as follows easily from the definition (20.2), when
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Λ = Λ1 ∪Λ2, where Λ1 ∩Λ2 = ∅, the Fock space F sym admits a natural expansion as
the tensor product

(8) F sym
Λ = F sym

Λ1
⊗F sym

Λ2
.

It follows that for Λ1 ⊂ Λ2 the algebra AΛ1 = B(F sym
Λ1

) imbeds homeomorphically
and isometrically in the algebra AΛ2 = B(F sym

Λ2
)

(9) AΛ1 → AΛ1 ⊗ 1Λ2\Λ1 ⊂ AΛ2 ,

where 1Λ2\Λ1 is the identity operator on the space F sym
Λ2\Λ1

(cf. equation (27.2), which
gives an analogous expression for the case of quantum lattice systems).

Thus, we may consider the inductive limit A = ∪AΛ of the algebras AΛ, Λ ⊂
Rν , equipped with the norm ‖ · ‖. We call A the algebra of local observables, and its
completion with respect to ‖ · ‖ is the algebra of quasilocal observables. Since all the
AΛ are C∗-algebras (see §2.1 below) with respect to the adjoint operation, the same
is true of the limit algebra A. Assume further that for all the algebras AΛ, groups of
isometric automorphisms αΛ

t : AΛ → AΛ are defined, and that for every local element
A ∈ A the limit

(10) lim
Λ↑Rν

αΛ
t A = αtA ∈ A

exists. Since the mapping αt : A → A preserves the norm, it extends to an isometric
automorphism

(11) αt : A → A

and the set of all these forms a one-parameter group that gives the limit dynamics of
the quasilocal algebra.

In exactly the same way, one can define the quasilocal algebra and its dynamics
for a system of Fermi particles, as well as for lattice quantum systems.

As limits of Gibbs states on the “finite” algebras AΛ, the Gibbs (and ground)
states on the quasilocal algebra are (as already mentioned) invariant under the limit
dynamics αt on A.

The investigation of the limiting dynamics αt together with the Gibbs (and ground)
states on A is in fact a principal aim of this book. As we have already noted, this can
be done either using the Euclidean approach, or else by directly analyzing the Dyson
Schwinger series representing the dynamics on the algebra A. Both approaches, which
will be briefly described in the next sections, rely on the cluster expansion technique
(see [26]).

4. Limiting stochastic dynamics. The properties of stochastic dynamics for
infinite systems are much more diverse than for finite systems, and their study requires
subtler methods. They are often analyzed (and even constructed) by taking limits
of finite stochastic dynamics. To be sure, Markov chains with local interaction and
conditionally independent transition distributions (see the example at the end of the
previous section) can be defined directly in an infinite volume just as well as in a finite
volume, but in the more general case when conditional independence is not required,
their construction again requires taking a thermodynamic limit. Some examples will
be considered in §6.1.
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§4. Expansion of Heisenberg dynamics

In the previous sections we have briefly sketched the main topics of this book. We
will now briefly touch upon the methods to be used. There are, in fact, just two:
direct power series expansion of the dynamics and study of the resulting series (the
subject of the present section), and the Euclidean approach, to be discussed in the
next section.

Let A be a Banach algebra with involution equipped with a one-parameter group
of inner ∗-automorphisms,

(1) αtA = exp{itH}A exp{itH} ≡ FA(t),

where H is a selfadjoint element of A. Clearly, the family of elements FA(t) satisfies
the equation

(2)
dFA
dt

= i[H,FA(t)] ≡ i(HFA − FAH) def= HFA,
FA(0) = A,

where

(3) H : A → A : F → i[H,F ], F ∈ A,

is a bounded linear operator on A with norm ‖H‖ ≤ 2‖H‖. The solution of (2) can
be expressed in the form

(4)

FA(t) = exp{tH}A = A+
∞∑
n=1

tn

n!
HnA

= A+
∞∑
n=1

(it)n

n!
[H, [H, . . . , [H,A]︸ ︷︷ ︸

n times

. . . ]],

where the series converges with respect to the norm of the algebra A.
Another series turns out to be more convenient in practice. Let H = H0 + V ,

where H0 and V are selfadjoint elements of A. Then

(5)

FA(t) = α0
t (A) +

∞∑
n=1

in
∫

· · ·
∫

0<t1<t2<···<tn<t
dt1 . . . dtn

× [α0
t1(V ), [α0

t2(V ), . . . , [α0
tn(V ), α0

t (A)︸ ︷︷ ︸
n times

. . . ]],

where α0
t (B) = exp{itH0}B exp{−itH0} is the automorphism group generated by the

element H0 ∈ A.
To prove (5), we write

(6) Bt = α0
−t(FA(t)) = exp{−itH0}FA(t) exp{itH0}.

Hence

(7)
dBt
dt

= i[Vt, Bt],
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where

Vt = α0
t (V ) = exp{itH0}V exp{−itH0}

and consequently,

Bt = B0 + i

∫ t

0

[Vs, Bs] ds(8)

= B0 +
∑

in
∫

· · ·
∫

0<sn<sn−1<···<s1<t
ds1 . . . dsn[Vs1 , [Vs2 , . . . , [Vsn , B0] . . . ]].

Applying the automorphism α0
t to the last formula and making the substitution si =

t− ti, i = 1, . . . , n, we get (5) since B0 = A.
We note that our formulas remain valid for any Banach Lie algebra with multipli-

cation [·, ·]. In this case, α0
t (B) is understood to be the solution of the equation

(9)
dBt
dt

= i[H0, Bt], Bt=0 = B.

In particular, in the study of classical systems one takes A to be the Lie algebra of
smooth functions on a symplectic manifold, in which the multiplication [·, ·] is given by
Poisson brackets. This operation is given in local coordinates (q1, . . . , qn, p1, . . . , pn)
by

i[H,F ] ≡ {H,F} =
n∑
i=1

(
−∂H
∂qi

∂F

∂pi
+
∂H

∂pi

∂F

∂qi

)
.

The series in equations (4), (5) for expanding the dynamics are also formally ap-
plicable to the case of a group of ∗-automorphisms of generated by a symmetric
derivation on the algebra A. Recall that a derivation is an operator δ, defined on a
dense ∗-subalgebra Dδ, δ : Dδ → A, such that

1) δ(AB) = δ(A)B +Aδ(B), A,B ∈ Dδ,
2) δ(A∗) = (δ(A))∗.
In particular, the operator H introduced above is a symmetric derivation.
The action of the group αδt of ∗-automorphisms on A corresponding to the deriva-

tion δ,

A→ αδt (A) ≡ FA(t)

is given as the solution of the equation

dFA(t)
dt

= δ(FA(t)), FA(t = 0) = A

(see [7] for more details).
The formal series for the automorphism αδt can sometimes also be applied to the

case H ∈ A, when the derivation δ on A is of a form more general than [H, ·]. In this
case, it may be necessary to consider the series on some dense subset of elements of
A, and to interpret their convergence in a suitable weak sense.



18 0. EXTENDED INTRODUCTION

§5. Euclidean approach

The spectral analysis of the operators Ut = exp{itH} for the Schrödinger dynam-
ics is equivalent to the same problem for the operator H , or for the semigroup of
operators exp{−tH}. In many cases, this semigroup allows a very simple probabilis-
tic representation known as the Feynman-Kac formula. This representation permits
one to employ cluster expansions to study the spectrum of the operator exp{−tH};
Chapter 3 is devoted to this. Here we will describe the probabilistic representation
exp{−tH} itself for some very simple examples. More general cases are considered in
Chapter 3.

1. The original Feynman-Kac formula. The general scheme for deriving the
Feynman-Kac formula is as follows. Let (S, ν) be a space equipped with a probability
measure ν, and let a selfadjoint operator H acting on the space L2(S, ν) have the
form

H = H0 + V̂ ,

where V̂ is the operator given by multiplication by the bounded function V (x), x ∈ S,
and H0 is a selfadjoint operator for which exp{−tH0} is a stochastic semigroup. More
precisely, assume that the action of exp{−tH0} is given by

(1)
(exp{−tH0}f)(x) =

∫
S

Pt(x, y)f(y)dν(y),

x ∈ S, f ∈ L2(S, dν),

where Pt(x, y) is the density (with respect to the measure ν) of the transition prob-
ability (for a particle to go from x to y) during the time t for some Markov process
(ξt, t > 0) with values in the set S. Let Qt(x, y) denote the kernel of the operator
exp{−tH0 + V̂ },

(2) (exp{−tH0 + V̂ }f)(x) =
∫
S

Qt(x, y)f(y)dν(y).

The Feynman-Kac formula expresses Qt(x, y) as an average over the process {ξt,
t > 0}.

For simplicity we will limit ourselves here to the case of a finite set S. Note that
the requirement for the semigroup exp{−tH0} to be stochastic leads to the following
conditions on the matrix H0 = {h0

x,y}x,y∈S:

(3) h0
x,y ≤ 0 for x �= y,

∑
y∈S

h0
x,y = 0 for all x.

We now use Trotter’s formula (see [36])

(4) exp{−t(H0 + V̂ )} = lim
n→∞

(
exp

{
− t

n
H0

}
exp

{
− t

n
V̂

})n

and denote by {Q(n)
t (x, y)}x,y∈S the matrix of the operator (exp{− t

nH0}×exp{− t
n V̂ })n.



§5. EUCLIDEAN APPROACH 19

It is clear that for x = x0 and y = xn

(5)

Q
(n)
t (x, y) =

∫
· · ·

∫
︸ ︷︷ ︸

(n−1) times

exp
{
− t

n

n∑
i=1

Vxi

}

× Pt/n(x0, x1) . . . Pt/n(xn−1, xn) dν(x1) . . . dν(xn−1)

=
〈

exp
{
− t

n

n∑
i=1

V (xi)
}〉(n)

t,x,y

.

The mean 〈·〉nt,x,y has the following interpretation. Let xk = ξxtk/n, k = 0, 1, . . . , n,
denote the Markov chain starting at the point x : x0 = x, with discrete time 0, t/n, . . . ,
tk/n, . . . , t and transition probabilities Pt/n(x, y)dν. Then 〈·〉nt,x,y is the mean of
the trajectories x0, x1, . . . , xn of our chain for which xn = y, with respect to the
conditional (unnormalized!) measure on the set Ω(n)

t,x,y.
By virtue of (5), in the limit n→ ∞ we obtain the following representation for the

matrix Qt(x, y) of the operator exp{−t(H + V̂ )}

(6) Qt(x, y) =
〈

exp
{
−
∫ t

0

V (ξτ ) dτ
}〉

t,x,y

,

this is the Feynman-Kac formula. The average 〈·〉t,x,y is taken over the conditional (as
before, unnormalized) measure on the set Ωt,x,y of those trajectories {x(τ), 0 < τ < t}
of the Markov process {ξx, 0 < τ < t}, starting at x (ξx0 ≡ x) and reaching y at time
τ = t : x(t) = y.

Formula (6) implies the following representation for the action of the operator
exp{−t(H0 + V̂ )}:

(exp{−t(H0 + V̂ )}f)(x) =
∫
S

f(y)dν(y)
〈

exp
{
−
∫ t

0

V (ξτ ) dτ
}〉

t,x,y

=
〈

exp
{
−
∫ t

0

V (ξτ )dτ
}
f(ξt)

〉
t,x

,(7)

where 〈·〉t,x denotes the mean over all trajectories of the Markov process {ξxτ , 0 <

τ < t}. Similarly, the matrix elements of the operator exp{−t(H0 + V̂ )} are given by

(8) (exp{−t(H0 + V )}f, g) =
∫
S

g(x)
〈

exp
{
−
∫ t

0

V (ξτ ) dτ
}
f(ξt)

〉
t,x

dν(x).

2. Renormalized Feynman-Kac-Nelson formula. As x, y, t vary in equa-
tion (6), so does the set Ωx,y,t over which the averaging is performed. In the Feynman-
Kac-Nelson formula, the mean is taken over trajectories of a single stationary Markov
process. Indeed, let us suppose that the Markov process ξt introduced above with
transition probability density Pt(x, y) (from x to y in time t), and with the infinites-
imal operator H0, is a stationary Markov process defined for all t ∈ R1, and let the
measure ν on S be its invariant distribution.

Then from equation (8) we find that

(9) (1, exp{−2t(H0 + V )}1) =
〈

exp
{
−
∫ t

−t
V (ξτ ) dτ

}〉
0

def= Z2T ,
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where (·, ·) is the inner product on L2(S, ν) and the mean 〈·〉0 is taken over the
distribution µ0 of the stationary process {ξt, t ∈ R1}. Define the new measure µT by

(10)
dµT
dµ0

= Z−1
2T exp

{
−
∫ T

−T
V (ξτ ) dτ

}
.

Then for any functions F , G defined on the set S and for any time t0, 0 ≤ t0 < T ,
the mean is given by

〈F (ξ0)G(ξt0)〉µT

def= Z−1
2T

〈
F (ξ0)G(ξt0 ) exp

{
−
∫ T

−T
V (ξτ )dτ

}〉
0

=Z−1
2T

∫ 〈
exp

{
−
∫ 0

−T
V (ξτ )dτ

}〉
x−T ,x0,T

F (x0)

×
〈

exp
{
−
∫ t0

0

V (ξτ )dτ
}〉

x0,xt0 ,t0

G(xt0)

×
〈

exp
{
−
∫ T

t0

V (ξτ )dτ
}〉

xt0 ,xT ,T−t0
dν(x−T ) dν(x0) dν(xt0 ) dν(xT )(11)

=Z−1
2T (1, exp{−T (H0 + V̂ )}F̂ exp{−t0(H0 + V̂ )}Ĝ

× exp{−(T − t0)(H0 + V̂ )}1)

=Z−1
2T (exp{−T (H0 + V̂ )}1, F̂ exp{−t0(H0 + V̂ )}Ĝ

× exp{−(T − t0)(H0 + V̂ )}1),

where F̂ and Ĝ are given by multiplication by the functions F (x) and G(x), re-
spectively, and (·, ·) is the inner product on L2(S, ν). Let Ω0(x) be a normalized
eigenvector of the operator H0 + V which corresponds to an isolated eigenvalue λ0

that is simple and as small as possible. Then it is obvious that when T → ∞ we have
the asymptotic relation

(12) exp{−T (H0 + V̂ )}1 = exp{−λ0T }(Ω0(1,Ω0) + o(1)),

and the expression in (11) has the asymptotic form

(exp{−T (H0 + V̂ )}1, F̂ exp{−t0(H0 + V̂ )}Ĝ exp{−(T − t0)(H0 + V̂ )}1)
(13)

= exp{−λ0(2T − t0)} × [(Ω0, F̂ exp{−t0(H0 + V̂ )}ĜΩ0)|(1,Ω0)|2 + o(1)].

On the other hand, with F = G = 1 we obtain that

(14)
Z2T = exp{−2λ0T }((Ω0,Ω0)|(1,Ω0)|2 + o(1))

= exp{−2λ0T }(|(1,Ω0)|2 + o(1)).

Thus, the limit

(15)
lim
T→∞

〈F (ξ0)G(ξt0 )〉µT = 〈F (ξ0)G(ξt0 )〉µ
= (F̂Ω0, exp{−t0(H0 + V̂ − λ0E)}ĜΩ0),
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exists, where 〈·〉µ is the mean with respect to the limiting Gibbs measure

(16) µ = lim
T
µT .

The second equality in (15) is called the renormalized Feynman-Kac-Nelson formula.
If Ω0(x) > 0 for all x, it follows from the above formulas that the measure µ is

the distribution of a stationary Markov process {ηt, −∞ < t <∞} with an invariant
measure ν̂ defined by the formula

(17) dν̂ = Ω2
0(x)dν

and with transition probability density P̂t(x, y) (relative to the invariant measure ν̂)

P̂t(x, y) = Ω−1
0 (x) exp{λ0t}Qt(x, y)Ω−1

0 (y),

where Qt(x, y) is the kernel of the operator exp{−t(H0 + V̂ )} (see (2)). The kernel
P̂t(x, y) defines a semigroup

(18) (Jtf)(x) =
∫
P̂t(x, y)f(y)dν̂(y), t > 0,

on the space L2(S, ν̂) with generator Ĥ : Jt = exp{−tĤ}. Formula (17) implies that
the mapping

(19) U : L2(S, ν̂) → L2(S, ν) : f → Ω0f

is unitary. Then from equation (15), rewritten in the form

(F, exp{−tĤ}G)L2(S,ν̂) = (UF, exp{−t(H0 + V̂ − λ0E)}UG)L2(S,ν)

we obtain that
Ĥ = U−1(H0 + V̂ − λ0E)U,

i.e., the operators Ĥ and (H0 + V̂ − λ0E) are unitarily equivalent. Thus the spectral
analysis of H0 + V̂ reduces to that for Ĥ .

We note that the Feynman-Kac formula is valid quite generally when ν is an
arbitrary σ-finite measure on S. As we have seen, the validity of the renormalized
Feynman-Kac-Nelson formula requires that ν be an invariant probability measure for
a stationary process ξt, and also the existence of a ground state Ω0 for the operator
H0 + V̂ with an isolated simple eigenvalue

λ0 = inf σ(H0 + V̂ ).

The use of the Euclidean approach in the study of more complicated systems (such
as, say, quantum field theory) will be described in 5.2. Here we consider some simple
examples that will be used later.

I. We consider first the Hamiltonian

(20) Hf = −1
2
d2f

dx2
+
ω2x2

2
f, f ∈ L2(R1, dx),
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for a linear quantum oscillator. This operator acts on L2(R1, dx) and is well known
to have a ground state given by the eigenvector

(21) const exp{−ωx2/2}

with eigenvalue ω/2.
We now introduce the Gaussian distribution with density

(22) p(x) =
√
ω/π exp{−ωx2}

and make the unitary transformation

U : L2(R1, dx) → L2(R1, p dx), f → (p(x))−1/2f.

One computes readily that this takes the operator H̃ = H − ωE/2 into the selfad-
joint operator

(23) H̃f = UHU−1f = −1
2
d2f

dx2
+ ωx

df

dx

on L2(R1, dx); H̃ is the infinitesimal generator of a stationary Markov process {ξt,
t ∈ R1} with mean zero, covariance

(24) 〈ξt1 , ξt2〉 =
1
2ω

exp{−ω|t1 − t2|}

and stationary distribution density equal to (22) (an Ornstein-Uhlenbeck process).
II. We next consider a system of n interacting one-dimensional quantum harmonic

oscillators with the Hamiltonian

(25) Hf = −1
2

n∑
i=1

∂2f

∂x2
i

+
1
2

(∑
aijxixj

)
f,

acting on L2(Rn, dnx). The quadratic form
∑
aijxixj with matrix A = {aij} is

assumed to be strictly positive.
Again, one can show that the operatorH−λ0E (where λ0 is the smallest eigenvalue

of H) is unitarily equivalent to the infinitesimal generator H̃ of a stationary Markov
Gaussian process {ξ(i)t , i = 1, . . . , n, t ∈ R1} with mean zero and covariance matrix

(26) {〈ξ(i)t1 ξ(j)t2 〉} =
1
2
A−1/2 exp{−A−1/2|t1 − t2|}

(a multidimensional Ornstein-Uhlenbeck process). The density for the invariant mea-
sure of this process is given by

(27) p(x) =
(DetA)1/4

π1/2
exp{−A1/2x, x},

where (·, ·) is the inner product on Rn.
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The operator H̃ acts on the space L2(Rn, p(x)dnx) by the formula

(28) H̃f = −1
2

n∑
i=1

∂2f

∂x2
i

+
(
A1/2x,

∂

∂x

)
f,

where
∂

∂x
=
(

∂

∂x1
, . . . ,

∂

∂xn

)
.

III. In the case of a system of anharmonic oscillators with Hamiltonian

(29) H = −1
2

∑
i

∂2f

∂x2
i

+
1
2

(∑
aijxixj

)
f + V (x1, . . . , xn)f,

where V (x1, . . . , xn) is a function of the variables x1, . . . , xn bounded from below, the
operator H − λ0E (where λ0 is the smallest eigenvalue of H) is unitarily equivalent
to the generator of a process ξt = {ξ(i)t , i = 1, . . . , n, t ∈ Rn}, whose distribution µ
is obtained as the Gibbs limit (see (10) and (16)) of the Gaussian measure µ0 (the
distribution of the Ornstein-Uhlenbeck process) via the “interaction”∫ T

−T
V (x(τ))dτ.

Remark. All the results of the foregoing analysis can be obtained by a formal
heuristic procedure, as is usually done by physicists and which leads more quickly to
the final answer. The action functional for a classical one-dimensional linear oscillator
is of the form

(30) S(x(τ)) =
1
2

∫ ∞

−∞
[ẋ2(τ) − ω2x2(τ)]dτ,

where x(τ) is a smooth path tending to zero at infinity. Passing formally to imaginary
time τ → iτ , we find that the action becomes

(31) S(x(τ)) = − i

2

∫ ∞

−∞
[ẋ2(τ) + ω2x2(τ)]dτ = −iSEucl(x(τ)) = − i

2
(Bx, x),

where (·, ·) is the inner product on L2(R2, dx) and B is the selfadjoint operator

(32) Bx = −d
2x

dτ2
+ ω2x.

One computes without difficulty that the kernel of the operator B−1 is

(33) B−1(τ, σ) =
1

2ω
exp{−ω|τ − σ|},

i.e., it coincides with the covariance function (24) for the Ornstein-Uhlenbeck process.
Thus, heuristically at least, the functional

(34) const exp{−SEucl(x(τ))} = const exp
{
−1

2
(Bx, x)

}
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can be regarded formally, in analogy with the case of a finite-dimensional Gaussian
distribution, as the “distribution density” for the values of the process {ξt, t ∈ R1}
relative to the “measure

∏
τ dx(τ).” The same considerations apply to the case of a

multidimensional Ornstein-Uhlenbeck process, for which the Euclidean action Sharm
Eucl

has the form

(35) Sharm
Eucl (x(τ)) =

1
2
(Bx, x),

where x(τ) = {xi(τ), i = 1, . . . , n} and the operator B is given by

(36) Bx = −d
2x

dτ2
+Ax,

with A = {aij} the matrix of the quadratic form in (25).
For a system of anharmonic oscillators the Euclidean action Sanharm

Eucl is given by

(37) Sanharm
Eucl = Sharm

Eucl +
∫ ∞

−∞
V (x(τ))dτ,

where V (x1, . . . , xn) is the function appearing in (29). Regarding the functional
exp{−Sanharm

Eucl } as the distribution “density” µ of a Markov process, corresponding
to anharmonic oscillators, with respect to the “measure

∏
τ dx(τ),” and recalling

that exp{−Sharm
Eucl } gives the “density” for the Ornstein-Uhlenbeck process, we obtain

formally that

(38) dµ = const exp
{
−
∫ ∞

−∞
V (x(τ))dτ

}
dµ0,

where µ0 is the distribution for the Ornstein-Uhlenbeck process. This heuristic for-
mula requires only a slight correction: one must replace

∫∞
−∞ V (x(τ)) dτ by the inte-

gral
∫ T
−T V (x(τ)) dτ and then take the limit T → ∞ in order to get an exact formula.

The formal procedure described here can be employed directly to obtain the final
formulas (10) and (16) using only the form of the (Euclidean) action for the corre-
sponding classical system.

§6. Corpuscular picture (quasiparticles and
scattering theory for infinite quantum systems)

In this concluding section we will briefly outline the main program and goals in
the area of mathematical physics with which our book is concerned.

For a quantum system consisting of n identical free (i.e., noninteracting) particles,
the Hilbert space Hn of states is a tensor product (symmetric or antisymmetric in
the case of indistinguishable particles) of copies of the one-particle space H1 = f
describing the states of a single particle:

(1) Hn = f⊗n (or Hn = f⊗na , a = sym, asym),

and the energy operator Hn is given as the tensor sum

(2) Hn = H1 + · · · +Hn
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of the operators Hk = 1 ⊗ · · · ⊗ h︸ ︷︷ ︸
kth place

⊗1 ⊗ · · · ⊗ 1, where h is the energy operator for a

single particle acting on f .
If one considers a system with an arbitrary finite number of identical particles, the

state space H and energy operator H are given as direct sums

(3) H =
∞⊕
n=0

Hn (H0 = C1)

and

(4) H =
∞⊕
n=0

Hn (H0 = 0)

of the n-dimensional spaces Hn and operators Hn, respectively.
If an individual particle possesses a symmetry group G, i.e., there is a unitary

representation {g → ug, g ∈ G} of G acting on the space f and commuting with the
operator h, then the tensor product of the representation generates a unitary repre-
sentation u(n)

g of G on Hn, and the direct sum of these representations u(n)
g gives a full

representation {ug, g ∈ G} in H commuting with the operator H . It turns out that
one can regard many spatially homogeneous infinite physical systems, described by
vectors in a Hilbert space Ĥ , by an energy operator Ĥ acting on Ĥ, and by a repre-
sentation {Ûx, x ∈ Rν} of the group of spatial translations of Rν (or of the subgroup
Zν) on H, as a system of noninteracting particles (“quasiparticles” or “elementary ex-
citations”). More precisely, this means that one can find a one-particle Hilbert space
f , a one-particle energy operator h acting on f , and a representation of the group
Rν : x→ ux, x ∈ Rν on f such that the triple (H, Ĥ, {Ûx}) is unitarily equivalent to
the space H, operator H , and representation {ux, x ∈ Rν} on H constructed from
the one-particle triple (f, h, {Ux}) using equations (1)–(4).

In general, such a prescription is clearly wrong. First, “quasiparticles” of various
types can occur, and second, bound states can exist, i.e., clusters of quasiparticles that
move as a unit. Formally, these complexes can be regarded as new quasiparticles.
The above construction can thus be generalized to the case when several types of
particles are present. Indeed, suppose we are given a finite set of triples {f, hi, {u(i)

x },
i = 1, . . . , s, each describing a specific type of “quasiparticle.” We then construct the
triples

H(i) =
∞⊗
n=0

f⊗ni ,

H(i) =
∞⊗
n=0

( h(i) + · · · + h(i)︸ ︷︷ ︸
n-fold tensor sum of h(i)

)

u(i)
x =

∞⊗
n=0

(u(i)
x )⊗n, x ∈ Rν ,

which describe a “gas” of quasiparticles of the same type. Finally, we construct the
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total space, total Hamiltonian, and total representation by

H =
s⊗
i=1

H(i),

H = (H(1) + · · · +H(s)︸ ︷︷ ︸
tensor sum

),

ux =
s⊗
i=1

(u(i)
x ), x ∈ Rν .

It seems plausible that every spatially uniform system should be such a mixture of
“gases” of several types of quasiparticle in the above sense. However, this conjecture
has so far been verified only for a very small class of models. We observe that scat-
tering theory is the main tool for verifying this conjecture. The Hamiltonian Ĥ of
the system is usually of the form

Ĥ = H0 + V,

where the operator H0 describes a free system of noninteracting particles, and the
perturbation V is small in a suitable sense. Then in many cases the wave (Møller)
operators

W± = s-lim
t→± e−iH0teiHt,

W ∗
± = s-lim

t→± e−iHteiH0t

exist (here s-lim denotes the strong operator limit, see [36]). It follows that Ĥ and
H0 are unitarily equivalent under either of the operators W± (or W ∗

±).
In the more general case when Ĥ is not unitarily equivalent to H0 because bound

states are present, the bound states must be used to construct a larger space Ĥ
and Hamiltonian H0, which would describe both the “gas” of original free particles
and the “gas” of bound states (in the sense indicated above). The proof of unitary
equivalence for the Hamiltonian H0 is usually called the asymptotic completeness
problem for H ; it again reduces to constructing certain wave operators that now act
in different spaces (see [36]).

The contents of this introductory chapter can be summarized by saying that the
study of an infinite system proceeds in the following steps.

1. Construct the dynamics of the infinite system (either by the Euclidean approach,
or by directly constructing a limiting Heisenberg dynamics).

2. Find one-particle subspaces (including any “bound states”) for the Hamiltonian
of the limiting dynamics.

3. Construct the wave operators and prove asymptotic completeness.
As we have already observed, this program has been fully implemented only for a very few

models. However, portions of it have been completed for a wide class of examples, and these
form the content of our book.
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CHAPTER I

CONSTRUCTION OF A NONEQUILIBRIUM DYNAMICS

Nonequilibrium dynamics is the established, not very apt term for the evolution of a system
“by itself”, the evolution being determined for all initial states of the system (or for a sufficiently
large subset of states). It has no direct relation with the “equilibrium distributions” on the set
of these states.

We will analyze here three types of nonequilibrium dynamics: 1) the dynamics of an infinite
(nonideal) classical gas; 2) the Heisenberg dynamics on C∗-algebras associated with infinite
quantum systems; 3) random dynamics for fields on an infinite lattice. Along the way we
will present some expository material on C∗-algebras, Fock space, the second-quantization
formalism, etc.

§1. The dynamics of an infinite one-dimensional
classical gas of interacting solid rods

In the previous chapter we touched on the dynamics of an infinite system of interacting par-
ticles in the space Rν . Here we will describe this dynamics in more detail for a one-dimensional
gas of particles with a “hard core” (system of “hard rods”).

In the one-dimensional case, the state of such a system is specified by an infinite sequence
of pairs {qi, vi} enumerated so that

(1) · · · < q−1 < q0 < q1 < . . . ,

where for definiteness we assume that

(2) q0 ≥ 0, q−1 < 0

(recall that qi is the position of the center of the ith rod and vi is its velocity). In addition, the
conditions

(3) δ ≤ qi+1 − qi, i = 0,±1,±2, . . .

are satisfied. Condition (2) will be assumed to hold only for the initial configurations, because
in general it is violated as the particles evolve. Let Ω denote the space of all the states of the
infinite system.

As we have already said, the dynamics in Ω is given formally by an infinite system of
differential equations

(4)
dqi
dt

= vi, m
dvi
dt

=
∑
j �=i

F (qi − qj),

where F (ξ) = −∂U/∂ξ and U(ξ) = U(−ξ) is the interaction potential, defined for all ξ ≥ δ.
We assume that
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1) the potential U(ξ) has compact support:

(5) U(ξ) = 0 for |ξ| > R,

where R > δ is the radius of the interaction;
2) the function U(ξ) is continuously differentiable on the interval δ ≤ ξ ≤ R.
As we have already discussed in 2.0, the equations (4) must be supplemented by an “elastic

reflection” condition for collisions of finitely many rods. As we explained in 3.0, to construct a
dynamics using equations (4) one must choose a subset Ω̃ ⊆ Ω of initial conditions

ω0 = {(qi, vi), i = 0,±1,±2, . . .},

for which (4) has a solution that is well defined for all values 0 ≤ t <∞ and remains in Ω̃:

ωt = {(qti , vti)} ∈ Ω̃.

We now introduce the set of states M(C1, C2) ⊂ Ω, where C1 > 0, C2 > 0 are arbitrary
constants determined by the following conditions: for each ω0 = {(q0i , v0

i )} ∈ Ω̃, there exists a
k = k(ω0) such that for every k > k(ω0)

1) we have

(6) max
|i|<2k

|v0
i | < C1

√
k,

2) there exist integers i+k and i−k satisfying

2k ≤ i+k < 2k+1, −2k+1 < i−k ≤ −2k,

such that

(7) |qi±
k+1

− qi±
k
| > C2k.

Let us show that for every ω0 ∈ M(C1, C2), equations (4) have a solution ωt which is well
defined for all t, 0 ≤ t < ∞. Let T > 0 and k(ω0) > k(ω0) be an integer, to be determined
below. We divide all the particles in the state ω0 into finite groups η0

s of particles (clusters)
that arrive in succession, as follows.

The zeroth cluster η0
0 consists of all particles with indices

i−
k
≤ i < i+

k
.

The cluster η0
s with index s > 0 consists of the particles with indices

i+
k+s−1

≤ i < i+
k+s

,

while the clusters η0
s with index s < 0 contain the particles for which

i−
k+|s|

≤ i < i−
k+|s|−1

.
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Condition (7) ensures that the gap between clusters s and s+ 1 (or s− 1) is at least

(8) C2(|s| + k).

We now determine the solution of equations (4) with initial condition ω0 ∈M(C1, C2) on the
interval t ∈ [0, T ], as follows. Assume that for 0 ≤ t ≤ T , the motion of each cluster η0

s ⊂ ω0

entering the state ω0 is governed by the finite system of equations

(9)

dqi
dt

= vi, m
dvi
dt

=
∑
j

F (qi − qj),

{qi, vi} ∈ ηts, ηt=0
s = ηs

(together with the elastic reflection conditions), all the other clusters being completely ignored.
A priori, for such a motion it would be possible for particles in different clusters to enter a
zone of interaction, and then the joint motion of all the clusters would not be described by
equations (4). However, the next lemma shows that this situation cannot occur.

Lemma 1. Let k > k(ω0) be sufficiently large, and assume that the motion of the clusters is
governed by equations (9). Then the distance between them always remains greater than R.

Proof. The initial velocity of any particle in the sth cluster is at most

C1

√
k + |s| + 1.

Since the potential satisfies conditions 1) and 2), the absolute magnitude of the force acting on
any particle is less than some constant D = D(U, δ), and thus the velocity of a particle in the
sth cluster is at most

C1

√
k + |s| + 1 +DT

for all times in [0, T ] (when colliding rods exchange velocities, the maximum velocity of the
particles in a cluster does not change). Thus, particles in adjacent clusters η0

s and η0
s+1 can

travel toward one another by a distance of at most(
C1

√
k + |s| + 1 +DT

)
T +

(
C1

√
k + s+ 2 +DT

)
T.

However, for k sufficiently large and all s, we have(
C1

√
k + |s| + 1 +DT

)
T +

(
C1

√
k + |s| + 2 +DT

)
T < C2(k + |s|) −R,

which in view of (8) gives the assertion of the lemma.
Thus, the above-defined motion of all the particles for times 0 ≤ t ≤ T with initial condition

ω0 ∈M(C1, C2) satisfies an infinite system of equations. Since T is arbitrary, we get a solution
ωt for all 0 ≤ t < ∞. However, we have still not constructed the required set Ω̃, because in
general the set M(C1, C2) is not invariant under the motion. Let M t(C1, C2) ⊂ Ω be the image
of the set M(C1, C2) after the particles have moved for a time t. Evidently, the set

(10) Ω̃(C1, C2) =
⋂
t≥0

M t(C1, C2) ⊂M(C1, C2)
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is invariant under the dynamics defined above.
Although Ω̃(C1, C2) cannot be described explicitly, for suitably chosen constants C1 and C2,

it is quite large. Indeed, let µβ,µ be the limiting Gibbs distribution on the space Ω defined
using the finite Hamiltonians

HΛ,N =
∑ mv2

i

2
+
∑
i�=j
qi∈Λ

U(qi − qj)

(Λ ⊂ R1 is a finite interval, N an integer) and the parameters β and µ defining the grand
canonical ensemble (see 2.0 and 3.0).

Lemma 2. For C1 > C1(β, µ) sufficiently large and C2 < C2(β, µ) sufficiently small, the set
Ω̃(C1, C2) has full Gibbs measure:

(11) µβ,µ(Ω̃(C1, C2)) = 1.

For a proof of this lemma we refer to [39].
The final result is stated in the next theorem.

Theorem 3. 1) A dynamics Tt : Ω̃(C1, C2) → Ω̃(C1, C2) taking ω0 to ωt is defined for initial
conditions ω0 ∈ Ω̃(C1, C2). It is a cluster dynamics in the sense that for any fixed t0 > 0, the
initial state ω0 can be split into clusters {η0

s = η0
s(t0), s = 0,±1,±2, . . .}, which for times

0 < t < t0 move independently without interacting with one another.
2) For sufficiently small C2 and large C1, the set Ω̃(C1, C2) has full Gibbs measure µβ,µ, and

this measure on Ω̃(C1, C2) is invariant under the dynamics :

(12) µβ,µ(TtA) = µβ,µ(A), A ⊂ Ω̃(C1, C2).

The last assertion (12) is also proved in [39]. To give the reader an idea of the arguments
involved here, we will prove a simpler statement than in Lemma 2.

Lemma 4. For sufficiently large C1 and small C2, the set M(C1, C2) has full Gibbs measure,

µβ,µ(M(C1, C2)) = 1.

Proof. Let N̂k ⊂ Ω be the set of states ω0 ∈ Ω for which

(13) max
|i|<2k

|v0
i | > C1

√
k,

and let Nk ⊂ Ω be the set of states for which condition (2) fails for the given k:

qi+1 − qi < C2k

for all i in the intervals [−2k+1,−2k] and [2k, 2k+1]. We will show that

(14)
∑
k

µβ,µ(N̂k) <∞ and
∑
k

µβ,µ(Nk) <∞
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for suitable C1 and C2. The lemma will then follow from (14) by the well-known Borel-Cantelli
lemma (see [11]). To estimate µβ,µ we fix all the positionsX = {qi} of the particles and consider
the conditional distribution µβ,µ(· | X) of the velocities. By (7.2), this distribution is a product
of identical Gaussian distributions with densities

(15) const exp
{
− βmv2

i

2

}
.

Then

(16)

µβ,µ(N̂k|X) = µβ,µ( max
|i|<2k

|v0
i | > C1

√
k|X)

<
∑

|i|<2k

µβ,µ(|v0
i | > C1

√
k|X)

< (2k+1 + 1) const
∫

|v|>C1
√
k

exp
{
− βmv2

2

}
dv

< (2k+1 + 1) const exp{−βmC2
1k} < const exp{−αk},

where α = βmC2
1 − ln 2 > 0 for sufficiently large C1. We now use the simple estimate∫

|x|>A
e−cx

2
dx < const exp{−cA2}

for a Gaussian integral for large A. Estimate (16) implies a similar bound for the unconditional
probability µβ,µ(N̂k), and hence also that the first of the series in (14) converges. To prove
the convergence of the second series in (14), we can pass to the Gibbs distribution µ̃β,µ in the
particle configuration space {qi} obtained from µβ,µ by averaging over all velocities. Then

(17) µ̃β,µ(Nk) = µβ,µ(Nk).

We now fix all the positions {qi} of the particles with index i < n and consider the density
p(qn+1 | qn, qn−1, . . . ) of the conditional distribution for the position qn+1 of the next, (n+1)th
particle. Under the condition that qn+1 − qn > R, this density is equal to

(18) p(qn+1|qn, qn−1, . . . ) = const exp{−α(qn+1 − qn)},

(see [43]), where the constant depends on the configuration qn, qn−1, . . . , and the argument of
the exponential depends only on the parameters β and µ of the Gibbs distribution: α = α(β, µ).

We now consider the conditional probability of the event

N
′
k = {qi+1 − qi < C2k, i = −2k+1, . . . ,−2k}

under the condition that the positions {qj} of the particles with index j < −2k+1 are fixed.
This probability can be expressed in the form

(19)

µ̃β,µ(N ′
k|qj , j < −2k+1)

=
∫
|qi+1−qi|<C2k

i=−2k∏
i=−2k+1

p(qi+1 | qi, qi−1, . . . , qj , . . . )
∏

dqi.
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By (18), for large enough k we have∫
|qi+1−qi|>C2k

p(qi+1|qi, qi−1, . . . ) dqi+1 < const exp{−C2αk}

and hence the integral (19) is at most

(1 − exp{−C2αk})2k

< exp{−2k exp{−C2αk}} < exp{−2k/2}

if C2α < 1/2 ln 2. A similar estimate holds for the unconditional probability of the set N
′
k, and

also for the probability of the set

N
′′
k = {qi+1 − qi < C2k, i = 1k, . . . , 2k+1}.

Since Nk = N
′
k ∩N

′′
k, the above estimates imply the convergence of the second series in (14),

proving Lemma 4.

There are also other more explicit ways of describing the set Ω̃ of initial states for which
system (4) has a solution such that the corresponding dynamics leaves Ω̃ invariant. We present
here such a description, taken from [50]. Namely, for each particle {qi, vi} in the initial state
ω0, consider the energy density of the particles in ω0 within a c-neighborhood of the point qi,

1
2c

[ ∑
j:|qj−qi|<c

mv2
j

2
+

∑
j,j′:|qj−qi|<c,|qj′−qi|<c

U(qj − qj′)
]

= ei(c).

We introduce the set Ω̃ of initial states ω0 such that

sup
i

sup
c>B+|qi|

ei(c) <∞,

where B = B(U) is some fixed constant.

Theorem 5. 1) For every initial state ω0 ∈ Ω̃ there exists a solution ωt of system (4) such
that ωt ∈ Ω̃ for all t (and the solution is unique).

2) For every probability distribution ν on Ω with sufficiently good ergodicity properties relative
to translations along the line (in particular, for the Gibbs distributions µβ,µ, see [50] for more
details), the set Ω̃ has full ν-measure,

ν(Ω̃) = 1.

3) The Gibbs distribution on Ω̃ is invariant under the dynamics constructed on Ω̃.

A proof of this theorem can be found in [50].
One checks easily that Ω̃(C1, C2) ⊂ Ω̃, and for the elements ω0 ∈ Ω̃(C1, C2) the dynamics in

Theorem 5 coincides with the cluster dynamics in Ω̃(C1, C2) constructed above.
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§2. A quick review of C∗-algebras

In the construction and analysis of the Heisenberg dynamics, i.e., the time evolution of
the “observables” (operators), for quantum systems it is helpful to define the dynamics on a
suitable algebra of “observables”. In most cases, this will be a C∗-algebra. In terms of their
properties, these algebras resemble the algebra of continuous functions on the state space of a
classical infinite system. Here we will briefly state a number of facts concerning C∗-algebras;
more detailed information can be found in the monographs [7, 13].

We note at once that C∗-algebras are for the most part employed in the study of quantum
spin systems or fermion systems; they are not well suited to the analysis of boson systems.

An involution of a Banach algebra A is a transformation A → A : A → A∗ of the algebra
into itself such that

(1)
(λ1A1 + λ2A2)∗ = λ1A

∗
1 + λ2A

∗
2,

(A1A2)∗ = A∗
2A

∗
1 and (A∗)∗ = A.

Definition 1. A Banach algebra with an involution ∗ : A → A satisfying the condition

(2) ‖A‖2 = ‖AA∗‖, A ∈ A

is called a C∗-algebra.

An example of a C∗-algebra is the algebra B(H) of all bounded operators acting on a
separable Hilbert space H, equipped with the usual operator norm; the involution on B(H) is
given by taking the adjoint operator. Equality (2) is a consequence of the following calculation:
since the operator A∗A is selfadjoint and positive, its norm ‖A∗A‖ is equal to

(3)

‖A∗A‖ = sup
x∈H,‖x‖=1

(A∗Ax, x) = sup
x∈H,‖x‖=1

(Ax,Ax)

= sup
x∈H,‖x‖=1

‖Ax‖2 = ‖A‖2.

Note that any subalgebra A′ ⊂ A of a C∗-algebra A that is closed under the norm ‖ · ‖ and
invariant under the involution is also a C∗-algebra.

A morphism (or ∗-homomorphism) of a C∗-algebra A1 into a C∗-algebra A2 is any homo-
morphism π that preserves the involution:

(4) (π(A))∗ = π(A∗).

Assertion 1. Every morphism π : A1 → A2 of a C∗-algebra A1 into a C∗-algebra A2 is
norm-preserving:

(5) ‖π(A)‖2 = ‖A‖1, A ∈ A1.

We refer to [7] for a proof.

Assertion 2. Let J ⊂ A be a two-sided closed ideal of the C∗-algebra A. Then J is invari-
ant under the involution, and the quotient algebra A/J (with the naturally induced involution)
is a C∗-algebra.

For a proof, see [13].
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Assertion 3. Let π : A1 → A2 be a morphism of C∗-algebras. Then the kernel Kerπ =
{A ∈ A1 : π(A) = 0} is a closed two-sided ideal of A1, and the image �π = {B ∈ A2 : B = π(A)
for some A ∈ A1} is a closed C∗-subalgebra of A2 isomorphic to the algebra A1/Kerπ.

For a proof, see [13].
Since all separable Hilbert spaces H are mutually isomorphic, the same is true of the algebras

B(H). In a sense, B(H) is a maximal C∗-algebra; more precisely, we have the next result.

Assertion 4. Every C∗-algebra is isomorphic to a C∗-subalgebra of B(H).

For a proof, see [13].
An element A ∈ A, where A is an algebra with involution, is said to be hermitian (or

selfadjoint, or real) if A∗ = A; A is called a projection if A is hermitian and A2 = A; finally,
when A contains a unit 1, A is unitary if A∗A = AA∗ = 1.

Assertion 5. A commutative C∗-algebra with 1 is isomorphic to the C∗-algebra of all con-
tinuous complex-valued functions defined on a suitable compact space X (with involution given
by f∗ = f , where the bar denotes complex conjugate). Every commutative C∗-algebra is isomor-
phic to the C∗-algebra of all continuous functions defined on a suitable locally compact space X
and tending to zero at infinity.

For a proof, see [13].

Assertion 6. If a C∗-algebra A ⊂ B is a C∗-subalgebra of a C∗-algebra B and A ∈ A is
invertible in B, then A−1 ∈ A.

Proof. Clearly, A∗ ∈ A and AA∗ ∈ A are also invertible elements of B, i.e., there exists
an element T ∈ B such that AA∗T = TAA∗ = 1. Consider the smallest closed subalgebra
A0 generated by the elements AA∗, T , and 1 (i.e., the closure B in of all polynomials in these
elements). This is a commutative C∗-algebra, and when it is represented as the algebra of
continuous functions on a compact space X , the element AA∗ corresponds to a function f(x),
x ∈ X , which is never zero, and the element T is represented by the function 1/f(x). Since
1/f(x) lies in the subalgebra of functions generated by f(x) and 1 (by the Stone-Weierstrass
theorem), A0 coincides with the algebra generated by the element AA∗ and 1, i.e., T ∈ A.
Hence A−1 = A∗T ∈ A.

The spectrum SpA of an element A ∈ A, where A is an algebra with 1, is the set SpA =
{λ ∈ C : the element A− λ1 is not invertible in A}.

Assertion 7. The spectrum of any hermitian element A ∈ A is real.

The proof follows easily from Assertions 4 and 5.

Assertion/Definition 8. A hermitian element A of a C∗-algebra A is said to be positive
if one of the following equivalent conditions holds:

1. SpA ⊂ [0,∞).
2. A = B∗B for some B ⊂ A.
3. A = B2 for some hermitian element B ∈ A.
4. There exists a faithful morphism π : A → B(H) (i.e., Kerπ = 0) such that (π(A)x, x) ≥ 0

for all x ∈ H.
5. The preceding property holds for every faithful morphism π : A → B(H).

A proof is given in [13].
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Definition. A state 〈·〉 on a C∗-algebra A with 1 is a linear functional on A that takes
nonnegative values on positive elements of A and satisfies 〈1〉 = 1.

For every state 〈·〉 on a C∗-algebra A we have the equality

(6) 〈A∗〉 = 〈A〉, A ∈ A.

Indeed, by condition 1) of Assertion 8, Assertion 4, and the spectral theorem, every hermitian
element A ∈ A can be written as a difference of positive elements: A = C −B, C ≥ 0, B ≥ 0,
and hence the state 〈·〉 takes real values on hermitian elements. But any element A ∈ A is
expressible in the form A = B1 + iB2, where B1, B2 are hermitian, hence (6) follows.

Assertion 9. A state is necessarily a continuous linear functional on A with norm equal to
1. More generally, every positive linear functional 〈·〉 on a C∗-algebra A (i.e., taking nonnegative
values on positive elements) is continuous and has norm equal to 〈1〉. If 〈·〉 is a continuous
linear functional on a C∗-algebra with 1 and satisfies 〈1〉 = 1, then 〈·〉 is a state if and only if
its norm is equal to 1.

For a proof, see [13].
The weak ∗-topology on the space A∗ dual to A is generated by the basis of open sets

Ga,bA = {f ∈ A∗ : b < f(A) < a}.
Evidently, convergence in A∗ with respect to the weak ∗-topology coincides with pointwise
convergence of functionals.

Assertion 10. The set of all states P = P(A) on a C∗-algebra A is a convex weakly-∗-
compact subset of A∗.

For a proof, see [13].
The extreme points of P are called pure states. Recall that a point x ∈ P of a convex set P

is called an extreme point if and only if it cannot be expressed in the form x = λ1x1 + λ2x2,
where x1, x2 ∈ P , λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1.

Assertion/Definition 11. A morphism π : A → B(H) of a C∗-algebra A into B(H) is
said to be irreducible if one of the following equivalent conditions is satisfied:

1. Every element C ∈ B(H) commuting all π(A), A ∈ A, is of the form C = λ1 for some
scalar λ.

2. The space H contains no nontrivial subspace invariant under all the operators π(A),
A ∈ A.

3. The closure of π(A) in the weak topology of the algebra B(H) coincides with B(H).
4. Every nonzero vector x ∈ H is cyclic for π(A), i.e., the set π(A)x is dense in H (see [13]).
A morphism π : A → B(H) for which there exists at least one cyclic vector x ∈ H is called

cyclic.

The GNS (Gelfand-Năımark-Segal) construction. To each state 〈·〉 = ρ(·) on a C∗-
algebra with 1, the GNS construction canonically associates a Hilbert space Hρ together with
a morphism πρ : A → B(Hρ) which is very convenient for studying the properties of ρ. The
space Hρ is constructed as follows. Define a nonnegative hermitian form on A by

(7) (A,B) = 〈B∗A〉.
The set N = {A : (A,A) = 0} is a closed left ideal in A, as is easily seen from the two inequalities

(8) |(A,B)|2 ≤ (A,A)(B,B)
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(Schwarz inequality) and

(9) |〈B∗AB〉| < ‖A‖〈B∗B〉,

which follows from Assertion 8 and the fact that the linear functional f(A) = 〈B∗AB〉 is
positive. Thus, A/N is a prehilbert space with the inner product

(10) ([A], [B]) = (A,B),

where [A] denotes the coset in A/N containing A.
Let HGNS ≡ Hρ denote the completion of A/N with respect to the inner product (10). The

GNS morphism πρ of the algebra A into the algebra B(Hρ) is defined as follows.
On the dense linear subspace A/N ⊂ HGNS define the operator

(11) πρ(A)[B] = [AB] ∈ A/N .

This is well defined because N is a left ideal of A. It follows from (9) that πρ(A) is bounded
on A/N , and its norm in B(Hρ) satisfies

(12) ‖πρ(A)‖ ≤ ‖A‖.

Thus, πρ(A) extends by continuity to all of HGNS so that inequality (12) is preserved.

Assertion 12. A state ρ is pure if and only if the morphism πρ is irreducible.

For a proof, see [13].
We consider the following example of the GNS construction, which we will frequently have

occasion to use. Let A = B(H), where H is a Hilbert space, and let the state on A be defined
by the formula

〈A〉 = (AΦ0,Φ0),

where Φ0 is a unit vector in H. Then HGNS is unitarily equivalent to the space H, with [E]
going into Φ0. Indeed, the ideal N consists of the elements A ∈ B(H) for which

Φ0 ∈ KerA.

Moreover, for every A ∈ B(H) the class [A] ∈ B(H)/N consists of the operators A′ ∈ B(H)
for which

A′Φ0 = AΦ0.

By associating to each coset [A] the vector AΦ0, we thus get the required mapping of HGNS

into the space H. It is easy to verify that π(A) = A, A ∈ B(H).
We mention here the von Neumann algebras, which are a special class of C∗-algebras. These

are the subalgebras A ⊆ B(H) that are invariant under the adjoint operation and are closed
in the weak topology of B(H). The topological complications in the structure of C∗-algebras
disappear in a sense when we consider von Neumann algebras. Thus, for example, if X is a
compact space with a finite measure µ, then the weak closure of the C∗-algebra of operators in
B(L2(X,µ)), acting as multiplication by continuous functions f(x) on X , forms a von Neumann
algebra consisting of multiplication operators by essentially bounded functions f ∈ L∞(X,µ)
with norm ‖f‖ = ess supx∈X |f(x)|.
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§3. Fock spaces and second-quantization operators

A Fock space is a Hilbert space with an additional tensor product structure. Let H be a
separable Hilbert space. Unless the contrary is indicated, H will always be taken to be complex
and equipped with an inner product that is antilinear in the second argument.

We will define the symmetric (boson) Fock space Fs = Fs(H) on H and the antisymmetric
(fermionic) Fock space Fa = Fa(H). It is convenient first to introduce the more general space

(1) F = F(H) =
∞⊕
n=0

F (n),

where F (0) = C (the space of constants), and

F (n) = F (n)(H) = H⊗n = H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

(where ⊗ denotes tensor product of Hilbert spaces [36]). The space F in (1) is a direct sum of
Hilbert spaces, i.e., the space of sequences

(2) F = (f0, f1, . . . , fn, . . . ), fn ∈ F (n),

with finite norm

(3) (F, F ) = ‖F‖2 =
∞∑
n=0

‖fn‖2.

Note that if H = L2(Ω,Σ, µ), then F (n) is the space of square-integrable functions f(x1, . . . , xn),
xi ∈ Ω, i = 1, . . . , n, with respect to the measure µn on Ωn.

The symmetric group Sn acts naturally on F (n) by permuting the factors in the tensor
products ϕ1 ⊗ · · · ⊗ ϕn, ϕi ∈ H.

We write F (n)
s and F (n)

a for the subspaces of symmetric (resp., antisymmetric) elements of
F (i.e., which are either invariant under permutations or else are multiplied by the sign of the
permutation, respectively).

Definition 1.

Fs =
∞⊕
n=0

F (n)
s , Fa =

∞⊕
n=0

F (n)
a .

In the case noted above, when H is a function space, F (n)
s (F (n)

a ) consists of the symmetric
(antisymmetric) functions. We will call F (n)

s and F (n)
a the n-particle spaces.

The second-quantization functor. If an operator U with ‖U‖ ≤ 1 is given on H, we
write Γ(U) for the operator on F which on each subspace F (n) acts on an element ϕ1⊗· · ·⊗ϕn
by the formula

(4) Γ(U)(ϕ1 ⊗ · · · ⊗ ϕn) = (Uϕ1) ⊗ · · · ⊗ (Uϕn)

and which is extended by linearity and continuity to all of F . Note that Fs and Fa are invariant
under Γ(U), and the restriction of Γ(U) to these subspaces will again be denoted by Γ(U). If
U is unitary, then so is Γ(U) on Fs and Fa.
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Let H be a selfadjoint operator with domain D ⊆ H. Let dΓ(U) be the operator on F acting
on vectors of the form ϕ1 ⊗ · · · ⊗ ϕn, ϕi ∈ D, by

dΓ(H)(ϕ1 ⊗ · · · ⊗ ϕn) =Hϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕn(5)
+ ϕ1 ⊗Hϕ2 ⊗ ϕ3 ⊗ · · · ⊗ ϕn + · · · + ϕ1 ⊗ · · · ⊗Hϕn

and extended by linearity to the linear span of the ϕ1 ⊗ · · · ⊗ ϕn. Formula (5) is obtained by
formally differentiating Γ(eitH) at the point t = 0. We can also regard dΓ(U) as acting on Fs
and Fa, on which its closure is selfadjoint.

Creation and annihilation operators. Given ϕ ∈ H, we define the creation a∗(ϕ) and
annihilation operators a(ϕ) on F(H) by

a(ϕ)Ω = 0, a∗(ϕ)Ω = (0, ϕ, 0, . . . ),

where Ω = (1, 0, 0, . . . ) is the “vacuum” vector in Fock space,

(6)
a(ϕ)(ϕ1 ⊗ · · · ⊗ ϕn) =

√
n(ϕ1, ϕ)(ϕ2 ⊗ · · · ⊗ ϕn),

a∗(ϕ)(ϕ1 ⊗ · · · ⊗ ϕn) =
√
n+ 1(ϕ⊗ ϕ1 ⊗ · · · ⊗ ϕn).

It is readily checked that
(a(ϕ))∗ = a∗(ϕ).

These operators extend by linearity to operators defined on the dense domain F0(H) ⊂ F
consisting of the finite sequences in (2), i.e., those for which all fn = 0 when n ≥ n0 for some
n0. We write F0(H) = F0.

Define linear operators on F by the formulas

P±(ϕ1 ⊗ · · · ⊗ ϕn) =
1
n!

∑
π∈Sn

(±)πϕπ(1) ⊗ · · · ⊗ ϕπ(n).

They are the orthogonal projections onto F (n)
s and F (n)

a , respectively.

Definition 2. Set

(7) a±(ϕ) = P±a(ϕ), a∗±(ϕ) = P±a∗(ϕ)

on Fs,0 and Fa,0, respectively. We will often omit the subscripts ± here when the space Fs or
Fa is clear from the context. In the case when the Fock space consists of sequences of symmetric
(antisymmetric) functions

Φ = (f0, f1(x1), . . . , fn(x1, . . . , xn), . . . )

the creation and annihilation operators act by the formulas

(7a)

(a(ϕ)Φ)n(x1, . . . , xn) =
√
n+ 1

∫
Ω

fn+1(ξ, x1, . . . , xn)ϕ(ξ)dµ(ξ),

(a∗(ϕ)Φ)n(x1, . . . , xn) =
1√
n

n∑
i=1

(±)i−1ϕ(xi)fn−1(x1, . . . , x̌i, . . . , xn),

where variables marked with ǎ are omitted.
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Remark 1. If the norm in (3) is replaced by the norm

‖F‖2 =
∞∑
n=0

1
n!
‖fn‖2,

then a∗ and a again have the form (7a), but without the factors 1/
√
n and

√
n+ 1, which are

difficult to remember.
In the boson case we have the canonical commutation relations (CCR)

(8)
[a(f), a(g)] = 0 = [a∗(f), a∗(g)],

[a(g), a∗(f)] = (f, g)1,

while for the fermion case we have the canonical anticommutation relations (CAR)

(9)
{a(f), a(g)} = 0 = {a∗(f), a∗(g)} def= a∗(f)a∗(g) + a∗(g)a∗(f),

{a∗(f), a(g)} = (f, g)1.

In fact, an even simpler approach is to define the creation and annihilation operators by spec-
ifying their action on the vacuum vector Ω and then imposing the CCR or CAR. Specifically,
by virtue of the commutation (or anticommutation) relations, the action of the operator a(ϕ)
on the vector

(9a)
1√
n!
a∗±(ϕ1) . . . a∗±(ϕn)Ω = (0, . . . , 0, P±(ϕ1 ⊗ · · · ⊗ ϕn), 0, . . . )

must give the vector

1√
n

∑
(±)k(ϕk, ϕ)

1
((n − 1)!)1/2

a∗±(ϕ1) . . . ǎ∗±(ϕk) . . . a∗±(ϕn)Ω,

which coincides with definition (6) and (7a).
It is not difficult to see that on Fa

(10) ‖a(f)‖ = ‖a∗(f)‖ = ‖f‖.

Also, the mappings

a(f) : F (n)
s → F (n−1)

s , a∗(f) : F (n−1)
s → F (n)

s

have norm

(11) ‖a(f)‖n,n−1 = ‖a∗(f)‖n−1,n =
√
n‖f‖.

This implies that the set of finite sequences is a dense set of analytic vectors for a#(f), where
a# = a or a∗, i.e., for all F ∈ Fs,0 and all z ∈ C

(12)
∞∑
n=0

|z|n
n!

‖a#(f)F‖ <∞.
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This is also true for the operators

(13)
Φ(f) =

1√
2
[a∗(f) + a(f)],

Π(f) =
i√
2
[a∗(f) − a(f)].

The operators Φ(f) and Π(f) defined on Fs,0 are essentially selfadjoint (by the well-known
Nelson criterion [36]) and satisfy the following commutation relations:

(14)
[Φ(f),Φ(g)] = 0 = [Π(f),Π(g)],

[Φ(f),Π(g)] = i(g, f).

Their closures are selfadjoint and define unitary Weyl operators on the space Fs

(15) U(f) = exp{iΦ(f)}, V (f) = exp{iΠ(f)},

satisfying the relations

U(f)U(g) = U(f + g) = U(g)U(f),

V (f)V (g) = V (f + g) = V (g)V (f),(16)

exp{i(Φ(f) + Π(g))} = U(f)V (g) exp
{
i

2
(f, g)

}
= V (g)U(f) exp

{
− i

2
(f, g)

}
.(16a)

Indeed, consider the family of operators

Πt(g) ≡ U(tf)Π(g)U−1(tf) = exp{itΦ(f)}Π(g) exp{−tΦ(f)}.

Then
dΠ
dt

= −(f, g)1,

i.e.,

(16b) Πt(g) = Π(g) − (f, g)1t.

Therefore,
U(tf)V (g)U−1(tf) = exp{iΠt(g)} = exp{−it(f, g)}V (g).

Taking t = 1, we obtain the second equality in (16a). The first equality in (16a) follows from

exp{it(Φ(f) + Π(g))} = U(tf)V (tg) exp
{
it2

2
(f, g)

}
,

by taking t = 1, and this in turn follows from the fact that the derivatives of the right- and
left-hand sides with respect to t are equal (using (16b)) for t = 0; (16) is obvious.

The norm-closed subalgebra W ⊂ B(Fs(H)) generated by the operators {Π(g),
Φ(g), g ∈ H} is called the Weyl algebra.
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Operators that conserve particle number. These are the operators acting on Fs (or
Fa) for which F (n)

s (or F (n)
a ) are invariant.

The simplest example is the “particle number operator”

(17) dΓ(1)(F ) = nF, if F ∈ F (n).

It is often necessary to express certain of these operators in terms of the creation and annihi-
lation operators. We first note that monomials of the form

(18) a∗(ϕ1) . . . a∗(ϕn)a(g1) . . . a(gm)

preserve the number of particles if n = m.
Let us consider three important operators on Fs (or Fa) in the case when H = L2(Rν , dx).

For such an H we introduce the “operator-valued distributions” a∗(x), a(x), x ∈ Rν , defined
by

(19) a(f) =
∫
f(x)a(x) dx, a∗(f) =

∫
f(x)a∗(x) dx

and satisfying the commutation relations (in the case of Fs)

(20)
[a(x), a∗(y)] = δ(x− y)1,

[a(x), a(y)] = [a∗(x), a∗(y)] = 0

(with similar anticommutation relations holding for Fa).
Using these symbols, it is convenient to express vectors and operators in Fs and Fa in the

following form:
1) if f(x1, . . . , xn) is a smooth symmetric (or antisymmetric) function, then we set

(21)
F = {0, . . . , 0, f(x1, . . . , xn), . . . }

=
1√
n!

∫
f(z1, . . . , zn)a∗(z1) . . . a∗(zn)dz1 . . . dznΩ ∈ F (n)

s(a)

(cf. (9a)).
2) To certain distributions K in n+m variables one can associate the operator

(22)
A =

∫
R(n+m)ν

K(x1, . . . , xn,y1, . . . , ym)a∗(x1) . . . a∗(xn)

× a(y1) . . . a(ym) dx1 . . . dxn dy1 . . . dym,

which acts on the vectors (21) by the following rule. Use the commutation rules (20) to move
each factor a(yi) in (22) in the expression AF to the right of all the a∗(z1) . . . a∗(zn); then use
the rule a(yi)Ω = 0. This yields a linear combination of expressions of the form (21), which for
a suitable class of kernels K will contain only smooth functions f .

Examples. 1) Let h be the operator on H = L2(Rν , dx) given by multiplication by the
smooth function h(x). Then

(23) dΓ(h) =
∫
Rν

h(x)a∗(x)a(x) dx def=
∫
Rν

h(x)δ(x − y)a∗(x)a(y) dx dy.
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2) Let hϕ = −∆ϕ, ϕ ∈ H, ∆ the Laplace operator. Then

(24) dΓ(h) =
∫

(−∆a∗)(x)a(x) dx def=
∫

(−∆δ)(x− y)a∗(x)a(y) dx dy.

3) Consider the expression

(25)

∫
V (x, y)a∗(x)a∗(y)a(y)a(x) dx dy

def=
∫
V (x, y)δ(x − x1)δ(y − y1)a∗(x)a∗(y)a(y1)a(x1) dx dy dx1 dy1,

where V (x, y) is a symmetric function (a pair interaction potential). According to our rule, on
each subspace F (n), n ≥ 2, this operator acts as multiplication by the function

2
∑

1<i<j<n

V (xi, xj).

Gaussian representation of Fs. Let H be a Hilbert space with orthonormal basis f1, f2, . . . ,
and let ξi = ξ(fi) be independent Gaussian random variables with zero mean 〈ξi〉 = 0 and unit
variance, defined on a probability space (Ω,Σ, µ). We can take Σ to be the smallest σ-algebra
with respect to which all the ξi are measurable. If

f =
∑
i

cifi ∈ H,

then we set

(26) ξ(f) def=
∑
i

ciξ(fi),

where the series converges in the mean square sense.
Define an isomorphism

(27) L2(Ω,Σ, µ) → Fs(H)

by the assignment

(28) : ξl1(f1) . . . ξlk(fk) :↔ (a∗(f1))l1 . . . (a∗(fk))lkΩ,

if f1, . . . , fk are distinct basis elements (the Wick ordering : : is defined in [26]).
One can check that

(29)
a∗(f)(: ξ(f1) . . . ξ(fk) :) =: ξ(f)ξ(f1) . . . ξ(fk) :

a(f)(: ξl(f) :) = l : ξl−1(f) :
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Oscillator representation for Fs. If we identify the spaces L2(R1, dx) and

L2(R1, e
−y2/2√

2π
dy) via the mapping

(30) f(x) ↔ f(x)(2π)−1/4e−x
2/4

and use the identification (28)

(31) L2

(
R1,

1
2π
e−y

2/2dy

)
↔ Fs(C)

we obtain an identification

(32) L2(R1, dx) ↔ Fs(C).

The vacuum vector in L2(R1, dx) is (2π)−1/4e−x
2/4, which is the eigenfunction with smallest

eigenvector of the energy operator (Hamiltonian) for the harmonic oscillator

(33) H0 =
1
2
a∗a =

1
2

(
− 2

d2

dx2
+
x2

2
− 1

)
,

where

(34) a =
1
2

(
x√
2

+
√

2
d

dx

)
, a∗ =

1
2

(
x√
2
−√

2
d

dx

)
.

A similar identification of L2(RN , dNx) with the space F(CN ) can be obtained by taking tensor
powers of the isomorphism (32).

Gauss (Grassmann) representation for Fa. This representation is analogous to the
Gaussian representation for Fs. Let G(H) be the Grassmann algebra with 1 over the Hilbert
space H, i.e., the Grassmann algebra with generators {ψ(ei), i = 1, . . . }, where {ei} is an
orthonormal basis in H and

(35) {ψ(ei), ψ(ej)} = ψ(ei)ψ(ej) + ψ(ej)ψ(ei) = 0.

To each monomial

(35a) ψ(ei1) . . . ψ(eik), i1 < i2 < · · · < ik,

we associate the element

(36) a∗(ei1) . . . a
∗(eik)Ω.

This map extends to an isomorphism

G(H) ↔ Fa(H),

where G(H) is the completion of G(H) in the norm induced by the inclusion G(H) ⊂ Fa(H)
via (36). For any f =

∑
ciei ∈ H we write

ψ(f) =
∑

ciψ(ei) ∈ G(H).

It is easy to verify that a∗(f) acts on G(H) as left multiplication by ψ(f), and a(f) acts as left
differentiation ∂/∂ψ(f) (see [5]). It is defined as follows. For f = ei0 we have

(37)
∂

∂ψ(ei0)
ψ(ei1) . . . ψ(eik) =

{
0 if i0 �= is for all s = 1, . . . , k,
(−1)s−1ψ(ei1) . . . ψ̌(eis) . . . ψ(eik) if i0 = is.

For an arbitrary f =
∑
ciei we define

(38)
∂

∂ψ(f)
=
∑
i

ci
∂

∂ψ(ei)
.
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Holomorphic representation for Fs. Let H = l2(N ) = CN , N = {1, . . . , N} and let RN
be the Hilbert space of holomorphic functions f(z1, . . . , zN ) on CN with the inner product

(39)
(f, g) =

1
πN

∫
fg exp

{
−

N∑
k=1

|zk|2
}∏

dxk dyk,

zk = xk + iyk.

We identify

(40) RN ↔ Fs(l2(N ))

using the formula

(41) zk11 . . . zkN

N ↔ (a∗1)
k1 . . . (a∗N )kN Ω.

Here the operators a∗k are given by multiplication by zk, and akf = ∂f/∂zh.

Holomorphic representation for Fa. In contrast to the algebra G considered above,
here we introduce the algebra G2(l2(N )) over l2(N ) with twice the number of anticommuting
generators ψ1, . . . , ψn, ψ1, . . . , ψn. The algebra G1(l2(N )) ⊂ G2(l2(N )) of polynomials in the
generators {ψi, i = 1, . . . , N} will be called the algebra of holomorphic functions, and we give
it an inner product by the formula

(42) (f, g) =
∫
fg

N∏
i=1

exp{−ψiψi}
N∏
i=1

dψi dψi,

where
∫ ∏N

i=1 dψi dψi is the Berezin integral with respect to the algebra G2(l2(N )) (see [5] and
also §5 below), and g is obtained from g by applying the antilinear involution θ in G2(l2(N ))
acting on the generators by the formula

(43) θψi = ψi, θψi = ψi

and which is extended to the whole algebra G2(l2(N )) by the rule

θ(AB) = θ(B)θ(A).

It is not difficult to show that the basis (35a) is an orthonormal basis in G2(l2(N )). The
mapping of G1(l2(N )) into Fa(l2(N )) is again of the form (36), and the operators a(f) and
a∗(f) act on G1(l2(N )) as before.

Free dynamics in Fock spaces. Let a selfadjoint operator h be defined on the one-particle
space H. Then we can define the operators Γ(eith) on both Fs(H) and Fa(H). The operators

Γ(eith) = exp{itdΓ(h)}
form a unitary group of transformations of the space Fs(H) or Fa(H). That is, we have a
Schrödinger dynamics in these spaces, which is usually called the free dynamics (generated by
h). The corresponding Heisenberg dynamics

τt(A) = exp{itdΓ(h)}A exp{−itdΓ(h)}
is also called the free dynamics in the algebras B(Fa(H)) or B(Fs(H)).
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§4. The CAR algebra and its free dynamics. Dynamics of a
system of interacting fermions. Analog of Robinson’s theorem

1. The algebra of canonical anticommutation relations (CAR).

Definition 1. The C∗-algebra A(H) ⊂ B(Fa(H)) generated by all the operators a(f),
f ∈ H, acting on the antisymmetric Fock space Fa(H) is called the algebra of canonical anti-
commutation relations (CAR) over H.

Let HΛ ⊂ H be any ordered family of subspaces indexed by the elements Λ of an ordered
set, so that HΛ1 ⊂ HΛ2 if Λ1 < Λ2, and suppose that these subspaces generate all of H, i.e.,
∪HΛ = H. Then we get a representation of the algebra A(H) of the form

(1) A(H) =
⋃
Λ

A(HΛ),

where A(HΛ) ⊂ A(H) is the subalgebra of A(H) generated by the operators {a(f),
a∗(f), f ∈ HΛ}. Since A(HΛ1) imbeds homeomorphically and isometrically in A(HΛ2) for
Λ1 < Λ2, expression (1) defines a quasilocal structure on A(H) (see 3.0). The algebras
AΛ ≡ A(HΛ) are called the algebras of local elements. In particular, if H = L2(Rν , dx) or
H = L2(Zν), one takes the index set Λ to be the collection of bounded subsets of Rν (or Zν)
ordered by inclusion; then HΛ = L2(Λ, dx) (or HΛ = l2(Λ)). Note that AΛ is a superalgebra:
the closure of the polynomials in a#(f) consisting of linear combinations of monomials

∏
a#(f)

with an even number of factors is the even subspace, while the closure of the span of the odd
monomials forms the odd subspace. Further, if Λ ∩ Λ′ �= ϕ(Λ ⊂ Rν or Λ ⊂ Zν), then the
algebra AΛ∪Λ′ = AΛ ⊗AΛ′ , where the tensor product ⊗ is taken in the graded sense (see [23]).
In particular, the above imbedding AΛ1 → AΛ2 takes A ∈ AΛ1 into A⊗ 1Λ2\Λ1 ∈ AΛ2 .

If dimH = n <∞, we can express A(H) as

(2) A(H) = A1 ⊗ · · · ⊗ An.

Here Ai is the algebra generated by the operators a(ei), a∗(ei), where {e1, . . . , en} is an or-
thonormal basis in H. Since each Ai is isomorphic to the algebra of 2× 2 matrices, we see from
(2) that A(H) is isomorphic to M2n , the matrices of order 2n, i.e., it coincides with the algebra
B(Fa(H)). This is no longer true when H is infinite dimensional; in this case the algebra
A(H) ⊂ B(Fa(H)) does not contain any nonzero compact operator (see [7]).

2. Free dynamics on the CAR algebra. Let h be a selfadjoint operator acting on the
one-particle subspace H and let τt be the free dynamics induced by h on the algebra B(Fa(H))
(see §3).

Lemma 1. The CAR algebra A(H) ⊂ B(Fa(H)) is invariant under the dynamics τt.

Proof. We claim that

(3) τta
#(f) = a#(e−ithf),

from which the statement of the lemma follows at once. To prove (3), choose an orthonormal
basis {fi} in H (belonging to the domain Dh of the operator h) and denote by cij = (hfi, fj)
the matrix elements of h in this basis. Then the operator dΓ(h) is equal to

(4) H = dΓ(h) =
∑

cija
∗(fi)a(fj),
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as can be verified by direct calculation (the series (4) converges in the strong topology of
B(Fa(H)). Writing at(f) = τta(f), we then obtain that

(5)
dat(fk)
dt

= τt(i[H, at(f)]) = τt

(
i
∑
j

ckjat(fj)
)

= τt(at(−ihfk)).

¿From the initial condition a0(fk) = a(fk), we get that

(6) at(fk) = a(e−ithfk).

Formula (3) now follows from (6) by linearity.

When H = L2(Rν , dx) or H = l2(Zν), we will consider translationally invariant one-particle
Hamiltonians, i.e., Hamiltonians that commute with the group Ux of translations (Uxf)(y) =
f(y − x), x ∈ Rν (or x ∈ Zν). Such an operator h on L2(Rν , dx) is given on the set S(Rν) ⊂
L2(Rν , dx) by the formula

(7) (hf)(x) =
∫
Rν

ĥ(x− y)f(y) dy, x ∈ Rν ,

where ĥ is a distribution such that the operator (7) is essentially selfadjoint on S(Rν). In the
case when H = l2(Zν), a translationally invariant one-particle Hamiltonian has the form

(8) (hf)(x) =
∑
Zν

ĥ(x− y)f(y).

We now take the Fourier transform

f(x) → f̃(k) =
∫
Rν

exp{itk}f(x) dx, k ∈ Rν ,

or
f̃(k) =

∑
Zν

exp{itk}f(x), k ∈ T ν,

where T ν is the ν-dimensional torus; (7) and (8) then become multiplication operators

(9) (hf̃)(k) = h̃(k)f(k), k ∈ Rν (or k ∈ T ν),

where h̃ is the Fourier transform of the function ĥ. The function h̃(k) is generally assumed to
be a sufficiently smooth function of k.

In the case of a continuous space Rν , the most interesting examples involve Hamiltonians
given by the functions h̃(k) = k2 or h̃(k) =

√
k2 +m2, m �= 0.

3. Construction of a dynamics for a system of interacting fermions in Rν (analog
of Robinson’s theorem). Consider the one-particle Hamiltonian

(10) hf =
1
2
∆f,

where is the Laplace operator on L2(Rν , dx). The corresponding group exp{ith} is given by
the formula

(11) (eithf)(x) =
1

(−2πit)1/2

∫
Rν

exp
{
i
(x− y)2

2t

}
f(y) dy.
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We write

(12) H0 = dΓ(h) =
1
2

∫
Rν×Rν

(∆δ)(x − y)a∗(x)a(y) dx dy.

We consider now bounded operators on Fa(L2(Rν , dx)) of the form

(13) V =
M∑
s=1

Vs,

where Vs is the monomial

(14) Vs = a∗(f (s)
1 ) . . . a∗(f (s)

ms
)a(g(s)

1 ) . . . a(g(s)
ls

),

and f (s)
i , g(s)

j , i = 1, . . . ,ms, j = 1, . . . , ls are functions in S(Rν).
Our constructions also apply to the more general case of operators of the form

(15)
Vs =

∫ ∫
Ks(x1, . . . , xms ,y1, . . . , yls)a

∗(x1) . . . a∗(xms)

× a(y1) . . . a(yls) dx1 . . . dxms dy1 . . . dyls ,

whereKs(x1, . . . , xms , y1, . . . , yls) ∈ S(Rν(ms+ls)) are antisymmetric in the variables x1, . . . , xms

and y1, . . . , yls taken separately.
We assume that whenever a sum Vs appears in (13), so does its conjugate V ∗

s , so that the
operator V is selfadjoint

(16) V ∗ = V.

Thus for every real λ, the operator

H = H0 + λV,

defined on the domain DH0 ⊂ Fa of the operator H0 is essentially selfadjoint by Kato’s criterion
(see [36]).

Operators of the type (13), (14) (or (15)) will be called completely smooth operators. How-
ever, they are no longer translationally invariant, i.e., they do not commute with the group of
translations

(17) Ux = Γ(Ux), x ∈ Rν ,

acting on Fa.
Nevertheless, we can use V to construct a translationally invariant operator W on Fa by

“averaging” V over all its “translations”. More precisely, consider for each x ∈ Rν the operator

(18) Vx = UxV U
−1
x =

∑
s

Vs(x), Vs(x) = UxVsU
−1
x

and define W by

(19) W =
∫
Rν

Vx dx =
M∑
s=1

Ws
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where each operator Ws is of type (15), with kernels of the form

(20)
Ks(x1, . . . , xms , y1, . . . , yls)

=
∫
Ks(x1 + x, . . . , xms + x, y1 + x, . . . , yls + x) dx

and such that

(21)
Ks(x1 + x0, . . . , xms + x0, y1 + x0, . . . , yls + x0)

= Ks(x1, . . . , xms , y1, . . . , yls).

The operatorW is now translationally invariant, but in general it is unbounded. We will assume
that for all s

(22) ls > 0

(and consequently, in view of the selfadjointness condition (16), ms > 0). In this case V Ω = 0,
and so WΩ = 0 also.

It follows that W is defined and symmetric on the set Fa,0(S(Rν)) of all finite sequences

(23) {f0, f1, . . . , fn, 0, . . . } ∈ Fa, n = 0, 1, 2, . . .

with components fk ∈ S(Rνk), k ≤ n.

Theorem 2. The sequences (23) in the set Fa,0(S(Rν)) are analytic vectors for the operator

(24) H = H0 + λW

and consequently, for every real λ, H is essentially selfadjoint on Fa,0(S(Rν)) by the Nelson
criterion (see [36]).

The proof is completely analogous to the proof of Theorem 3 below.
Thus if condition (22) holds, a dynamics Ut = exp{itH} is defined on the space Fa, and

with it the associated Heisenberg dynamics

(25) τt(A) = UtAU
−1
t , A ∈ B(Fa).

When condition (22) is violated, the operator W , and hence also H , may fail to be densely
defined. This will be true, for instance, when

V =
∫
Rν

f(y)a∗(y) dy +
∫
Rν

f(y)a(y) dy, f ∈ S(Rν)

in which case the operator

(26) W = c

∫
Rν

a∗(y) dy + c

∫
Rν

a(y) dy

cannot be defined on any vector in Fa.
Thus in this case we cannot associate any (Schrödinger) dynamics on Fa to the formal

expression (26). However, we will now show that (26) is associated with a suitably constructed
Heisenberg dynamics on the CAR algebra A ⊂ B(Fa). For every cube Λ ⊂ Rν we set

(27) HΛ = H0 + λWΛ,
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where

(28) WΛ =
∫

Λ

Vx dx.

Then WΛ is a bounded operator and HΛ, defined on the domain DH ⊂ Fa, is selfadjoint.
Define the group of automorphisms αΛ

t (·) (Heisenberg dynamics) of the algebra A by the
formula

(29) αΛ
t (A) = exp{itHΛ}A exp{−itHΛ}, A ∈ A.

Using equation (5.4.0), we can rewrite αΛ
t (A) as the series

(30)
αΛ
t (A) = τt(A) +

∑
(iλ)n

∫∫
0<t1<···<tn<t

[τt1(WΛ),

[τt2(WΛ), [. . . [τtn(WΛ), τt(A)] . . . ]]] dt1 . . . dtn,

where τt denotes the free Heisenberg dynamics (3)

(31) τt(A) = exp{itH0}A exp{−itH0}

on the algebra B(Fa). Since the norm of each term in the series (30) is bounded by

(32) (2λ)n‖WΛ‖n‖A‖tn/n! ≤ (2λ)n‖V ‖n|Λ|n‖A‖tn/n!

the series is norm-convergent.

Theorem 3. Let the operator H0 be given by (12) and V be defined the sum (13), where
in each term ms + ls is even, and assume that the kernels Ks ∈ S(Rν(ms+ls)) have compact
support. Then the limit

(33) lim
Λ↑Rν

αΛ
t (A) = αt(A)

exists for all t and all local elements A ∈ A0 of the CAR algebra (A0 being the set of local
elements), and we have norm-convergence. The map A→ αt(A), A ∈ A0 extends by continuity
to a group of ∗-automorphisms of the CAR algebra A (it will again be denoted by αt).

Moreover, for sufficiently small |t| the element αt(A), A ∈ A0 is expressible as a norm-
convergent series

(34)

αt(A) = τt(A) +
∞∑
n=1

(iλ)n
∫∫

0<t1<···<tn<t
dt1 . . . dtn

×
∫∫
Rνn

dx1 . . . dxn[Vx1,t1 [. . . [Vxn,tn , τtn(A)] . . . ]],

where we have written

(35) Vx,t = τt(Vx).
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Proof. We begin by proving the last statement of the theorem, i.e., that the series (35)
converges in the operator norm. Partition the space Rν into unit cubes {By, y ∈ Zν}, where y is
the center of the cube By. In each space L2(By) choose an orthonormal basis {ϕyi , i = 1, 2, . . . };
extending each function ϕyi by zero outside the cube By, we get an orthonormal basis {ϕyi ,
y ∈ Zν , i = 1, 2, . . .} in the whole space L2(Rν). Let Γ = {γy, y ∈ Zν} be a finite multi-index,
where for each y ∈ Zν γy denotes a finite subset of the natural numbers, where only finitely
many of them are nonempty. Write supp Γ = {y : γy �= ϕ} and for each pair Γ, Γ̃ let AΓ,Γ̃ be
the monomial

(36) AΓ,Γ̃ =
∏

y∈suppΓ

∏
i∈γy

a∗(ϕyi )
∏

ỹ∈supp Γ̃

∏
ĩ∈γ̃

ỹ

a(ϕỹ
ĩ
),

where in the first product
∏
i∈γy

a∗(ϕyi ) the factors are arranged in order of increasing index
i ∈ γy, while in the second product

∏
y∈suppΓ the factors are arranged in increasing lexicographic

order as determined by the points in supp Γ; the same ordering is used for the produce of the
a(ϕỹ

ĩ
).

We will need the next lemma.

Lemma 4. Let the local element

(37)
A =

∫
K(x1, . . ., xl, y1, . . . , yl̃)a

∗(x1) . . . a∗(xl)

× a(y1) . . . a(yl̃) dx1 . . . dxl dy1 . . . dyl,

be given, where the function K is C∞ with compact support contained in the set Gl+l̃ ⊂ Rν(l+l̃),
G ⊂ Rν a bounded domain.

Then we have the expansion

(38)

τt(A) =
∑
Γ,Γ̃

C
(K)
t (Γ, Γ̃)AΓ,Γ̃,

|Γ| =
∑
y

|γy| = l,

|Γ̃| =
∑
ỹ

|γ̃ỹ| = l̃,

where the coefficients C(k)
t (Γ, Γ̃) satisfy the estimate

(39)

|C(K)
t (Γ, Γ̃)| <

∏
y∈suppΓ

1
[|γy|(d(y,G) + 1)ν+1]|γy|

×
∏

ỹ∈supp Γ̃

1
[|γ̃ỹ|(d(ỹ, G) + 1)ν+1]|γ̃Ỹ

| (t
ν/2+1)l+l̃Rl+l̃.

Here R = R(K) is a constant depending on the kernel K, and d(y,G) is the distance of the
point y from the set G.

This lemma will be proved below; for the time being, we use it to prove the theorem. It will
be helpful to introduce the operators

(40) Ṽz,s =
∫
Bz

Vs(x) dx,
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where Vs(x) = UxVsU
−1
x is one of the terms in the sum (13). Since Vz,s is again of the form (37),

τt(Ṽz,s) admits an expansion (38) with coefficients Cz,st (Γ, Γ̃) bounded as in (39), except that
d(y,G) can be replaced by the distance |z − y|.

In the above terminology, we can write the nth term of the series (34) as

(41)
∫

· · ·
∫

0<t1<···<tn<t

∑
(z1,s1,Γ1,Γ̃1),...,(zn,sn,Γn,Γ̃n)

∏
Cz1,s1t1 (Γ1, Γ̃1)

. . . Czn,sn

tn (Γn, Γ̃n)C
(K)
t (Γ, Γ̃)[AΓ1,Γ̃1

, [. . . [AΓn,Γ̃n
,AΓ,Γ̃]]].

Since each monomial AΓi,Γ̃i
contains an even number of operators a#, the n-fold commutator

in (41) is nonzero only if the following condition holds: for each i,

(42)
(
supp Γi

⋃
supp Γ̃i

)⋂[ n⋃
j=i+1

(
supp Γj

⋃
supp Γ̃j

)⋃(
supp Γ

⋃
supp Γ̃

)] �= ∅.

Moreover, the norm of the commutator is at most 2n. For fixed Γ and Γ̃, summing first over
(z1, s1,Γ1, Γ̃1), then over (z2, s2,Γ2, Γ̃2), and so on, and then finally over Γ and Γ̃, we find from
(39) and (41), using also that |Γi| ≤ maxs=1,...,M ms, |Γ̃i| ≤ maxs=1,...,M m̃s, that the sum in
(41) is bounded by

(43) t(ν/2+1)(L+L̃)n (n+ l + l̃)!

(l + l̃)!
Rn1R(K),

where L = mins=1,...,M ms, L̃ = min1,...,M ls, and R1 = R1(V ).
Integrating next over t1, . . . , tn, we obtain finally that the norm of the nth term of the series

is bounded by the expression

(44) t(ν/2+1)(L+L̃)n+n (n+ l + l̃)!

n!(l + l̃)!
Rn1R(K).

It follows that (34) converges for |t| < t0 = t0(V ). Our estimates also show that the series for
αΛ
t (A), which is analogous to (34) but in which the integration over Rνn in the nth term is

replaced by an integration over Λn, converges termwise (in norm) to the series (34).
Thus, we have shown that (33) holds for small t and every local element A ∈ A. Since

‖α(Λ)
t (A)‖ = ‖A‖, the same relation holds for the limit αt(A). Since the local algebra A0 is

dense in A, the map αt(A) extends to a ∗-automorphism of the algebra A. Moreover, for all
A ∈ A and |t| < t0, we have

(45) α
(Λ)
t (A) → αt(A),Λ ↑ Rν

(convergence in norm).
Furthermore, since

(46) αΛ
t1(α

Λ
t2(A)) = αΛ

t1+t2(A)

when |t1|, |t2| < t0, the left-hand side has a limit as Λ ↑ Rν, which can be used to define the
automorphisms αt for |t| < 2t0. Continuing in this way, we define a group of automorphisms
αt1αt2 = αt1+t2 . Relation (33) is proved similarly. This completes the proof of the theorem.
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Proof of Lemma 4. We note that for A of the form (37), we have

τt(A) =
∫

(Rν)l+l̃

K̃(x1, . . . , xl, y1, . . . , yl̃)a
∗(x1) . . . a∗(xl)

× a(y1) . . . a(yl̃) dx1 . . . dxl dy1 . . . dyl̃,

where

K̃(x1, . . . , xl, y1, . . . , yl̃)
(47)

=
∫ l∏
i=1

gt(xi − ξi)
l̃∏

j=1

gt(yj − ηj)K(ξ1, . . . , ξl, η1, . . . , ηl̃) dξ1 . . . dξl dη1 . . . dηl̃,

and gt(x − y) is the kernel of the operator exp{ith} on L2(Rν) (see [36]). The coefficients
C

(k)
t (Γ, Γ̃) in the expansion(38) are given by

(48)
C

(K)
t (Γ, Γ̃) =

∫
K̃(x1, . . . , xl, y1, . . . , yl̃)ϕΓ(x1, . . . , xl)

× ϕΓ̃(y1, . . . , yl̃) dx1 . . . dxl dy1 . . . dyl̃,

where the function ϕΓ(x1, . . . , xl) is obtained by the antisymmetrization of the function ϕy1i1,1(x1) . . . ϕ
y1
i1,k1

(xk1 )ϕ
y2
i2,1

(xk1+1)
where {y1 < y2 < · · · < yn} = supp Γ, and {is,1 < is,2 < · · · < is,ks} = γs. The estimate (39) is
thus a consequence of the following bound for the function K̃:

(49) |K̃(x1, . . . , xl, y1, . . . , yl̃)|
< C(K)

∏
i

1
(d(xi, G) + 1)ν+1

∏
j

1
(d(yj , G) + 1)ν+1

t(ν/2+1)(l+l̃)

if we recall the familiar inequality a1 . . . an <
(
a1+···+an

n

)n. It suffices to prove (49) for a
function of a single variable; let

f(x) =
1

(2πt)ν/2

∫
exp

{
i(x− ξ)2

2t

}
f(ξ) dξ,

where f(ξ) is a C∞ function with compact support contained in G. We will show that

(50) |f(x)| < ctν/2+1

(d(x,G) + 1)ν+1
,

where the constant c = c(f) depends only on the function f . Suppose that d(x,G) > 1, and
choose a coordinate system with origin at a point y0 ∈ ∂G closest to x, and such that the
negative x1 axis passes through x. Denoting the coordinate of the point x by −ξ, ξ = d(x, y0),
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we find that

f(−ξ) =
1

(2πt)ν/2

∫ ∞

0

dy1

∫ ∞

−∞
· · ·

∫ ∞

−∞
dy2 . . . dyν exp

{
i(y1 + ξ)2

2t

}
×

ν∏
j=2

exp
{
iy2
j

2t

}
f(y1, y2, . . . , yν)

=
1

(2πit)ν/2
t

∫ ∞

0

dy1

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
i(y1 + ξ)2

2t

}
i(y1 + ξ)

t

×
ν∏
j=2

exp
{
iy2
j

2t

}
f(y1, y2, . . . , yν)

ı(y1 + ξ)
dy2 . . . dyν

=
−t

(2πt)ν/2

∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
i(y + s)2

2t

} ν∏
j=2

exp
{
iy2
j

2t

}
× ∂

∂y1

f(y1, y2, . . . , yν)
i(y1 + ξ)

dy1 . . . dyν ,

where in the last equality we integrate by parts with respect to the variable y1. Continuing this
procedure n times, we get that

f(−ξ) =
(−t)n

(2πt)ν/2

∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
i(y1 + ξ)2

2t

} ν∏
j=2

exp
{
iy2
j

2t

}

×
[ n∑
k=0

Ck,n
f

(n−k)
y1 (y1, . . . , yν)

(y1 + ξ)n+k

]
dy1 . . . dyν ,

where the Ck,n are certain universal coefficients. From the last expression, we find that for
every n,

|f̃(ξ)| < tn−ν/2

ξn
cn(f).

The result (50) now follows upon taking n = ν + 1.

Remark. An existence theorem for a Heisenberg dynamics for lattice quantum systems was
first established by Robinson (see [37]). Our constructions are in many respects similar to his.

§5. Linear dynamics for fermion and boson systems

1. Linear dynamics on the CAR algebra. Let X be a countable set and consider the
Fock space Fa(H), where H = l2(X), and the quadratic form

(1)

H =
1
2

∑
x1,x2

bx1,x2a
∗(fx1)a

∗(fx2)

+
1
2

∑
x1,x2

b∗x1,x2
a(fx1)a(fx2) +

∑
x1,x2

cx1,x2a
∗(fx1)a(fx2),

in the creation and annihilation operators; here {fx, x ∈ X} is an orthonormal basis in the
space H,

bx1,x2 = −bx2,x1 , cx1,x2 = cx2,x1 , b∗x1,x2
= bx2,x1,
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and the matrices B = {bx1,x2}, B∗ = {bx1,x2}, and C = {cx1,x2} define bounded operators on
l2(X) (C∗ = C).

When B = 0, (1) defines a selfadjoint operator on Fa(H) and the associated dynamics

τt(A) = exp{itH}A exp{−itH}
on the CAR algebra A(H) is a free dynamics for which the one-particle operator h has the
matrix C with respect to the basis {fx, x ∈ X}.

We have already observed that when B �= 0, expression (1) may in general fail to define
any operator on Fa(H) with a dense domain. However, we can associate to H a Heisenberg
dynamics on the CAR algebra just as we did in the previous section to define the dynamics αt.
Let Λ ⊂ X be a finite subset of X and let

(2)

HΛ =
1
2

∑
x1,x2∈Λ

bx1,x2a
∗(x1)a∗(x2)

+
1
2

∑
x1,x2∈Λ

b∗x1,x2
a(x1)a(x2) +

∑
x1,x2∈Λ

cx1,x2a
∗(x1)a(x2),

where a#
x = a#(fx). Clearly, HΛ is a bounded selfadjoint operator on F(H), so that we have

the dynamics

(3) τΛ
t (A) = exp{itHΛ}A exp{−itHΛ}.

We will see below that the CAR algebra A(H) ⊂ B(Fa(H)) is invariant under this dynamics.

Lemma 1. For every element A ∈ A(H) the limit

(4) τt(A) = lim
Λ↑X

τΛ
t (A), t ∈ R1,

exists (operator norm convergence), and the limit maps τt take A(H) into itself for t ∈ R1.

Proof. We consider the action of the dynamics τΛ
t on the generators {a#

x , x ∈ X} of the
CAR algebra. Evidently,

(5) a#
Λ,x(t) = a#

x for x /∈ Λ,

where we have written a#
Λ,x(t) = τΛ

t (a#
x ). In addition, for all t ∈ R1 the operators a#

Λ,x(t)
satisfy the anticommutation relations, and in the expressions for HΛ the generators a#

x can be
replaced by a#

Λ,x(t) for any fixed t. Hence we get

(6)

daΛ,x(t)
dt

= i[HΛ, aΛ,x(t)] = −i
∑
x′∈Λ

cx,x′aΛ,x′(t) − i
∑
x′∈Λ

bx,x′a#
Λ,x(t),

da∗Λ,x(t)
dt

= i[HΛ, a
∗
Λ,x(t)] = i

∑
x′∈Λ

cx,x′a∗Λ,x′(t) − i
∑
x′∈Λ

b∗x,x′aΛ,x′(t).

We have thus obtained a linear system of differential equations for the operators {a#
Λ,x(t),

x ∈ Λ}, whose solution can be written in the form

aΛ,x(t) =
∑
x′∈Λ

gΛ
x,x′(t)ax′ +

∑
x′∈Λ

hΛ
x,x′(t)a∗x, x ∈ Λ,

a∗Λ,x(t) =
∑
x′∈Λ

gΛ
x,x′(t)a∗x′ +

∑
x′∈Λ

h
Λ

x,x′(t)ax′ ,
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where the block matrix(
GΛ(t) HΛ(t)
HΛ(t) GΛ(t)

)
= exp

{
− it

(
CΛ BΛ

B∗
Λ −CΛ

)}
,(7)

GΛ(t) = {gΛ
x,x′(t), x, x′ ∈ Λ}, HΛ(t) = {hΛ

x,x′(t), x, x′ ∈ Λ}.
Here CΛ = {cx,x′, x, x′ ∈ Λ}, and similarly for BΛ and B∗

Λ. When Λ ↑ X , the matrix (7)
converges strongly to the operator

(8)
(
G(t) H(t)
H(t) G(t)

)
= exp

{
− it

(
C B
B∗ −C

)}
acting on the space l2(X)⊕ l2(X), hence we see from (6) and (8) that the limit of τΛ

t (a#
x ) exists

(in the norm of A(H)) and is equal to

(9)

τt(ax) = lim
Λ↑X

τΛ
t (ax) =

∑
x′∈X

gx,x′(t)ax′ +
∑
x′∈X

hx,x′(t)a∗x′ ,

τt(a∗x) = lim
Λ↑X

τΛ
t (a∗x) =

∑
x′∈X

gx,x′(t)a∗x′ +
∑
x′∈X

hx,x′(t)ax′ ,

where {gx,x′(t)} and {hx,x′(t)} are the elements of the matrices G(t) and H(t), respectively.
From what we have proved, it follows that the limit (4) exists for every element A ∈ A(H),

and also that τt is a dynamics on A(H). The lemma is proved.

2. Linear dynamics on the Weyl algebra. We recall that a Weyl algebra is a C∗-
algebra η(H) ⊂ B(Fs(H)) of bounded operators acting on Fs generated by the Weyl operators
{U(f), V (f), f ∈ H} (see §3). We consider once again the quadratic form (see (13.3))

(10) H =
1
2

∑
x1,x2

ax1,x2πx1πx2 +
1
2

∑
x1,x2

bx1,x2Φx1Φx2 +
1
2

∑
x1,x2

cx1,x2(Φx1πx2 + πx1Φx2)

in the creation and annihilation operators a#(f), f ∈ H, where H = l2(X). Here for convenience
we have expressed H in terms of the operators

π(f) =
i√
2
(a∗(f) − a(f)),

Φ(f) =
i√
2
(a∗(f) + a(f))

and set πx = π(fx), Φx = Φ(fx); {fx, x ∈ X} is an orthonormal basis of H indexed by the
elements of the countable set X ; A = {ax1,x2}, B = {bx1,x2}, and C = {cx1,x2} are symmetric
real matrices defining bounded selfadjoint operators on l2(X), and they satisfy the conditions

(11) A > 0, B > 0, C2 < A1/2BA1/2.

In general, expression (10) need not define a selfadjoint operator on Fs(H). In order to use
it to construct a dynamics in the Weyl algebra, we consider (as in the case of fermion systems)
the operator

(12)

HΛ =
1
2

∑
x1,x2∈Λ

ax1,x2πx1πx2

+
1
2

∑
x1,x2∈Λ

bx1,x2Φx1Φx2 +
1
2

∑
x1,x2∈Λ

cx1,x2(Φx1πx2 + πx1Φx2),

where Λ ⊂ X is a finite subset.
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Lemma 2. When (11) holds, the operator HΛ is selfadjoint on FS(H).

Proof. It is easy to check that when (11) is satisfied, the expression for HΛ in terms of the
canonical linear transformations

(13) π̂Λ
X =

∑
x′∈Λ

UΛ
x,x′πx′ , Φ̂Λ

X =
∑
x′∈Λ

V Λ
x,x′Φx′ , x ∈ Λ,

where the matrices UΛ = {UΛ
x1,x2

, x1, x2 ∈ Λ}, V Λ = {V Λ
x1,x2

, x1, x2 ∈ Λ} satisfy the condition

V Λ = ((UΛ)tr)−1,

can be reduced to the following form:

(14) HΛ = ω
∑
x∈Λ

[(π̂Λ
x )2 + (Φ̂Λ

x )2 + µx(π̂Λ
x Φ̂Λ

x + Φ̂Λ
x π̂

Λ
x )],

where ω > 0, and |µx| < 1 for all x ∈ Λ. As before, the operators {π̂Λ
x , Φ̂

Λ
x} satisfy the

commutation relations (14.3),

(15) [π̂Λ
x , π̂

Λ
x′ ] = [Φ̂Λ

x , Φ̂
Λ
x′ ] = 0, [π̂Λ

x , Φ̂
Λ
x′ ] = −iδx,x′.

It is known (see [46]) that any two representations of a finite system of operators {π̂Λ
x , Φ̂

Λ
x ,

x ∈ Λ} that satisfy the commutation relations (15) must be unitarily equivalent. One such
representation can be defined in the space L2(R|Λ|, d|Λ|x) by setting

πxf = i
df

dqx
, Φxf = qxf,

f = f{qx, x ∈ Λ} ∈ L2(R|Λ|, d|Λ|x)

so that the operator HΛ takes the form

HΛf = ω
∑
x∈Λ

[
−∂

2f

∂q2x
+ q2xf + µx

[
qx
∂f

∂qx
+

∂

∂qx
qxf

]]
= ω

∑
x∈Λ

Hx.

When |µx| < 1, the selfadjointness and semiboundedness of each term Hx follow easily from the
KLMN theorem (a modification of the familiar Kato-Rellich theorem, see [36]). This completes
the proof of the lemma.

We have thus defined a dynamics

τΛ
t (A) = exp{itHΛ}A exp{−itHΛ}

on the subalgebra AΛ = B(FS(HΛ)) ⊂ B(Fs(H)), where HΛ ⊂ H is the subspace spanned by
the vectors {fx, x ∈ Λ}.

Lemma 3. For each local element A of the Weyl algebra (i.e., A ∈ AΛ0 for some finite
Λ0 ⊂ X), the strong limit

lim
Λ↑X

τΛ
t (A) = τt(A)
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exists for every t ∈ R1. The transformations A → τt(A), t ∈ K1, extend to the whole Weyl
algebra and define a dynamics on it.

Proof. Consider the operators

πΛ
x (t) = τΛ

t (πx), ΦΛ
x (t) = τΛ

t (Φx), x ∈ Λ.

Arguing as in the case of fermion systems and using the commutation relations (15), we obtain
the differential equations

dπΛ
x (t)
dt

= −
∑
x′∈Λ

bx,x′ΦΛ
x′(t) −

∑
x′∈Λ

cx,x′πΛ
x′(t),

dΦΛ
x (t)
dt

=
∑
x′∈Λ

ax,x′πΛ
x′(t) +

∑
x′∈Λ

cx,x′ΦΛ
x′(t), x ∈ Λ

for the operators πΛ
x (t) and ΦΛ

x (t). These equations have the solution

πΛ
x (t) =

∑
x′∈Λ

gΛ
x,x′(t)πΛ

x′ +
∑
x′∈Λ

hΛ
x,x′(t)ΦΛ

x′ ,

ΦΛ
x (t) =

∑
x′∈Λ

dΛ
x,x′(t)πΛ

x′ +
∑
x′∈Λ

kΛ
x,x′(t)ΦΛ

x′ ,

where (
GΛ HΛ

DΛ KΛ

)
= exp

{
it

(−BΛ −CΛ

CΛ AΛ

)}
,

GΛ(t) = {gΛ
x,x′(t)}, HΛ(t) = {hΛ

x,x′(t)}, and so on, and AΛ, BΛ, CΛ are defined in the same

way as for fermion systems. As Λ ↑ X , the matrix
(
GΛ HΛ

DΛ KΛ

)
converges strongly to the matrix

exp
{
it
(

−B −C
C A

)}
≡
(
G H

D K

)
and thus the operators ΦΛ

x (t) and πΛ
x (t) converge strongly on

elements of Fs,0 to the operators Φx(t) and πx(t)

Φx(t) =
∑
x′
gx,x′(t)πx′ +

∑
x′
hx,x′(t)Φx′ = π(fx(t)) + Φ(f̃x(t)),

where fx(t) =
∑

x′ gx,x′(t)fx′ , f̃(t) =
∑
x′ hx,x′(t)fx′ and πx(t) is given by a similar expression.

This implies (see [36]) that exp{iΦΛ
x (t)} and exp{iπΛ

x (t)} converge strongly to the operators

exp{iΦx(t)} = exp{π(f(t)) + Φ(f̃(t))}V (f(t))U(f̃(t)) exp{i(f, f̃)},
which lie in the Weyl algebra. That τt defines a dynamics on the Weyl algebra follows from the
fact that the matrices

(
G(t) H(t)

D(t) K(t)

)
define a continuous transformation group on l2(X) ⊕ l2(X)

(see [36]). This proves the lemma.

We note that the free dynamics on the algebra B(Fs(H)) defined by the Hamiltonian

H =
∑

hx1,x2a
∗(fx1)a(fx2) = dΓ(h),

where hx1,x2 = (hfx1 , fx2), coincides with the linear dynamics generated by the expression

H =
1
2

( ∑
x1,x2

hx1,x2πx1πx2 +
∑
x1,x2

hx1,x2Φx1Φx2

)
.

(This can be seen from the fact that for any finite Λ ⊂ X , HΛ and HΛ differ only by a constant.)
¿From this and the lemma just proved, we conclude that the Weyl algebra A ⊂ B(Fs(H)) is
invariant under the free dynamics on B(Fs(H)).
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§6. Random dynamics (stochastic Langevin equations)

The Markov processes with local interaction give rise to a large class of systems with a
random dynamics, to be considered in the next section. Here we will analyze a closely related
random dynamics that is described by an infinite system of stochastic differential equations.
The example examined here is also of further interest for its relation with the physical concept
of “stochastic quantization” (see the review in [29]). From the viewpoint of constructing Gibbs
fields on the infinite lattice Zν , the meaning of the constructions to be given here is as follows.
There is a class of Gibbs modifications µ of the Gaussian field on the lattice Zν for which one
can explicitly produce an infinite system of stochastic differential equations which are such that
µ is an invariant distribution for the Markov process defined by the solution of the equations,
and such that their time evolution νt converges to the Gibbs distribution µ as t → ∞ for a
large class of initial distributions ν0.

1. System of stochastic differential equations (the Langevin equations). The main
object of our study will be an infinite system of equations of the form

(1) dξx(t) = Fx({ξy(t), y ∈ Zν})dt+ dWx(t), x ∈ Zν ,

with initial conditions ξx(0) = ξ0x, x ∈ Zν . Here {ξx(t), x ∈ Zν} is a system of random
processes to be determined below; they are indexed by the points x in Zν and are defined for
all times t ≥ 0; {ξ0x, x ∈ Zν} ⊂ RZ

ν

is some fixed configuration on Zν ; and {Wx(t), x ∈ Zν}
is a set of independent Wiener stochastic processes starting at zero, Wx(0) = 0, x ∈ Zν , and
defined on the probability space (Ω,Σ, µ). Finally, {Fx({ξy, y ∈ Zν}), x ∈ Zν} is a system
of functions defined on the set RZ

ν

of all configurations {ξy, y ∈ Zν} ∈ RZ
ν

. In fact, in the
present case we will see that each function Fx depends on the configurations {ξy} in some finite
fixed neighborhood of the point x,

Fx = Fx({ξy , y : |x− y| < d}).

Intuitively, equations (1) say that the increment dξx of the process ξx in the time interval
(t, t+dt) is the sum of a “deterministic” part Fxdt (depending on the values of all the processes
{ξy, y ∈ Zν} at the time t), plus the random increment dWx of the Wiener process. Although
this interpretation of the system of equations (1) is very convenient, to define it formally we
first rewrite (1) in integral form,

(2) ξx(t) = ξ0x +
∫ t

0

Fx({ξy(t), y ∈ Zν})dτ +Wx(t).

In the example considered here, the functions Fx have the following form. Let U0 be the
quadratic form

(3) U0 = a0

∑
x∈Zν

ξ2x +
∑
x �=y

x,y∈Zν

ax−yξxξy,

where the function a = {au, u ∈ Zν} satisfy the following conditions:
1) a has compact support, i.e., au = 0 for |u| > d;
2) a is even, au = a−u;
3) a0 >

∑
u�=0 |au|.
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The last condition ensures that the form U0 is positive definite. Let P (·) be an even poly-
nomial of degree at least 4x, with leading coefficient 1 (and such that P (0) = 0). Consider the
formal Hamiltonian

(4) U = U0 + ε
∑
x∈Zν

P (ξx),

where ε > 0 and set

(5) Fx = −1
2
∂U

∂ξx
= −a0ξx −

∑
y �=x

ay−xξy − ε

2
P ′(ξx).

Before studying the infinite system (2) (or (1)), let us consider its “spatial truncation”, i.e., the
finite system of equations

(6) ξΛx (t) = ξ0x +
∫ t

0

FΛ
x ({ξΛy (τ), y ∈ Λ})dτ +Wx(t), x ∈ Λ,

or in differential form,

(7)
dξΛx = FΛ

x ({ξΛy , y ∈ Λ})dt+ dWx(t), x ∈ Λ,

ξΛx (0) = ξ0x, x ∈ Λ,

where
FΛ
x = −1

2
∂UΛ

∂ξx
= −a0ξx −

∑
y∈Λ
y �=x

ay−xξy − ε

2
P ′(ξx), x ∈ Λ,

and

(8) UΛ =
∑
x,y∈Λ

ax−yξxξy + ε
∑
x∈Λ

P (ξx).

We will use the following theorem on existence and uniqueness of solutions for the system (6).
Let ΣΛ

t ⊂ Σ denote the σ-subalgebra of Σ generated by the values {Wx(τ), 0 < τ < t} of the
Wiener processes {Wx, x ∈ Λ}.

Theorem 1. There exists a unique multivariate random process ξΛ(t) = {ξΛx (t), x ∈ Λ},
t ∈ [0,∞), which satisfies (6) and is defined on the probability space (Ω,Σ, µ) for almost all
ω ∈ Ω. It is a Markov process, and for every t ∈ [0,∞) its values {ξΛx (t)} are measurable with
respect to the σ-algebra ΣΛ

t . Its sample paths ξΛx (t;ω) are continuous in t for almost all ω ∈ Ω.

The proof of this theorem can be found in various textbooks on the theory of stochastic
processes (see, e.g., [8]) and will not be given here.

We note that the form of the functions Fx, and in particular the condition that ε > 0, is
essential for the existence of a solution for all t. This is easily understood by considering the
“deterministic” differential equation

dξ

dt
= −aξ + ξ3,

which has the property that for large enough initial conditions ξ0, all solutions ξ(t) become
infinite in a finite positive time t. The additional diffusion associated with the Brownian motion
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can no longer correct this effect. We note further that the fact that the process {ξΛt } is Markov
(and also measurable with respect to ΣtΛ) is clear from our heuristic discussion of the equations
(1) if we recall that the multivariate Wiener process WΛ(t) = {Wx(t), x ∈ Λ} has the Markov
property.

We will solve the system of stochastic equations (2) by taking the limit as Λ ↑ Zν of the so-
lutions for the finite systems (6) subject, however, to the requirement that the initial conditions
{ξ0x, x ∈ Zν} do not grow very rapidly at infinity. Specifically, let H = l2(Zν , e−|x|) ⊂ RZ

ν

be
the set of configurations ξ = {ξx, x ∈ Zν} such that

‖ξ‖2 ≡
∑
x∈Zν

|ξx|2e−|x| <∞,

where

|x| =
ν∑
i=1

|xi|, x = (x1, . . . , xν) ∈ Zν .

Theorem 2. Let the initial conditions ξ0 = {ξ0x, x ∈ Zν} ∈ H be given. Then there exists
an infinite-dimensional stochastic random process ξ(t) = {ξx(t), x ∈ Zν}, t ∈ [0,∞) which
satisfies equations (2) and is such that for every x ∈ Zν the sample paths ξx(t) = ξx(t;ω)
are continuous for almost all ω, and the configuration {ξx(t;ω)} ∈ H for every t and almost
all ω. The random process ξ(t) is a Markov process, and for every t its values {ξx(t;ω)} are
measurable with respect to the σ-algebra Σt generated by the values of the Wiener processes
{Wx(τ), x ∈ Zν , 0 < τ ≤ t}.

Proof. Let U be a smooth function on the space RΛ and let ξΛ(t) = {ξΛx (t), x ∈ Λ} be a
solution of system (6). Consider the process η(t) = U(ξΛ(t)). It turns out that the differential
dη of this process has the form (Ito’s formula)

(9)

dη =
∑
x

U ′
ξx

(ξΛ(t))dξΛx +
1
2

∑
x

U ′′
ξxξx

(ξΛ(t)) dt

=
∑
x

(
U ′
ξx
Fx +

1
2
U ′′
ξxξx

)
dt+

∑
x

U ′
ξx
dWx.

The additional summand 1/2
∑
U ′′
ξx,ξx

(ξΛ(t)) dt is present because (dξ dξΛx )2 =F 2
xdt

2+2Fx dt dWx+
(dWx)2 has the same order of smallness as (dWx)2 ∼ dt (we refer to [11] for a detailed derivation
of equations (9) and (9′) below). Thus, the increment for the process η(t) during a finite time
is equal to

(9′) U(ξΛ(t1)) − U(ξΛ(t2)) =
∫ t2

t1

(∑
x

(
U ′

ξxFx +
1
2
U ′′

ξxξx

))
dt+

∑
x

∫ t

0

U ′
ξx dWx.

We must now explain how the integrals
∫
U ′
ξx

(ξΛ) dWx, which are called Ito stochastic integrals,
are to be interpreted. Let η(t) = η(t;ω) be a random process defined on the space (Ω,Σ, µ)
such that for each t its value η(t, ω) is measurable with respect to the σ-algebra Σt, and for
almost all ω ∈ Ω the integral

∫ t
0 η

2(τ, ω) dτ < ∞. Then the stochastic integral
∫ t
0 η(τ) dWx(τ)

is defined as the limit in probability of the following integral sums:

(10)
n−1∑
k=0

η(tk)(Wx(tk+1) −Wx(tk)),
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where 0 = t0 < t1 < · · · < tn = t is an arbitrary partition of the interval [0, t] (a proof that
the limit

∫ t
0 η(τ) dWx(τ) exists can be found, e.g., in [11]). It follows immediately from the

definition of stochastic integral that its mean value is zero:

(11)
〈∫ t

0

η(τ)dWx(τ)
〉

= 0.

Indeed, this is true for every integral sum in (10), since in each term of the sum the random
variables η(tk) and Wx(tk+1) −Wx(tk) are independent and 〈Wx(tk+1) −Wx(tk)〉 = 0. Now
consider the function

(12) U(ξΛ(t)) = ‖ξΛ(t)‖2
H =

∑
x∈Λ

(ξΛx (t))2e−|x|.

Lemma 3. For every finite Λ ⊂ Zν , U(ξΛ(t)) satisfies the estimate

(13)
〈∑
x∈Λ

(ξΛx (t))2e−|x|
〉

≤
(∑
x∈Λ

(ξ0x)
2e−|x| +D1

)
eRt +D2

for all t > 0, where the constants R > 0, D1 > 0, D2 > 0 do not depend on Λ.

Proof. Applying Ito’s formula to the function (12) and averaging the resulting equality
with respect to the measure µ, we get by (11) that〈∑

x∈Λ

(ξΛx (t))2e−|x|
〉

=
∑
x∈Λ

(ξ0x)
2e−|x| − 2

∫ t

0

[ ∑
x,y∈Λ

ax−y〈ξΛx (τ)ξΛy (τ)〉e−|x|
]
dτ

− ε

∫ t

0

∑
x∈Λ

e−|x|〈ξΛx (τ)P ′(ξΛx (τ))〉 + t
∑
x∈Λ

e−|x|.

Note that for all ξ ∈ R1 the polynomial ξP ′(ξ) is bounded from below by

ξP ′(ξ) > −c, c > 0.

Using the inequality

|ξΛx ξΛy | <
1
2
((ξΛx )2 + (ξΛy )2),

we find that

(14)
〈∑
x∈Λ

(ξΛx (t))2e−|x|
〉
<
∑
x∈Λ

(ξ0x)
2e−|x| + R

∫ t

0

〈∑
x∈Λ

(ξΛx (τ))2e−|x|
〉
dτ +Bt,

whereR =
∑

u∈Zν |aν |e−|u| andB = (cε+1)
∑
x∈Zν e−|x|. We write s(t) =

〈∑
x∈Λ(ξΛx (t))2e−|x|〉

and consider the solution of the equation

s̃(t) = R

∫ t

0

s̃(τ)dτ +Bt+ s(0).

It is clear from (14) that s(t) ≤ s̃(t). On the other hand, s̃(t) is a solution of the equation
s̃′ = Rs̃(t) +B, s̃(0) = s(0). Upon solving this equation we obtain the bound (13).
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Lemma 4. Let Λ1 and Λ2 be finite subsets of Zν (with 0 ∈ Λ1 ⊂ Λ2) and let ξΛ1(t) and
ξΛ2(t) be the corresponding solutions of the equations. Then we have the following estimates:

1. The estimate

(15)
∑
x∈Λ1

〈(ξΛ1
x (t) − ξΛ2

x (t))2〉e−2|x| < e−ρ(0,∂Λ1)M(‖ξ0‖2
H + D̃)eR2t,

where M , D̃, and R2 are constants independent of Λ1 and Λ2, and ρ(0, ∂Λ1) is the distance
from the point 0 ∈ Zn to the set ∂Λ1.

2. The estimate

(15′)
〈

max
0≤τ≤t

∑
x∈Λ1

(ξΛ1
x (τ) − ξΛ2

x (τ))e−2|x|
〉
< e−ρ(0,∂Λ1)M̃(‖ξ0‖2

H +D)eRt,

where the constants M̃ , D, and R do not depend on Λ1 and Λ2.

Proof. We observe that

d

( ∑
x∈Λ1

(ξΛ1
x (t) − ξΛ2

x (t)
))2

e−2|x|

= 2
∑
x∈Λ1

e−2|x|(ξΛ1
x (t) − ξΛ2

x (t))(dξΛ1
x (t) − dξΛ2

x (t))

= 2
∑
x∈Λ1

e−2|x|(ξΛ1
x (t) − ξΛ2

x (t))(FΛ1
x (ξΛ1) − FΛ2

x (ξΛ2)) dt

= −2
∑
x∈Λ1

e−2|x|(ξΛ1
x (t) − ξΛ2

x (t))

×
[ ∑
y∈Λ1

ax−y(ξΛ1
y (t) − ξΛ2

y (t)) −
∑

y∈Λ2\Λ1

ax−yξΛ2
y

]
− ε

∑
x∈Λ1

e−2|x|(ξΛ1
x (t) − ξΛ2

x (t))(P ′(ξΛ1
x ) − P ′(ξΛ2

x )).

Thus,

(16)
∑
x∈Λ1

(ξΛ1
x (t) − ξΛ2

x (t))2e−2|x| < R1

∫ t

0

( ∑
x∈Λ1

(ξΛ1
x (τ) − ξΛ2

x (τ))2e−2|x|
)
dτ

+D1e
−ρ(0,∂Λ1)

∫ t

0

( ∑
y∈Λ2

(
ξΛ2
y (τ)e−2|y|

))
dτ,

where we have used the estimate

(ξ − η)(P ′(ξ) − P ′(η)) > −K(ξ − η)2

for a suitable constant K ≥ 0.
Averaging the inequality (16) with respect to ω and applying estimate (13) of the previous

lemma, and also the arguments used in its proof, we obtain (15).
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We note that inequality (16) remains valid if the left-hand side is replaced by the expression

max
0<s<t

∑
x∈Λ1

(ξΛ1
x (s) − ξΛ2

x (s))e−2|x|

After averaging and using (15) and (13), this gives (15′).
We now choose a sequence of cubes ΛN ⊂ Zν with sides of length LN = N and center at 0. We

will show that for any fixed point x0 ∈ Zν , for almost all the trajectories ξΛN
x0

(t;ω) = ξNx0
(t;ω)

of the processes ξΛN
x0

(t) converge uniformly on any finite time interval [0, T ]. For simplicity, we
take x0 = 0 and for each N consider the set

EN =
{

max
0<s<T

|ξN0 (s;ω) − ξN+1
0 (s;ω)| > e−N/3

}
.

In view of the estimate (15′) and Chebyshev’s inequality, we find that

µ(EN ) < K(T )
e−N

ε2N
< K(T )e−N/3.

Since the series
∑

N µ(EN ) <∞, by the Borel-Cantelli theorem [1], there exists a set Ω̃ ⊂ Ω of
full measure such that for any ω ∈ Ω̃ we have

max
0<s<T

|ξN0 (s;ω) − ξN+1
0 (s;ω)| < e−N/3

for all N greater than some N0 = N0(ω). Thus, the sequence of functions ξN0 (t;ω), ω ∈ Ω̃,
converges uniformly on every finite time interval. The limit functions ξ∞0 (t;ω) are the sample
paths of the process ξ0(t). Similarly, one proves the existence of the limit process ξ∞x (t) for
every point x ∈ Zν . The remaining assertions in the theorem now follow easily. In particular,
Lemma 3 implies that {ξ∞x (t;ω)} ⊂ H for every t for almost all ω.

2. Reduced dynamics on the space of measures. For any configuration ξ0 = {ξ0x} ∈ H
and any t ≥ 0, let Pt(· | ξ0) denote the distribution in RZ

ν

of the values of the infinite-
dimensional random vector ξ(t) = {ξx(t;ω), x ∈ Zν , where ξ(t) = ξ∞(t) is the solution (con-
structed in the previous subsection) of the system of equations (2) with the initial conditions
ξ0 = {ξ0x}. By the results proved above, the distribution Pt(· | ξ0) is concentrated on the set
H ⊂ RZ

ν

, i.e.,

(17) Pt(H|ξ0) = 1.

Let M denote the class of probability distributions ν in RZ
ν

concentrated on H, and define a
family of transformations on A by

(18) (Vtν)(A) =
∫
H
Pt(A|ξ0) dν(ξ0), A ⊆ H.

Since the process {ξ∞(t)} is Markov, the transformations Vt form a semigroup,

(19) Vt1+t2 = Vt1Vt2 .
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In addition, for each finite Λ ⊂ Zν we consider the semigroup V Λ
t of transformations of proba-

bility measures on RΛ given by

(20) (V Λ
t ν)(·) =

∫
RΛ

PΛ
t (·|ξ0Λ) dν(ξ0Λ),

where PΛ
t (· | ξ0Λ) is the distribution of the values of the process ξΛ(t), where ξΛ(t) is the solution

of (6) starting at the point ξ0Λ ∈ RΛ at time t = 0. It turns out that if the initial measure
ν = ν0 on RΛ has a density p0(ξΛ) with respect to the Lebesgue measure dΛξ on RΛ, then
so do all the measures νt = Vtν0, and their densities pt(ξΛ) satisfy the Chapman-Kolmogorov
differential equation

(21)
∂pt
∂t

=
1
2

∑
x∈Λ

∂2pt
∂ξx

−
∑
x∈Λ

∂

∂ξx
(FΛ
x pt)

with initial condition p|t=0 = p0, where the FΛ
x are the coefficients in equation (6). We note

that the distribution νΛ
equil with density

(22) pequil(ξΛ) =
1
ZΛ

exp{−UΛ(ξΛ)},

where UΛ is the truncated Hamiltonian (8) and the normalization factor ZΛ is given by

ZΛ =
∫
RΛ

exp{−UΛ(ξΛ)}dΛξ

is a stationary point of the semigroup Vt:

(22′) V Λ
t ν

Λ
equil = νΛ

equil

for all t, as follows immediately by substituting (22) in the right-hand side of equation (21).
When ε = 0, the measure νΛ

equil coincides with the Gaussian measure νΛ
gauss with density

(23) pΛ
gauss(ξ) =

1
Zgauss

Λ

exp
{
−

∑
x,y∈Λ

ax−yξxξy

}
.

¿From (8), (22), and (23) we see that for ε > 0, νΛ
equil is the Gibbs modification of the measure

νΛ
gauss by means of the interaction ε

∑
x∈Λ P (ξx):

(24)
dνΛ

equil

dνΛ
gauss

=
1

Z̃Λ

exp
{
− ε

∑
x∈Λ

P (ξx)
}
,

where

Z̃Λ =
〈

exp
{
− ε

∑
x∈Λ

P (ξx)
}〉

νΛ
gauss

.

As is shown in [26], under our assumptions on the function {au, u ∈ Zν}, for small enough
ε > 0 the thermodynamic limit

(24′) νequil = lim
Λ↑Zν

νΛ
equil

of the measures νΛ
equil exists.
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Theorem 5. The measure νequil is concentrated on H and invariant under the semigroup
Vt.

This theorem will be proved simultaneously with the next theorem. Let Q be an arbitrary
polynomial of even degree with leading coefficient 1. Let νΛ

Q be the Gibbs modification of the
Gaussian measure νΛ

gauss associated with the interaction ε
∑
x∈ΛQ(ξx),

(25)
dνΛ
Q

dνΛ
gauss

=
1

ZΛ,Q
exp

{
− ε

∑
x∈Λ

Q(ξx)
}

where ZΛ,Q is a normalizing factor. As already indicated, the limit measure

νQ = lim
Λ↑Zν

νΛ
Q

exists for sufficiently small ε > 0.

Theorem 6. The measure νQ is concentrated on H and for small enough ε, νtQ = VtνQ
converges to νequil as t→ ∞. More precisely, for every fixed local function FA we have

(26) 〈FA〉νt
Q
→ 〈FA〉νequil as t→ ∞

and the convergence is exponentially fast.

We recall that for a finite set A ⊂ Zν , a local function FA of the field configurations ξ = {ξx,
x ∈ Zν} is one that depends only on the values of the configurations of ξ on the set A.

A proof of this theorem will now be briefly sketched.
First consider the case ε = 0. Then one checks easily that for every Λ, the distribution

µ0
Λ(· | ξ0Λ) of the values of the field {ξΛx (t)} on Λ×R1, generated by the solution of equations (6)

with ε = 0, is Gaussian for all initial conditions ξΛ0 . Now consider the field {ξ̃x(t)} on Λ × R1

with random initial conditions ξΛ0 distributed according to the law νΛ
gauss. The distribution of

the field {ξ̃x(t)} is equal to

(27)
∫
µ0

Λ(·|ξ0)dνΛ
gauss(ξ0) = µΛ

0

and is Gaussian. Its mean value is 〈ξ̃x(t)〉 = 0 for all x ∈ Λ and t > 0, and its covariance

〈ξ̃x(t)ξ̃y(t)〉 = CΛ
t,s(x, y)

is readily seen by explicit computation to satisfy the estimate

(28) |CΛ
t,s(x, y)| < B exp{−γ|t− s| − γ|x− y|},

where B > 0 and γ > 0 are absolute constants (independent of Λ).
For ε > 0 we consider the analogous measure µ

µΛ
ε,Q(·) =

∫
RΛ

µΛ
ε (·|ξΛ0 )dνΛ

Q(ξ0),

which is the distribution of the field {ξΛx (t)} on Λ ×R1 obtained by solving equations (6) with
ε > 0 and initial conditions {ξΛ0 } distributed according to the law νΛ

Q. For any T > 0 we denote
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by µΛ,T
0 and µΛ,T

ε the distributions of the restrictions of the fields {ξ̃Λx (t)} and {ξΛx (t)} to the
set Λ× [0, T ] ⊂ Λ×R1 (generated by the distributions µΛ

0 and µΛ
ε , respectively). One can show

that µΛ,T
ε is absolutely continuous with respect to µΛ,T

0 , and that for almost all configurations
ξΛ,T = {ξΛx (t)}, x ∈ Λ, t ∈ [0, T ] the density dµΛ,T

ε /dµΛ,T
0 is given by

(29)

dµΛ,T
ε

dµΛ,T
0

(ξΛ,T ) = exp
{
− ε

2

∑
x

∫ T

0

P ′(ξΛ,Tx (τ))dWx(τ)

− ε2

8

∑
x∈Λ

∫ T

0

[P ′(ξΛ,Tx (τ))]2dτ
}

dνΛ
Q

dνΛ
gauss

(ξΛ,T (0))

(this is the Girsanov formula, see [11]).
If we now use Ito’s formula for the increment

ε

2

∑
x∈Λ

P (ξΛ,Tx (T )) − ε

2

∑
x∈Λ

P (ξΛ,Tx (0)) =
ε

2

∑
x∈Λ

∫ T

0

P ′(ξΛ,Tx (τ))Fx(ξΛ,T (τ)) dτ

+
ε

4

∑
x∈Λ

∫ T

0

P ′′(ξΛ,Tx (τ)) dτ +
ε

2

∫ T

0

∑
x∈Λ

P ′(ξΛ,Tx (τ)) dWx(τ),

and also equation (28) for dνΛ
Q/dν

Λ
gauss, we can rewrite (29) in the form

dµΛ,T
ε

dµΛ,T
0

=
1

Z̃Λ

exp
{
− ε

2

∑
x∈Λ

[P (ξΛ,Tx (T )) − P (ξΛ,Tx (0))]

+
ε

4

∑
x∈Λ

∫ T

0

P ′′(ξΛ,Tx (τ)) dτ − ε

2

∑
x,y

∫ T

0

P ′(ξΛ,Tx (τ))ax−yξΛ,Ty (τ) dτ

− 3
8
ε2
∑
x∈Λ

∫ T

0

[P ′(ξΛ,Tx (τ))]2dτ − ε
∑
x∈Λ

Q(ξΛ,Tx (0))
}
.

Thus, the measure µΛ,T
ε is a Gibbs modification of the µΛ,T

0 . For small ε, we can use the bound
(28) on the covariance of the Gaussian measure µΛ,T

0 to derive a cluster expansion for µΛ,T
ε

which is similar to the above-noted cluster expansion for the measure νΛ
Q given in [26]. Using

this cluster expansion one can show that the limit

(30) µε = µZ
ν ,R

ε = lim
Λ↑Zν

T→∞

µΛ,T
ε

exists, and the limit measure µε again admits a cluster expansion. The limit µε is the distri-
bution for the field {ξ∞x (t)} given by the solutions of the infinite system of equations (1) with
random initial conditions distributed according to the law νQ. It follows from this that for
every t0 the distribution µt0ε of the values of the field {ξ∞x (t)} at a fixed time t = t0 coincides
with Vt0ν0:

µt0ε = Vt0νQ.

Next, using the cluster expansion for the distribution µε one can show that the field {ξx(t)}
decays exponentially. This implies in particular that for any local function FA, the mean
〈FA(ξ∞(t0))〉µε = 〈FA(ξ)〉

µ
t0
ε

converges to the limit 〈FA(ξ)〉ν exponentially fast, and the limit
measure ν (which is independent of the distribution ν0 of the initial conditions) coincides with
the stationary measure for the semigroup Vt. Taking Q = P , we see from (22′) that all the
marginal distributions µΛ,T,t0

ε for µΛ,T
ε coincide with νΛ

equil. From this, we obtain upon taking
the limits (24) and (30) that ν = νequil, which is the assertion of Theorem 6.
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§7. Marginally closed Markov chains with local interaction

The Markov processes (or chains in the discrete-time case) with local interaction comprise
an extensive class of random fields which are often encountered in applications yet also com-
paratively simple to study.

1. Basic definitions. We consider the random field ξ = {ξ(x, t), (x, t) ∈ Zν × Z1
+} on the

semilattice Zν+1
+ = Zν×Z1

+ (where Z1
+ is the positive “time” lattice) with values in some finite

or countable set S. A configuration {ξ(x, t)} of this field will be represented as a sequence of
field configurations ξt = {ξt(x) = ξ(x, t), x ∈ Zν} on the lattice Zν at fixed times. We say that
the field forms a Markov chain if for every t > 0 the conditional distribution of the configuration
ξt+1, subject to the condition that the configurations ξ0 = ξ0, . . . , ξt = ξt are specified at all
the previous times, depends only on the last configuration ξt:

(1) Pr(ξt+1 ∈ A|ξt, ξt−1, . . . , ξ0) = Pr(ξt+1 ∈ A|ξt = ξ).

Here A ⊂ Ω = SZ
ν

is an arbitrary set of field configurations on Zν .
A Markov chain will be called a chain with local interaction if for every finite subset X ⊂ Zν

and every collection of values SX = {sx, x ∈ X}, the conditional probability

(2) Pr(ξt+1|X = SX |ξt = ξ) = AtX(SX , ξ|Q+X)

depends only on the values of the configuration ξ in a Q-neighborhood Q+X =
⋃
x∈X(Q+ x)

of the set X . Here Q ⊂ Zν is some fixed finite set (a neighborhood of the point 0 ∈ Zν),
and Q + x is the translate of Q by the vector x ∈ Zν ; ξt+1|X denotes the restriction of the
configuration to the setX (similarly for ξ|Q+X), and AtX(SX , S′

X+Q) is some function of the pair
of configurations (SX , S′

X+Q). We will henceforth assume that AX(·, ·) does not depend on t

(i.e., the transition probabilities are uniform in time). Finally, we shall say that a Markov chain
is conditionally independent if the values of the configuration ξt+1, subject to the condition
that the configuration ξt = ξ is fixed, are independent:

(3) Pr(ξt+1|X = SX |ξt = ξ) =
∏
x∈X

px(sx|ξ|Q+x),

where

(4) px(s|SQ+x) ≡ A{x}(s;SQ+x), s ∈ S

is a family of probability distributions on the space S depending on the configurations SQ+x on
the set Q + x. We will also assume that this family is “spatially uniform” in Zν . This means
that

A{x}(s;SQ+x) = A0(s;SxQ) ≡ p(s|SxQ),

where SxQ is the configuration on Q obtained from SQ+x by translation by −x. A chain is
conditionally linear if the conditional probabilities satisfy

(5) p(s|SQ) = p(ξt+1(0) = s|ξt|Q = SQ) =
∑
y∈Q

ay(s, SQ(y)),

where {ay(s, s′)} is a set of functions of the pairs (s, s′).
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2. The BBKY equations and marginal closedness. Definition (2) can be rewritten as

(6) Pr(ξt+1|X = SX |ξt = ξ) = AX(SX , S′
X+Q)

∏
z∈X+Q

δξ(z),s′X+Q(z)

where δs,s′ is the Kronecker symbol. Averaging (6) over the values of ξt, we find from this that
the probabilities

(6a) PX(SX , t+ 1) = Pr(ξt+1|X = SX)

(sometimes called the correlation functions) are given by

PX(SX , t+ 1) =
∑
S′

Q+X

AX(SX , S′
X+Q)

〈∏
δξ(z),s′(z)

〉
=
∑

AX(SX , S′
X+Q)PX+Q(S′

X+Q, t)

where 〈·〉 denotes an average over the values of ξt. The hierarchy of equations

(7) PX(SX , t+ 1) =
∑
S′

Q+X

AX(SX , S′
X+Q)PX+Q(S′

X+Q, t),

expressing the finite-dimensional distributions of the chain at time t+ 1 in terms of the finite-
dimensional distributions at time t, is similar in structure to the well-known BBGKY (Bo-
golyubov, Born, Green, Kirkwood, Yvon [35]) hierarchy for the evolution of a system of cor-
relation functions in classical statistical physics. We note that the hierarchy (7) is difficult to
analyze, because it expresses the probabilities PX(·, t + 1) only in terms of the probabilities
PY (·, t), where |Y | > |X |. However, in some cases one can use the consistency condition

PX(SX , t) =
∑
S′

Y

PX
⋃
Y (SX ⋃

Y , t),

for the correlation functions to transform the right-hand side of (7) so that only probabilities
PY (·, t) with |Y | ≤ |X | appear. Here Y ⊂ Zν is an arbitrary set disjoint from X , and S′

Y =
SX∪Y is a configuration on X ∪ Y such that SX∪Y |X = SX , SX∪Y |Y = S′

Y .

Definition 1. A Markov chain with local interaction is said to be marginally closed if for
every initial distribution P0 (i.e., probability distribution for the values of the configuration ξ0
at time zero), for all t ≥ 0, X ⊂ Zν , and SX , the probabilities PX(SX , t+ 1) can be expressed
in the form

(8) PX(SX , t+ 1) =
∑
Y

∑
SY

AX,Y (SX , SY )PY (SY , t),

where the sum ΣY is over all nonempty Y ⊂ X ∪Q such that |Y | ≤ |X |, and {AX,Y (SX , SY ),
X ⊂ Zν , Y ⊂ X ∪ Q} is a system of functions of pairs of configurations (SX , SY ) depending
only on the conditional probabilities (2) (i.e., independent of the initial distribution P0).

Remark. A Markov chain with marginally closed conditional distributions is also sometimes
said to be marginally closed.
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Lemma 1. If a Markov chain is conditionally independent, then it is marginally closed if
and only if it is conditionally linear (see equation (5)).

Proof 1. Sufficiency. Assume that the conditional probabilities are conditionally linear.
Then it follows from (5) and (6) that

(9) PX(SX |ξt = ξ) =
∏
x∈X

(∑
y∈Q

∑
s′
ay(sx, s′)δs′,ξ(x+y)

)
.

Multiplying out the expressions in parentheses and noting that

δ2
s,ξ(z)

= δs,ξ(x),

we reduce the right-hand side of (9) to∑
Y

∑
S′

Y

Â(SX , S′
Y )

∏
z∈Y

δs′(z),ξ(z),

where the sum is over all Y ⊂ X + Q and |Y | ≤ |X |. Upon averaging over the values of the
configuration ξ, we obtain (8).

2. Necessity. Let X = {0} be the one-point set coinciding with 0 ∈ Zν and t = 0. Then

(10) Pr(ξ1(0) = s) ≡ P{0}(s, 1) =
∑
SQ

A{0}(s, SQ)PQ(SQ, 0).

Since the chain is marginally closed, the right-hand side of (10) can be rewritten as∑
y∈Q

∑
s′
Â{0},{y}(s, s′)p{y}(s′, 0).

For any fixed configuration SQ on Q we consider the initial distribution p0 such that

Pr(ξ0|Q = SQ) = 1.

In this case, PQ(SQ, 0) = 1 and p{y}(s′, 0) = δs′,sQ(y). Hence we obtain

Pr(ξ1(0) = s|ξ0|Q = SQ) ≡ A{0}(s, SQ) =
∑
y∈Q

Â{0},{y}(s, sQ(y)).

Upon setting
ay(s, s′) = Â{0},{y}(s, s′)

we arrive at the assertion of the lemma.
It is clear that for a conditionally linear chain, the functions {ay(s, s′), y ∈ Q} satisfy the

following conditions. For any configuration S′
Q = {s′Q(y), y ∈ Q} the following conditions are

satisfied:
a) the inequality ∑

y∈Q
ay(s, s′Q(y)) ≥ 0.
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b) the equality

(11)
∑
s

∑
y

ay(s, s′Q(y)) = 1.

For every y ∈ Q and s ∈ S, define the quantities

(11′)
∑
s∈S

ay(s, s′) = qy(s′).

As follows from (11), for every set of values S′
Q = {s′(y), y ∈ Q},∑

y∈Q
qy(s′(y)) = 1.

Thus, qy(s′) does not depend on s′ : qy(s′) ≡ qy,∑
y∈Q

qy = 1.

Notice that if instead of the functions ay(s, s′) we consider the functions

(12) ãy(s, s′) = ay(s, s′) + cy(s),

where {cy(s), y ∈ Q} is a set of functions on S such that for all s ∈ S

(13)
∑
y∈Q

cy(s) = 0.

then the conditional probabilities (9) remain unchanged.

Lemma 2. One can choose a set of functions {cy(s)} satisfying (13), such that the trans-
formed system of functions ãy(s, s′) in (12) is positive

ãy(s, s′) ≥ 0.

Proof. Fix s = s0 and for every y ∈ Q set

(14) dy(s0) = dy = min
s′∈S

ay(s, s′).

Note that by condition a) above,∑
y∈Q

dy =
∑
y

+
dy +

∑
y

−
dy ≥ 0,

where
∑± denotes a sum over those y for which dy > 0 (dy < 0, respectively).

We now set

cy(s0) = cy =

{ |dy | if dy ≤ 0,∑− dy∑+ dy
dy if dy > 0.

It follows from this definition that condition (13) is satisfied. Moreover, (14) implies that for
every y ∈ Q we have cy + dy ≥ 0. Thus, ay(s0, s) + cy(s0) > 0 for all y, s0, s. The lemma is
proved.

We will henceforth always assume that

ay(s, s′) ≥ 0.
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3. Ergodic behavior of conditionally linear chains. In what follows, we will study
invariant measures and the asymptotic behavior of conditionally independent and marginally
closed chains for large times t.

In particular, we will show that this behavior is completely determined by
the behavior of the one-point correlation function, i.e., by the set of probabilities
{P{x}(s{x}, t), x ∈ Zν}. The probabilities PX(SX , t) introduced above (see (6a)) are usually
called n-point correlation functions, if |X | = n.

It follows from (3) that

(15) P{x}(s, t+ 1) =
∑
s′,y

ay(s, s′)P{x+y}(s′, t).

If the initial distribution P0 is assumed invariant under translations of the lattice Zν , then the
same will be true of the distribution Pt for the configurations at any time t and, in particular,
the one-point correlation function P{x}(s, t) is independent of x:

P{x}(s, t) = P (s, t).

¿From this and (15), we find that

(16) P (s, t+ 1) =
∑
s′

(∑
y

ay(s, s′)
)
P (s′, t) =

∑
s′
b(s, s′)P (s′, t),

where b(s, s′) =
∑

y ay(s, s
′). Since b(s, s′) ≥ 0 and

∑
s b(s, s

′) = 1, the matrix B = {b(s, s′)}
can be regarded as the transition probability matrix of a homogeneous Markov chain with set
of states S here (b(s, s′) is the probability for a particle to go from s′ to s). We will denote this
chain by L;2 it turns out that the asymptotic behavior of our original chain {ξx,t} with values
in S is uniquely determined by the properties of the Markov chain L.

We now recall some notions relating to (homogeneous) Markov chains with finitely or count-
ably many states. For any two states s1, s2 ∈ S let Bn = {b(n)

s1,s2} denote the matrix of transition
probabilities after n steps: b(n)

s1,s2 is the probability that the chain, originally in state s1, will be
in state s2 after n steps; let f (n)

s1,s2 denote the probability that a transitions from s1 to s2 occurs
for the first time in the nth step. The probability of ever reaching s2 from s1 is given by the
sum f∞

s1,s2 =
∑
n f

(n)
s1,s2 . In particular, f∞

s = f∞
s,s is the probability of returning to the state s.

A state s is said to be recurrent if f∞
s = 1 and nonrecurrent if f∞

s < 1. It is easy to verify that
s is nonrecurrent if and only if

(17)
∑
n

b(n)
s,s <∞

(in this case the series
∑

n b
(n)
s1,s2 <∞ automatically converges for every pair s1, s2). The sum

µs =
∑∞

n=1 nf
(n)
s,s is called the average time of return. A recurrent state s for which µs = ∞ is

called a null-recurrent state.
In order for s to be a null-recurrent state, it is necessary and sufficient that

∑
n b

(n)
s,s = ∞,

but

(18) b(n)
s,s → 0, n→ ∞.

2Here by L we mean a family of Markov chains having the same transition probability matrix; the members
of the family differ only in their initial distributions.
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The state s is said to be periodic with period T if b(n)
s,s = 0 for all n not divisible by T , and

b
(Tk)
s,s > 0 for all k = 1, 2, . . . .

Recurrent nonnull aperiodic states (i.e., which are not periodic) are called ergodic states.
For ergodic states we have the asymptotic relation b(n)

s1,s2 = µ−1
s1 f

∞
s2,s1 + o(1) as n → ∞, and in

particular, b(n)
s,s = µ−1

s + o(1) as n→ ∞. For a non-null-recurrent periodic state with period T ,
we have b(kT )

s,s → Tµ−1
s as k → ∞. We say that a state s2 is reachable from s1 if f∞

s1,s2 = 1. A
Markov chain is said to be irreducible if every state is reachable from every other state. It is
a fact that all states of an irreducible Markov chain are of the same type: they are either all
nonrecurrent, null-recurrent, periodic (with the same period), or, finally, ergodic.

In the case of an arbitrary Markov chain, all the recurrent states can be divided uniquely into
classes, each forming an irreducible Markov chain. For an irreducible Markov chain with ergodic
states (such a chain is called ergodic) there exists a unique stationary (i.e., time-independent)
probability distribution π(s) = µ−1

s for the states s.
For more information on all the above, see, e.g., [45].
After this general review, we return to the study of the correlation functions.

Theorem 3. Let all the states of the Markov chain L be nonrecurrent or null-recurrent.
Then for any translationally invariant initial distribution P0 of the original chain {ξx,t} all the
correlation functions satisfy

lim
t→∞PX(SX , t) = 0.

Proof. It follows from (16) that

P (s, t) =
∑
s′
b
(t)
s,s′P (s′, 0),

where P (s′, 0) is the one-point correlation function for the initial distribution. Relations (17)
and (18) imply that P (s, t) → 0 as t→ ∞, for every s. We then get the assertion of the theorem
by using the estimate PX(SX , t) ≤ P{x}(SX(x), t), where x ∈ X is an arbitrary point of X and
SX(x) is the value of the configuration SX at x.

To analyze the other cases we will need the following representation for the correlation
functions PX(SX , t). Upon repeatedly iterating the equality

PX(SX , t) =
∑
SX+Q

P (SX |SX+Q)PX+Q(SX+Q, t− 1),

we obtain

(19) PX(SX , t) =
∑

S
(1)
X+Q,S

(2)
X+Q+Q...SX+Q+Q+···+Q

P (SX |S(1)
X+Q)

× P (S(1)
X+Q|S(2)

X+Q+Q) . . . P (S(t−1)
X+(t−1)Q|S(t)

X+tQ)PX+tQ(StX+tQ, 0),

where

X + kQ = X +Q+ · · · +Q︸ ︷︷ ︸
k times

= {x+ y1 + y2 + · · · + yk, x ∈ X, yi ∈ Q, i = 1, . . . , k}.
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Next, inserting the expression

P (SkX+kQ|S(k+1)
x+(k+1)Q) =

∏
z⊆X+Q

∑
y∈Q

ay(s(k)(z), s(k+1)(z + y)),

into (19), we get

PX(SX , t) =
∑

y1,...,yt

∑
S

(1)
X+Q,S

(2)
X+2Q,...,S

(t)
X+tQ

× ay1(SX(x), S(1)
X+Q(x+ y1)ay2(S

(1)
X+Q(x+ y1),

S
(2)
X+2Q(x+ y1 + y2) . . . ayt(S

(t−1)
X+(t−1)Q(x+ y1 + · · · + yt−1),

S
(t)
X+tQ(x+ y1 + · · · + yt)P0(S

(t)
X+Qt, 0).

Each term in this sum can be described with the aid of the following graph G, constructed on
the points of the semilattice Zν × Z1

+.
1) On the slice Yt = Zν × {t} the set of vertices of the graph G coincides with the set X .
2) Exactly one edge “descends” from each vertex (x, t′), where 0 < t′ ≤ t, i.e., there is exactly

one edge of the form {(x, t′), (x′, t′ − 1)}, where x′ − x ∈ Q.
3) There is at least one “upward” directed edge entering each vertex (x, t′), 0 ≤ t′ < t, i.e.,

an edge of the form {(x′, t′ + 1), (x, t′)}, with x− x′ ∈ Q.
The set of all such graphs will be denoted by R(X, t). By a marked graph, we mean a pair

(G,SG), whereG is a graph as described above, and SG is a configuration: SG = {SG(v), v ∈ G},
SG(v) ∈ S, defined on the vertices of G.

We define the contribution of any marked graph (G,SG) to be the quantity

(20) P (G,SG) =
∏

(v,v′)∈G
ax′−x(SG(v), S′

G(v′)),

where the product is taken over all edges (v, v′) of G (v = (x, t), v′ = (x′, t′), t = t′ + 1,
x′ − x ∈ Q).

From equation (19) we obtain that

(21) PX(SX , t) =
∑

G∈R(X,t)
SG:SG|X=SX

P (G,SG)
〈∏

v

δS(v),ξ0(v)

〉
,

where the product Πv is over the vertices in the zeroth slice Y0, v = (x, 0), and the average 〈·〉
is over the configurations in the zeroth slice.

Let Rc(X, t) ⊆ R(X, t) denote the set of connected graphs. It is evident that a graph
G ∈ R(X, t) is connected if and only if it contains exactly one vertex in the zeroth slice.

4. Dual random walk and estimates obtained using it. To a correlation function
PX(SX , t) we associate the following random walk involving several particles on the lattice
Zν , the walk occurring in “reversed” time τ = 0, 1, . . . , t. At time zero there are n particles
located at the points of the set X ⊂ Yt (|X | = n). The particle at x ∈ X may, independently
of the other particles, jump during one-time step to another point x + y with probability qy,
independently of how the other particles behave. If two (or more) particles jump to the same
point, then they “coalesce” to form a new particle. During the next time step, the same rule
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governs the motion of the old and newly formed particles. Clearly, any trajectory of the motion
of this system of particles during the time τ = t gives rise to a graph G ∈ R(X, t). Let the
graph G be fixed. Then it follows easily from the definition (11′) of the probabilities qy (and
their independence of the state s′ in (11′)) that

(22)
∑

SG : SG|Y0−fixed

P (G,SG) =
∏

edges of G

qy,

where the sum on the left is over all configurations on the graph G with arbitrary but fixed
values at the vertices of the zeroth slice, and the product on the right is taken over the edges
{(x, t), (x′, t + 1)} of the graph G, and y = x′ − x. Formula (22) implies, in particular, the
estimate

(23)
∑

SG : SG|Y0−fixed

SG|Y1−fixed

P (G,SG) ≤
∏

edges of G

qy,

where the sum on the left is over all configurations SG with fixed values on the slices Y0 and
Y1.

The case of dimensions ν = 1 and 2.

Theorem 4. Let ν = 1 or ν = 2, and assume that the Markov chain L is irreducible, with
all its states ergodic. Then for any initial distribution, every correlation function PX(SX , t)
converges to a limit PX(SX ,∞) as t→ ∞, and the limit is given by

(24) PX(SX ,∞) =
∞∑
τ=1

∑
G∈Rc(X,τ)

∑
s

π(s)
∑

SG:SG(x,0)=s;SG|Yτ =SX

P (G,SG).

Here π(s) is the stationary distribution of the chain L, and Rc(X, τ) is the set of connected
graphs having more than one vertex lying in the slices Yτ ′ , τ ′ > 0 (i.e., they become connected
only on the last slice Y0). The sum

∑
SG

is over all configurations SG of the graph G with the
property that they take the value s at the last point in the slice Y0, and their restriction to the
slice Yτ is equal to SX . The quantities PX(SX ,∞) are the correlation functions of the (unique)
stationary distribution of the original chain.

Proof. We consider only the part of the sum (21) corresponding to disconnected graphs G.
Note that for a fixed set X and time t, the quantity

Pdiscon(X, t) =
∑

G∈Rdiscon(X,t)

∏
y an edge of G

qy

is just the probability that at least two particles, say those at the points x1, x2 ∈ X , do not
coalesce during the entire motion extending over t time steps. Considering their difference
z(t) = x1(t)− x2(t), we may regard the point z(t) ∈ Zν as the coordinate of a particle walking
along the lattice Zν with transition probabilities

(25) Pz→z′ =
∑

y1,y2:y1−y2=z′−z
qy1qy2 .

It is clear from this formula that z(t) describes a symmetric random walk on the lattice (i.e.,
Pr(z − z′) = ξ) = Pr(z − z′ = −ξ)).
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It is known that for a symmetric random walk in dimensions ν = 1, 2, the probability that
the particle will eventually reach the coordinate origin is equal to 1 (see [40]). Since the number
of initial pairs (x1, x2) is finite (equal to

(
n
2

)
), we see that the probability

Pdiscon(x, t) → 0 as t→ ∞.

The disconnected part of the sum in (21) admits the estimate

(26)

∑
G∈Rdiscon(X,t)

∑
SG

P (G,SG)
〈∏

v

δs(v),ξ0(v)

〉
< Pdiscon(X, t) sup

v1,...,vn

∑
s(v1),...,s(vn)

P (ξ0(x(v1))

= s(v1), . . . , ξ0(x(vn)) = s(vn)),

where the supremum is taken over all the vertices in the zeroth slice.
If the initial distribution P0 is such that its one-particle correlation function is equal to

P (ξ0(x) = s) = π(s), then the series (21) is dominated by
∑∞

τ=1

∑
s π(s)Pc(τ), where Pc(τ) is

the probability that all the particles will coalesce together after exactly τ time steps. It follows
that the series in (24) converges. Moreover, the connected part of the sum (24) in this case
converges to PX(SX ,∞). In the general case, for fixed t the difference PX(SX , t)−PX(SX ,∞),
where PX(SX , t) is the correlation function for the initial distribution P 0, is dominated by

(27)
∑
τ

Pc(τ)
∑
s

|π(s) − pt−τ (s)|,

where pt−τ (s) is the probability of the state s for the Markov chain L at time t − τ for some
fixed initial distribution p0(s). But the ergodicity of the chain L implies that (27) tends to
zero, proving the theorem.

A similar result is also valid for the case when the Markov chain L splits into a finite number
of irreducible ergodic classes.

When the Markov chain L is periodic with period T0 > 1, the correlation functions PX(SX , T0t+
T ), where 0 ≤ T < T0, converge to a limit PX(SX ,∞, T ) given by equation (24), with π(s)
replaced by πT (s), where πT (s) = limt→∞ pT0t+T (s), and pT0t+T (s) is the distribution of the
Markov chain L at the time T0t + T (it is determined by the initial distribution of L). If this
initial distribution coincides with the stationary distribution for each of the periodic classes,
then the process behaves periodically in the strict sense.

Case of higher dimension, ν ≥ 3. In this case the disconnected graphs G in equation (24)
give a nonzero contribution to the limit correlation functions. Note that the average〈∏

v

δs(v),ξ0(v)

〉
over the initial distribution occurring in (21) can as usual be expressed in terms of semi-
invariants,

(28)
〈∏

v

δs(v),ξ0(v)

〉
=

∑
α=(V1,...,Vk)

k∏
i=1

〈∏
v∈Vi

′
δs(v),ξ0(v)

〉
,
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the sum being taken over all partitions α = (V1, . . . , Vk) of the set of vertices of the graph G
lying in the zeroth slice, and 〈∏

v∈V

′
δs(v),ξ0(v)

〉
≡ P̃0(V, SV )

is the semi-invariant of the set of variables {δs(v),ξ0(v)}, computed with respect to the initial
distribution. Using the decomposition (28), we obtain that

(29)

PX(SX , t) =
∑
G,SG

∑
α=(V1,...,Vk)

P (G,SG)
∏

P̃0(Vi, SVi)

=
∑
G,SG

P (G,SG)
[∏
vi

P0(vi, svi) +
∑
α�=0

∏
i

P̃0(Vi, SVi)
]
.

The first term in square brackets corresponds to the partition α = 0 of the set of initial vertices
of G into one-point blocks, while the second term corresponds to the sum over all the other
partitions.

We now make an important hypothesis concerning the initial distribution P0, namely, that
it is translationally invariant and such that

(30)
∑
V :0∈V

∑
SV

P̃0(V, SV ) <∞

for every n.

Lemma 5. Under condition (30),

(31) lim
t→∞

∑
G,SG

P (G,SG)
∑
α�=0

k∏
i=1

P̃0(Vi, Si) = 0.

Proof. For each set V ⊂ Zν pick the smallest (with respect to the lexicographic ordering)
point y ∈ V and let V 0 = V −y be the translation of V by y; then the smallest point in V 0 is the
origin. For any graph G and any partition α = (V1, . . . , Vk) we denote by {V 0

1 , . . . , V
0
k } the cor-

responding collection of translated sets. Further, because the distribution P0 is translationally
invariant, we can rewrite the sum (31) as

(32)
n−1∑
k=1

∑
V 0
1 ,...,V

0
k

∏
P̃ (V 0

i , Si)
∑

y1,...,yk

∑
G,SG

P (G,SG),

where the sum
∑

V 0
1 ,...,V

0
k

is over the k-tuples of sets (V 0
1 , . . . , V

0
k ) of which at least one set

consists of at least two points; the sum
∑

y1,...,yk
is over the k-tuples (y1, . . . , yk) such that the

sets (V 0
1 + y1, . . . , V

0
k + yk) are pairwise disjoint; and

∑
G,SG

is over the graphs (G,SG) whose
set V of initial vertices coincides with ∪(V 0

i + yi), and the values SG|V 0
i +yi

with the values Si.
Let us now consider A = A(x1, . . . , xn, V

0
1 , . . . , V

0
k , t), namely, the event that some pair of

particles initially present at the points xi, xj will, upon executing a random walk in reverse
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time, turn up at time t at the points xj , xi belonging to the set Vl + yl for some l = 1, . . . , k,
with yl ∈ Zν . Evidently,

(33)
∑

y1,...,yk

∑
G,SG

P (G,SG) < Pr(A(x1, . . . , xn, V
0
1 , . . . , V

0
k , t)).

On the other hand, Pr(A(x1, . . . , xn, V
0
1 , . . . , V

0
k , t)) → 0 as t→ ∞. Indeed, for a fixed pair xi,

xj consider the difference zij = xi − xj . Then the event A means that zij(t) belongs to the set
of points of the form {x−x′, x, x′ ∈ V 0

l , l = 1, . . . , k}. However, the probability for zij(t) to be
in a fixed bounded set is well known to tend to zero. The lemma now follows from the bound
(33), our hypothesis (30), and the representation (32).

Thus, we need to investigate

(34)
∑
G,SG

P (G,SG)
∏
v

P̃0(v, s(v)),

where the product is over all initial vertices of the graph G.
The collection of graphsR = R(X, t) is the union of the subsetsRk of graphsG having exactly

k connected components. We begin by considering the class Rn. Every graph G ∈ Rn is a union
of n nonintersecting paths Γi = {(xi,0, 0), (xi,1, 1), . . . ,
(xi,t, t)}, i = 1, . . . , n. If n = 1 we get that

(35)
∑
G,SG

P (G,SG)〈δv,ξ(v)〉 =
∑
s′
b(t)(s(x1), s′)P (s′, 0) = Px1(s(x1), t),

where b(t) is the matrix of transition probabilities after t steps in the Markov chain L.
For n > 1 we include the class Rn(X,SX , t) in the larger class R̃n(X,SX , t) whose elements

are n-tuples (Γ1, . . . ,Γn) of marked paths that may intersect (i.e., several paths Γi may pass
through the same point x ∈ Zν , and may have different markings at x). The contribution from
each such n-tuples is given by

P (Γ1, . . . ,Γn) =
∏
i,l

axi,l−xi,l+1(s(xi,l+1), s(xi,l))
∏
i

P (s(xi0, 0), 0).

Let R̃n,t−r ⊂ R̃n be the collection of all sets {Γ1, . . . ,Γn} ⊂ R̃n whose paths Γi have a last
intersection at time t−τ−1, no two paths Γi and Γj intersecting at the times t−τ , t−τ+1, . . . , t.
Thus, ∑

G∈R(n)

P (G,SG)
∏

P̃0(s(v), 0)

=
∏

Pxi(s(xi), t) −
t−2∑
τ=0

∑
{Γ1,...,Γn}∈R̃(n),t−τ

P (Γ1, . . . ,Γn)

=
∏

Pxi(s(xi), t)

−
t−2∑
τ=0

∑
Gτ ,SGτ

∑
{yi,s′i}

∏
ayi(s(xi,t−τ ), t− τ)p(s′i, t− τ − 1),
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where Gτ is any graph in R̃(X,SX , t − τ), and the sum
∑

{yi,s′i} is over all sets {yi, s′i}, with
s′i running over S, and the sets (y1, . . . , yn), yn ∈ Q are such that at least two of the points
xi,t−τ + yi coincide.

We claim that the last sum converges as t→ ∞ to the expression

(36)
∏
i

π(s(xi)) −
∞∑
τ=0

∑
(G,SG)∈Rn(SX ,X,τ)

P (G,SG)
∑

{yi,s′i}

∏
i

ayi(si(xi0), s
′
i)π(s′i),

where the sum over {yi, s′i} is as above. Note that since we are summing over the sets
{y1, . . . , yn}, the sum

∑
(G,SG) includes only graphs G with the property that at least two initial

points are within a distance ≤ diamQ of each other. Thus the sum
∑∞

τ=0

∑
(G,SG)∈Rn(SX ,X,τ)

is dominated by n(n+1)/2 multiplied by the average number of times the random walk, begin-
ning at the point xi− xj , enters the set Q prior to reaching the coordinate origin. Let g0(x, x′)
denote the average number of times a random walk starting at x′ reaches the point x before
reaching the origin; we recall that g0(x, x′) is bounded by g(x, x), and since for ν ≥ 3 a random
walk is nonrecurrent, we have g0(x, x) <

∑
pt(0, 0) < ∞ (see [40]). It follows easily from this

that (35) converges to (36) as t→ ∞.
The contribution to PX(SX , t) from graphs in the class Rk(X, t), k < n, converges as t→ ∞

to the sum

(37)

∞∑
τ=1

∑
(G,SG)∈R̃k(X,τ)

P (G,SG)
∏
i

π(si(0))

−
∞∑
τ1=1

∞∑
τ2=0

∑
(G,SG)∈Rk(X,τ1,τ2)

P (G,SG)
∑

{yi,s′i}

∏
i

ayi(si(0), s′i)π(s′i).

Here R̃(k)(X, τ) ⊂ Rk(X, t) denotes the class of k-component graphs, which during the time
interval [1, τ) have more than k components, and Rk(X, τ1, τ2) ⊂ Rk(X, τ1 + τ2) is the class of
k-component graphs having exactly k paths at each time τ2, τ2 + 1, . . . , τ2 + τ1, but more than
k paths prior to t = τ2.

Based on the above results, we arrive at the following:

Theorem 6. Suppose that an initial translationally invariant distribution P0 satisfies con-
dition (30) and that the chain L on S consists of finitely many classes of essentially aperiodic
ergodic states. Then the limit of the correlation functions PX(SX , t) as t → ∞ exists and is
given by equations (36) and (37), in which π(s) is the invariant measure of the chain L to
which the distributions P (s, t) on S, with initial distribution P (s, 0) = P0(S(x) = s), converge.
These limits

PX(SX) = lim
t→∞PX(SX , t)

define a translationally invariant stationary distribution of the chain on SZ
ν

. Conversely, for
any such distribution the correlation functions are given by equations (36), (37) for a suitably
chosen invariant measure π(s) of the chain L. Among all such stationary distributions there
exists only one that satisfies condition (30).
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CHAPTER II

CONSTRUCTION OF AN EQUILIBRIUM DYNAMICS

An equilibrium dynamics is one in which small fluctuations occur about an “equi-
librium” position. In the case of classical systems, this is primarily the dynamics
of measures that are absolutely continuous with respect to some Gibbs measure, or
the dynamics in a Hilbert space of functions on an infinite phase space which are
square-integrable with respect to the Gibbs measure. For quantum systems, one has
a dynamics in the GNS representation, constructed using limit Gibbs states (KMS
states or ground states) on a suitable algebra of observables. In this chapter we shall,
among other things, discuss in detail the Euclidean approach to the study of such a
dynamics.

§1. Ground and temperature states

A C∗-dynamical system is a pair (A, αt), where A is a C∗-algebra and αt a strongly
continuous one-parameter group of automorphisms of A. The strong continuity means
that for each fixed A ∈ A, the curve αt(A) is continuous with respect to the norm on
A.

A state 〈·〉 is said to be invariant (relative to αt) if for all A ∈ A we have 〈A〉 =
〈αt(A)〉. We will consider only invariant states with the following property.

Definition 1. A state 〈·〉 is said to be β-invariant (with respect to αt), 0 ≤ β ≤ ∞
if for all A1, A2 ∈ A there exists a bounded analytic function FA1,A2(z) in the strip
0 < Im z < β which is continuous on the closure of the strip and satisfies for all real
z = t

1) FA1,A2(t) = 〈A1αt(A2)〉,
2) FA1,A2(t+ iβ) = 〈αt(A2)A1〉, for 0 ≤ β <∞.

When β = ∞ such a state is called a ground state, while for β < ∞ it is called a
KMS (Kubo-Martin-Schwinger) state or a temperature state (with temperature β−1).

Remark 1. The requirement that F be bounded is superfluous for β <∞ (see [7]).
Note that an equilibrium state with β �= 0 is invariant under the dynamics αt.

Indeed, for β < ∞ the function FE,A(t) = 〈αt(A)〉 can be continued periodically to
the entire plane and hence must be constant (since it is bounded). If β = ∞, then for
A = A∗ the function FE,A(t) = 〈αt(A)〉 is real on the real axis, and by the reflection
principle can be analytically continued into the lower halfplane; consequently it is con-
stant, again by virtue of its boundedness. For arbitrary A, we use the decomposition
A = A1 + iA2, where A1 and A2 are hermitian.

For β = 0, Definition 1 says that the state is a trace (i.e., 〈A1A2〉 = 〈A2A1〉 for all
A1, A2 ∈ A). It is invariant under any dynamics defined by inner automorphisms

(1) αt(A) = UtAU
−1
t , Ut ∈ A
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where {Ut} is a group of elements in A, and also under any dynamics that can be
“approximated” by inner automorphisms.

The basic objects of study in quantum statistical physics are the time correlation
functions

(2) ΓA1,A2,...,An(t1, . . . , tn) = 〈αt1(A1)αt2(A2) . . . αtn(An)〉,
where 〈·〉 is a β-equilibrium state. Techniques from the spectral theory of operators
are well suited for analyzing their large-time asymptotic behavior. To this end one
considers the GNS representation π of the C∗-algebra A corresponding to an invariant
state 〈·〉. The Hilbert space HGNS on which this representation acts is called the
physical Hilbert space Hphys (for the given state 〈·〉 and dynamics αt), and the cyclic
vector Ω = [E] is called the physical vacuum. Because the state 〈·〉 is invariant, the
transformation [A] → [αt(A)] preserves the norm ‖ · ‖phys on Hphys (recall that [A] is
the image of the element A ∈ A under the quotient map A → A/N , where N is the
ideal of “null” elements (see 2.1)). Thus this map is well defined on Hphys and extends
to a strongly continuous unitary group Ut acting on Hphys. The strong continuity of
Ut is a consequence of its weak continuity on the dense set π(A)Ω, A ∈ A, the latter
property following from the KMS condition. By Stone’s theorem [36] the group Ut can
be represented in the form Ut = exp{itH}, where H = Hphys is a selfadjoint operator
called the (physical) Hamiltonian. Recall that the representation π : A → B(Hphys)
is defined by the formula π(A)[B] = [AB] (see 2.1).

Lemma 1. For all A ∈ A and t ∈ R1

(3)
π(αt(A)) = exp{itHphys}π(A) exp{−itHphys},

exp{itHphys}Ω = Ω.

Proof. By definition,

(4) Utπ(A)Ω = π(αt(A))Ω.

This gives the second equality in (3). For any B ∈ A we have

Utπ(A)[B] = Utπ(A)π(B)Ω = Utπ(AB)Ω

= π(αt(AB))Ω = π(αt(A)αt(B))Ω

= π(αt(A))π(αt(B))Ω = π(αt(A))Utπ(B)Ω

= π(αt(A))Ut[B].

Thus, for any ξ ∈ HGNS

Utπ(A)ξ = π(αt(A))Utξ,

which is the first equality in (3).

In terms of the operator Hphys, the correlation functions are of the form

ΓA1,A2,...,An(t1, . . . , tn)
(5)

= (Ω, π(A1) exp{i(t2 − t1)Hphys}π(A2) . . . exp{i(tn − tn−1)Hphys}π(An)Ω),

if tn > tn−1 > · · · > t1.
We next give some convenient criteria for a state to be equilibrium, which will be

used below to construct equilibrium states.
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Lemma 2. An invariant state is a ground state if and only if Hphys ≥ 0.

Proof. If Hphys ≥ 0 then the representation (5) shows that 〈A1αt(A2)〉 =
ΓA1A2(0, t) is analytic and bounded in the upper halfplane. Conversely, ifE(−∞,−ε)Hphys

�= 0 for some ε > 0, where EA is a spectral resolution of the identity for Hphys, then
there exists an A ∈ A such that E(−∞,−ε)[A] �= 0. Then the function FA,E(t) =
(Ω, exp{itHphys}AΩ) cannot be continued to a bounded function in the upper half-
plane.

Remark 2. It follows from (3) that HphysΩ = 0. Thus, if 〈·〉 is a ground state,
then its eigenvalue coincides with the lower bound of the spectrum of Hphys.

Remark 3. We will occasionally consider a representation of the algebra A and
dynamics αt on some Hilbert space H which is unitarily equivalent to the GNS rep-
resentation, generated by a state 〈·〉 invariant under the dynamics αt. Such a repre-
sentation will again be called a GNS representation, and the operator H (or Hphys)
generating the group Ut will be called the Hamiltonian.

Equilibrium states on the algebra B(H). Let B = B(H) be the algebra of all
bounded operators acting on a separable Hilbert space.

Lemma 3. Every dynamics αt in B(H) is of the form

(6a) αt(A) = exp{itQ}A exp{−itQ},
where Q is a selfadjoint (in general, unbounded) operator on H.

We refer to [7] for the proof.

Lemma 4. For any trace-class operator ρ ≥ 0 with Tr ρ = 1, the formula

(6b) 〈A〉 = Tr ρA, A ∈ B(H),

defines a state on B(H), and every state on B(H) has a unique representation of the
form (6b).

For the proof we refer to [46].
The operator ρ is generally called the density matrix for the state (6b).
Let Mn denote the algebra of matrices of order n.

Lemma 5. Every linear functional ρ(A) on a matrix algebra Mn with the properties

(7)
ρ(A1A2) = ρ(A2A1), A1A2 ∈ Mn,

ρ(1) = 1,

is of the form

(8) 〈A〉 =
1
n

TrA.

Proof. It follows from (7) that 〈A〉 is the same for all similar matrices:

〈SAS−1〉 = 〈A〉
and is consequently a function of the coefficients of the characteristic polynomial of
A. By linearity, 〈A〉 = cTrA; (8) now follows from the normalization condition (7).
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Lemma 6. In order for the dynamics (6a) in B(H) to have a β-equilibrium state
(0 < β < ∞), it is necessary and sufficient that the operator e−βQ be of trace class.
In this case the β-equilibrium state is unique and its density matrix is given by

(8′) ρ = (Tr e−βQ)−1 exp{−βQ}.

Proof. We first prove that the condition is sufficient. A direct calculation shows
that a state (6) with density matrix (8′) is a β-equilibrium state for the dynamics (6a).
We first prove uniqueness for the finite-dimensional caseH = Cn, i.e., B(H) = Mn. In
this case the operators exp{izQ} are defined for all complex z; the function FA1,A2(z)
is also defined for all z by condition 1) above, and condition 2) can be rewritten as

〈A1αz+iβ(A2)〉 = 〈αz(A2)A1〉

for all complex z. Setting z = 0, we obtain that

〈A1e
−βQA2e

βQ〉 = 〈A2A1〉.

Upon setting A3 = e−βQA2, we get that

(9) 〈A1A3e
−βQ〉 = 〈eβQA3A1〉.

We now introduce the linear functional

ρ(A) =
1

〈eβQ〉 〈e
βQA〉,

which by (9) satisfies

(10) ρ(e−βQA1A3e
βQ) = ρ(A3A1).

Since ρ is invariant under the dynamics (αz , z ∈ C), we get from (10) that

ρ(A1A2) = ρ(A2A1) and ρ(1) = 1,

i.e.,

(11) 〈eβQA〉 = cTrA,

where c is a constant. Finally, (8′) follows from (11).
Passing now to the case of an arbitrary separable infinite-dimensional Hilbert space

H, we note that since e−βQ is a trace-class operator, the spectrum of Q consists of
isolated eigenvalues of finite multiplicity that tend to +∞ and are such that for every
λ <∞, the space Hλ = EλH is finite-dimensional, where Eλ is the spectral projection
of Q. Since the spaces Hλ are invariant under Q, it follows easily from the preceding
arguments that the operator ρλ = Eλρ on Hλ is of the form ρλ = const exp{−βQλ},
where Qλ = EλQ. This shows that ρ is of the form (8).

To prove the necessity of the condition of the lemma, we show that Ker ρ = {0}.
Assuming the contrary, let H0 = Ker ρ �= {0}. The decomposition

H = H0 ⊕H1, H1 = H⊥
0
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corresponds to a decomposition of any operator A ∈ B(H) as a block matrix

A ∼
(
A00 A01

A10 A11

)
,

where A00 : H0 → H0, A01 : H1 → H0, and so on. The matrix for ρ is of the form

ρ =
(

0 0
0 ρ1

)
,

where ρ1 is the part of ρ acting on H1, and the matrix for eitQ is

eitQ =
(
eiQ0t 0

0 eiQ1t

)
,

where Qi is the part of Q acting on the invariant subspace Hi, i = 0, 1 (recall that Q
commutes with ρ). Computing 〈Bαt(A)〉 and 〈αt(A)B〉, we further find that

〈αt(A)B〉 = Tr ρ1(eiQ1tA10e
−iQ0tB01 + eitQ1A11e

−itQ1B11),

〈Bαt(A)〉 = Tr ρ1(B10e
iQ0tA01e

−iQ1t +B11e
itQ1A11e

−itQ1).

We now get a contradiction by choosing A01 = 0 and B11 = 0, and A10 and B10 such
that the function

Tr ρ1(B10e
iQ0tA01e

−iQ1t) �= 0

of t is not identically zero. Furthermore, arguing as above, we obtain that ρ =
const e−βQ, and hence Tr e−βQ <∞. This proves the lemma.

The next lemma describes all the ground states for the dynamics (6a).

Lemma 7. A necessary and sufficient condition for the dynamics (6a) to have a
ground state is that Q be bounded from below and that the infimum of its spectrum be
an eigenvalue. Under these conditions the ground state is given by a density matrix
ρ for which

Kerρ ⊇ E⊥
0 , Im ρ ⊂ E0,

where E0 is the eigensubspace corresponding to the eigenvalue λ0 = inf σ(Q), and
σ(Q) denotes the spectrum of Q.

The proof is similar to the proof of Lemma 6.

Remark 4. If the dynamics (6a) has a β-equilibrium state for some β = β0 then
it has a β-equilibrium state for all β > β0, and this state satisfies the assumptions
of Lemma 7. In this situation we have dimE0 < ∞ and the states 〈·〉β converge as
β → ∞ to a ground state with density matrix

ρ =
1

dimE0
PE0 ,

where PE0 is the projection of H onto the subspace E0.
Let H be a selfadjoint semibounded operator acting on a Hilbert space H and

having a (normalized) eigenvector Φ0 with eigenvalue λ0 (i.e., λ0 = inf σ(H)). We
consider on B(H) the state

(11a) 〈A〉 = (AΦ0,Φ0),

which by Lemma 7 is a ground state for the dynamics

(11b) τt(A) = exp{itH}A exp{−itH}
on the algebra B(H). As we have already seen (2.1), the GNS space HGNS constructed
using the state (11a) is canonically isomorphic to the Hilbert space H, the isomor-
phism taking the element [E] ∈ HGNS into Φ0, and π(A) = A for every A ∈ B(H).
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Lemma 8. Under the above isomorphism between HGNS and H, the operator Hphys

on H goes into the operator H − λ0.

Proof. According to equations (3), (11b) the operator exp{itHGNS} exp{−itH}
commutes with every A ∈ B(H), hence it must be a multiple of the identity operator,
i.e., exp{itHGNS} = α(t) exp{itH}, where α(t) is some function of t. Applying this
equality to the vector Φ0, we obtain from the equality exp{itHGNS}Φ0 = Φ0 that
α(t) = exp{iλ0t}, from which the statement of the lemma follows.

Corollary. For the free dynamics τt on the algebras B(Fa,s(H)) constructed
from the one-particle Hamiltonian h acting on the space H, the operators Ha,s

GNS gen-
erated by the state

〈A〉 = 〈AΩ,Ω〉, A ∈ B(Fa,s(H)),

and acting on the spaces Fa,s(H) are given by

Ha,s
GNS = dΓa,s(h).

Here Ω ∈ Fa,s(H) denotes the vacuum vector.

Thermodynamic limit of equilibrium states. Let a quasilocal structure be
given on the C∗-algebra A, i.e., A is the closure of the inductive limit (A0 = ∪AΛ)
of “local subalgebras” AΛ labeled by the elements of an ordered index set {Λ}, such
that for Λ1 < Λ2 we are given a homomorphic and isometric imbedding AΛ1 →
AΛ2 . In such a case the dynamics αt and its equilibrium states on the algebra A are
often constructed by taking the thermodynamic limit of the dynamics αΛ(t) and their
equilibrium states 〈·〉Λ defined on the local algebras AΛ. More precisely, we have the
next lemma.

Lemma 9. Assume that for every local algebra AΛ there are defined a dynamics
αΛ
t : AΛ → AΛ and a β-equilibrium state 〈·〉β (0 < β ≤ ∞). Suppose, moreover, that

the limits

(12) lim
Λ↑

〈A〉Λ = 〈A〉

and

(13) lim
Λ↑

αΛ
t (A) = αt(A),

exist for every local element A, where the convergence in (13) is with respect to the
norm and is uniform in t in an interval |t| < t0, where t0 does not depend on A. Then
the transformations αt(A) can be extended (by continuity) to the whole algebra A, and
can also be defined for all values t ∈ R1 (using the group law αt1+t2 = αt1αt2) in such
a way that the transformations determine a dynamics on the algebra A. Moreover,
the state (12) (extended to all of A) is a β-equilibrium state for the dynamics αt.

The straightforward proof will be omitted.

Remark 5. If the quasilocal algebra A is contained in B(H) for some Hilbert
space H, and convergence in (13) is taken in the strong operator topology on B(H)
(i.e., αΛ

t (A)X → αt(A)X with respect to the norm on H for every X ∈ H), then the
limit transformation αt(A), A ∈ A, is known to be a dynamics on A, and the limit
state 〈·〉 on A is also a β-equilibrium state for αt.
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Lemma 10. Assume as in Lemma 9 that for each local algebra AΛ ⊂ A we have a
dynamics αΛ

t with a β-equilibrium state 〈·〉Λ such that conditions (12) and (13) are
satisfied. Suppose, moreover, that GNS representations πΛ of the algebras AΛ and UΛ

t

of the dynamics αΛ
t are given which all act on the same Hilbert space H. Suppose that

the limits

(14) lim
Λ↑

πΛ(A) = π(A), A ∈ A,

(with respect to the operator norm on B(H)) exist for every local element A ∈ A and
that

(15) lim
Λ↑

UΛ
t = Ut for all t.

Then π(A) defines a GNS representation of A and is generated by the limit equilibrium
state (12), and the group Ut is a GNS representation of the dynamics (13) (generated
by the state (12)).

We will omit the proof of this lemma.

Remark. As in the previous lemma, the norm convergence in (14) and (15) can
be replaced by strong convergence. In that case, if π is known to be a representation
of A in B(H) and the Ut form a unitary group of operators on H, then it follows that
π and Ut give a GNS representation of the algebra A and dynamics αt relative to the
state (12).

§2. Ground state for an infinite system of harmonic oscillators

Here we will analyze a simple example of a system whose ground state can be
explicitly computed.

Consider the quadratic form

(1) H =
∑
x∈X

π2
x +

1
4

∑
x1,x2∈X

ax1,x2Φx1Φx2 ,

where πx = π(fx), Φx = Φ(fx) are selfadjoint operators on the Fock space Fs(H)
obtained from the creation and annihilation operators a∗x = a∗(fx) and ax = a(fx) by
formulas (13.3.1); {fx, x ∈ X} is an orthonormal basis in H (X is a countable set),
and A = {ax1,x2 , x1, x2 ∈ X} is a symmetric positive matrix. As we saw in 5.1, this
form defines a dynamics τt on the Weyl algebra A(H) ⊂ B(Fs(H)) which is a limit
of finite-dimensional dynamics τΛ

t as Λ ↑ X , Λ ⊂ X a finite subset of X :

(2) τΛ
t (A) = exp{itHΛ}A exp{−itHΛ},

where

(3) HΛ =
∑
x∈Λ

π2
x +

1
4

∑
x1,x2∈Λ

ax1,x2Φx1Φx2 .

As we shall see below, the operator HΛ has a ground-state vector ΦΛ
0 which defines a

ground state

(4) 〈A〉Λ = (AΦΛ
0 ,Φ

Λ
0 )

relative to the dynamics (2) on the algebra B(Fs(HΛ)).
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Lemma 1. For every local element D of the Weyl algebra A(H) the limit

(5) lim
Λ↑X

〈D〉Λ = 〈D〉,

exists and defines a state on A(H). It is a ground state for the dynamics τt.

Proof. Define a representation of the operators {πx, Φx, x ∈ Λ} on the space
L2(RΛ, d|Λ|x) by

πxf = i
df

dqx
, Φxf = qxf, f{qx, x ∈ Λ} ∈ L2(RΛ, d|Λ|x).

Then the operator H takes the form

HΛf = −
∑
x∈Λ

d2f

dq2x
+

1
4

( ∑
x1,x2∈Λ

ax1,x2qx1qx2

)
f.

Note that the orthogonal change of variables

(6) qx =
∑
x′∈Λ

UΛ
x,x′q′x′ , x ∈ Λ,

takes HΛ into a sum of operators:

(6a) HΛf = −
∑
x

d2f

dq′2x
+

1
4

(∑
x

λΛ
x (q′x)

2

)
f,

where the λΛ
x > 0 are the eigenvalues of the matrix AΛ = {ax,x′, x, x′ ∈ Λ}.

The ground-state vector for such an operator is given by

(7) Φ0 = const exp
{
− 1

4

∑
λ1/2
x (q′x)

2

}
.

Returning to the original variables qx, we obtain that

(7′) Φ0 = const exp
{
− 1

4

∑
x,x′∈Λ

bΛx,x′qxqx′

}
,

where BΛ = {bΛx,x′} = (AΛ)1/2.
Next, by the commutation relations (14.3.1) we can write any monomial in the

Weyl algebra in the form

(8) D = Ux1 . . . Uxk
Vx′

1
. . . Vx′

k′ = exp
{
i
∑
y∈Y

nyΦy

}
exp

{
i
∑
y′∈Y ′

sy′πy′

}
,

where {yi} is the set of distinct points in the collection {x1, . . . , xk}, and ny is the
multiplicity of y in {x1, . . . , xk}; and similarly for Y ′ and {sy}. We will henceforth
assume that the set Λ contains Y and Y ′, and to facilitate the computations we
express D as a product

D = exp
{
i
∑
y∈Λ

nyΦy

}
exp

{
i
∑
y′∈Λ

sy′πy′

}
,
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where we set ny = 0 for those y ∈ Λ not contained in Y (and similarly for sy′). For
the above representations of Φy and πy on L2(RΛ, d|Λ|x), the action of the operators
exp{iΣnyΦy} and exp{iΣsy′πy′} is given by the formulas

exp
{
i
∑

nyΦy

}
f =

∏
y∈Λ

exp{iqyny}f,

exp
{
i
∑

sy′πy′

}
f = f{qy − sy, y ∈ Λ}.

Thus,

(DΦΛ
0 ,Φ

Λ
0 ) = const

∫
RΛ

exp
{
i
∑
x∈Λ

iqxnx

}
× exp

{
− 1

4

∑
x1,x2

bΛx1,x2
(qx1 − sx1)(qx2 − sx2)

}
× exp

{
− 1

4

∑
x1,x2

bΛx1,x2
qx1qx2

}∏
x∈Λ

dqx.

The evaluation of the integral is straightforward and leads to the final formula

(9)

〈D〉Λ = exp
{
− 1

2

∑
y1,y2∈Y

cΛy1,y2ny1ny2

− 1
8

∑
y1,y2∈Y ′

bΛy1,y2sy1sy2 +
i

2

∑
y∈Y∩Y ′

nysy

}
,

where CΛ = {cΛy1,y2} = (BΛ)−1 = (AΛ)−1/2.
We see from (9) that the limit limΛ↑X〈·〉Λ exists and is given by equation (9), with

the matrices CΛ and BΛ replaced respectively by C = A−1/2 and B = A1/2. The
lemma is proved.

The change of variable (λΛ
x )1/4q′x = q′′x takes the operator HΛ in (6a) into

HΛ =
∑

λ1/2
x (aΛ

x )∗aΛ
x + const,

where
αΛ
x f =

1√
2
q′′xf +

df

dq′′x
, (αx)∗f =

1√
2
q′′xf − df

dq′x
.

Passing now to the operators aΛ
x =

∑
x′ U

Λ

x,x′aΛ
x′ and (aΛ

x )∗ =
∑

x′ U
Λ

x,x′(aΛ
x′)∗, where

U
Λ

= {UΛ

x,x′} is the orthogonal matrix inverse to UΛ appearing in equation (6), we
get finally that

HΛ =
∑
x′,x

bΛx,x′(aΛ
x )∗aΛ

x′ + const .

From this and the corollary to Lemma 8 in §1, it follows that the operator HΛ
GNS

constructed from the ground state for the dynamics (2) coincides with the operator

HΛ =
∑

x′,x∈Λ

bΛx,x′axax′ ,

acting on the space Fs(H).
Using further Lemma 8 of §1, we arrive at the next result.
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Lemma 2. Let τt be the limit dynamics on the Weyl algebra W (H) ⊂ B(Fs(H))
constructed by equation (1), and let the limit state 〈·〉 on W (H) (see (5)) be a ground
state for τt. Then τt has a GNS representation relative to 〈·〉 which acts on the space
Fs(H) and coincides with the free dynamics whose Hamiltonian is

H =
∑

x′,x∈X
bx,x′a∗xax,

and the matrix B = {bx,x} = A1/2.

§3. A free quasistate

We recall that a quasistate on an algebra A with unit 1 is a linear functional 〈·〉
on A such that 〈1〉 = 1. An even quasistate on the CAR superalgebra A(H) (i.e., one
for which 〈A〉 = 0 for all odd elements A ∈ A(H)) is said to be Gaussian if

(1)
〈a#(f1) . . . d#(f2k)〉 =

∑
(−1)|π|

∏
〈a#(fis)a

#(fjs)〉,
a#(f) = a∗(f) or a(f),

where the sum is over all partitions of the index set {1, . . . , 2k} into k pairs (i1, j1),
(i2, j2), . . . , (ik, jk), where is < js, and |π| is the sign of the permutation π =
(i1, j1, i2, j2, . . . , ik, jk) (see [26]).

A quasistate on a CAR algebra is said to be gauge invariant if it is nonzero only
on monomials that contain the same number of creation and annihilation operators.
In particular, a Gaussian quasistate is gauge invariant if and only if

(2) 〈a(f)a(g)〉 = 〈a∗(f)a∗(g)〉 = 0

for all pairs f, g ∈ H.
A Gaussian gauge-invariant quasistate on a CAR algebra is called a free quasistate.

Obviously, such a state is determined by its values on the monomials a∗(f)a(g),

(3) 〈a∗(f)a(g)〉 = (Bf, g),

where B is a bounded operator on H. It follows from (3) that

(4) 〈a(g)a∗(f)〉 = ((E −B)f, g).

Lemma 1. The free quasistate defined by the operator B is a state if and only if
B is selfadjoint and

(5) 0 ≤ B ≤ E.

Proof. The necessity follows from the equality

〈a∗(f)a(g)〉 = 〈a∗(g)a(f)〉

and positivity:
〈a∗(f)a(f)〉 ≥ 0, 〈a(f)a∗(f)〉 ≥ 0.
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In the case of a one-dimensional space H = C1, every nonconstant positive even
element in the algebra A(H) has the form

caa∗ + ba∗a, c ≥ 0, b ≥ 0,

and condition (5) means that quasistates are positive on such elements. Now let
the dimension of H be arbitrary, and take B to be a finite-rank selfadjoint operator
satisfying the condition (5). We can split H into an orthogonal direct sum

H = H1 ⊕ · · · ⊕ Hs ⊕H0,

where H0 = KerB and the Hi are one-dimensional subspaces spanned by the eigen-
vectors of B, with eigenvalues λi, 0 < λi ≤ 1. Then the CAR algebra is expressible
as a tensor product of superalgebras (see [23]):

A(H) = A(H1) ⊗ · · · ⊗ A(Hs) ⊗ A(H0),

and the quasistate 〈·〉 is a tensor product of quasistates on the A(Hi), i = 0, 1, . . . , s;
the quasistate 〈·〉0 on A(H0) is nonzero only on 1 ∈ A(H0) and is therefore a state,
while the quasistates on A(Hi), i = 1, . . . , s, are states by what we have proved
above. Since a tensor product of states is again a state (this holds for even states
under tensor product of superalgebras), we see that 〈·〉 is a state. Any selfadjoint
operator B satisfying (5) can be approximated in the weak topology by finite-rank
operators Bn that satisfy (5). Since the states 〈·〉B approximate the quasistate 〈·〉, it
follows that the latter is a state.

Lemma 2. Let the algebra A(H) be equipped with a free dynamics τt which is
generated by a one-particle Hamiltonian h acting on H. Then the free quasistate 〈·〉B
defined by the operator B is invariant under τt if and only if H commutes with B.

The proof follows from equations (6.4.1) and (3).

Wick monomials on a CAR algebra. Let a Gaussian quasistate (not necessar-
ily gauge invariant) be defined on the CAR algebra A(H). Then, just as in the case
of functions of a Gaussian system of random variables (see [26]), we can introduce
the Wick ordering operation : · : on the algebra A(H). Namely, given monomials
a#(f1) . . . a#(fn) ≡ a#

T , where T = {f1, . . . , fn} is an ordered set of elements fi ∈ H,
we define : · : inductively by the formula

(6) : a#
T :=

∑
: a#

T ′ : 〈a#
T\T ′〉(−1)π(T,T ′),

where the sum is over all subsets T ′ ⊆ T (ordered as before by inclusion), the subset
T \ T ′ is the complement of T ′ in T , and π(T, T ′) is the sign of the permutation
T → (T \ T ′, T ′). The operation : · : extends by linearity to all elements in A(H).

Properties of the Wick operation.
I. We have the following formula

(7) : a# :=
∑

a#
T ′〈a#

T\T ′〉(−1)π(T,T ′)+ |T−T ′|
2

and its inversion
a# =

∑
T ′⊆T

|T\T ′| even

: a#
T ′ : 〈a#

T\T ′〉(−1)π(T,T ′).



90 II. CONSTRUCTION OF AN EQUILIBRIUM DYNAMICS

(Note that 〈a#
T\T 〉 �= 0 only if |T − T ′| is even.)

II. For any two elements A1, A2 in A(H),

(8) (: A1A2 :)∗ =: A∗
2A

∗
1 : .

III. For any two-ordered sets

T = (f1, . . . , fn), S = (g1, . . . , gm),(9)

〈: a#
T : : a#

S :〉 =

{
0, |T | �= |S|,∑

π(−1)|π|〈a#(f1)a#
gπ(1)

〉 . . . 〈a#(fn)a#
gπ(n)

〉,

where the sum is over all permutations π =
(

1 ... n

π(1) ... π(n)

)
and |π| is the sign of π.

Many other properties of the Wick ordering for a Gaussian system of random
variables (see [26]) also carry over to the case of the algebra A(H) by using the rule
of signs.

Wick ordering can also be defined for Gaussian quasistates on a Grassmann algebra
(see [26]) by means of equations (6)–(9) (the Grassmann algebra can also be viewed
as a subalgebra of the CAR generated solely by creation operators).

We note that if a free quasistate 〈·〉B is invariant under a free dynamics τt on the
algebra A(H) generated by a one-particle Hamiltonian h, then τt acts on the Wick
monomials : a#(f1) . . . a#(fn) : by the formula

(9a) τt(: a#(f1) . . . a#(fn) :) =: a#(eithf1) . . . a#(eithfn) : .

This follows immediately from equation (6.4.1) for the action of the free dynamics on
the monomials a#

T , and equation (7).
We now compute the GNS representation of the algebra A(H) generated by a free

state 〈·〉B which is invariant under the free dynamics; we will confine ourselves to the
case when the eigenvectors {e1, . . . , en, . . . } of the operator B form a basis in H.

If

T =(ei1 , ei2 , . . . , eik), i1 < i2 < · · · < ik,

S =(ej1 , ej2 , . . . , ejm), j1 < j2 < · · · < jm

are any two finite subsets of vectors in the basis, we introduce the Wick monomials

(10) : a#
T aS :

where
a∗T = a∗(ei1) . . . a

∗(eik), aS = a(ej1) . . . a(ejm).

Lemma 3. Relative to the inner product

(A,C) = 〈C∗A〉B , A, C ∈ A(H)

the monomials (10) with distinct pairs (T, S) and (T ′, S′) are orthogonal, and the
squared norm of a monomial (10) is equal to

(11) (: a#
T aS :, : a#

T aS :) =
k∏
s=1

(1 − λis)
m∏
p=1

λjp ,
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where λi is the eigenvalue of B corresponding to the eigenvector ei.

The proof follows from a direct application of properties II and III above.
We see from (11) that the monomials : a#

T aS : have nonzero norm if and only if the
set T contains no eigenvectors of B with eigenvalue 1, and S contains no eigenvectors
of B with eigenvalue 0. Thus, the space HGNS is spanned by the monomials : a#

T aS :,
where T consists of eigenvectors of B belonging to the space
(12) H1 = H� Ker(E −B),
and S consists of eigenvectors of B contained in the space
(13) H2 = H� KerB.
This shows that the GNS representation can be realized on a tensor product
(13a) Fa(H1) ⊗Fa(H∗

2) = Fa(H1 ⊕H∗
2),

of Fock spaces (the tensor product being considered in the sense of superspaces,
see [23]), if to each normalized monomial

: a#
T aS :⊂ HGNS, T = (ei1 , . . . , eik), S = (ej1 , . . . , ejm)

we associate the vector
b∗1(e

(1)
i1

) . . . b∗1(e
(1)
ik

)Ω1 ⊗ b∗2(e
(2)
j1

) . . . b∗2(e
(2)
jm

)Ω2

= b̂∗(e(1)i1 ) . . . b̂∗(e(1)ik )̂b(e(2)j1 ) . . . b̂(e(2)jm )Ω̂.
Here H∗

2 is the Hilbert space obtained from H2 by changing the inner product:

(13b) (f, g)H∗
2

= (f, g)H2
= (g, f)H2 ,

and Ω1,Ω2, Ω̂ = Ω1 ⊗Ω2 are the vacuum vectors in the Fock spaces Fa(H1), Fa(H∗
2),

and Fa(H1 ⊕ H∗
2), respectively; {b∗1(f), f ∈ H1}, {b∗2(f), f ∈ H2}, and {b̂∗(f), f ∈

H1 ⊕ H∗
2} are the ordinary creation operators acting on the respective spaces; and

e
(1)
i and e(2)j denote vectors in the basis {ei} in H, regarded as elements of the spaces
H1 and H∗

2 , respectively (and hence as elements of H1 ⊕H∗
2).

Assume further that a free dynamics τt is defined on the algebra A(H) which is
generated by a one-particle Hamiltonian h commuting with the operator B (and thus
the free state 〈·〉B is invariant under τt). We may assume that the eigenvectors {ei}
of B introduced above are also eigenvectors for h.

Then by (9a), the monomials : a∗T aS : are eigenvectors for the automorphisms τt

(14) τt(: a∗TaS :) =
k∏
p=1

exp{−itλp}
m∏
s=1

exp{itλs} : a∗TaS :,

where T = (ei1 , . . . , eik), S = (ej1 , . . . , ejm), and λi is the eigenvalue of h correspond-
ing to the vector ei. It follows from (14) that the monomial : a∗TaS : is an eigenvector
for HGNS with eigenvalue

∑k
p=1 λip −∑m

s=1 λjs .
Regarded on the space Fa(H1 ⊕ H∗

2) described above, the operator HGNS thus
coincides with the operator

(15) HGNS =
∑

e
(1)
i ∈H1

λib̂
∗(e(1)i )̂b(e(1)i ) +

∑
e
(2)
j ∈H∗

2

(−λj )̂b∗(e(2)j )̂b(e(2)j ) = dΓ(ĥ),

where ĥ = h1 ⊕ (−h2), and h1 and h2 are the parts of the operator h acting on the
invariant subspaces H1 and H2, respectively.

All the results obtained above for the case of an operator B with a pure-point
spectrum also remain valid in general, i.e., we have the following lemma.
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Lemma 4. Let the algebra A(H) admit a free state 〈·〉B which is defined by the
operator B and is invariant under the dynamics τt generated by a Hamiltonian h that
commutes with B. Then the GNS representation of A(H) generated by the state 〈·〉B
can be defined on the Fock space Fa(H1 ⊕ H∗

2), where the subspaces H1 and H∗
2 are

defined by equations (12), (13), and (13b), in such a way that the operator HGNS

corresponding to the dynamics τt has the form (15).

Equilibrium states for a free dynamics. Let a free dynamics τt on the CAR
algebra A(H) be defined by a one-particle Hamiltonian h.

Lemma 5. For each β, 0 < β < ∞, there exists a unique β-equilibrium state for
the free dynamics τt; it is free and defined by the operator

(16) B = (E + eβh)−1.

Proof. We first show that the free state 〈·〉B with B given by (16) is a β-
equilibrium state. Setting A1 = a∗(f) and A2 = a(g), we have

FA1,A2(t) = 〈a∗(f)a(eithg)〉 = (e−ith(E + eβh)−1f, g).

This function can be extended to the strip 0 < Im z ≤ β, and for z = t + iβ it is
equal to

(17) FA1,A2(t+ iβ) = (e−itheβh(E + eβh)−1f, g).

On the other hand, we get from (4.3) that

〈τt(A2)A1〉 = (e−ith(E − (E + eβh)−1)f, g),

which coincides with (17). In a similar way one verifies the KMS condition (2) for the
case when A1 = a(g) and A2 = a∗(f). In the general case, we have A1 =: a#

T : and
A2 =: a#

S :, where T = (f1, . . . , fk) and S = (g1, . . . , gs), and the ordering : · : is with
respect to the state 〈·〉B. The function FA1,A2(t) = 〈A1τt(A2)〉B is then expressible
as a sum of products of the functions 〈a#(fk)a#(eithgj)〉B , each of which extends
into t in the strip 0 < Im z ≤ β and coincides for z = t + iβ with the function
〈a#(eithgj)a#(fk)〉B. On the other hand, when k+s is even, the function 〈τt(A2)A1〉
is given by exactly the same sum of products of the functions 〈a#(eithgj)a#(fk)〉B .
Thus the free state defined by an operator B of the form (16) is β-equilibrium.

We next prove that this state is unique for the case when the eigenvectors {ei} of
h span H. We show first of all that a β-equilibrium state must satisfy 〈a∗TaS〉 = 0
whenever the sets T = (ei1 , . . . , eik) and S = (ej1 , . . . , ejm) are distinct. Indeed, in
this case there exists a vector, say ejl ∈ S, different from all the vectors in T (or else,
T contains a vector different from all the vectors in S). It suffices to consider the first
case and set A1 = a∗TaS\{ejl

}, A2 = a(ejl). Then

FA1,A2(t) = exp{−itλjl}〈a∗TaS〉,
〈τt(A2)A1〉 = − exp{−itλjl}〈a∗TaS〉

and hence equality (2) is possible only if 〈a∗T aS〉 = 0. Since the other case is treated
in the same way, we find that T = S. Now, again setting A1 = a∗TaT\{eik

} and
A2 = a(eik), we obtain that

FA1,A2(t+ iβ) = exp{−itλik + λikβ}〈a∗TaT 〉.
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On the other hand,

〈τt(A1)A2〉 = − exp{−itλik}〈a∗TaT 〉 + exp{−itλik}(−1)k−1〈a∗T\{eik
}aT\eik

〉.

Together with the KMS condition 2), this gives

〈a∗TaT 〉 =
(−1)k−1

(exp{λikβ} + 1)
〈a∗T\{eik

}aT\{eik
}〉.

Continuing in this way, we find that

〈a∗TaT 〉 = (−1)|π|
k∏
s=1

1
(exp{λisβ} + 1)

,

where |π| is the sign of the permutation π = (1, k + 1, 2, k + 2, . . . , 2k − 1, k, 2k), i.e.,
on all the monomials a∗T aS the state 〈·〉 coincides with the free state defined by the
operator (16). A proof that the β-equilibrium state is unique for a dynamics τt with
an arbitrary operator h can be found in [49]. Since

KerB = {0}, Ker(E −B) = {0}

for the operator (16), we have H1 = H2 = H, and thus the GNS space induced by the
β-equilibrium state for the dynamics τt coincides with the space Fa(H⊕H∗), where
H∗ is obtained from by H changing the inner product (13b), and the operator HGNS

is given by
HGNS = dΓ(h⊕ (−h)).

Lemma 6. The free state 〈·〉B is a ground state for the free dynamics τt generated
by h if and only if

(18) B = E(−∞,0) +B0E{0}

where B0 is a selfadjoint operator on the space H0 = E{0}H such that 0 < B0 < 1,
and {E∆, ∆ ⊂ R1} is the spectral family of projections for the operator h.

Proof. Consider A1 = a∗(f) and A2 = A(g). Then the function FA1,A2(t) =
〈A1τt(A2)〉 has the form

(19) FA1,A2(t) = 〈e−itλBf, g〉 =
∫
e−ithdρBf,g(λ),

where ρBf,g(λ) = (EλBf, g) is the spectral measure. The function (19) can be ex-
tended to a bounded analytic function in the upper halfplane if and only if

supp ρBf,g(λ) ∈ (−∞, 0].

It follows that

(20) B = E(−∞,0]B
′,
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where B′ is a selfadjoint operator acting on the space H(−∞,0] = E(−∞,0]H and
commuting with h. Choosing A1 = a(g) and A2 = a∗(f), we now obtain that

(21) FA1,A2(t) =
∫
eitλdρ(E−B)f,g(λ)

and the functions FA1,A2(t) can be continued into the upper halfplane for all f and g
if and only if

(22) E −B = E[0,∞)B
′′,

where B′′ is a selfadjoint operator on H[0,∞) commuting with h. Relation (18) now
follows easily from (20) and (22). For arbitrary Wick monomials A1 =: a∗TaS : and
A2 =: a∗T ′aS′ : of the form (10), the function FA1,A2(t) is a sum of products of the form
〈a∗(f)a(eithg)〉 and 〈a(g)a∗(eithf)〉, and by what has already been proved, each factor
extends analytically into the upper halfplane. The same is thus true of FA1,A2(t), and
the lemma is proved.

We again obtain that the GNS representation for a free dynamics with ground
state (18) is defined on the space

Fa(H1 ⊕H∗
2),

where H1 = H+⊕H{0}�Ker(E−B0), H2 = H−⊕H{0}�KerB0, and H+ = E(0,∞)H,
H− = E(−∞,0)H, H{0} = Kerh. The GNS operator is of the form

dΓ(h+ ⊕ (−h−)),

where h± = h|H± .
Let a one-particle operator be defined on H, i.e., a positive Hamiltonian h with

discrete spectrum
0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . ,

where the eigenvalues are listed in increasing order and λn → ∞ as h→ ∞. Let {ϕn}
be an orthonormal set of eigenfunctions corresponding to the λn. Let

hµ = h+ µE,

where µ is real, be a one-parameter family of Hamiltonians. The spectrum of the
operator dΓ(hµ) on Fa(H) consists of eigenvalues of the form

(λi1 + µ) + · · · + (λik + µ),

where i1 < i2 < · · · < ik are integers, and the associated eigenvectors are given by

Φ{i1,...,ik} = a∗(ϕi1 ) . . . a
∗(ϕik)Ω.

Evidently, if µ > 0 the smallest eigenvalue of dΓ(hµ) is zero, corresponding to the
eigenvector Ω = Φmin. If µ ≤ 0 then there exists an integer r such that

λr ≤ −µ < λr+1.

Then it is obvious that the smallest eigenvalue of dΓ(hµ) is equal to (λ0 + µ) + · · ·+
(λr + µ), corresponding to the eigenvector

(23) Φmin = a∗(ϕ0) . . . a∗(ϕr)Ω.
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Lemma 7. The state 〈A〉min = 〈AΦmin,Φmin〉 is a free ground state for the dynam-
ics τµt generated by hµ.

Proof. We first consider the case µ ≥ 0. The gauge invariance of the state 〈·〉min

follows from the equality

(a(f1) . . . a(fn)a∗(g1) . . . a∗(gm)Ω,Ω)

= (a∗(g1) . . . a∗(gm)Ω, a∗(fn) . . . a∗(f1)Ω) = 0 for n �= m.

The Gaussian property is a consequence of

(a(f1) . . . a(fn)a∗(g1) . . . a∗(gn)Ω,Ω)

=
∑

(−1)k−1(fngk)(a(f1) . . . a(fn−1)a∗(g1) . . . a∗(ǧk) . . . a∗(gm)Ω,Ω),

which is obtained by repeatedly moving a(fn) to the right of all the a∗(gk). Continuing
this procedure, we obtain an expansion of the form (1). When µ < 0 we consider the
following ∗-automorphism γ of the CAR algebra (a canonical transformation), which
acts on the generators a#(f) by the formulas

(24a)
γ(a(f)) ≡ ã(f) = a∗(f∗),

γ(a∗(f)) ≡ ã∗(f) = a(f∗),

where f∗ =
∑r

k=0 ckϕk, if f =
∑r

k=0 ckϕk ∈ Eµ(−∞,0]H = Hµ and {Eµ∆} is a spectral
family for the operator hµ, and

(24b)
γ(a(f)) ≡ ã(f) = a(f),

γ(a∗(f)) ≡ ã∗(f) = a∗(f), f ∈ H⊥
µ = Hµ.

Note that for the new system of generators (ã∗(f), ã(f)), which satisfy the anticom-
mutation condition, Φmin given by (23) is a vacuum vector:

ã(f)Φmin = 0, f ∈ H,
and the representation of this system in Fa(H) is unitarily equivalent to the standard
Fock representation of the creation and annihilation operators {b∗(f), b(f)} in the
space Fa(H̃), where H̃ = H∗

µ ⊕ Hµ, and H∗
µ is Hµ with the altered inner product

(13b). Thus the proof that (AΦmin,Φmin) is free follows from the previous arguments.
The corresponding operator B is of the form B = Eµ(−∞,0], and hence by Lemma 6
〈·〉min is a ground state for the dynamics τµt .

The space HGNS associated to this state coincides with the Fock space Fa(H̃), and
the operator Hµ for the dynamics τµt has the form∑

k

|λk + µ|b∗kbk = dΓ(|h+ µ|).

We note that when written in terms of the operators ã∗k and ãk, the operators
dΓ(h+ µ) =

∑
k(λk + µ)a∗kak have the form∑

k

|λk + µ|ã∗kak +
( r∑
i=0

(λi + µ)
)
E,

i.e., apart from a constant they are unitarily equivalent to the operator Hµ
GNS. In

the case when the spectrum of h is arbitrary, the new system of operators ã∗(f),
ã(f) obtained via the canonical transformation (24a), (24b) may fail in general to
be unitarily equivalent to the standard system of Fock operators, and therefore the
operator dΓ(h+µ)+ sE may not be unitarily equivalent to Hµ

GNS for any constant s.
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§4. Fock representation for the dynamics of free systems

Here we will consider some examples showing that for certain free systems the op-
erator HGNS, defined by a free dynamics and equilibrium state, is unitarily equivalent
to a Hamiltonian of the form dΓ(h) on a suitably chosen Fock space Fa,s(H), where
h is a one-particle operator on H.

1. The classical ideal gas. Recall that the state space for an infinite ideal gas is
the collection Ω of all locally finite (unordered) sets X = {(qi, vi)}, (qi, vi) ∈ Rν×Rν ,
i.e., sets such that only finitely many elements (qi, vi) ∈ X are contained in any
bounded region G ⊂ Rν × Rν . The Gibbs distribution µ0 = µρ,β0 for an ideal gas
coincides with the distribution of the Poisson field in Rν ×Rν given by the measure

(1) dλ = ρ

(
β

2π

)ν/2
exp

{
− βv2

2

}
dq dv.

This field can be described as follows:
1) The number nB(X) of elements (q, v) in the configuration X contained in a

bounded set B ⊂ Rν ×Rν obeys a Poisson distribution

(2) Pr(nB(X) = n) =
(λ(B))n

n!
e−λ(B),

where the measure λ(B) of B is given by equation (1).
2) For any two disjoint sets B1, B2 ⊂ Rν , the quantities nB1(X) and nB2(X) are

independent.
This distribution is described more fully in [21]. If M denotes the collection of all

finite sets X ∈ Ω, we have a partition

M =
⋃

Mn,

where Mn is the collection of all n-element sets; Mn can be represented as the quotient

Mn = (Rν ×Rν)n/Sn

of the space (Rν ×Rν)n of ordered sequences {(q1, v1), . . . , (qn, vn)} by the action of
the group Sn permuting the elements. We can thus introduce on each space Mn the
measure

(3) dX =
dq1dv1 . . . dqndvn

n!
,

which we can regard as a measure on the whole space Mn.

Remark. It is clear from the definition (3) that the set of collections {(q1, v1),
. . . , (qn, vn)} for which at least two elements coincide has measure zero, i.e., the
collection M′ ⊂ M of all finite subsets X ⊂ Rν × Rν (i.e., collections all of whose
elements are distinct) has full measure. For the same reason, the collection Ω′ ⊂ Ω of
all locally finite subsets X ⊂ Rν ×Rν has full measure µ0 (see [21] for more details).

The correlation function ρ0(X) = ρµ0(X) on M for the Poisson field given above
is equal to

(4)
ρ0(X) = ρN(X)

∏
i

(
β

2π

)ν/2
exp

{
− βv2

i

2

}
,

X = {(qi, vi)} ∈ M,
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where N(X) is the number of elements in X . A definition of the correlation function
for any point field, i.e., for any distribution on Ω, is given in [14]. The following
property will be important for us. Let ϕ(X), X ∈ M, be a finite function on the
space M, i.e., such that

ϕ(X) �= 0, X = {(qi, vi)}
only if N(X) < N0 = N0(ϕ) and X ⊂ G, where G = G(ϕ) is a bounded subset of
Rν ×Rν . Then the functional

(5) Fϕ(ω) =
∑
X⊆ω

ϕ(X)

is defined for all ω ∈ Ω. A functional of the time (5) is usually called a summing
functional. The formula

(6) 〈Fϕ(ω)〉µ =
∫

M

ϕ(X)ρµ(X) dX

can be shown to hold for any point field in Rν × Rν with probability distribution µ
on Ω for which the correlation function ρµ(X) exists.

If the function ϕ in (5) does not have compact support but is integrable on M
with respect to σ-finite measure ρµdX then the summing functional (5) is defined for
almost all ω with respect to µ, and equation (6) continues to hold as before.

Now consider the space H = L2(Rν ×Rν, dλ) of functions f(q, v) on Rν ×Rν. The
symmetrized nth tensor power

(H⊗n)sym = H(n)
sym

(with inner product equal to 1/n! times the usual inner product on H(n)
sym) is eas-

ily seen to coincide with the Hilbert space L2(Mn, ρ0(X)dX), where the correlation
function ρ0(X), X ∈ Mn, is given by (4). Thus, the Fock space Fs(H) coincides with
L2(M, ρ0dX).

We now define a unitary transformation of L2(M, ρ0dX) onto the space
L2(Ω, µ0), as follows. For each finite function f ∈ L2(M, ρ0dX) we define another
finite function

(7) ϕf (X) =
∫

M

f(X ∪ X̃)(−1)N(X̃)ρ0(X̃) dX̃

and the summing functional

(8) F f (ω) ≡ Fϕf
(ω) =

∑
X⊆ω

ϕf (X).

Lemma 1. The transformation f → F f is isometric:

(9)
∫

M

f(X)g(X)ρ0(X)dX = 〈F fF g〉µ0

and after extension to all of L2(M, ρ0dX) gives a unitary equivalence with all of
L2(Ω, µ0).
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Proof. Let f ∈ L2(Mn, ρ0dX). We will show that for every finite element g ∈
L2(Mm, ρ0dX), m ≤ n, the inner product

(F f , Fg) = 〈F fFg〉µ0 ,

where Fg is defined by (5), is equal to

(10) (F f , Fg) =
{ ∫

Mn
f(X)g(X)ρ0(X)dX, m = n,

0, m < n.

Indeed,
(11)

〈F fFg〉µ0 =
∫

Ω

( ∑
X⊂ω

ϕf (X)
)( ∑

X′⊂ω
g(X ′)dµ0(ω)

)
=
∫

Ω

∑
X⊂ω

( ∑
X1,X2,X3:X1∩X2=X2∩X3=X1∩X3=∅

X=X1∪X2∪X3

ϕf (X1 ∪X2)g(X2 ∪X3)
)
dµ0(ω)

=
∫

M

( ∑
X1,X2,X3:X1∩X2=X2∩X3=X1∩X3=∅

X=X1∪X2∪X3

ϕf (X1 ∪X2)g(X2 ∪X3)
)
ρ0(X) dX

=
∫

M

ϕf (X1 ∪X2)g(X2 ∪X3)ρ0(X1)ρ0(X2)ρ0(X3) dX1 dX2 dX3.

The last equality in (11) is based on some straightforward combinatorics and also uses
the multiplicative form of ρ0(X). Furthermore, in all of these formulas X1, X2, X3

may be taken to be finite subsets of Rν × Rν (see the above Remark). Inserting ϕf
from (7) into the last equality and using the readily verified identity∫

M

( ∑
X′⊆X

ϕ(X ′)
)
h(X) dX =

∫
M2

ϕ(X1)h(X2 ∪X1) dX1 dX2,

we find that

〈F fFg〉µ0 =
∫

M3

( ∑
X̃⊆X

(−1)N(X̃)

)
× f(X2 ∪X2)g(X2 ∪X3)ρ0(X1)ρ0(X2)ρ0(X3)dX1dX2dX3.

Since
∑
X̃⊆X(−1)N(X̃) = 0, if X1 �= ∅, we obtain finally that

〈F fFg〉µ0 =
∫

M2
f(X2)g(X2 ∪X3)ρ0(X2)ρ0(X3) dX2 dX3,

from which (10) follows. Since for f ∈ L2(Mn, ρ0 dX) we have ϕf = f + f̃ , where
f̃ ∈ ⊕

k<n L2(Mk, ρ0 dX), it follows from (10) that for f ∈ L2(Mn, ρ0(X) dX) and
g ∈ L2(Mm, ρ0 dX), we have

(F f , F g) = δm,n

∫
Mn

f(X)g(X)ρ0(X) dX.
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This already shows that the mapping (7) is isometric. Now let FΛ(ω) = FΛ(X), where
X = ω ∩ Λ for a bounded set Λ ⊂ Rν × Rν , be a local function, depending only on
the part of the configuration ω contained in Λ. Then any such FΛ can be expressed
as a summing function (5) by setting

ϕ(X) =
∑
X′⊆X

(−1)N(X\X′)FΛ(X ′),

where X ⊂ Λ is a finite configuration in Λ. The summing functionals (5) are thus
dense in L2(Ω, µ0). On the other hand, the map f → ϕf (7) is a bijection of the set
of finite bounded functions with itself. In fact, its inverse is given by

f(X) =
∫

M

ϕf (X ∪ X̃)ρ0(X̃) dX̃.

Thus, the map f → F f extends to a unitary transformation from L2(M, ρ0dX) onto
L2(Ω, µ0).

Remarks. 1. Let H̃n ⊂ L2(Ω, µ0) be the image of the space L2(Mn, ρ0dX) under
the map (8). To get a better idea of the structure of these spaces, we consider the
form of the functionals F f ∈ Hn for n = 0, 1, 2. Clearly, H0 is the space of constants,
while H1 is the closure of the functionals of the form

(11a) F (ω) =
∑

(q,v)∈ω
f(q, v) + f0,

where

f0 = −ρ
(
β

2π

)ν/2 ∫
Rν×Rν

f(q, v) exp
{
− βv2

2

}
dq dv,

and the function f is bounded with compact support in Rν × Rν . The term f0 in
(11) ensures that the functional (11) is orthogonal to all constants. The space H2 is
the closure of the summing functionals of the form

(12) F =
∑

{(q1,v1),(q2,v2)}⊂ω
f((q1, v1)(q2, v2)) +

∑
(q,v)∈ω

f1(q, v),

where
f1(q, v) = −

∫
Rν×Rν

f((q, v)(q̃, ṽ))ρ0(q̃, ṽ) dq̃ dṽ,

where f((q1, v1), (q2, v2)) is a symmetric bounded function with compact support in
(Rν × Rν)2. The second term in (12) ensures that F is orthogonal to the constants
and to functionals of the form

∑
(q,v)∈ω g(q, v).

2. Let B ⊂ Rν be a bounded set and let the function f ∈ L2(Mn, ρ0dX) have the
form

f(X) =
n∏
i=1

χB(qi), X = {(qi, vi)} ∈ Mn,

where χB(·) is the characteristic function of the set B. Then a simple calculation
shows that

F f (ω) = P ρ|B|
n (κB(ω)),
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where κB(ω) is the number of particles in the configuration ω that lie in the set B,
κ ≥ 0 is an integer, and Pµ(κ) is the Charlier polynomial

Pµn (s) =
n∑
k=0

(−1)n−k
s(k)

k!(n− k)!
µn−k,

where

s(k) =
{
s(s− 1) . . . (s− k + 1) = s!

k! , k > 0,
1, k = 0.

These polynomials are orthogonal with respect to the Poisson distribution on Z1
+ with

rate µ:
∞∑
s=0

Pµn (s)Pµm(s)
µse−µ

s!
=
δm,n
n!

µn.

We now consider the dynamics τt on the space Ω given by

(13)
τtω = ωt = {(qti , vti)}, ω = {(qi . . . vi)},

qti = qi + vit, vti = vi.

Since certain locally finite configurations whose velocities increase very rapidly at
infinity may cease to be locally finite (i.e., may collapse, see 1.1) after a finite time t
for the dynamics (13), we will need the following lemma to ensure that our definition
is correct.

Lemma 2. The space Ω contains a set Ω′ of full µ0 measure such that for every
ω ∈ Ω′, we have τtω ∈ Ω′, for all t ≥ 0.

The proof of this lemma is omitted.

Remark. Recall that we have already encountered in 1.1 the analogous assertion
for ν = 1, but in the more complicated case of a nonideal gas.

We may thus consider the dynamics in Ω′.

Lemma 3. For all ρ and β, the Poisson measure µ0 = µρ,β0 on Ω′ is invariant
under the dynamics (13).

Proof. Define a transformation of the function F (ω) on Ω′ by the formula

(UtF )(ω) = F (τ−1
t ω).

It is easy to see that for summing functionals Ff of the form (5), we have

(14) UtFf = FŨtf
,

where

(15) (Ũtf)(X) = f(τ−1
t X), X ∈ M.

Under the transformation τt : M → M, the measure dX and correlation function
ρ0(X) are easily seen to be invariant; from equations (6) and (14) we conclude that
〈UtFf 〉µ0 = 〈Ff 〉µ0 . This remains true for any function F ∈ L2(M, ρ0dX), which
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proves the assertion of the lemma and thereby establishes that the group {Ut, t ∈ R1}
is unitary on L2(Ω, µ0).

Under the correspondence between the Fock space Fs(H) = L2(M, ρ0dX) and
L2(Ω, µ0) given in Lemma 1 (here H = L2(Rν×Rν, dλ)), the dynamics Ut on L2(Ω, µ0)
is unitarily equivalent to the dynamics Ũt on L2(M, ρ0dX). The latter dynamics is
readily seen to be of the form Ũt = Γ(ut), where ut is the one-particle dynamics in
given by

(utf)(q, v) = f(q − vt, v).

Its infinitesimal generator h is

(hf)(q, v) = iv
∂f

∂q

whence the infinitesimal generator H of the dynamics Ũt is equal to

Hf = dΓ(h)f =
∑
k

ivk
∂f

∂vk
, f ∈ L2(M, ρ0dX).

We note that the spectrum of h is Lebesgue and fills the entire line (−∞,∞). Thus
H has a Lebesgue spectrum with infinite multiplicity which also fills all of (−∞,∞).

2. Stochastic gas. We now consider another stochastic dynamics defined on the
space Ω of all locally finite collections ω = {qi}, qi ∈ Rν .

For each fixed configuration ω ∈ Ω we consider the collection of independent Wiener
processes Y = {yqi} starting at points in ω:

yqi(0) = qi, i = 1, 2, . . . .

The distribution of the process Y (t) in the space Sω =
⊗

qi∈ω Sqi of all collections
of trajectories wωt = {wqi(t)}, where Sqi is the space of trajectories of an individual
Brownian motion starting at qi, is the product dW =

∏
dWqi of the Wiener measures

defined on each space Sqi .

Lemma 4. For any locally finite configuration ω, almost all (with respect to the
measure dW ) sets of trajectories wωt = {wqi(t)} are such that for every 0 ≤ t0 < ∞
the configuration

ωt0 = {wqi(t0), qi ∈ ω}
is locally finite.

A stochastic dynamics {ωt} is thus defined on the space Ω; we denote by P tω0
(·)

the associated transition measure,

P tω0
(A) = Pr(ωt ∈ A|ωt=0 = ω0).

Then for any probability measure µ = µ0 on Ω we can define the evolution of the
measures {µt, 0 ≤ t <∞} in the usual way by setting

(16) µt(A) =
∫

Ω

P tω(A) dµ0(ω).
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Lemma 5. The distribution µρ0 of the Poisson field in Rν generated by the measure
ρdx on Rν is invariant under the evolution (16) for any 0 < ρ <∞.

The proof is similar to that of Lemma 3, and can also be found in [16].
Thus, the unitary group Ut on L2(Ω, µ

ρ
0) generated by our dynamics can be carried

over via the isomorphism (8) to the Fock space Fs(H), where H = L2(Rν , ρdx), and
it coincides there with the group Γ(ut); ut = eit∆ is the group acting on L2(Rν , ρdx),
where ∆ is the Laplace operator. The infinitesimal generator of the group Ut thus
coincides with dΓ(∆).

Remark. A similar construction is valid for any dynamics on Ω generated by the
independent dynamics of the individual particles in a configuration ω ∈ Ω. The Pois-
son measure µρ0 is invariant under every such dynamics, and the corresponding group
Ut on Fs(L2(Rν , ρdx)) is of the form Γ(ut), where ut is the one-particle dynamics in
L2(Rν , ρdx).

§5. The Euclidean approach

1. Brief sketch of the method. We recall that in the introductory chapter
(5.0) we discussed the two basic ideas that form the basis of the general method in
mathematical physics called the “Euclidean approach”:

1) Introduction of an “imaginary time”, i.e., the operator semigroups exp{−tH},
t > 0, are studied in place of the unitary group exp{itH}, −∞ < t <∞, where H is
the Hamiltonian of the system. By studying the semigroup exp{−tH} one can extract
a certain amount of information concerning the spectral properties of the operator H
which can then be brought to bear on the analysis of exp{itH}.

2) The renormalized Feynman-Kac-Nelson formula: let the operator H acting on
the Hilbert space L2(X, dν0) be of the form

H = H0 + V,

where H0 is selfadjoint on L2(X, dν0) and coincides with the infinitesimal generator
of the stochastic semigroup J 0

t for some stationary Markov process ξ = {ξt, t ∈ R1}
with values in X and invariant measure dν0, and V is a multiplication operator given
by multiplication by a real-valued function on X ; moreover, H has a ground-state
eigenvector Φ0 with eigenvalue λ0. One can then construct a new stationary Markov
process η = {ηt, t ∈ R1} with values in X and invariant measure dν = |Φ(x0)|2dν0
such that the infinitesimal generator Hrenorm of the associated stochastic semigroup
Jt acting on L2(X, d) is unitarily equivalent to the operatorH−λ0E. The probability
distribution µ in the space Ω = XR1

of trajectories {xt, t ∈ R1} of the process η is
obtained as the Gibbs limit of the distribution µ0 for the process ξ in Ω:

(2) µ = lim
T↑R1

µT ,

where the distribution µT (T is a finite closed interval on the R1 axis) is determined
by the density

(3)
dµT
dµ0

=
1
ZT

exp
{
−
∫
T

V (x(τ))dτ
}
,
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and ZT is a normalization factor,

ZT =
∫

Ω

exp
{
−
∫
T

V (x(τ))dτ
}
dµ0.

The ground state of the operator Hrenorm is the function Φ0 ≡ 1 ∈ L2(X, dν) with
zero eigenvalue, and the rest of the spectrum of Hrenorm describes the energy of the
“excited states” of the system.

The same method can also be used for infinite-dimensional quantum systems
(fields). The only difference is that now there is no initial Hamiltonian H , and the
Hamiltonians HΛ(1) are defined for finite subsystems of the infinite system (the lat-
ter are indexed by the elements Λ of an increasing ordered set); the subsystems are
described by the Hilbert spaces HΛ = L2(XΛ, dν

0
Λ), where the XΛ ⊂ X are subsets

of some set X . For every Λ we construct as described above a stationary Markov
process ηΛ with values in XΛ and distributions µΛ in the space ΩΛ = XR1

Λ , and then
take the limit Λ ↑. This gives a limit stationary Markov process η = {ηt, t ∈ R1}
with state space X and distribution µ,

µ = lim
Λ↑

µΛ

on Ω = XR1
. The infinitesimal generator Hrenorm for the stochastic semigroup Jt of

this process is declared to be the Hamiltonian of the infinite system (in its “ground
state”).

There are a few infinite systems for which the dynamics τt can be constructed by
taking a limit Λ ↑ of local dynamics

τΛ
t = exp{itHΛ}A exp{−itHΛ}, A ∈ B(HΛ)

in a suitable quasilocal algebra A =
⋃

Λ AΛ, where AΛ ⊆ B(H) and the ground state
〈A〉 for this dynamics is obtained as the limit of ground states of the form

(4) 〈A〉Λ = (AΦΛ
0 ,Φ

Λ
0 )HΛ , A ∈ AΛ,

as Λ ↑ (here ΦΛ
0 is the (normalized) ground-state eigenvector for the Hamiltonian

HΛ). For such systems, Hrenorm turns out to be unitarily equivalent to the operator
HGNS for the dynamics τt on the space HGNS constructed from the ground state 〈·〉.

We will now illustrate this general scheme in the case of the following very simple
example. Let an infinite system of interacting oscillators be given on the lattice Zν

(this system was analyzed in §2). The formal Hamiltonian is given by (see 1.2)

(5) H =
∑
x∈Zν

p2
x +

1
4

∑
ax1,x2qx1qx2 ,

where {px, qx, x ∈ Zν} is the system of “momentum” and position operators, and
A = {ax1,x2 , x1, x2 ∈ Zν} is a infinite matrix defining a strictly positive operator on
l2(Zν). The introduction of the formal Hamiltonian (5) means that for every finite
set Λ ⊂ Zν one must choose a Hamiltonian

(6)

HΛf =
∑
x∈Λ

p2
xf +

1
4

( ∑
x1,x2∈Λ

ax1,x2qx1qx2

)
f

= −
∑
x∈Λ

∂2f

∂q2x
+

1
4

( ∑
x1,x2∈Λ

ax1,x2qx1qx2

)
f,
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acting on the space L2(RΛ, d|Λ|q). As we have already shown in §2, the operator
HΛ − λ0E (where λ0 is the smallest eigenvalue of HΛ) is unitarily equivalent to the
operator

Hrenorm
Λ = −

∑
x∈Λ

∂2f

∂q2x
+

∑
x1,x2∈Λ

bΛx1,x2
qx1

∂f

∂qx2

,

acting on the space L2(RΛ, p(q)d|Λ|q), where

(8) p(q) = const exp
{
− 1

2

∑
x1,x2∈Λ

bΛx1,x2
qx1qx2

}
,

and
BΛ = {bΛx1,x2

} = A
1/2
Λ , AΛ = {ax1,x2 , x1, x2 ∈ Λ}.

HereHrenorm
Λ is the infinitesimal generator of a stochastic semigroup for the stationary

Gaussian Markov process ξΛt = {ξΛt (x), x ∈ Λ} with mean 〈ξΛt (x)〉 = 0 and covariance
matrix

(9) 〈ξΛt1(x1), ξΛt2(x2)〉 = (A1/2
Λ exp{−A1/2

Λ |t1 − t2|})x1,x2 .

Letting Λ ↑ Zν , we now obtain an infinite-dimensional Gaussian stationary process
ξt = (ξt, t ∈ Zν} with zero mean and covariance matrix of the form (9), where AΛ is
replaced by the matrix A. The stochastic semigroup Jt for this process acts on the
space Hphys = L2(RZ

ν

, dν0) of functionals of ξt that depend on the values {ξt=0(x)}
at the time t = 0. Here ν0 is a Gaussian measure with zero mean and covariance
matrix A−1/2.

Passing to the new Markov process

ηt(x) =
∑
x′∈Zν

Cx,x′ξt(x′),

where the matrix C = {Cx1,x2} = A1/4, we obtain that for every fixed t = t0 the
random variables {ηt0(x)} are independent and have a normal distribution dµ0(x)
with variance 1. The covariance of this process is equal to

(10) 〈ηt(x)ηt′ (x′)〉 = (exp{−A1/2|t− t′|})x,x′ .

The space Hphys = L2(rZ
ν

, dν0) coincides with the space L2(RZ
ν

, dν̂0) of function-
als of the values {ηt=0(x)} of the process at time t = 0, and dν0 is the product∏
x∈2ν dµ0(x) of the normal distributions.
Choosing an orthonormal basis

(11) : ηk1t=0(x1) : : ηk2t=0(x2) : · · · : ηks
t=0(xs) := Φ(x1,k1),...,(xs,ks),

of L2(RZ
ν

, dν̂0), we can identify L2(RZ
ν

, dν̂0) with the Fock space Fs(l2(Zν)), as was
explained in 3.1. Next, a straightforward calculation of the matrix elements for the
operator Jt in the basis (11):

(12) (JtΦ(x1,k1),...,(xs,ks)Φ(x′
1,k

′
1),...,(x′

s,k
′
s))
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together with equation (10) and the standard diagram technique for computing means
of the type 〈: ξX1 : · · · : ξXm :〉, where ξXi =

∏
x∈Xi

ξ
(i)
x and the {ξ(i)x , x ∈ Xi} are sets

of random variables (see [26] for more details), shows that under the above identifi-
cation of L2(RZ

ν

, dν̂0) with Fs(l2(Zν)), Jt goes into the operator Γ(exp(−tA1/2)) on
Fs(l2(Zν)), and hence Hrenorm is unitarily equivalent to the operator dΓ(A1/2). On
the other hand, we showed in §2 that for the dynamics τt on the Weyl algebra con-
structed from the formal Hamiltonian (5), the operator HGNS found for the ground
state 〈·〉

〈A〉 = lim
Λ↑Zν

(AΦΛ
0 ,Φ

Λ
0 ),

of the Weyl algebra is also unitarily equivalent to dΓ(A1/2), i.e., HGNS is unitar-
ily equivalent to Hrenorm (here ΦΛ

0 is a normalized ground-state eigenvector for the
Hamiltonian (6)).

The setup described above also applies to the more complicated anharmonic-
oscillator Hamiltonian given formally by

(13)
Hanharm =

∑
x∈Zν

p2
x +

∑
x1,x2∈Zν

ax1,x2qx1qx2 + λ
∑
x∈Zν

Q(qx)

= Hharm + V,

where Hharm is the formal Hamiltonian (5) for harmonic oscillators with the poten-
tial V = λ

∑
x∈Zν Q(qx) and Q(·) is a polynomial bounded from below. However, to

construct the distribution µ for the limit Markov process corresponding to the Hamil-
tonian (13), it is technically easier to use a Gibbs modification of the limit Gaussian
measure µ0 = µharm already constructed above for harmonic oscillators, i.e., to set

(14) µ = lim
Λ↑Zν

T↑R1

µΛ,T ,

where

(15)
dµΛ,Γ

dµharm
=

1
ZΛ,T

exp
{
− λ

∑
x∈Λ

∫
T

Q(qx(τ)) dτ
}
,

and ZΛ,T is a normalization factor.
We note that the proof that the limit (14) exists requires subtle methods in sta-

tistical physics and quantum field theory (e.g., cluster expansions, or correlation in-
equalities, etc.).

Finally, we can use the remark at the end of 5.0 and take as the starting point
for the construction of the limit measure not the formal Hamiltonian H , but rather
the formal Euclidean classical action S({qx(τ)}), which for a system of anharmonic
oscillators has the form

(16)
SEucl({qx(τ)}) = −i

∫ (
1
2

∑
x

q̇2x +
1
2

∑
x1,x2

ax1,x2qx1qx2 +
∑
x

Q(qx)
)
dτ

= i(Sharm
Eucl + Sanharm

Eucl ).

The term in (16) quadratic in {qx(τ)} generates a Gaussian measure µ0 for harmonic
oscillators, and its Gibbs modification by means of the perturbation iSanharm

Eucl coincides
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with the modification (14) and (15). This last approach is convenient because it makes
it unnecessary to introduce the hamiltoniansHΛ explicitly, and it is the one most often
used in the Euclidean approach to the models of Euclidean quantum field theory to
be described below.

We conclude this section by stressing that, as we have seen from the examples
given above, one very convenient way to study infinite physical systems in the ground
state, which avoids the need to explicitly construct the Heisenberg dynamics (in some
suitable C∗-algebra), is to construct the Markov field and introduce the associated
Hilbert space Hphys and a stochastic semigroup acting on it (i.e., what is usually
referred to as a “Euclidean object”). Then the dynamics itself (more precisely, the
associated GNS representation for the ground state) is defined on the space Hphys in
terms of Hrenorm, the infinitesimal generator of the semigroup Jt.

2. Euclidean quantum fields (general axioms). For Euclidean quantum field
models, the appropriate “Euclidean object” (when fermion fields are present) turns
out to be less familiar than the random probabilistic processes encountered in the
above consideration of boson models. We will therefore begin our treatment of the
Euclidean approach to the quantum field models with a discussion on a widely adopted
system of axioms.

Field algebra. A boson field algebra EnB = EnB(Rν+1) is a commutative topological
algebra with unit 1 (and a metrizable topology) and a distinguished set of genera-
tors {ξϕ, ϕ ∈ Sn(Rν+1)} indexed by the elements of the Schwartz space Sn(Rν+1)
of infinitely differentiable functions that decay rapidly at infinity (see [38]) and are
defined on Rν+1 with values in Cn (or Rn). The map

Sn(Rν+1) → EB : ϕ→ ξϕ

is required to be linear and continuous. Thus, EB is the completion of the commu-
tative algebra of polynomials in the elements {ξϕ} of EB. A fermion field algebra
EnF = EnF (Rν+1) is a (topological) Grassmann (super) algebra with unit 1, and hav-
ing a distinguished set of odd (anticommuting) generators {ψϕ, ψϕ, ϕ ∈ Sn(Rν+1)},
indexed by the elements ϕ ∈ Sn(Rν+1). The maps Sn(Rν+1) → EnF : ϕ → ψϕ
and ϕ → ψϕ are required to be linear and continuous. The full field algebra E =
En,m(Rν+1) = EnB(Rν+1) ⊗ EnF (Rν+1) is the tensor product of the boson and fermion
algebras.

A Euclidean quantum field is a quasistate 〈·〉, defined either on a boson algebra EnB
(boson field) or fermion algebra EnF (pure fermion field), or on the full algebra En,m.

Positivity in the sense of Nelson and Symanzik. We assume that the boson
part of the field 〈·〉 on EnB, i.e., the restriction of the quasistate 〈·〉 to the boson
subalgebra EnB, is realized as some generalized random field. More precisely, this
means that there exists a probability space (Ω,Σ, µ ) (Σ a σ-algebra, µ a probability
measure defined on Σ) such that the algebra EB is (topologically) isomorphic to the
algebra L̂∞(Ω,Σ, µ) =

⋂
1≤p<∞ Lp(Ω,Σ, µ) and for every element F ∈ EB

〈F 〉 =
∫

Ω

F̃ dµ,

where F̃ ∈L̂∞(Ω,Σ, µ) is the image of F under the imbedding EB→L̂∞(Ω,Σ, µ); and
the topology on the algebra L̂∞ is defined by a countable family of norms ‖ · ‖Lp . It
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follows from these hypotheses that the Schwinger functions (the moment functions
〈ξϕ1 , . . . , ξϕn〉 for the boson field) are separately continuous in each variable ϕi ∈
Sn(Rν+1). In the case of a general field 〈·〉 on the full field algebra, this property is
postulated for the complete Schwinger functions

〈ξϕ1 . . . ξϕk
ψϕk+1 . . . ψϕk+s

ψϕk+s+1
. . . ψϕk+s+m

〉.
Translation invariance. We will always assume that the field 〈·〉 is translation-

ally invariant. This means that the quasistate 〈·〉 is preserved by every homomor-
phism Us : E → E of the algebra E into itself, s ∈ Rν+1 acting on the generators by
the formula

Usξϕ = ξϕ(·−s)

(and similarly for ψϕ and ψϕ):

(17) 〈UsA〉 = 〈A〉.
Physical positivity (Osterwalder-Schroeder positivity). We first introduce

the following involutions:
i) In the space Rν ,

Vx = (−x0, x1, . . . , xν), x = (x0, x1, . . . , xν).

(One usually calls x0 the time coordinate, and ν is the time involution.)
ii) In the space of functions

(17′)
(Vbosϕ)(x) = ϕ(Vx), ϕ ∈ Sn(Rν+1),

(Vfermϕ)(x) = εϕ(Vx), ϕ ∈ Sm(Rν+1),

where ϕ is the vector whose coordinates are the complex conjugates of those of ϕ,
and ε is an m×m matrix satisfying ε2 = E.

iii) In the algebra E , with the action on the generators given by

Θξϕ = ξνbosϕ, Θψϕ = ψνfermϕ, Θψϕ = ψνfermϕ.

The involution Θ defined on the generators is then extended to a continuous antilinear
involution of the field algebra E by means of the relations

(17′′) Θ(A1A2) = Θ(A2)Θ(A1), A1, A2 ∈ E .
The field 〈·〉 is said to be Θ-invariant if for every A ∈ E

〈ΘA〉 = 〈A〉.
Evidently, for any Θ-invariant field 〈·〉 the bilinear form

(18) (A1, A2) = 〈ΘA1, A2〉
is Hermitian.

We denote by E+ ⊂ E the subalgebra of E with unit 1 generated by the elements
{ξϕ, ψϕ, ψϕ} such that ϕ ⊂ suppRν+ = {x : x0 > 0} (the “future” algebra). A Θ-
invariant field is said to be OS-positive if the Hermitian form (1) is nonnegative on
the subalgebra E+, i.e.,

(A,A) = 〈ΘAA〉 ≥ 0

for all A ∈ E+.
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The physical Hilbert space. Let 〈·〉 be a scalar OS-positive field. We use the
nonnegative Hermitian form (18) to define an inner product on E+. Let I0 ⊂ E+ be
the subspace of all A ∈ E+ for which

(A,A) = 0.

We define an inner product in the quotient space E+/I0 by

([A1], [A2]) = (A1, A2),

where [A] ∈ E+/I0 denotes the coset class of the element A ∈ E+; the completion of
E+/I0 with respect to this inner product is called the physical Hilbert space Hphys.

The transfer matrix. Consider the map

Uτ : E+ → E+ : A→ UτA, τ > 0,

where we write Uτ = U{τ,0,...,0} and the vector (τ, 0, 0, . . . , 0) ∈ Rν+1 is directed along
the positive time axis.

Lemma 1. For every A ∈ E+ and τ > 0 we have the inequality

(19) (UτA,UτA) ≤ (A,A).

For the proof, see [38].
It follows from (19), in particular, that UτI0 ⊂ I0, so that we have a well-defined

operator on Hphys:
Jτ : Hphys → Hphys,

acting on the elements [A] ∈ E+/I0 by the formula

(19a) Jτ [A] = [UτA].

Lemma 2. The family of operators {Jτ , τ ≥ 0} forms a strongly continuous semi-
group of selfadjoint contractions on Hphys.

Proof. That Jτ is a semigroup is obvious; its strong continuity and the contrac-
tion property follow from (19), while the selfadjointness of Jτ is a consequence of the
evident equality

(20) ΘUτ = U−τΘ.

The semigroup Jτ is usually called the transfer matrix of the field (or more precisely,
the transfer matrix semigroup).

Lemma 2 and Stone’s theorem [36] imply that

Jτ = exp{−τH},
where H is a nonnegative selfadjoint operator acting on Hphys. Plainly, [1] ≡ Ω,
where 1 ∈ E+ is the identity of the algebra E , is a ground-state vector for H with zero
eigenvalue,

HΩ = 0.

The operator H = Hphys is called the (physical) Hamiltonian of the field, and Ω is
its vacuum vector.



§5. THE EUCLIDEAN APPROACH 109

Momentum operators. It is clear that every homomorphism U0,s ≡ Us, where
s ∈ Rν , takes the algebra E+ into itself, and also, by (17) and (20), Hphys into itself.
Thus it generates a strongly continuous unitary group Us, s ∈ Rν (the group of spatial
translations) in Hphys which commutes with the semigroup Jτ . By Stone’s theorem
we have

Us = exp{i(s1P1 + · · · + sνPν)}, s = (s1, . . . , sν),

where P = (P1, . . . , Pν) is a set of mutually commuting selfadjoint operators, called
the momentum operators. They all commute with the Hamiltonian H , and

PkΩ = 0, k = 1, . . . , ν.

Other symmetries. If a group of homomorphisms G acting on the algebra E
corresponds to symmetries of the field (such as spatial rotations, “isotopic rotations”,
and so on) that take E into itself, preserve the quasistate 〈·〉, and commute with the
time translations Uτ , then we have a unitary representation g → Tg, g ∈ G of G on
Hphys which commutes with the Hamiltonian Hphys of the field.

3. Markov field (boson case). In practice, one often uses another (equivalent)
construction of the space Hphys and semigroup Jτ which is based on the reversible
Markov property and the stability of the boson field under reflection. We assume here
that the Nelson-Symanzik axiom is satisfied, that the Euclidean boson translationally
invariant field is realized as a probability distribution µ on a measure space (Ω,Σ), and
that the field algebra E coincides with the algebra L̂∞(Ω,Σ, µ) =

⋂
1≤p<∞ Lp(Ω,Σ, µ).

For each t and ε > 0, we define Σεt ⊂ Σ to be the σ-algebra generated by the random
variables {ξϕ, ϕ ∈ Sn(Rν+1)}, for which the function ϕ is supported in the strip
{x : |x0 − t| < ε}.

We write Σt =
⋂
ε>0 Σεt . The boson field 〈·〉 will be said to have the reversible

Markov property if it is Θ-invariant and for all A+ ∈ E+ and A− ∈ E− (the “past”
algebra E− is defined analogously to the “future” algebra E+), we have

(20a) M(A+A−/Σ0) = M(A+/Σ0)M(A−/Σ0),

where M(·/Σ0) ≡ 〈·/Σ0〉 is the conditional expectation relative to the σ-algebra Σ0

(see [11]).
A reversible Markov field is said to be stable under reflection if every element

F ∈ L̂∞(Ω,Σ, µ) transforms under the involution Θ by the formula

ΘF = F.

Lemma 3. Let the boson field 〈·〉 be stable under reflection and have the reversible
Markov property. Then it is OS-positive, and the space Hphys constructed in the
previous section is canonically isomorphic to the space Hphys = L̂∞(Ω,Σ, µ). This
isomorphism is defined on the elements [A] ∈ E+/I0, A ∈ E+ = L̂∞(Ω,Σ, µ) by the
formula

[A] → 〈A/Σ0〉 ∈ L̂∞(Ω,Σ0, µ)

(here the σ-algebra Σ+ is generated by the variables {ξϕ, suppϕ ⊆ Rν+1
+ }). Under this

isomorphism, the semigroup Jτ on Hphys goes into the unitarily equivalent semigroup
J̃τ acting on L2(Ω,Σ0, µ) by the formula

J τf = 〈Uτf/Σ0〉 = P0Uτf, f ∈ L2(Ω,Σ0, µ),
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where Uτ is the unitary operator on L2(Ω,Σ, µ) corresponding to “time translation”
by τ , and P0 is the projection of L2(Ω,Σ, µ) onto the subspace L2(Ω,Σ0, µ).

Proof. For any A ∈ E+ = L̂(Ω,Σ+, µ) we have the decomposition

(21) A = A0 +A′,

where A0 = 〈A/Σ0〉 ∈ L̂∞(Ω,Σ0, µ) and 〈A′/Σ0〉 = 0. Further,

(A,A) = 〈〈ΘAA/Σ0〉〉 = 〈〈ΘA/Σ0〉〈A/Σ0〉〉,
where we have used the Markov property. From the decomposition (21) and the
stability under reflection, we see finally that

(A,A) = (A0, A0) =
∫

Ω

|A0|2dµ.

The remaining assertions in the lemma are proved similarly.

We note that the spatial translations x → x + (0, s), s ∈ Rν , in Rν+1 generate a
group of unitary operators {Us, s ∈ Rν} on Hphys that commute with the transfer
matrix Jτ .

Example. Free scalar neutral field in Rν+1. In this case the generators ξϕ
are indexed by real functions ϕ ∈ S(Rν+1). The field is Gaussian with zero mean and
covariance

(22) 〈ξϕ1ξϕ2〉 = c((−∆(ν+1) +m2)−1ϕ1, ϕ2) = c

∫
Rν+1

ϕ̃1(p)ϕ̃2(p)
p2 +m2

dp,

where c > 0, m ≥ 0 (m > 0 for dimensions ν = 0, 1), ∆(ν+1) is the Laplace operator
on Rν+1, (·, ·) is the inner product in L2(Rν+1, dx), and ϕ̃(p) is the Fourier transform
of ϕ ∈ SR

ν+1
. The above field is called a Nelson field (see [58]), or (for ν = 1) an

Ornstein-Uhlenbeck field (process), see 5.0 above.
The formal Euclidean action for the field (22) is

SEucl = ic

∫
Rν+1

L(ϕ) dν+1x,

where the Lagrangian L(ϕ) is given by

(23) L(ϕ) = (∇ϕ(x))2 +mϕ2(x).

Lemma 4. The Gaussian field (22) is stable under reflection and has the reversible
Markov property; it is invariant under the motions of the space Rν+1. Every scalar
neutral (i.e., real) Gaussian field with these properties is of the form (22).

We will not prove this lemma here (see [32, 33]). We observe further that the
Markov property of (22) reflects the local nature of the Lagrangian (23) for this field.

One finds without difficulty that the space Hphys for this field is isomorphic to the
Fock space Fs(H−1/2), where H−1/2 = H−1/2(Rν) is the Sobolev space of functions
of x ∈ Rν with the inner product

((−∆(ν) +m2)−1/2ϕ1, ϕ2) =
∫
Rν

ϕ̃1(p)ϕ̃2(p)
(p2 +m2)1/2

dp,
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and −∆(ν) is the Laplace operator in Rν . The transfer matrix Jτ coincides with the
operator

Γ(exp{−(−∆(ν) +m2)1/2τ}), τ > 0

on Fs(H−1/2).
More complicated (non-Gaussian) boson scalar Markov fields can be obtained by

modifying the Nelson field by a self-interaction of the form

V =
∫

: P (ξ(x)) : dx,

where P is an even polynomial of degree, at least four, which is bounded from below,
and : · : denotes the Wick ordering corresponding to the Nelson Gaussian field (22)
(see [26]). Such modifications in the case when ν = 1 have been widely studied using
a rather difficult and refined technique based in part on cluster expansions (see the
books [12] and [38]).

4. The Markov fermion field.

A. Digression on probability theory on a Grassmann algebra. We will
need some results from the theory of quasistates on a Grassmann algebra; this theory
has some formal similarities with ordinary probability theory.

Let A = AN , where N = {1, . . . , n}, be the Grassmann algebra with 1 on finitely
many generators α1, . . . , αn. Every element A of can be expressed uniquely in the
form

(24) f =
∑
T⊆N

CTαT ,

where the sum is over all subsets of N , and

αT = αi1αi2 . . . αik , T = {i1 < i2 < · · · < ik}.

We observe that an element f has a two-sided (left and right) inverse if and only
if its free coefficient Cϕ is nonzero. Every invertible f ∈ A can be written uniquely as

(25) f = C∅ exp{f̂},

where f̂ ∈ A is an element with Cϕ = 0. Conversely, every element of the form (25)
is invertible, with inverse given by

f−1 = C−1
∅ exp{−f̂}.

We note that the algebra A is the tensor product

A = A1 ⊗ · · · ⊗ An,

(in the sense of superalgebras, see [23]), where each Ak, k = 1, . . . , n, is the two-
dimensional Grassmann algebra with 1 on the single generator αk.
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The Berezin integral. There exists a standard quasistate 〈·〉0, called the Berezin
integral, on the algebra A. It is defined as the product of the quasistates 〈·〉k0 on the
algebras Ak, k = 1, . . . , n, given by

〈1〉k0 = 0, 〈αk〉k0 = 1.

Thus, for an element f expressed in the form (24) we have

(25′) 〈f〉0 = CN ,

where CN is the coefficient of the highest monomial α1α2 . . . αn. The standard nota-
tion for the quasistate 〈·〉0 is

(26) 〈f〉0 ≡
∫

A

f dα1 . . . dαn ≡
∫

A

f dαN .

The density of a quasistate.

Lemma 5. Every quasistate 〈·〉 on the algebra A is uniquely representable in the
form

(27) 〈f〉 =
∫

A

fg dαN ,

where g ∈ A is called the density of 〈·〉.
Proof. Let

MT = 〈αT 〉
be the moment of the quasistate 〈·〉. Then if we set

(28) g =
∑
T⊆N

(−1)π(T )MT ′αT ,

where T ′ = N \ T = (i′1, . . . , i
′
n−k), T = (i1, . . . , ik), and π(T ) is the sign of the

permutation
(i′1, . . . , i

′
n−k, i1, . . . , ik),

we see that (27) is satisfied for all f ∈ A. The uniqueness of the representation (27)
is obvious.

Note that (28) shows that for an even quasistate (i.e., one which vanishes on all
odd elements f ∈ A) and even n, the density g is an even element of A. We will
always assume henceforth without further mention that 〈·〉 is an even quasistate and
n is even.

A quasistate 〈·〉 on A will be called regular if its density g is invertible, i.e., according
to (28), if the total moment is nonzero:

(28′) MN �= 0.
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Partial Berezin integral. Let T ⊂ N be a subset with an even number of
elements and let AT ⊂ AN be a Grassmann subalgebra of AN . We define the partial
Berezin integral ∫

AN−T

f dαN\T

to be the linear map A → AT given on monomials αS , S ⊆ N , by∫
αSdαN\T =

{
0 if N \ T �⊆ S,

(−1)π(S,T )αT∩S if N \ T ⊆ S,

where π(S, T ) is the sign of the permutation taking all the elements ij ∈ T ∩ S in
the set S = {i1, . . . , ik} to the left of all the elements in N \ T ⊆ S (and preserving
the ordering of the elements in T ∩ S and N \ T considered separately). It is easily
verified that the repeated Berezin integral satisfies

(29)
∫

AT

(∫
AN−T

fdαN\T

)
dαT =

∫
A

f dαN .

For any subset T ⊆ N of even cardinality, we write 〈·〉T for the restriction of the
quasistate to the subalgebra AT , and gT is the density of 〈·〉T on AT . It follows easily
from (29) that

gT =
∫

AN\T

g dαN\T .

According to (28′), the quasistate 〈·〉T is regular if

MT �= 0.

The characteristic functional. Let 〈·〉 be a quasistate on an algebra A with
density gT and let F = {f1, . . . , fs} be a set of odd elements on A. We enlarge A by
adding new Grassmann generators η1, . . . , ηs. The partial integral

(28′′)
∫

A

exp{f1η1 + f2η2 + · · · + fsηs}g dαN = ψF ∈ Â,

is called the characteristic functional of F (here Ã is the Grassmann algebra with the
unit on the generators η1, . . . , ηs).

Moment formulas. The linear operations f∂/∂ηi and ∂f/∂ηi (left and right
differentiation) for f ∈ Â are defined on the algebra A as follows. On monomials ηT
they are given by the formula

∂ηT
∂ηi

=
{ 0, i �∈ T,

(−1)σ
left
T (i)ηT\{i}, i ∈ T,

where σleft
T (i) is the number of factors in ηT preceding ηi. The right derivative ηT∂/∂ηi

is given by the same formula, except that σleft
T (i) is replaced by σright

T (i) the number
of factors in ηT that follow ηi
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Lemma 6. The formula

(30) 〈fi1 . . . fik〉 =
(

∂

∂ηi1

∂

∂ηi2
. . .

∂

∂ηik
ψF

)
η=0

=
(

∂

∂ηT
ψF

)
η=0

holds, where (h)η=0 denotes the free coefficient on expansion (24) for h ∈ Â.

Proof. The result (30) follows from the identity

exp
{∑

i

fiηi

}
=
∏
i

(1 + fiηi) = 1 +
∑

{i1,...,ik}
fi1fi2 . . . fikηik . . . ηi1

for the exponential.

Conditional expectation. Let 〈·〉 be a quasistate on A and T ⊆ N a subset of
even cardinality such that the state 〈·〉T on AT is regular. The conditional expectation
〈f | AT 〉 is defined as the linear map A → AT given by

(31) 〈f |AT 〉 ≡ 〈f |T 〉 def=
∫

AN\T

fg dαN\T (gT )−1 = g−1
T

∫
AN\T

fg dαN−T ,

where we recall that gT is the density of the quasistate 〈·〉T (the last equality in (31)
follows from the evenness of the element g−1

T ). The element

(32) gg−1
T ∈ A

is called the conditional density of 〈·〉 relative to the algebra AT . We note that
the definitions (31) and (32) are formally the same as corresponding concepts in the
classical theory of probability.

It is not difficult to check that the conditional expectation 〈· | T 〉 has the following
properties, which again are reminiscent of the properties of the classical conditional
expectation.

(i) Let T1 ⊆ T2 ⊆ N be subsets of N of even cardinality and such that the states
〈·〉T1 and 〈·〉T2 are regular. Then

(33) 〈〈f |T2〉|T1〉 = 〈f |T1〉.

This is verified by a straightforward calculation, see [52].
(ii) If h ∈ AT , then

(33a) 〈hf |T 〉 = h〈f |T 〉, 〈fh|T 〉 = 〈f |T 〉h.

Moreover,
〈1|T 〉 = 1.

(iii) For every f ∈ A, we have

〈〈f |T 〉〉 = 〈f〉.

The last two properties (ii) and (iii) uniquely characterize the conditional expec-
tation in the classical case. In the Grassmann case, we have the following result.
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Lemma 7. Let a quasistate 〈·〉 be given on A and let T ⊆ N be a subset of even
cardinality such that the quasistate 〈·〉T is regular. Then there is just one map π : A →
AT having the properties (ii) and (iii), i.e.,

(34)
π(hf) = hπ(f), π(fh) = π(f)h, h ∈ AT ,

π1 = 1

and

(35) 〈π(f)〉 = 〈f〉.

It coincides with the conditional expectation 〈· | T 〉.
Proof. By (34) we see that

π(aR) = (−1)π(S,P )aPπ(aS) = (−1)π(S,P )aP
∑
L

KS
LaL,

where P = R ∩ T , S = R ∩ (T \ N) ⊂ R, π(S, P ) is the permutation taking the set
P to the left of the set S ⊂ R, and KS

L are the coefficients in the expansion of the
element π(aS) ∈ AT . Further, by (35) we have

(36) 〈π(aR)〉 = (−1)π(R,P )
∑

QP,LK
S
L = MP∪S ,

where QP,L = 〈aPaL〉, L,P ⊆ T .
For fixed S and P running over the entire subset T , we can regard the right-hand

side of (36) as a system of linear equations with matrix {QP,L} for the coefficients
{KS

L , L ⊆ T }. One computes without difficulty that

Det{QP,L} = ±(〈aT 〉)2|T | �= 0

(in view of the regularity of 〈·〉T ). Thus the coefficients KS
L are uniquely determined,

and hence π coincides with 〈· | T 〉.
Conditional characteristic functional. Let 〈· | T 〉 be a conditional expectation

with density g(gT )−1, and let F{f1, . . . , fs} be a set of odd elements of A. We again
enlarge the algebra A by adding new generators η1, . . . , ηs and consider the partial
integral

ψcond
F =

∫
AN−T

exp{f1η1 + · · · + fsηs}dαN\T ∈ AT ⊗ ÂN ,

where Ã is the Grassmann algebra with 1 on the generators η1, . . . , ηs; this integral is
called the conditional characteristic functional. The conditional moments satisfy the
formula

(36′) 〈fi1 . . . fik |T 〉 =
(

∂

∂ηik
. . .

∂

∂ηi1
ψcond
F

)
η=0

,

where (h)η=0 for h ∈ AT ⊗ Â denotes the part of the expansion (24) for h that does
not contain the generators ηi, i = 1, . . . , s.
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Independence. The two sets F = {f1, . . . , fs} and H = {h1, . . . , hj} are said to
be independent relative to the quasistate 〈·〉 if for every f ∈ AF and h ∈ AH we have

〈fh〉 = 〈f〉〈h〉,

where AF ⊆ A and AH ⊆ A are the subalgebras with 1 generated by the sets F and
H , respectively.

Let AT be a subalgebra of A, where T is a set of even cardinality, for which the
conditional expectation 〈· | T 〉 is defined. The system F = {f1, . . . , fs} is independent
of the algebra AT if and only if the conditional expectation for every element f ∈ AF
is given by

(36′′) 〈f |T 〉 = 〈f〉1.

¿From this it also follows easily that the system F is independent of AT if and only
if the conditional characteristic functional satisfies

(36′′′) ψcond
F ∈ Â,

i.e., its expansion (24) does not involve any generators αi ∈ AT .

Gaussian gauge-invariant quasistates. We consider the Grassmann algebra A
on 2n generators (n arbitrary), which are divided into two groups: α1, . . . , αn, α1, . . . , αn,
where the indices are ordered as follows:

1 < 1 < · · · < n < n

(below we frequently omit the bar over the subscript k and write αk for αk).
In §3 above, we defined Gaussian gauge-invariant quasistates on a CAR algebra.

This definition carries over verbatim to the case of a Grassmann algebra with gener-
ators α1, . . . , αn, α1, . . . , αn. Here we provide some information on Gaussian gauge-
invariant quasistates and formulas associated with them. Each such state is defined
by its covariance matrix D = {dij}, where

dij = 〈αiαj〉.

We will need the formula (Gaussian Berezin integral)

(37)
∫

exp
{∑

cijαiαj

}
dαn dαn . . . dα1 dα1 = det{cij},

where C = {cij} is an arbitrary matrix. This formula follows easily by expanding out
the exponential in expression (25′) for the Berezin integral.

Lemma 8. Let 〈·〉 be a Gaussian gauge-invariant quasistate on the algebra A with
a nondegenerate covariance matrix D. Then the density of 〈·〉 is equal to

(38) g = (det{−C})−1 exp
{
−
∑

cijαiαj

}
,

where the matrix C = {cij} is equal to D−1.
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Proof. We first observe that by (37), the element given by (38) is the density of
some state 〈·〉. We will show that this state is a Gaussian gauge-invariant quasistate
with covariance matrix D. To this end we consider the characteristic functional of
a system of generators α1, . . . , αn, α1, . . . , αn, which we write in a form somewhat
different from (28′′):

(39)

ψ =
〈

exp
{∑

i

(αiηi + ηiαi)
}〉

= det(−D)
∫

A

exp
{∑

ij

cijαiαj

}
+
∑
i

(αiηi + ηiαi) dαN

= exp
{∑

ij

dijηiηj

}
.

Indeed, if we introduce the elements

βi = αi −
∑
j

dijηj , βi = αi −
∑
j

dijηj

and use the change-of-variables formula for Berezin integrals (see [5]), we arrive at
equation (39) after some straightforward algebra. For the characteristic functional as
defined in (39), the moments 〈αQ〉, where Q = T ∪ T , T = {i1 < i2 < · · · < ik},
T = {j1 < · · · < js}, are given by the formula

(40) 〈αQ〉 =
∂

∂ηjs

. . .
∂

∂ηj1
ψ

∂

∂ηi1
. . .

∂

∂ηik
.

Applying this to ψ, we arrive at equation (1.3) for the moments of a Gaussian qua-
sistate. It follows from (40) that

〈αiαj〉 = 〈αiαj〉 = 0, 〈αiαj〉 = dij .

The lemma is proved.

Wick ordering. In an algebra A equipped with a Gaussian (gauge-invariant)
quasistate, one can define the : · : (Wick ordering) operation in exactly the same
way as for a free quasistate on the CAR algebra (see (6.3)). Moreover, the Wick
monomials : αQ : in A can be defined using the Wick exponential:

: exp
{(∑

i

ηiαi + αiηi

)}
:= exp

{(∑
i

ηiαi + αiηi

)}
ψ−1

= exp
{(∑

i

ηiαi + αiηi

)
−
∑
ij

dijηiηj

}
.

Namely, we have the formula

: αQ :=
(

∂

∂ηik
. . .

∂

∂ηi1
: exp

{(∑
i

ηiαi + αiηi

)}
:

∂

∂ηj1
. . .

∂

∂ηjs

)
η=0,η=0

,
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where
Q = T ∪ T , T = {j1, . . . , js}, T = {i1, . . . , ik}

and (·)η=0,η=0 is defined as in (36′).
In computing the moments and semi-invariants (see [26]) of the Wick monomials,

one can use the diagram technique described in [26] (with proper allowance for the
signs involved in the ordering of the factors). For example, the mean

(41) 〈: αQ1 : : αQ2 :〉

is equal to the sum over all such “pairings” of the factors in αQ1 and αQ2 (as in the
general formula in [26]), in which a factor in αQ1 can be paired only with a factor in
αQ2 .

¿From this it follows in particular that the mean (41) is nonzero only when Q1 =
T1 ∪ T 1 and Q2 = T2 ∪ T 2, where |T1| = |T 2| and |T 1| = |T2|.

Conditional expectation. Let AT ⊂ A be a subalgebra with generators {αi, αi, i ∈
T }. The restriction 〈·〉T of a Gaussian gauge-invariant quasistate 〈·〉 to AT is clearly
again Gaussian gauge-invariant, and its covariance matrix is DT = {dij , i, j ∈ T }.
Recall that the matrix DT is nonsingular. Then the density of 〈·〉T on AT has the
form (38), hence by (25) 〈·〉T is regular and the conditional expectation 〈· | T 〉 is
defined. The rule stated in the next lemma is useful for calculating 〈· | T 〉. We can
write the matrix D in block form as

D =
{

DT,T DT,N\T
DN\T,T DT\N,T\N

}
,

where DT,T = DT , DT,N\T = {dij , i ∈ T, j ∈ N \ T }, and so on.

Lemma 9. A) The following formulas are valid :

(41′)

〈αi|T 〉 =
∑
j∈T

bijαj = αTi , i ∈ N \ T,

〈αi|T 〉 =
∑
j∈T

cijαj = αTi , i ∈ N \ T,

where the matrices B = {bij} and C = {cij} are given by

(42) B = DN\T,T (DT,T )−1, C = (D−1
T,TDT,N\T )tr.

B) The elements

βi = αi − 〈αi|T 〉, βi = αi − 〈αi|T 〉, i ∈ N \ T

do not depend on the algebra AT (with respect to the quasistate 〈·〉).
C) The restriction 〈·〉F of a quasistate 〈·〉 to the Grassmann algebra AF with 1

generated by the set of elements F = {βv̇, β v̇, i ∈ N \T } is a Gaussian gauge-invariant
quasistate, and its covariance matrix DF = {〈βiβj〉F } is equal to

(43) DF = DN\T,N\T −DN\T,TD
−1
T,TDT,N\T .
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The proof of this lemma is based on an explicit calculation of the conditional
characteristic functional for the set of generators {αi, αi, i ∈ N \ T },

ψcond =
〈

exp
{∑

i

(αiηi + ηiαi)
}
|T
〉
,

for which we find by Gaussian quadratures that

(44) ψcond = exp
{∑

i,j

dFijηiηj +
∑
i,j

(bijαiηj + cijηiαj)
}
.

Here the matrices DF = {dij}, B = {bij}, and C = {cij} are given by (43), (42).
Formula (41′) now follows immediately by using a formula analogous to equation (40)
for the conditional moments. Moreover, from (44) we find the expression

(45) exp
{∑

i,j

dFijηiηj

}
for the conditional characteristic functional for the system {βi, βi, i ∈ N \T }, whence
part B) follows upon recalling (36′′′). Part C) also follows from (45), and the lemma
is proved.

Using the explicit expression for the Wick monomials and the independence of the
sets {βi, βi, i ∈ N \T } and {αj, αj , j ∈ T }, it is easy to show that the Wick monomial
satisfies

: βQαS :=: βQ : · : αS : .

Furthermore, using (36′) and the preceding lemma, we see that

〈: βQ : |T 〉 = 0.

Thus for every monomial αQ we have

〈: αQ : |T 〉 =: αTQ :,

where the monomial αTQ is obtained from αQ by replacing all the factors αi, αi by αTi
and αTi , respectively.

B. Reversible Markov fermion fields. We return once more to the fermion
Euclidean field, i.e., to a quasistate on the field algebra EF . The preceding construc-
tions of “conditional probabilities” on a finite Grassmann algebra serve as a prototype
for defining the conditional expectation on the infinite Grassmann algebra EF .

As in the case of the boson field, we consider ε-neighborhood

Y εt = {x : |x0 − t| < ε}
of the time slice Yt = {x : x0 = t}, and the Grassmann algebra Eεt generated by the
elements ψϕ, ψϕ, for which suppϕ ⊂ Y εt . We write

Et =
⋃
ε>0

Eεt ,

and evidently
ΘE0 = E0.

Let a Θ-invariant quasistate be defined on EF . Define the Hermitian bilinear form on
E0 by

(46) (F1, F2) = lim
ε→+0

〈U−εΘF1UεF2〉, F1, F2 ∈ E0,

where Uε is the homomorphism of EF induced by translation by ε along the time axis.
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Definition. A quasistate 〈·〉 on the fermion field algebra EF is said to be reversibly
Markov if:

1) it is Θ-invariant;
2) the Hermitian form (46) is nonnegative:

(F, F ) ≥ 0, F ∈ E0;

3) for every t > 0, the conditional expectation 〈· | Et〉 is defined as a linear con-
tinuous map of EF into the subalgebra Et which satisfies properties ii) and iii) for the
conditional expectation for a finite Grassmann algebra (see the preceding subsection).
Here it is assumed that this mapping is unique;

4) for all t and any two elements F+ ∈ E+
t and F− ∈ E−

t (the algebras E±
t are

generated by the elements ψ(ϕ), ψ(ϕ) with suppϕ ⊂ R±
t = {x0 > t, (+), or x0 <

t, (−)}),
〈F+F−|Et〉 = 〈F+|Et〉〈F−|Et〉.

We note that 1) and 3) imply that

〈ΘF |E0〉 = Θ〈F |ε0〉.

Lemma 10. Let a reversible Markov translationally invariant quasistate 〈·〉 be given
on the algebra EF . Then 〈·〉 is OS-positive and the Hilbert space Hphys = E+

F /I0 (see
subsectition 2 above) is canonically isomorphic to the Hilbert space Hphys, where

Hphys = E0/N0, N0 = {F ∈ E0, (F, F ) = 0} ⊂ E0,

is the completion of the quotient space E0/N0 with respect to the inner product

([F1], [F2]) ≡ (F1, F2), F1, F2 ∈ E0,

and [F ] = [F ]0 ∈ E0/N0 is the class of the element F ∈ E0. On the elements [G] =
[G]+ ∈ E+

F /I0, G ∈ E+
F , this isomorphism is given by

[G]+ → [〈G|E0〉]0 ∈ E0/N0.

Under the isomorphism the semigroup Jτ goes into the semigroup Jτ acting on the
elements [F0] ∈ E0/N0 by the formula

(46a) Jτ [F ]0 = [〈UτF |E0〉]0, τ > 0,

where Uτ is the homomorphism of EF induced by translation by τ > 0 along the time
axis.

The proof is similar to that of Lemma 3. As in the boson case, a unitary group
{Us, s ∈ Rν} of spatial translations commuting with Jτ acts on the space Hphys.
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Example: the free Dirac field in R4. This is a Gaussian gauge-invariant field
on the field 〈·〉 algebra EF with generators ψϕ, ψϕ, where the functions ϕ(x), x ∈ R4,
take values in the four-dimensional complex space C4. The covariance of this field is
given by

(47)

〈ψϕ1ψϕ2
〉 =

∑
α,β

∫
R4

∫
R4

(∑
µ

γµ
∂

∂xµ
+m

)−1

αβ

(x, x′),

ϕα1 (x)ϕβ2 (x′)d4xd4x′ =
∑
αβ

∫
R4

(∑
µ

iγµpµ +m

)−1

αβ

ϕ̃α1 (p)ϕ̃β2 (p) dp,

where {ϕα(x), α = 0, 1, 2, 3} are the coordinates of the vector ϕ(x) ∈ C4 with respect
to a basis of C4, and ϕ̃ is the Fourier transform of the function ϕ(x); the γµ, µ =
0, 1, 2, 3 are the four Dirac matrices, which are selfadjoint and satisfy the relations

(47′) γµγµ′ + γµ′γµ = 2δµµ′ , µ, µ′ = 0, 1, 2, 3.

We will assume here that the basis of C4 has been chosen so that the matrix γ0 is
diagonal,

γ0 =

⎛⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎠ .

The formal Euclidean action corresponding to (47) is

∫ [∑
α

mψα(x)ψα(x) +
1
2

∑
α,β

ψα(x)γαβµ
∂ψβ(x)
∂xµ

− ∂ψα(x)
∂xµ

γαβµ ψβ(x)
]
d4x.

In the definition (17′) of the involution Θ, the matrix ε is taken equal to ε = γ0; the
field is then Θ-invariant. The algebra E0 is generated by the elements

ψϕ(x)δ(x0) = ψϕ, ψϕ(x)δ(x0) = ψϕ,

where x = (x1, x2, x3) ∈ R3, and ϕ ∈ S4(R3) is a function on R3 with values in C4. A
simple calculation shows that on a generator ψϕ, ϕ ∈ S4(R3) the Hermitian quadratic
form (46) is equal to

(ψϕ, ψϕ) =
π

2

∫
R3

[(−i∑3
µ=1 γµpµ +m√
p2 +m2

)
γ0 + E

]
α,β

ϕ̃α(p)ϕ̃β(p) d3p,

p = (p1, p2, p3),

where ϕ̃(p) = {ϕ̃α(p), α = 0, 1, 2, 3} is the Fourier transform of ϕ ∈ S4(R3).
Similarly, we find that

(ψϕ, ψϕ) =
π

2

∫
R3

[
E −

(−i∑3
µ=1 γµpµ +m√
p2 +m2

)
γ0

]
α,β

ϕα(p)ϕβ(p) d3p.
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It is not difficult to verify that for each p ∈ R3 the matrices

A±(p) =
[
E ±

(−i∑3
µ=1 γµpµ +m√
p2 +m2

)
γ0

]1/2

are selfadjoint, A±(p) ≥ 0, and

(48)
KerA+(p) = Im A−(p) = C−(p) ⊂ C4,

KerA−(p) = Im A+(p) = C+(p) ⊂ C4

and
dimC−(p) = dimC+(p) = 2.

The restrictionA±(p)|C±(p) coincides with the identity operator on the two-dimensional
space C±(p), respectively. We can thus introduce the Hilbert spaces

H± =
⊕∫

R3
C±(p) dp,

where
⊕∫

R3 . . . d
3p denotes a direct integral of Hilbert spaces, i.e., just, space of

functions {ϕ(p), p ∈ R3} such that for each p the value ϕ(p) ∈ C±(p), respectively.
The space H+ describes the state of a particle (electron), while H− describes the

state of an antiparticle (positron). The fact that for each fixed momentum p ∈ R3

the spaces C±(p) are two-dimensional means that there are two possible values for
the spin of a particle or antiparticle (see [4] for more details). We write

H = H+ ⊕H−.

(According to (48), we have H = L2(R3,C4), the Hilbert space of functions with
values in C4.)

Lemma 11. The Dirac field is a reversibly Markov field, and its state space Hphys

coincides with the Fock space Fs(H). The transfer matrix Jτ of the field coincides
with the operator Γ(exp{−th}) on Fs(H), where h acts on H by multiplication by the
function

√
p2 +m2. The Hamiltonian H of the Dirac field is equal to

H = dΓ(h).

The simple proof will be omitted. Note that in this example, as in the case of the
Nelson boson field, the Markov property of the field follows from the local nature of
the Lagrangian.

5. Euclidean fields on a discrete space. In this book (Chapter 3) we will
study Euclidean fields defined on a set X ×R1 (or X × Z1), where the “space” X is
a countable set, while R1 (or Z1) is the “time” (continuous or discrete). Such fields
arise either by “discretizing” continuous Euclidean fields (see [38]), or as objects in
their own right in certain models in statistical physics.

The concepts used here (Θ-invariance, OS-positivity, the physical Hilbert space,
the transfer matrix, and the reversible Markov property) are analogous to those used
in the discussion of Euclidean fields in a continuous space. However, in contrast to
fields that take their values in a finite-dimensional linear space, for the case of a
discrete space we will introduce a larger class of “chiral” fields, i.e., boson fields with
values in an arbitrary (finite-dimensional) manifold (or even in a finite set). We will
first describe these fields and then also consider fermion fields on a discrete set.
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A. Boson Euclidean fields on a discrete set. We will limit ourselves to the
discrete-time case Z1; the case of continuous time R1 is treated similarly.

Thus, assume that a random field

ξ = {ξy, y = (x, x0) ∈ X × Z1},

is defined on the set X×Z1 = Y , i.e., we have a system of random variables ξy defined
on a probability space (Ω,Σ, µ) indexed by the elements y ∈ Y and taking values in
some topological space S (the space of “spins”). In what follows we will assume
without loss of generality that Ω coincides with the space SY of field configurations
(i.e., of functions on Y with values in S), and that the σ-algebra Σ coincides with the
Borel σ-algebra with respect to the Tychonoff topology on SY .

As above, we consider the field algebra E = L̂p(Ω,Σ, µ) =
⋂

∞>p≥1 Lp(Ω,Σ, µ).
Suppose further that a finite set of scalar functions {ϕα, α ∈ M), M an index set, is
defined on the space S so that the polynomials

Φy,α(ξ) = ϕα(ξy), y ∈ Y, α ∈M,

in the field variables for a dense set in E . We assume also that if ϕα is in the set
{ϕα, α ∈M} then so is its complex conjugate function ϕα = ϕα∗ . The map

(49) ∗ : M →M : α→ α∗

is called charge conjugation.
For any t ∈ Z1, let E±

t ⊂ E be the subalgebras generated by the field variables
{Φα,y, α ∈M, y = (x, x0), x0 ≥ t(+) or x0 ≤ t(−)}, respectively.

We now make the following hypotheses regarding the field ξ, which are analogous
to the ones made before for continuous fields.

Translational invariance. Let Z̃ν be a group of transformations of the space X
which is isomorphic to the ν-dimensional lattice Zν and such that the quotient space
X/Z̃ν (the orbit space for the action of the group Z̃ν on X) is finite.

Together with the transformations s ∈ Z̃ν on X , which will be called spatial trans-
lations, the time translations (x, x0) → (x, x0−τ) generate a group of transformations
on Y isomorphic to the group Zν+1, which we will call the group of translations. In
addition, we introduce the time reflection ϑ : (x, x0) → (x,−x0). The translations and
time reflection induce transformations in the space of field configurations, thereby giv-
ing rise to corresponding homomorphisms Us, Uτ , and an antilinear involution Θ of
the field algebra, together with corresponding transformations U∗

S(τ), Θ∗ on the space
of measures on Ω.

We assume that the random field ξ satisfies the following conditions:
1) it is translation invariant, i.e., its distribution µ does not change under the

action of the translations U∗
S(τ);

2) it is reversible in time, i.e., µ is invariant under Θ∗;
3) ξ has the Markov property.
The definition of the Markov property for the field ξ on Y is identical to (20a)

given above for the case of Markov boson fields in the space Rν+1.
For any τ ∈ Z1 we denote by Xτ ⊂ Y the time slice Xτ = {y = (x, τ)} and write

Στ for the σ-algebra generated by the values {ξy, y ∈ Xt} for configurations in the
slice Xτ .
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Exactly as in the case of boson Markov fields on Rν+1, we define the physical
Hilbert space Hphys by

Hphys = L2(Ω,Σ0, µ) ⊂ L2(Ω,Σ, µ).

It consists of all square-integrable functionals of the field ξ that depend only on the
values of ξ on the zero time slice X0 ⊂ Y .

The transfer matrix Jτ on Hphys is given by the formula

Jτf = 〈Uτf |Σ0〉 = PHphysUτf, τ > 0, τ ∈ Z1,

where {Uτ , τ ∈ Zν} is the unitary group of operators on L2(Ω,Σ, µ) induced by the
time-translation homomorphisms of the algebra E , and PHphys is the projection of
L2(Ω,Σ, µ) onto the subspace Hphys. As before, we have

Lemma 12. The family of operators {Jτ , τ ∈ Z1, τ ≥ 0} forms a semigroup of
selfadjoint contraction operators on Hphys.

The selfadjointness of Jτ follows from the time reversibility of the field, while the
semigroup property follows from the translation invariance and the Markov property
of ξ. The generator J = J1 of the semigroup Jτ is usually called the transfer matrix
of the field. In analogy with the continuous time case, the Hamiltonian is the operator

H =
1
2

lnJ 2.

The homomorphisms Us of the algebra E induced by the spatial translations (and
preserving the algebra E0 = E+

0 ∪E−
0 ) extend to a unitary group of operators {Us, s ∈

Z̃ν} on Hphys that commute with the transfer matrix J .

B. Gibbs modifications. As we have already noted several times, for many
physical models the Euclidean field ξ that describes them is a Gibbs modification
of some comparatively simple “free” field (independent or Gaussian). The general
construction of such modifications, and also the principal method for studying them
(the cluster expansion technique) are discussed in [26]. Here we briefly recall the main
ideas and results relating to Gibbs fields, and we introduce some special assumptions
regarding them.

Assume that a probability measure ν0 is defined on the spin space S, and let the
probability distribution µ0 = νY0 on SY be the infinite product of identical copies of
the measure ν0 (i.e., the distribution of an independent field on Y ).

1) Euclidean action. For each finite set Λ ⊂ Y we define the Euclidean action
VΛ(ξ) of the field to be the polynomial

(50) VΛ(ξ) =
∑
n

Rn
∏
y,α

(Φα(ξy))n(y,α),

in the field variables, where the sum is over the multi-indices n = {n(y, α)} (nonnega-
tive integer-valued functions on Y ×M that are nonzero at only finitely many points)
such that

suppn ⊂ Λ ×M.

The coefficients {Rn} in (50) (which do not depend on Λ) are called the potential of the
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interaction. The set A of multi-indices n for which Rn �= 0 is called the support of the
potential. We make the following assumptions concerning the interaction potential
{Rn}.

a) Translation invariance and time reversibility. Let g be a spatial transla-
tion, time translation, or time inversion acting on Y . Then

(51) Rgn = Rn

(with the obvious action of g on the multi-indices n). It follows from (51) that

VgΛ(ξ) = VΛ(g−1ξ), Λ ⊂ Y

(again, the action of g on the configuration ξ is defined in the obvious way).

b) Charge invariance. We postulate that

(52) Rn∗ = Rn,

where n∗(y, α) = n(y, α∗) and ∗ is the charge conjugation in M (see (49)); (52) implies
that the action VΛ is real.

We assume that an integer-valued metric ρ is defined on the set X and define a
metric on Y by

ρ̂(y1, y2) = ρ(x1, x2) + |x(0)
1 − x

(0)
2 |,

yi = (xi, x0
i ), i = 1, 2.

Henceforth, if n is any multi-index, we denote by ssuppn the projection of the support
suppn ⊂ Y ×M on Y .

c) Finiteness and Markov property. For any multi-index n ∈ A (i.e., such
that Rn �= 0), the diameter of the set ssuppn is uniformly bounded:

max
n∈A

diam ssuppn <∞ (finiteness).

Moreover, for any two points y1 = (x1, x
0
1), y2 = (x2, x

0
2) ∈ ssuppn, we require

|x(0)
1 − x

(0)
2 | ≤ 1 (Markov property).

The degree of the multi-index n = {n(y, α)} is defined to be

|n| =
∑
y,α

n(y, α).

d) Boundedness of the degree. The degrees of all the multi-indices in the
support of the potential {Rn} are assumed to be uniformly bounded:

max
n∈A

|n| <∞.

Remark. The various hypotheses on the interaction potential {Rn} made above
imply that the set of values taken by the coefficients Rn is finite, and therefore

max
n∈A

|Rn| <∞.
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2) Gibbs modification. For any finite set Λ ⊂ Y we define the probability
measure µΛ on (Ω,Σ) by means of the Gibbs modification of the measure µ0,

(52a)
dµΛ

dµ0
(ξ) =

1
ZΛ

exp{−βVΛ(ξ)}, ξ ∈ Ω = SY ,

where β is a parameter and the normalization factor ZΛ (partition function) is given
by

ZΛ =
∫

Ω

exp{−βVΛ(ξ)} dµ0.

Lemma 13. Let the set of field variables {ϕα, α ∈M} consist of bounded functions,
and assume that the interaction potential {Rn} satisfies all the hypotheses a)–d).
Then there exists a number β0 > 0 such that for all β with |β| < β0:

1) The weak limit

(53) µ = lim
Λ↑Y

µΛ

exists, where µ is a probability measure on the space Ω.
2) The random field ξ on Y with values in S and probability distribution µ is

translation invariant, time reversible, and Markov.

Statement 1) can be proved using the cluster expansion for the measures µΛ

(see [26]). The field properties stated in 2) follow easily from our assumptions re-
garding the interaction potential {Rn}.

C. Examples of Euclidean (boson) fields on a discrete space. Here we
present some examples of Euclidean fields of the above type that are frequently en-
countered in the literature.

I. Spin fields on the lattice Zν+1. In this case X = Zν is a ν-dimensional
lattice, S = {1,−1}, and ν0 is a uniform distribution on S : ν0(1) = ν0(−1) = 1/2.
The field variables are the values of the field,

ξy = ±1, y ∈ Zν+1.

Evidently, every monomial (50) is of the form

ξB =
∏
y∈B

ξy,

where B ⊂ Y is a finite set, and thus the action of the spin field is given by

VΛ =
∑
B⊆Λ

RBξB,

where the interaction potential {RB} is defined on finite subsets B of the lattice Zν+1

and satisfies the analogs of hypotheses a)–d) above.
For the simplest and best-studied spin field model (the Ising model), the potential

RB is nonzero only for subsets B that consist of a single point and for subsets of
cardinality two, consisting of a pair of neighboring points in Zν+1.
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II. Rotator model. As before, we take X = Zν (i.e., Y = Zν+1), S = T 1 is the
circle, and dν0 = dξ/2π, where dξ is Lebesgue measure on T 1. The field variables are

Φ±;y = exp{±iξy}.

The action VΛ is given by

(53a)

VΛ = ε
∑

y1,y2∈Λ
|y1−y2|=1

cos(ξy1 − ξy2)

= ε
∑

y1,y2∈Λ
|y1−y2|=1

(Φ+,y1(ξ)Φ−,y2(ξ) + Φ−,y1(ξ)Φ+,y2(ξ)).

Here the metric ρ(y1, y2) ≡ |y1 − y2| on Zν+1 is given by the formula

|y1 − y2| =
ν∑
i=0

|x(i)
1 − x

(i)
2 |,

yk = (x(0)
k , x

(1)
k , . . . , x

(ν)
k ), k = 1, 2.

III. Yang Mills lattice gauge field. Here Y = Eν+1 is the set of edges of the
lattice Zν+1. This set can be expressed in the form

Eν+1 = Ẽν × Z1,

where the time coordinate is explicitly indicated. Here Ẽν is the set of edges y =
(x1, x2), such that one vertex lies in the zeroth slice Zν ⊂ Zν+1 of the lattice
Zν+1 : {x1 = (x0

1, x1), x0
1 = 0}, and the other vertex lies either in the zeroth slice

or in the first slice: {x2 = (x0
2, x2), x0

2 = 0, 1}.
Here the space S = G is a compact group, ν0 the normalized Haar measure on G.

The action of the field VΛ, Λ ⊂ Eν+1 is given by

(54) VΛ =
∑

p:∂p⊂Λ

Reχ0(gp),

where the sum is over all two-dimensional faces p of Zν+1 with boundary ∂p =
{y1, y2, y3, y4} ⊂ Λ; the edges yi in ∂p are given in the order in which they are
encountered in going around the face, and gp is given by

gp = gε1y1g
ε2
y2g

ε3
y3g

ε4
y4 ,

where εi = 1 if upon traversing the boundary of p in the given orientation, the edge
yi is traversed in the direction of the corresponding unit vector (es, s = 0, . . . , ν)
of the lattice Zν+1, and εi = −1 if yi is traversed in the opposite direction. Now
let χ0 be the character of some “fundamental” irreducible representation g→ T 0

g

of the group G (see [20]). It is easy to show that the value of Reχ0(gp) depends
neither on the orientation of ∂p nor on its origin, i.e., it is uniquely determined
by the face p itself. The representation g → T 0

g is “fundamental” if and only if
every irreducible representation g → Tg of G is contained in the tensor product
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(T 0
g )⊗n1 ⊗ (T

0

g)
⊗n2 , for suitable n1 and n2, of tensor powers of the representation

g → T 0
g and its contragradient g → T

0

g (see [20]).
We write ϕ0

α1,α2
(g) = (T 0

g ηα1 , ηα2) for the matrix elements of the representation
g → T 0

g in some fixed orthonormal basis {ηα} of the space on which the representation

acts (then the matrix elements for the contragradient representation g → T
0

g are given
by ϕ0

α1α2
(g)). We take the field variables to be the functions

Φ+
α1,α2,y = ϕ0

α1,α2
(gy), Φ−

α1,α2,y = ϕ0
α1,α2

(gy), y ∈ Eν+1.

It is readily verified that the above model satisfies all the above hypotheses a)–d) and
hence for β in (52) sufficiently small, there exists a random field on Eν+1 obtained
by taking the limit (53). It is called the Yang-Mills gauge field.

The action (54) and hence also the limit field are invariant under the group J =
GZ

ν+1
of gauge transformations

gy → γ(s1)gyγ−1(s2), y = (s1, s2),

where γ = {γ(s), s ∈ Zν+1} is a function on Zν+1 with values in the group G.
We write Lgauge

2 (Ω,Σ, µ) ⊂ L2(Ω,Σ, µ) for the set of all gauge-invariant functionals
in L2(Ω,Σ, µ) of the field g = {gy}, and Hgauge

phys = Hphys ∩ Lgauge
2 (Ω,Σ, µ).

The space Hgauge
phys is evidently invariant under the transfer matrix J of the gauge

field, and one checks easily that J acts trivially on the orthogonal complement

Hphys �Hgauge
phys .

Thus we need only study the part

J gauge
phys = Jτ/Hgauge

phys

of J acting on the space Hgauge
phys .

Remark concerning the radial gauge. A somewhat different (but equivalent)
definition of the space Hgauge

phys and transfer matrix J gauge
phys is also often used. Note that

the functionals f ∈ Lgauge
2 (Ω,Σ, µ) are constant on the orbits of the gauge group J in

the configuration space Ω of the gauge field. We may therefore limit our attention to
a smaller class Ω′ ⊂ Ω of field configurations g = {gy} and replace J by the smaller
group J ′, which acts on Ω′ in such a way that the set of orbits remains the same.
This can be accomplished, for instance, by setting

(55) gy = e (the identity of G)

for all edges y parallel to the time (“vertical”) axis e0 ∈ Zν+1 (radial gauge). The
gauge field g = {gy} is thus in fact specified only on the set Ŷ of “horizontal” edges:

Ŷ = Eν × Z1,

where Eν is the set of edges of the lattice Zν . With (55), we see that the action
of the field is the same as before, and there exists a limit distribution µ′ on the
configuration space Ω′ for the new field. The gauge group J ′ now consists of only
those transformations {γ(s)} that do not violate the condition (55) (i.e., the function
γ(s) does not depend on the time coordinate s(0) of the point s ∈ Zν+1).

It is easily verified that the space Hgauge
phys ⊂ Hphys, and also the gauge-invariant part

J gauge
phys of the transfer matrix in this space, remain unchanged. However, in contrast

to the preceding case, the transfer matrix now acts nontrivially on the orthogonal
complement Hphys �Hgauge

phys .
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C. Fermion fields on a lattice. It is usually convenient to specify a fermion field
on the lattice Z̃ν+1 = Zν×Z̃1, where Z̃1 is the lattice of half-integers {±1/2,±3/2, . . .}.
The field Grassmann algebra EF is generated by the elements {ψα(x), ψα(x), x ∈
Z̃ν+1, α ∈ M}, where M is a finite index set. The elements of EF are series of the
form

(56) A =
∑

CQϕQ,

where ψQ is a monomial in the variables ψα(x), ψα(x), which are given in lexicographic
order in the set Z̃ν+1 ×M , with all the ψα(x) appearing to the right of the ψα(x).
We assume that the coefficients CQ of the series (56) satisfy the condition

(57)
∑
Q

|CQ|r|Q| = ‖A‖r <∞

for some fixed r > 1, and |Q| is the number of factors in the monomial ψQ. Equipped
with the norm (57), EF becomes a Banach algebra, with

‖A1A2‖ ≤ ‖A1‖r‖A2‖r.

All the concepts and constructions introduced above for the continuous case the qua-
sistate 〈·〉, involution Θ, Θ-invariance of 〈·〉, OS-positivity, definition of conditional
expectation, reversible Markov property, construction of the physical Hilbert space
Hphys, and transfer matrix Jτ carry over without change to the discrete case. We
merely note that the physical Hilbert space is constructed in the standard way (see
above) via the quotient E1/2/N0 of the algebra E1/2 generated by the set

{ψα(x), ψα(x), α ∈M,x ∈ Y1/2},

where Y1/2 = {x : x0 = 1/2} and N0 ⊂ E1/2 is the subspace of elements with zero
norm (〈ΘF1F2〉)1/2, F1, F2 ∈ E1/2 (see above).

The quasistates 〈·〉 found in the various examples are usually Gibbs modifications
of independent or Gaussian quasistates (see [26]). In the next chapter, we will study
the transfer matrix for the Gibbs modification of an independent Gaussian quasistate
〈·〉0 on EF , defined by the conditions

(58)
〈ψα(x)ψβ(x′)〉0 = 〈ψα(x)ψβ(x

′)〉0 = 0,

〈ψα(x)ψβ(x
′)〉0 = δα,βδx,x′ .

The Euclidean action generating this modification is given by

(58a) VΛ = λ
∑

Q:suppQ⊂Λ

RQψQ,

where the ψQ are even monomials and the coefficients RQ satisfy the analogs of
conditions a)–d) introduced above. We write suppQ ⊂ Z̃ν+1 for the set of points
x ∈ Z̃ν+1 for which the generator ψα(x) or ψα(x) lies in ψQ for some α ∈ M . In
addition, for every set Λ ⊂ Z̃ν+1 symmetric with respect to the plane x(0) = 0, we
postulate that:
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1) the action VΛ is invariant under the involution Θ:

(59) ΘVΛ = VΛ,

2) the part ∑
suppQ⊂Y−1/2∪Y1/2

RQψQ

of the sum in VΛ involving the monomials ψQ that couple the “past” and the “future”
can be expressed in the form

(60)
∑
k

ckFkΘFk,

where the Fk ∈ E1/2 are homogeneous elements of E1/2 (i.e., each Fk is either even or
odd), and ck ≥ 0.

Lemma 14. Let 〈·〉 be an independent Gaussian quasistate, and suppose that β
is sufficiently small. Then if the action (58a) satisfies all of the above conditions,
it induces a Gibbs modification 〈·〉β of 〈·〉; 〈·〉β is translationally invariant and has
the reversible Markov property on the algebra EF . Moreover, 〈·〉β is Θ-invariant and
OS-positive, and in addition it admits a cluster expansion.

The cluster expansion of the quasistate 〈·〉β follows from the general constructions
set forth in [26]. From this and the properties of the coefficients RQ, we see that 〈·〉β
has the Markov property. The invariance under Θ and the OS positivity follow from
(59) and (60). The translation invariance follows from the translation invariance of
the coefficients RQ.

E. General case. One often also encounters fields on the full field algebra A =
EB ⊗ EF , which includes both fermion and boson variables.

As an example, we consider a Dirac fermion field on Z̃4 interacting with a gauge
field with gauge group U(1) = {eiΘ, 0 ≤ Θ < 2π} (lattice model of Euclidean quantum
electrodynamics). In this model, the field algebra is generated by the Grassmann
algebra EF with generators {ψα(x), ψα(x), x ∈ Z̃4, α = 0, 1, 2, 3} and by the field
algebra {gb} of the gauge field (taken with the radial gauge). The Euclidean action
for this field is

(61) VΛ = m
∑
x∈Λ,α

ψα(x)ψα(x) + κ
∑

b=〈x,y〉,α,β
ψα(x)Γαβ(b)gbψβ(y) + λ

∑
p

cos(gp),

where Λ ⊂ Z̃4 is a finite set and m, κ, λ are parameters; the summation in the second
sum in (61) is over all (ordered) pairs of neighboring points (x, y), and b = 〈x, y〉 is the
edge starting at x and ending at y; {Γα,β(b)} = E = ε(b)γµ, where ε(b) = +1 if the
edge b is directed along the unit vector eµ, µ = 0, 1, 2, 3, and ε(b) = −1 otherwise; the
γµ are the four Euclidean Dirac matrices (see (47′)). The sum

∑
p cos(g(p)) coincides

with the Euclidean (Wilson) action for the Yang-Mills gauge field with gauge group
U(1) (see (54)). For each finite Λ ⊂ Z̃4 we can define the quasistate

(62) 〈F 〉Λ =
1
ZΛ

∫
Fe−VΛ

∏
x,α

dψα(x)
∏
α,x

dψα(x)
∏
b

dgb
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on the field algebra AΛ generated by {ψα(x), ψα(x), x ∈ Λ, α = 0, 1, 2, 3, gb, b =
〈x, y〉 ⊂ Λ}. In (62), ZΛ is a normalization factor,

∫ · · ·∏α,x dψα(x),
∏
α,x dψα(x) is

the Berezin integral, and
∏
b dgb is a product of Haar measures on the group U(1)

(since gb = g−1(b) and we are using a radial gauge (see (55)), the product
∏
b is taken

over the set of unoriented “horizontal” edges in Λ).
For symmetric about the plane x0 = 0, the quasistate 〈·〉Λ is reversible-Markov and

OS-positive, provided the matrix defining the involution Θ is equal to γ0 : ε = γ0,
and κ > 0. For small enough κ and β, the thermodynamic limit 〈·〉 = lim〈·〉Λ exists;
it is a reversible-Markov, OS-positive, and translation-invariant quasistate on the full
field algebra.

This field is invariant under gauge transformations (homomorphisms) of the algebra
A, which act on the generators by the formula

γgb = γ−1(x)gbγ(y), b = 〈x, y〉,
γψα(x) = γ(x)ψα(x), γψα(x) = γ−1(x)ψα(x),

where γ = {γ(x)} is a function on Z̃4 with values in U(1).

§6. Euclidean fields for temperature states. The modular operator

Given an “infinite” dynamics αt on a C∗-algebra, one can also study the tempera-
ture states by using the Euclidean Markov approach. Another possible (“algebraic”)
method is based on a deep theorem of Tomita and Takesaki and uses the notion of
modular operator. We will briefly describe both approaches. This information is
given only for completeness and will not be used elsewhere in the book.

1. Euclidean temperature fields.

Case of a finite system. The constructions given below are once again based on
the Feynman-Kac formula, which we have already discussed several times: the kernel
of the operator exp{−βH}(x, y), x, y ∈ S, where H = H0 +V , H0 is the infinitesimal
generator of a Markov process {ξt} with values in S, and V is a function on S, can
be expressed as an average over the trajectories of the process on a time interval,

exp{−βH}(x, y) =
〈

exp
{
−
∫ β

0

V (ξτ ) dτ
}〉

ξ0=x,ξβ=y

(see 5.0 for more details).
We now consider a temperature state defined on the algebra B(L2(S, ν0)) of oper-

ators acting on the Hilbert space L2(S, ν0), where ν0 is a stationary measure for the
process {ξt}, by the formula

(2) 〈A〉β =
1
Z

Tr(Ae−βH)

(Z = Tr e−βH). When A = F̂ is the operator given by multiplication by a function
F defined on S, the numerator in (2) is equal to

(3)

Tr F̂ e−βH =
∫
S

dν0(x)
〈

exp
{
−
∫ β

0

V (ξτ ) dτ
}〉

ξ0=ξβ=x

F (x)

=
〈
F (ξ(β)) exp

{
−
∫ β

0

V (ξτ ) dτ
}〉

ξ0=ξβ

,



132 II. CONSTRUCTION OF AN EQUILIBRIUM DYNAMICS

and the denominator is

(4) Z =
〈

exp
{
−
∫ β

0

V (ξτ ) dτ
}〉

ξ0=ξβ

,

where in both formulas (3) and (4), 〈·〉ξ0=ξβ
denotes an (unnormalized) average over

the set of “periodic” trajectories of the process {ξt}, i.e., trajectories taking the same
values at the endpoints of the interval [0, β].

The original Markov process {ξt} can be used to define a new Markov station-
ary “periodic” process {η0

t , t ∈ Tβ}, i.e., a process on the circle Tβ = [0, β]. Thus
equation (2) takes the form

(5) 〈F̂ 〉β =
〈F (η0

τ ) exp{− ∫ β
0 V (η0

τ ) dτ〉µ0

〈exp{− ∫ β
0
V (η0

τ ) dτ〉µ0

,

where the mean 〈·〉µ0 denotes an average over the distribution µ0 on the space of
trajectories of the process {η0

t , t ∈ Tβ}. We will show below how to construct the
periodic process {η0

t }. Here we merely observe that the Markov property for {η0
t }

means that for any two points t1, t2 ∈ Tβ and any two values s1, s2 of the process η0
t

at these points, the values of ηt on the two arcs bounded by the points t1 and t2 on
the circle Tβ are independent with respect to the conditional distribution generated
by the conditions

ηt1 = s1, ηt2 = s2.

The stationarity of {η0
t } means that the distribution µ0 on the space of trajectories

does not change under rotations of Tβ.
The last step now is to introduce the Gibbs modification of the process {η0

t }, i.e.,
define a new distribution µ on the space of trajectories by the formula

dµ

dµ0
=

exp{− ∫ β
0
V (ητ ) dτ}

〈exp{− ∫ β
0 V (η0

τ ) dτ}〉µ0

,

then (5) becomes

(6) 〈F̂ 〉β = 〈F (ητ=β)〉µ,
where 〈·〉µ denotes the mean with respect to the measure µ. It is easy to show that
the process {ηt, t ∈ Tβ} with probability distribution µ is also Markov and stationary.
We have already seen that for a finite system, say one contained in a finite region
Λ ⊂ Rν and described by an explicit Hamiltonian H = HΛ, a temperature state 〈·〉β
is expressible in the form (6). But for infinite systems (obtained, e.g., by taking the
thermodynamic limit Λ ↑ Rν), (6) can again serve as the definition of a temperature
state and its associated Hamiltonian H , exactly as was explained in the case of the
ground state (see also below). We will shortly describe the corresponding infinite
Euclidean fields on the set Tβ×Rν , but first we explain how to construct the periodic
Markov process {η0

t } mentioned above.
To simplify the discussion we take S to be a finite set. The finite-dimensional

distributions of the process {η0
t , t ∈ Tβ} are defined as follows. Let 0 = t0 < t1 <

· · · < tn < β; then

Pr(ηt0 = s0, . . . , ηtn = sn) = Q−1ν0(s0)Pt1 (s0, s1)Pt2−t1(s2, s1) . . . Pβ−tn(sn, s0),
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whereQ =
∑
s∈S ν0(s)Pβ(s, s), and the Pt(s, s′) are the transition probabilities for the

stationary process {ξt, t ∈ R1}. Note that the distribution of the values {η0
t , t ∈ Tβ}

at any point t ∈ T is given by

Pr(ηt = s) = Q−1ν0(s)Pβ(s, s).

Infinite Euclidean temperature fields. Here we consider general fields on the
space Tβ × Rν . These are general objects defined in analogy with the definition of
Euclidean fields for ground states given in §5. We will confine ourselves here to the
case of a boson field.

As before, we will consider a (generalized) random field ξϕ on a probability space
(Ω,Σ, µ), where ϕ = ϕ(t, x) ∈ S(Tβ × Rν), and Tβ × Rν is the space of infinitely
differentiable functions decaying sufficiently rapidly as |x| → ∞. Averages over the
distribution µ will be denoted by 〈·〉µ. As above, the field algebra E is defined by

E =
⋂

∞>p≥1

Lp(Ω,Σ, µ).

The Schwinger functions Sn(ϕ1, . . . , ϕn) = 〈ξϕ1 . . . ξϕn〉µ are also defined as previ-
ously, and they are assumed to be continuous in the variables ϕ1, . . . , ϕn. We further
require the field to be translationally invariant, i.e., the mean 〈·〉µ is invariant un-
der the homomorphisms U(s, y), (s, y) ∈ Tβ × Rν of the algebra E , induced by the
translations

U(s, y)ξϕ = ξϕ(·−(s,y))

of the generators. This group of homomorphisms of E generates a group of unitary
operators on L2(Ω,Σ, µ), which we will continue to denote by U(s, y). The homomor-
phisms U(s, 0) = U(s) and U(0, y) = U(y) will be called time and space translations,
respectively.

The involution Θ induced by time reflection with respect to the zeroth slice {0}×Rν
in the algebra E , and the Θ-invariance of the mean 〈·〉µ are defined exactly as in §5.
The definition of OS-positivity is defined similarly: one requires the positivity of the
Hermitian form

(7) (F, F ) = 〈FΘF 〉 ≥ 0

for all elements F ∈ E+ ⊂ E , where E+ is the subalgebra generated by the elements
with suppϕ[0, β/2]×Rν. The form (7) is used to construct the physical Hilbert space
Hphys just as in §5.

Because the mean is invariant under the space translations U(y), and since U(y)E+ =
E+, the spatial translations induce a well-defined group of unitary operators on Hphys,
which will again be denoted by U(y).

However, because the time translations U(s), s ∈ Tβ , do not take the algebra E+

into itself: U(s)E+ �⊂ E+, to construct the Hamiltonian H we must proceed somewhat
differently than in §5.

For any t ∈ [0, β/2] we consider the subalgebra Et ⊂ E+ generated by those ξϕ for
which suppϕ ⊂ [0, β/2 − t] ×Rν .

Lemma 1. Let the element F ∈ Et be such that

‖F‖2
phys ≡ 〈FΘF 〉 = 0.
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Then for every 0 ≤ s ≤ t we have

(8) ‖U(s)F‖phys = 0.

Proof. First suppose that 0 < s ≤ t/2. Then

〈U(s)FΘU(s)F 〉 = 〈FU(−s)ΘU(s)F 〉
= 〈FΘU(2s)F 〉 ≤ ‖F‖phys‖U(2s)F‖phys = 0.

Here we have used the translation invariance of the mean 〈·〉µ under the homomor-
phisms U(s), the commutation relation

U(−s)Θ = ΘU(s),

the fact that U(2s)F ∈ E+, and the Cauchy-Schwarz inequality for the nonnegative
form (7) (considered on the algebra E+). Next suppose that t/2 < s < 3/4t. Then
U(s)F = U(s1)U(t/2)F , where s1 = s− t/2. We have F1 = U(t/2)F ∈ Et/2, and by
what has already been proved, its norm ‖F1‖phys = 0. Since s1 < t/4, application
of the previous argument to F1 leads to (8). The case 3t/4 < s < 7t/8 is considered
similarly, and so on. We have thus established the lemma for all s < t. For s = t
we must use the continuity of the form 〈U(s)FΘU(s)F 〉 in the variable s, which
follows from the continuity of the Schwinger functions and the estimate |〈FΘF 〉| <
‖F‖2

L2(Ω,Σ,µ). The lemma is proved.

For any t ∈ [0, β/2] we define the (nonclosed) subspace Dt ⊂ Hphys as the image of
Et in the quotient E+/I0 used to construct Hphys (see §5). By the lemma just proved,
the operator

Pt : Dt → Hphys, Pt[A] = [U(t)A]

is well defined on the subspace Dt ⊂ Hphys, where [A] ∈ Hphys denotes the image of
A ∈ E+ in the quotient E+/I0. The family of operators {Pt, 0 < t < β/2} form an
object called a local symmetric semigroup.

Definition. A family of operators {Pt, Dt, 0 ≤ t < T } acting on a Hilbert space
H, where Dt is the domain of Pt (in general, nonclosed), is called a locally symmetric
semigroup if the following conditions are satisfied:

(i) The subspaces Dt are monotone decreasing (do not increase), and the largest
subspace D0 is dense in H.

(ii) The family {Pt} has the semigroup property in the following sense:
a) P0 = E,
b) P (s)Dt ⊂ Dt−s for 0 ≤ s ≤ t ≤ T ;
c) P (t)P (s)f = P (t+ s) for all f ∈ Dt+s, where 0 < s, t ≤ T , 0 ≤ t+ s ≤ T .
(iii) Each operator Pt is symmetric on Dt:

(f, Ptg) = (Ptf, g), f, g ∈ Dt.

(iv) The family {Pt} is weakly continuous: for f ∈ Ds, s > t, the quadratic form
(f, Ptf) depends continuously on t ∈ [0, s].

One checks without difficulty that the operator family constructed above on the
space Hphys satisfies all of these conditions. The main result in the theory of local
symmetric semigroups is contained in the following:
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Theorem 2. Let {Pt, Dt, 0 < t < T } be a local symmetric semigroup on a Hilbert
space H. Then there exists a unique selfadjoint operator H on H with domain DH such
that Dt ⊂ Dexp{−tH} and Pt coincides with the restriction of the operator exp{−tH}
to Dt for 0 ≤ t ≤ T . Moreover, for any 0 < τ ≤ T the subspace

D̂τ =
⋃

0<t≤τ

⋃
0<s<t

PsDt

is contained in DH and is a core (domain of essential selfadjointness) for H.

We refer to [53] for a proof of this theorem. The operatorH for the local symmetric
semigroup {Pt} was constructed above, and it serves as the field Hamiltonian on
Tβ ×Rν .

Remark. A field ξϕ having the Markov property (in the sense explained
above) is OS-positive, and the physical Hilbert space Hphys can be identified with
L2(Ω,Σ{0}∪{β/2}, µ), where Σ{0}∪{β/2} ⊂ Σ is the σ-algebra of events depending on
the behavior of the field at times t = 0 and t = β/2 (i.e., on the set {0}×Rν∪{β/2}×
Rν). This assertion is verified in exactly the same way as in the case of Markov chains
on R1 ×Rν .

2. The modular theory of Tomita-Takesaki. We first discuss some abstract
facts concerning von Neumann algebras, which will then be related to the Heisenberg
dynamics

C → exp{itHGNS}C exp{−itHGNS}, C ∈ B(HGNS),

which acts on operators in the Hilbert space HGNS and is constructed from a C∗-
algebra A and a state 〈·〉 on A which is a β-KMS state relative to the dynamics
αt : A → A on the algebra A.

I. Let M ⊂ B(H) be a von Neumann operator algebra acting on the Hilbert
space H, and let M′ ⊂ B(H) be the commutant of M, i.e., the algebra of operators
commuting with every operator in M. We assume that there is a vector Ω ∈ H that
is cyclic and separating for M. That is, the set {MΩ,M ∈ M} is dense in H, and
MΩ = 0 for M ∈ M implies that M = 0. Then it can be shown that Ω is also cyclic
and separating for the algebra M′ (see [7]). We define antilinear operators

S(MΩ) = M∗Ω, M ∈ M,

F (M ′Ω) = (M ′)∗Ω, M ′ ∈ M′

on the dense sets {MΩ,M ∈ M} and {M ′Ω,M ′ ∈ M′} (these are well defined because
Ω is separating for both M and M′).

It is proved in the Tomita-Takesaki theory that both these operators are closable,
and their closures S and F have uniquely defined polar decompositions

(9) S = J∆1/2

with an analogous decomposition for F . Here ∆ is a positive selfadjoint operator on
H called the modular operator, and the antiunitary operator J is called the modu-
lar involution (an antiunitary operator is an invertible antilinear operator such that
(Jξ,Jη) = ((ξ, η), ξ, η ∈ H). We have the relations

∆ = FS, ∆−1 = SF, J = J−1
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and
∆−1/2 = J∆1/2J.

The main result of the Tomita-Takesaki theory is that

JMJ = M′

and the unitary automorphisms of B(H)

(10) αt(C) = ∆−itC∆it

take the algebra M into itself.
Here for all A,B ∈ M such that AΩ, BΩ ∈ D∆, we have the relation

(11) (∆AΩ, BΩ) = (JA∗Ω, JB∗Ω) = (B∗Ω, A∗Ω)

from which it follows readily that the state

(12) 〈A〉 = (AΩ,Ω), A ∈ M

on M is a β-KMS state with respect to the dynamics (10), with β = 1.
We note that any operator satisfying (11) for all A ∈ M and B ∈ M must coincide

with ∆.
II. Now let A be a C∗-algebra with unit, and let 〈·〉 be a faithful KMS state on A

with respect to the dynamics αt (a state 〈·〉 is said to be faithful if 〈A〉 > 0 for every
positive nonzero element A ∈ A). In this case, it is clear that HGNS is the closure of
A under the inner product

(13) (A,B) = 〈B∗A〉
(see §2). We recall that under the GNS homomorphism π : A → B(HGNS), acting by
the formula

π(A)B = AB ∈ HGNS, A,B ∈ A,

the dynamics αt on A goes over into the dynamics

(13′) π(αtA) = exp{itH}π(A) exp{−itH} ≡ α̃t(π(A))

on B(HGNS). Here the selfadjoint operator H is the generator for the unitary group
on HGNS acting on elements A ∈ HGNS by

UtA = αt(A)

(see 2.1). The vector Ω = 1 is cyclic and separating for the algebra π(A) ⊂ B(HGNS)
and satisfies the condition

exp{itH}Ω = Ω.

We can rewrite (13) as
(π(A)Ω, π(B)Ω) = 〈B∗A〉.

In order to exploit the KMS condition, we write

FA1,A2(t) = 〈A1αt(A2)〉 = (π(αt(A2))Ω, π(A∗
1)Ω) = (eitHπ(A2)Ω, π(A∗

1)Ω)

for any A1 and A2 in A; hence, under the hypothesis that π(A2)Ω ∈ Dexp{−βH}, the
domain of the operator exp{−βH}, the KMS condition implies that



§6. THE MODULAR OPERATOR 137

(eitHeβHπ(A2)Ω, π(A∗
1)Ω) = (π(A1)Ω, eitHπ(A∗

2)Ω)

and for t = 0 we find that

(14) (eβHπ(A2)Ω, π(A∗
2)Ω) = (π(A1)Ω, π(A∗

2)Ω).

Now let M be the smallest von Neumann algebra containing the algebra π(A). We
can rewrite (14) for any C,D ∈ M(C,D ∈ Dexp{−βH}) as

(eβHCΩ, DΩ) = (D∗Ω, C∗Ω)

and thus exp{−βH} = ∆, where ∆ is the modular operator for the algebra M (with
separating and cyclic vector Ω). Consequently, the group of automorphisms (13′)
coincides with the modular group (10),

(15) ∆−it/βB∆it/β ,

up to a change of parameter.
This conclusion has the following important consequence relevant to the practical

construction of the operator HGNS (and the dynamics) for a temperature state.
Assume that for every finite system described by a Hamiltonian HΛ on a Hilbert

space HΛ we are given a Heisenberg dynamics

αΛ(t)A = exp{itHΛ}A exp{−itHΛ}, A ∈ B(HΛ)

and an invariant β-KMS (Gibbs) state

〈A〉Λ =
Tr exp{−βHΛ}A
Tr exp{−βHΛ} .

Passing to the infinite system by taking the thermodynamic limit Λ, we must construct
both the thermodynamic limit

〈A〉 = lim
Λ↑

〈A〉Λ

of the states, in terms of a state on a suitable algebra A, and also the limit dynamics

αt(A) = lim
Λ↑

αΛ
t (A)

on A (or some extension of it), in such a way that the KMS condition is satisfied.
Under the assumption that the first limit exists and induces a faithful state on

A, the Tomita-Takesaki theory makes it unnecessary to establish the existence of the
limiting dynamics, because the limit state can be used directly to construct the space
HGNS, the homomorphism π : A → B(HGNS), the smallest von Neumann algebra M
containing π(A) with cyclic and separating vector Ω = 1 ∈ A, and the modular opera-
tor ∆. The required dynamics is then defined by the group (15), and the Hamiltonian
is given by

H =
1
β

ln ∆.
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For a Euclidean field theory on Tβ×Rν , the associated modular theory is described
in [53]. The von Neumann algebra M is taken to be the algebra generated by all
operators of the form exp{itH}f̂ exp{−itH}, where the operator f̂ acts on Hphys =
L2(Ω,Σ{0}∪{β/2}, µ) (see above) by the formula

f̂F = fF,

where f ∈ L∞(Ω,Σ{0}, µ) is an essentially bounded function that depends on the configu-
rations in the zeroth slice {0} × Rν . The modular involution coincides with the antilinear
involution given by reflection in the point β/2 (and it takes the subspace L2(Ω,Σ{0}, µ) ⊂
L2(Ω,Σ{0}∪{β/2}, µ) into the subspace L2(Ω,Σ{β/2}, µ)); the modular operator ∆ turns out
to be exp{−βH}. We refer to [53] for more details.

CHAPTER III

SPECTRAL ANALYSIS OF THE

EUCLIDEAN FIELD TRANSFER MATRIX

In the previous chapter we have seen that in many cases, the study of the Hamiltonian
HGNS of an infinite quantum system in its ground state can be reduced to the analysis
of the transfer matrix Jt (a semigroup of stochastic operators) of some suitable Euclidean
(Markov) field. As we have seen, this problem is also of independent interest in the study
of quantum Euclidean fields.

In this chapter we consider the case of Euclidean fields obtained as Gibbs modifica-
tions (see 5.2) of certain simple “free” fields (e.g., independent fields), when the interaction
generating these modifications is small, i.e., the Euclidean fields studied here are small per-
turbations of these “free” fields. This makes it possible to study them by use of cluster
expansions.

For this case we develop here a general method for constructing and analyzing the “highest
branches” of the spectrum of the transfer matrix Jt, i.e., the largest (in absolute value)
elements in the spectrum of Jt, when Jt is restricted to certain special invariant subspaces
(because of the equality Jt = exp{−tH}, where H is the Hamiltonian of the field, the
highest branches of the spectrum of Jt correspond to the lower branches of the spectrum of
H).

As already indicated in Chapter 0, the highest invariant subspaces of Jt to be constructed
below in a certain natural sense describe one-particle, two-particle, . . . , n-particle states of
the field, i.e., in the case considered the usual physical ideas regarding the corpuscular
picture for elementary excitations of the ground state are indeed borne out.

In our treatment we focus on ordinary random fields defined on a discrete space-time.
Fermion fields (also on the lattice Zν+1) are then analyzed; finally, we briefly consider the
case of fields with discrete space and continuous time.

Thus, we begin with the spectral analysis of transfer matrices for Gibbs modifications
of an independent field on the space X = E × Z1 (here the “space” E is a countable set
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(graph), and Z1 is the “time”). We first recall the basic hypotheses regarding these fields
introduced in §5.

Let {ξx, x = (y, t) ∈ E × Z1} be an independent random field labeled by the points
x ∈ E × Z1 and taking values in a spin space S equipped with a probability measure ν.
The distribution of the field ξ = {ξx, x ∈ E × Z1} is assumed to coincide with the measure
µ0 =

∏
x∈E×Z1 νx, an infinite product of identical copies of the measure ν, and is defined

on the space Ω = SE×Zν

of all realizations of the field. Let further Φ = {ϕ1, . . . , ϕn} be
a finite set of bounded functions on S, which without loss of generality can be taken to be
orthonormal with respect to ν and orthogonal to the constants. For simplicity we consider
only the case when the action VΛ defining the Gibbs modification µ of the measure µ0 is of
the form

(0) VΛ =
∑
α,β

x,y,ρ(x,y)=1

Rx,yα,βϕα(ξx)ϕβ(ξy), Λ ⊂ Z,

where Λ ⊂ Zν is a finite set and the coefficients Rx,yα,β satisfy all the conditions a)–d) in part 5
of Chapter 2, §5. Interactions of the general type (50.5.11) will be discussed separately. Thus,
in this chapter we will study the transfer matrix J for a Gibbs field with the interaction
(0), although the methods developed here carry over to more general interactions.

§1. Cluster expansion of the transfer matrix

The analysis of the spectral properties of the transfer matrix J for a random field is
based on a special expansion of the operator J called the cluster expansion.

The first step in constructing this expansion is to construct a basis in Hphys having a
particular multiplicative form. The matrix elements of J in this basis will be seen to admit
a cluster expansion.

1. Multiplicative basis. Let {ϕγ , γ ∈ N} be an orthonormal basis in L2(S, ν) consist-
ing of polynomials in the field variables ϕα and containing ϕα and 1. We assume that all
the ϕγ are jointly bounded.

We take the index set N to be a connected graph with a distinguished vertex θ; ϕθ = 1,
and the degrees of the polynomials ϕγ and ϕγ′ at two adjacent vertices of N differ by at
most 1. The distance from a vertex γ to the initial vertex θ (i.e., the length of the shortest
path in N from θ to γ) is called the rank N(γ) of γ.

It is assumed that the product ϕγ1ϕγ2 of two polynomials can be expanded as

(1) ϕγ1ϕγ2 =
∑

γ:|N(γ1)−N(γ2)|≤N(γ)≤N(γ1)+N(γ2)

Cγγ1,γ2ϕγ ,

where the constants Cγγ1,γ2 are all uniformly bounded. It follows from (1) that the number
of polynomials with rank N(γ) ≤ n is bounded by cn for some absolute constant c.

We denote the tth time slice by Yt = E × {t}. As was observed in subsection 5 of §5 in
Chapter 2, the Hilbert space Hphys can be identified with L2(SY0 , µ|Y0), where µ|Y0 is the
restriction of the measure µ to the space SY0 . The functions

(2) ϕΓ(ξ) =
∏
x∈Y0

ϕ
(x)
γ(x)(ξ), Γ = {γ(x), x ∈ Y0}, ξ ∈ SY0

form an orthonormal basis in the space L2(SY0 , µ0|Y0), where µ0 is a free (independent)
measure. Here ϕ(x)

γ(x)(ξx) = ϕγ(x)(ξ), and Γ = {γ(x), x ∈ Y0} is a multi-index, i.e., a finite
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function on Y0 with values in N (the finiteness of Γ means that only finitely many γ(x) differ
from θ). In the sequel we will construct an orthonormal basis in the true space L2(SY0 , µ|Y0)
having a form

(3) ΨΓ =
∏
x∈Y0

ψ
(x)
γ(x)

analogous to (2). Here Γ = {γ(x), x ∈ Y0} is a multi-index, and {ψ(x)
γ , x ∈ Y0} is a family

of bounded quasilocal functions defined on SY0 , which we now describe.
We introduce an order on the slice Y0(= E) and for any point x ∈ Y0 denote by Vx ⊂ Y0

its “past”:

(4) Vx = {y ∈ Y0 : y < x}.

For each fixed configuration ξ
(x)

= {ξy, y ∈ Vx}, ξy ∈ S defined on the set Vx, we define
functions of the values of the field ξx at the point x by

(5) ϕ̃(x)
γ (ξx; ξ

(x)
) =

{
1, γ = θ,

ϕγ(ξx) − 〈ϕγ(ξx)|ξ(x)〉, γ �= θ,

where 〈· | ξ(x)〉 to the conditional distribution µ(·/ξ|Vx = ξ
(x)

) of the field, subject to the
condition that the values of ξ on Vx are fixed and coincide with ξ(x). We next introduce the
conditional Gramm matrix of functions {ϕ̃(x)

γ , γ ∈ N}:

(6) Gx = Gx(ξ
(x)

) = {〈ϕ̃(x)
γ1 ϕ̃

(x)
γ2 |ξ(x)〉γ1,γ2∈N }

and orthogonalize {ϕ̃(x)
γ } (for a fixed configuration ξ

(x)
) with respect to the conditional

distribution µ(·/ξ|Vx = ξ
(x)

). That is, we set

(7) ψ̃(x)
γ (ξx; ξ

(x)
) =

∑
γ′
m

(x)
γ,γ′(ξ

(x)
)ϕ̃(x)
γ′ (ξx; ξ

(x)
),

where the matrix Mx = {m(x)
γ,γ′(ξ

(x)
)} is equal to

Mx = (Gx)−1/2.

(We will show below that the matrix (Gx)−1/2 exists and has an explicit series expansion.)
For any γ ∈ N and x ∈ Y0 we now define functions on SY0 by

(8) ψ(x)
γ (ξ) = ψ̃(x)

γ (ξx; ξ|Vx), ξ ∈ SY0 .

The definitions (5), (6), and (7) imply that

ψ
(x)
θ ≡ 1.

The system of functions {ΨΓ} in (3) is defined using the functions in (8).
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Lemma 1. The system {ΨΓ} forms an orthonormal basis in Hphys.

Proof. First we show that {ΨΓ} is orthonormal in Hphys. Let x(Γ) ∈ supp Γ be a
maximal point in the set supp Γ = {x ∈ Y0 : γ(x) �= θ}. Let Γ and Γ′ be two multi-indices.
Then two cases are possible: a) x(Γ) �= x(Γ′), and b) x(Γ) = x(Γ′). In case a) (supposing
for definiteness that x(Γ) > x(Γ′)), we find that

(9)

(ΨΓ,ΨΓ′) =
〈∏

x

ψ
(x)
γ(x)

∏
x

ψ
(x)

γ′(x)

〉
=
〈 ∏
x �=x(Γ)

ψ
(x)
γ(x)

∏
x

ψ
(x)

γ′(x) 〈ψ(x(Γ))
γ(x(Γ))|ξ|Vx − fixed〉

〉
= 0.

Here we have used the fact that for x < x(Γ), ψ(x)
γ(x) depends only on the values of the field

on Vx(Γ), and 〈ψ(x)
γ |ξ|Vx is fixed〉 = 0 for γ �= θ by the construction of ψ(x)

γ .
In case b), with x(Γ) = x(Γ′) = x, a similar calculation leads to the equality

(10) (ΨΓ,ΨΓ′) = (ΨΓ̂,ΨΓ̂′)δγ(x),γ′(x),

where the multi-indices Γ̂ and Γ̂′ are obtained from Γ and Γ′ by replacing the values γ(x)
and γ′(x) by θ. Applying this repeatedly, we get from (9) and (10) that

(11) (ΨΓ,ΨΓ′) = δΓ,Γ′ .

To prove that the system {ΨΓ} is complete we will need the following expansion of the
function ψ(x)

γ .

Lemma 2. For γ �= θ we have the equality

(12) ψ(x)
γ = ϕ(x)

γ +
∑
γ∈N

Γ:suppΓ⊂Vx

B
(x),γ
Γ,γ ϕΓϕ

(x)
γ ,

where the coefficients B(x),γ
Γ,γ satisfy the bound

(13) |B(x),γ
Γ,γ | < L(Cβ)dΓ,γ,γ,x .

Here L and C are absolute constants (depending on the geometry of the graph E, the basis
{ϕγ}, and the coefficients Rx,yα,β in formula (0) at the beginning of this chapter, but not on
the parameter β). The exponent dΓ,γ,γ,x, where γ, γ ∈ N , Γ = {γ(y), y ∈ Vx}, is given by

(14) dΓ,γ,γ,x = min
n={n(τ)}

{∑
τ

n(τ)
}
,

where the minimum is taken over all nonnegative finite integer-valued functions n = {n(τ)}
which are defined on the edges τ = (x1, x2) of the graph X and satisfy the following condi-
tions :

1) suppn is a connected set of edges ;
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2) for every y ∈ Vx we have∑
τ :y∈τ

n(τ) ≥ N(γ(y)) (rank of γ(y));

3)
∑
τ :x∈τ

n(τ) ≥ |N(γ) −N(γ)|;
4) no edge τ ∈ suppn lies completely in Vx.

Remarks. I. In the calculations to follow, it will be helpful to have the estimate

(15) dΓ,γ,γ,x ≥ 1
2

{
dsupp Γ∪{x} +

∑
y∈suppΓ

N(γ(y)) + |N(γ) −N(γ)|
}
,

where for B ⊂ X , dB is the length of the smallest connected set of edges of X such that B
is contained in the union of their vertices.

II. We will sometimes write equation (12) more compactly in the form

(15a) ψ(x)
γ =

∑
Γ:supp Γ⊂Vx∪{x}

B
(x),γ

Γ ϕΓ,

where the B
(x),γ

Γ are easily expressed in terms of the coefficients B(x),γ
Γ,γ .

Proof. We first derive the expression

(16) 〈ψ(x)
γ |ξ(x)〉 =

∑
Γ:suppΓ⊂Vx

B̃
(x),γ
Γ ϕΓ(ξ

(x)
),

for the conditional mean, where the coefficients B̃(x),γ
Γ satisfy the inequalities

(17) |B̃(x),γ
Γ | ≤ L′(C′β)dΓ,γ,x ,

L′ and C′ are absolute constants, and dΓ,γ,x = dΓ,γ,θ,x. We now use the well-known expan-
sion of the mean over a Gibbs field distribution as a series in the semi-invariants (see [26]).
In our case, this expansion takes the form

(18) 〈ψ(x)
γ |ξ(x)〉 =

∞∑
n=0

(−β)n

n!

∑
〈ψ(x)
γ , ψ(x1)

α1
ψ

(x′
1)

β1
, . . . , ψ(xn)

αn
ψ

(x′
n)

βn
〉0

n∏
i=1

R
xi,x

′
i

αi,βi
,

where the semi-invariants 〈·, ·, . . . , ·〉0 are calculated relative to the free measure µ0, and the
sum is over the ordered sets of edges {τ1, . . . , τn}, τi = (xi, x′i) such that τu �⊂ Vx and over
the pairs of indices {(α1, β1), . . . , (αn, βn)}. The sum on the right in (18) can be rewritten
as

(19)
∑
n

∏
τ,α,β

(−β)nα,β(τ)

nα,β(τ)!

〈
ϕ(x)
γ ,

∏′
ϕ′nα,β(τ)
α,β (τ)

〉
,

where we write ϕα,β(τ) = ϕ
(y)
α ϕ

(y′)
β , τ = (y, y′) an oriented edge of X , and the sum is over

all nonnegative integer-valued finite functions n = {nα,β(τ)} defined on triples (α, β, τ) such
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that nα,β(τ) = 0 for every edge τ ⊂ Vx. Furthermore, each semi-invariant in the sum (19)
can be written in the form〈

ϕ(x)
γ ,

∏′
ϕ′nα,β(τ)
α,β (τ)

〉
0

=
∏

(α,β,τ)
τ=(y,y′),y∈Vx

(ϕ(y)
α )nα,β(τ)(20)

×
∏

(α,β,τ)
τ=(y,y′),y′∈Vx

(ϕ(y′)
β )nα,β(τ)

〈
ϕ(x)
γ ,

∏′

(α,β,τ)

τ∩Vx=∅

ϕ′nα,β(τ)
α,β (τ),

∏′

(α,β,τ)

τ=(y,y′),y∈Vx

(ϕ(y′)
β )′nα,β(τ),

∏′

(α,β,τ)

τ=(y,y′),y′∈Vx

(ϕ(y′)
α )′nα,β(τ)

〉
0

.

In view of (1), we can express the product of the field variables in (20) as

(21)

∏
(α,β,τ)

τ=(y,y′),y∈Vx

(ϕ(y)
α )nα,β(τ)

∏
(α,β,τ)

τ=(y,y′),y′∈Vx

(ϕ(y′)
β )nα,β(τ)

=
∑

Γ:suppΓ⊂Vx

DΓϕΓ,

where the sum is over the multi-indices Γ = {γ(y), y ∈ Vx} such that for every y ∈ Vx

(22)
∑

(α,β,τ):τ∩Vx={y}
nα,β(τ) = K(y) ≥ N(γ(y)),

and the coefficients DΓ do not exceed
∏
y∈suppΓm

K(y), where m is an absolute constant (de-
pending on the coefficients Cγγ1,γ2 in equation (1), and also on the number of field variables).
We note further that the semi-invariant in (20) is nonzero only for those n = {nα,β(τ)} for
which the set of edges {τ : nα,β(τ) �= 0 for some pair α, β} is connected, and

(23)
∑

(α,β,τ):x∈τ
nα,β(τ) ≥ N(γ).

The expansions (19) and (21) lead to equation (16), while (17) follows from inequal-
ities (22), (23), and the bound on the coefficients DΓ, together with general bounds for
semi-invariants discussed in [26] (see, e.g., the estimate (8.7.II) for partially independent
variables).

Repeating the previous arguments as applied to the mean 〈ϕ(x)
γ1 ϕ

(x)
γ2 | ξ(x)〉, and using

(16) and equation (1) to expand the product of the means 〈ϕ(x)
γ1 | ξ(x)〉 〈ϕ(x)

γ2 | ξ(x)〉 in terms
of the monomials ϕΓ, we find that the Gramm matrix Gx = {g(x)

γ1,γ2} has the form

(24) g(x)
γ1,γ2 = δγ1,γ2 +

∑
Γ:supp Γ⊂Vx

D
(x),γ1,γ2
Γ ϕΓ(ξ

(x)
),

where the coefficients D(x),γ1,γ2
Γ satisfy an estimate analogous to (13). From the representa-

tion Gx = E +Dx we obtain that

(25) (Gx)−1/2 = E +
∞∑
k=1

αk(Dx)k
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where the αk are the binomial coefficients. The last assertion of Lemma 2 follows from this
by use of (24) and equations (1) and (7).

It follows from Lemma 2 that the functions ψ(x)
γ are jointly bounded by

|ψ(x)
γ | < C

for sufficiently small β, where C > 0 is an absolute constant.
Upon expanding the matrix G1/2

x as

(26) (Gx)1/2 = E +
∞∑
k=1

βk(Dx)k,

we find that the function ϕ(x)
γ is expressible in the form

(27) ϕ(x)
γ =

∑
γ

(Gx)
1/2
γ,γψ

(x)
γ =

∑
γ

R
(1)
γ,γψ

(x)
γ +

∑
γ,Γ: �=suppΓ⊂Vx

F
(1),(x),γ
Γ,γ ϕΓψ

(x)
γ̃ ,

where the coefficients F (1),(x),γ
Γ,γ satisfy an estimate similar to (13).

To prove the completeness of the system {ΨΓ} it suffices to show that every monomial
ϕΓ can be uniformly approximated by sums of the type

(28)
∑
Γ

RΓΨΓ.

For simplicity, we consider a “one-point” monomial ϕ(x)
γ and write each monomial ϕΓ ap-

pearing in the second summand in (27) as ϕΓ = ϕ
(x1)
γ1 ϕΓ̂, where x1 = x(Γ), γ1 = γ(x1), and

Γ̂ is the multi-index obtained from Γ by replacing the value γ1 at the point x1 by θ. Again
expressing ϕ(x)

γ1 by an expansion of the form (27) and using relation (1), we find that

(29) ϕ(x)
γ =

∑
Γ

R
(2)
γ,ΓΨΓ +

∑
Γ,Γ′

F
(2),(x),γ
Γ,Γ′ ΨΓϕΓ′ ,

where the sum
∑

Γ is over all multi-indices Γ such that | supp Γ| ≤ 2, and the sum
∑

Γ,Γ′ is
over all pairs (Γ,Γ′) of multi-indices, where Γ is as above, supp Γ′ �= ∅, and x(Γ′) < supp Γ.
(This means that the inequality x(Γ′) < x′ holds for each x′ ∈ supp Γ.) Repeating this
procedure n times, we obtain the expansion

(30) ϕ(x)
γ =

∑
Γ

R
(n)
γ,ΓΨΓ +

∑
Γ,Γ′

F
(n),(x),γ
Γ,Γ′ ΨΓϕΓ′ .

The sum
∑

Γ is over all multi-indices Γ with supp Γ = {x1, x2, . . . , xk}, xi ≤ x, i = 1, . . . , k,
k ≤ n, and the sum

∑
Γ,Γ′ is over the pairs (Γ,Γ′) with Γ = {xn < xn−1 < · · · < x1},

xi ≤ x, with supp Γ′ �= ∅ and suppΓ′ < xn.
By induction on n, we get the following estimate for the F (n),(x),γ

Γ,Γ′

(31) |F (n),(x),γ
Γ,Γ′ | < L(Cβ)n(Cβ)

1
2 dsuppΓ∪supp Γ′∪{x}(Cβ)

1
2 [N(Γ)+N(Γ′)],

where N(Γ) =
∑
xN(γ(x)), Γ = {γ(x), x ∈ Y0}, and C > 0 and L > 0 are absolute

constants. From (31) and the uniform boundedness of the ϕ(x)
γ and ψ

(x)
γ we find that for
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sufficiently large n, the last summand in (30) becomes uniformly small, so that the function
ϕ

(x)
γ is approximated by sums of the form (28). Similar arguments show that the same is

true for any monomial ϕΓ.
This completes the proof of the lemma.

Remark. The above proof that the functions {ΨΓ} are complete in Hphys relies on several
special properties of the cluster expansion of the measure µ (the expansions (12) and (24),
the smallness of β, etc.), and in this sense it is a bit rough. For instance, it seems likely
that for the basis (3) described here, completeness should always hold when the measure µ
is ergodic.

Under the assumption that our ordering< on Y0 is preserved under all spatial translations
τs, the system of functions {ΨΓ} is also invariant under the group (Us, s ∈ Zν) of spatial
translations in Hphys, and

(31a) UsΨΓ = ΨΓ+s,

where Γ + s = {γ̃(x), x ∈ Y0} is the translation of the multi-index Γ = {γ(x), x ∈ Y0} by s,

γ̃(x) = γ(τ−1
s x),

and τs is the action of the group Zν on E.

2. The cluster expansion. We begin with some conventions concerning terminology
and notation. For any subset Y ⊂ X , we write M(Y ) for the set of multi-indices Γ = {γ(x),
x ∈ X} with nonempty supports ∅ �= supp Γ ⊂ Y ; we write M(Y0) = M0. A set of multi-
indices {Γ1, . . . ,Γn} is said to be disjoint, if supp Γi ∩ supp Γj = ∅ whenever i �= j, and
consistent if

Γi|supp Γi∩suppΓj = Γj |supp Γi∩supp Γj

for all pairs i �= j (any disjoint set is clearly consistent). Evidently, given any consistent
set of multi-indices {Γ1, . . . ,Γn} there exists a multi-index Γ such that supp Γ =

⋃
i supp Γi

and Γ|supp Γi = Γi|supp Γi for all i = 1, . . . , n. We call Γ the sum of the set {Γ1, . . . ,Γn} and
write Γ =

∨n
i=1 Γi. Further, any representation of a multi-index Γ as a sum Γ =

∨n
i=1 Γi

of a disjoint set of multi-indices {Γ1, . . . ,Γn} will be called a partition of Γ. Finally, if two
disjoint sets τ = {Γ1, . . . ,Γn} and τ ′ = {Γ′

1, . . . ,Γ
′
n} are partitions of the same multi-index

Γ =
∨n
i=1 Γi =

∨n′

j=1 Γ′
j and for every i = 1, 2, . . . , n we have supp Γi ⊂ supp Γ′

j for some
j = 1, 2, . . . , n′, then we write τ < τ ′ and call τ ′ a refinement of τ . The set of partitions
{Γi} of a fixed multi-index Γ = M(X) clearly forms a chain with respect to the relation <;
we will denote it by AΓ.

Let H′
phys = Hphys � {const} be the set of functions Φ ∈ Hphys such that 〈Φ〉µ = 0.

Evidently, H′
phys is invariant under the transfer matrix J and the group {Us}, and in the

sequel we will study the action of these operators on H′
phys without indicating this specifically

(we will continue to write J and Us). The functions {ΨΓ,Γ ∈ M0 ≡ M(Y0)} clearly form a
basis in H′

phys. For any Γ,Γ′ ∈ M0, we write

(32) aΓ,Γ′ = (ΨΓ,JΨΓ′) = 〈ΨΓΨ̂Γ′〉
for the matrix elements of the transfer matrix J in the basis {ΨΓ}. Here Ψ̂Γ′ is the field
function

Ψ̂Γ′ = Ue0ΨΓ′ =
∏

ψ
{x}
γ′(x),

ψ̂
(x)
γ′(x) = Ue0ψ

(x)
γ(x′),
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where Ue0 is the operator on L2(SX , µ) corresponding to the unit translation along the
positive time direction.

If we expand the function f ∈ H′
phys in terms of the basis {ΨΓ}:

f =
∑

Γ∈M0

f(Γ)ΨΓ,

then the coordinates {f(Γ)} of f transform under the action of J by the formula

(33) (J f)(Γ) =
∑
Γ′
aΓ,Γ′f(Γ′).

Because the function Ψ̂Γ depends on the values of the field ξ on the slice Y1, it will sometimes
be convenient to regard the second multi-index Γ′ in (32) as “translated by the slice Y1”, i.e.,
to regard supp Γ′ as lying in Y1, so that every pair (Γ,Γ′) ∈ M0 × M0 can be represented
as a single multi-index Γ̃ = Γ ∨ Γ′ ⊂ M(Y0 ∪ Y1). Any Γ̃ ∈ M(Y0 ∪ Y1) (i.e., such that
supp Γ̃ ∩ Y0 �= ∅ and supp Γ̃ ∩ Y1 �= ∅) will be called a standard multi-index.

Using the well-known expression for the moments of random variables in terms of their
semi-invariants (see [26]), we obtain that

(34) aΓ,Γ′ ≡ aΓ̃ =
∑

τ=(Γ̃1,...,Γ̃n)

ωΓ̃1
ωΓ̃2

. . . ωΓ̃n
,

where the sum is over all partitions of the standard multi-index Γ̃ into disjoint unordered sets
τ = {Γ̃1, . . . , Γ̃n} of standard multi-indices. Here the quantities ωΓ̃ are the semi-invariants:

(35) ωΓ̃ = ωΓ,Γ′ =
〈 ∏
y∈supp Γ

′
ψ

(x)
γ(x),

∏
x∈suppΓ

′
ψ̂

(x)

γ′(x)

〉
.

In deriving (35) we have used the fact that for any Γ ∈ M0 the semi-invariants satisfy

(36)
〈 ∏
x∈suppΓ

′
ψ

(x)
γ(x)

〉
=
〈 ∏
x∈suppΓ

′
ψ̂

(x)

γ(x)

〉
= 0,

as follows from the equalities 〈ΨΓ〉 = 〈Ψ̂Γ〉 = 0 for all Γ ∈ M0 and the formula expressing
the semi-invariants in terms of the moments (see [26]).

Lemma 3 (cluster estimate). The semi-invariant ωΓ̃ satisfy the estimate

(37) |ωΓ̃| < L(Cβ)dΓ̃ ,

where L > 0, C > 0 are absolute constants (depending on the quantities Rx,yα,β, the geometry
of the graph X, and the system of functions ϕγ , but independent of β). Moreover, the
quantities dΓ̃ are defined in analogy with dΓ,γ,γ,x in equation (13):

(38) dΓ̃ = min
n

∑
τ

n(τ), Γ̃ = {γ̃(x), x ∈ Y0 ∪ Y1},
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where n = {n(τ)} is an integer-valued nonnegative finite function on the edges of X, and
the minimum in (38) is taken over all functions whose support is a connected set of edges
and such that for every x ∈ supp Γ̃ we have

(39)
∑
τ :x∈τ

n(τ) ≥ N(γ̃(x)).

Proof. The estimate (37) can be derived by the arguments used in [26, Chapter 6,
§2] to estimate the semi-invariants of bounded quasilocal functions (the analytic method).
Specifically, using the cluster expansion for a suitable Gibbs distribution, one can show that
the semi-invariant ωΓ̃ is analytic in the parameter β (|β| < β0), and then conclude that ωΓ̃

is of order (Cβ)dΓ̃ for small β. This assertion is obtained from the cluster estimates for
the semi-invariants by using equation (15a), expanding the semi-invariant ωΓ̃ as a sum of
semi-invariants of the form (Γ̃ = (Γ,Γ′))∏

x∈suppΓ

B
(x),γ(x)
Γx

∏
x∈suppΓ

B
(x),γ′(x)
Γ′

x

〈∏
x

′
ϕΓx

,
∏
x

′
ϕ̂Γ′

x

〉
and then expanding the expectation

〈∏′
xϕΓx

,
∏′
xϕ̂Γx

〉
, in terms of the semi-invariants of an

independent field, as in (18) in the preceding paragraph; see [26]. The estimate (37) now
follows readily.

Formula (34) for the matrix elements aΓ,Γ′ together with the cluster estimate (37) is
called the cluster expansion of the transfer matrix.

We note that since the transfer matrix J commutes with the group {Us}, (31a) implies
that

(40) aΓ+s,Γ′+s = aΓ,Γ′

and also that

(41) ωΓ+s,Γ′+s = ωΓ,Γ′ .

Remark. We note that our constructions remain valid for a field with an action of the
form

(42) VΛ =
∑

Rkϕ
k,

where k = {kα(y)}, ϕk =
∏
y,α ϕ

hα(y)
α (ξ(y)), and Rk are the coefficients. In this case, to

define the quantity d appearing in the estimate (37) for the semi-invariant ωΓ̃, one must
minimize the sum ∑

∆

n(∆),

where n = {n(∆)} is an integer-valued function defined on ∆ = supp k, the support of the
potential VΛ in (42). The minimum is over the set of functions n = {n(∆)} for which the
set {∆: n(∆) �= 0} is connected, and for every y ∈ supp Γ̃ the estimate∑

∆:y∈∆

n(∆)k∆(y) > N(γ̃(y)), Γ̃ = {γ̃(x)}

holds. Here k∆(y) is the smallest power of the field variables ϕα(ξ(y)) appearing in the
monomials ϕk, and in (42) supp k = ∆.
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§2. Cluster operators. Definition and basic properties

Upon introducing a basis {ψΓ,Γ ∈ M0} in Hphys, we can identify Hphys with the space
l2(M0) of functions f = {f(Γ)} on the set M0 such that

(1) ‖f‖ =
∑

Γ∈M0

|f(Γ)|2 <∞.

Under this identification, the group {Us} acts by

(2) (Usf)(Γ) = f(Γ − s),

and the operator J by the formula (33.1). We now introduce a more general class of
operators acting on l2(M0) and called cluster operators; they include, in particular, the
transfer matrices of Gibbs fields.

Let the operator A be defined by the formula

(3) (Af)(Γ) =
∑
Γ′
aΓ,Γ′f(Γ′)

and write aΓ,Γ′ ≡ aΓ̃ for its matrix elements, where Γ̃ is the standard multi-index generated
by the pair (Γ,Γ′):

Γ̃ = Γ
∨

Γ′

(the multi-index Γ′ is regarded as “translated” by the slice Y1, see above). The matrix
elements are assumed to admit a decomposition

(4) aΓ̃ =
∑

τ=(Γ̃1,...,Γ̃n)

ω(Γ̃1, . . . , Γ̃n),

where the sum is over all disjoint partitions of Γ̃ into sets of standard multi-indices Γ̃1, . . . , Γ̃n;
and ω(Γ1, . . . ,Γn) is a function defined on the collection of all unordered sets τ = (Γ̃1, . . . , Γ̃n)
of standard (in general, nondisjoint) multi-indices, and satisfies the following conditions:

1. Independence of clusters : for every set of standard multi-indices (Γ̃1, . . . , Γ̃n) and every
n-tuple of vectors {s1, . . . , sn}, si ∈ Zν , we have

(5) ω(Γ̃1 + s1, . . . , Γ̃n + sn) = ω(Γ1, . . . ,Γn).

2. Cluster estimate: there exists a number λ, 0 < λ < 1 (the cluster parameter) and a
constant L such that for every set (Γ̃1, . . . , Γ̃n) we have the estimate

(6) |ω(Γ̃1, . . . , Γ̃n)| < L
n∏
i=1

λ
dΓ̃i .

The function ω(Γ̃1, . . . , Γ̃n) appearing in (4) is called the cluster function. We now make
some remarks concerning the above definition of cluster operators.

I. Condition (5) expresses the basic physical idea of the cluster property, that is, a mul-
ticomponent system breaks apart into several “noninteracting” subsystems (clusters) that
move independently of one another in space.
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We note that the expansion (4) involves the values of the cluster function
ω(Γ̃1, . . . , Γ̃n) on disjoint sets. In essence, condition (5) provides a way of defining
ω(Γ̃1, . . . , Γ̃n) on all sets (Γ̃1, . . . , Γ̃n) of standard multi-indices.

II. The cluster estimate (6) shows that the main contribution to the matrix element aΓ,Γ′

comes from those partitions τ = (Γ̃1, . . . , Γ̃n) of the multi-index Γ̃ whose blocks Γ̃i are not
too “spread out” in space (i.e., the quantities dsupp Γ̃i

are as small as possible). Here the

matrix elements aΓ̃ themselves are small for multi-indices Γ̃ = {γ̃(x)} with sufficiently large
powers N(Γ̃) = suppxN(γ̃(x)).

The cluster expansion (6) chosen here is quite convenient in applications and agrees well
with the cluster estimate (37.1) for the semi-invariants ωΓ̃; of course, this estimate could be
replaced by various others of similar type. In particular, in the study of the transfer matrices
for Gibbs Euclidean fields defined by an action of the general type (42.1), one must change
the definition of the dΓ̃ in (6) as was explained in the remark at the end of the preceding
paragraph.

We now establish some general properties of cluster operators.

Lemma 1. The cluster function is uniquely determined by the cluster operator.

In other words, it is impossible to find two distinct cluster expansions (4) for the matrix
elements of the cluster operator, with distinct cluster functions ω1 and ω2, respectively,
satisfying conditions 1 and 2.

Proof. Let τ0 = (Γ̃1, . . . , Γ̃n) be a disjoint set of standard multi-indices. Note that the
expansion (4) together with conditions (5) and (6) implies that

(7) lim
|si−sj |→∞

i�=j

a∨n
i=1(Γi+si) ≡ B(τ0) =

∑
τ≤τ0

ω(τ),

where the sum is over all partitions τ refining τ0. We write AΓ̃ for the structure3 of partitions
of the standard multi-index Γ̃ into standard multi-indices. We see from equation (7) that
the sums ∑

τ<τ

ω(τ) ≡ B(τ )

are uniquely defined by the operator itself. Applying the Möbius inversion formula, we
obtain that

ω(τ) =
∑
τ :τ≤τ

µAΓ̃
(τ, τ )B(τ ),

where µAΓ̃
is the Möbius function for the structure AΓ̃. The lemma is proved.

Let Wλ be the class of cluster operators acting on l2(M0), where they satisfy the cluster
estimate (6) with a fixed cluster parameter λ. Evidently, Wλ is a linear space which is
complete with respect to the norm

(8) ‖|A‖|λ = sup
τ

|ω(τ)|
∏
Γ̃∈τ

λ−dΓ̃ , A ∈ Wλ,

where the supremum is over all disjoint sets τ = {Γ̃} of standard multi-indices.

3Translator’s note: That is, directed set with respect to the partial order given by refinement.
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Lemma 2. For λ sufficiently small, every cluster operator A ∈ Wλ is a bounded operator
on l2(M0), and

(9) ‖A‖l2(M0) < Cλ‖|A‖|λ,

where C > 0 is an absolute constant.

Proof. It follows easily from the general formula

‖A‖l2(M0) = sup
f,g∈l2(M0)
‖f‖=‖g‖=1

(Af, g)

that the norm ‖A‖l2(M0) satisfies the estimate

(10) ‖A‖l2(M0) ≤
1
2

(
sup
Γ

∑
Γ′

|aΓ,Γ′ | + sup
Γ′

∑
Γ

|aΓ,Γ′ |
)
,

where the aΓ,Γ′ are the matrix elements of A. Using (4) and the bound (6), we compute
easily that for small λ

(11)
∑
Γ′

|aΓ,Γ′ | < (Cλ)N(Γ)‖|A‖|λ,

where C is an absolute constant; a similar estimate holds for
∑

Γ |aΓ,Γ′ |. The result (9) now
follows from these estimates and (10).

The set of cluster operators (with a sufficiently small cluster parameter ) turns out to
form an algebra. More precisely, we have

Lemma 3. There exists an absolute constant C such that for every sufficiently small λ
and every set of cluster operators A0, A1, . . . , An in Wλ, the product

(12) B = A0A1 . . . An

belongs to the class WCλ, and

(13) ‖|B‖|Cλ < (Cλ)n
n∏
i=0

‖|Ai‖|λ.

Proof. Clearly, the matrix elements aBΓ,Γ′ of the operator B are equal to

(14) aBΓ,Γ′ =
∑

(Γ1,Γ2,...,Γn)

aA0
Γ,Γ1

aA1
Γ1,Γ2

. . . aAn

Γn,Γ′ .

In what follows we will regard each multi-index Γi as lying in the slice Yi (supp Γi ⊂ Yi) and
define standard multi-indices

Γ̃0 = (Γ,Γ1), Γ̃1 = (Γ1,Γ2), . . . , Γ̃n = (Γn,Γ′)
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with supports supp Γi ⊂ Yi ∪ Yi+1 (supp Γ̃i ∩ Yi �= ∅, supp Γ̃i ∩ Yi+1 �= ∅), such that the set
of multi-indices (Γ̃0, Γ̃1, . . . , Γ̃n) is consistent, so that the multi-index

Γ̂ =
∨

Γ̃i, supp Γ̂ ⊂
n+1⋃
i=0

Yi,

is defined, and supp Γ̃ ∩ Yi �= ∅, i = 0, 1, . . . , n+ 1.
For every unordered set

α = {Γ̃ji , i = 0, 1, . . . , n, j = 1, . . . , j(i)}

of standard multi-indices such that

supp Γ̃ji ⊂ Yi ∪ Yi+1

we define ω(α) by

(15) ω(α) = ωA0(Γ̃1
0, . . . , Γ̃

j(0)
0 )ωA1(Γ̃1

1, . . . , Γ̃
j(1)
1 ) . . . ωAn(Γ̃1

n, . . . , Γ̃
j(n)
n ).

The set α = {Γ̃ji , i = 0, 1, . . . , n, j = 1, . . . , j(i)} is said to be admissible if:
1) for every i = 0, 1, . . . , n the sets {Γ̃1

j , . . . , Γ̃
j(i)
i } are disjoint;

2) the entire set {Γ̃ji} is consistent, i.e.,∨
j

Γ̃ji |Yi =
∨
j

Γ̃ji−1|Yi , i = 1, . . . , n.

For every admissible set {Γ̃ji} we introduce the following multi-indices

Γ(α) =
∨
i,j

Γ̃ji , Γ0(α), Γn+1(α)

which are such that

supp Γ0(α) ⊂ Y0, supp Γn+1(α) ⊂ Yn+1,

Γ0(α)|Y0 = Γ(α)|Y0 , Γn+1(α)|Yn+1 = Γ(α)|Yn+1 .

¿From (14), (4), and the definition (15) we get the formula

(16) aBΓ,Γ′ =
∑

α:Γ0(α)=Γ,Γn+1(α)=Γ′
ωα

the sum being over all admissible sets α of standard multi-indices with fixed first and last
multi-indices Γ0(α) and Γn+1(α).

An admissible set α = {Γ̃ji} is called a bond if the union of the supports {supp Γ̃ji}
is connected. A set of bonds β = {α1, . . . , αm} is said to be regular if the collection of
multi-indices Γ(α1), . . . ,Γ(αm) is disjoint. Since every admissible set α = {Γ̃ji} of standard
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multi-indices can be uniquely decomposed into a regular set of bonds β = {α1, . . . , αm},
where the αk are the connected components of α, we can write (16) in the form

(17) aBΓ,Γ′ =
∑

β={α1,...,αm}
ω(β),

where the sum is over the regular sets of bonds β = {α1, . . . , αm} such that

(18)
m∨
k=1

Γ0(αk) = Γ,
m∨
k=1

Γn+1(αk) = Γ′.

Here, for every set of bonds β = {αk, k = 1, . . . , n} we define ω(β) = ω(α(β)), where α(β) =
{Γ̃ji (k), i, j, k} is the set of standard multi-indices appearing in the bonds αk, k = 1, . . . ,m,
each multi-index in α(β) being repeated with a multiplicity equal to the number of bonds
αk containing it. We say further that the set of bonds β = {α1, . . . , αm} is connected if the
system of subsets

supp Γ(α1), supp Γ(α2), . . . , supp Γ(αm)

is connected. We now define the cluster functions ωB of the operator ωB by the formula

(19) ωB((Γ,Γ′), . . . , (Γs,Γ′
s)) =

∑
{β1,...,βs}

D(β1) . . . D(βs)ω(β1 ∪ β2 ∪ · · · ∪ βs),

where the sum is over all unordered sequences {β1, . . . , βs} of connected sets of pairwise-
distinct bonds βl = {αlk, k = 1, . . . ,ml} such that the following condition holds: for every
l = 1, . . . , s the sets of multi-indices

(19a)
{Γ0(αl1), . . . ,Γ0(αlm(l))},

{Γn+1(αl1), . . . ,Γn+1(αlm(l))}

taken individually are disjoint, and

(19b)
m(l)∨
k=1

Γ0(αlk) = Γl,
m(l)∨
k=1

Γn+1(αlk) = Γ′
l,

where β1 ∪ · · · ∪ βs = β is the set of bonds appearing in the sets βi (and repeated in β with
multiplicity equal to the number of sets βi containing them). For every β = {α1, . . . , αm} we
define the quantity D(β) as follows. Let Gβ be the graph with vertices labeled by 1, . . . ,m
and such that the edge (i, j) ∈ Gβ if and only if

supp Γ(αi) ∩ supp Γ(αj) �= ∅.
Let Aβ be the structure4 formed by the partitions of Gβ into connected subgraphs (see [26])
and let µAβ

(·, ·) be its Möbius function. We set

(20) D(β) = µAβ
(0,1),

where 0 is the smallest partition (the partition of Gβ into vertices) and 1 is the largest (the
partition into the connected components of Gβ).

4Translator’s note: That is, the directed set with respect to refinement.
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Lemma 4. Let B = {α1, . . . , αm} be a fixed set of bonds. Then

(21) S(β) =
∑

{β1,...,βs},β=β1∪β2∪···∪βs

D(β1) . . . D(βs) =
{

1 if β is regular,
0 otherwise.

The sum is over all partitions (β1, . . . , βs) of β into connected subsets : β = β1∪β2∪· · ·∪βs.
Proof. Let G1 = Gβ1 , G2 = Gβ2 , . . . , Gk = Gβk

be the connected components of the
graph Gβ . Evidently,

(22) S(β) = S(β1) . . . S(βk).

On the other hand, for any connected graph G = Gβ and any partition ε = (β1, . . . , βs) into
connected subgraphs Gβi , we have

(23) D(β1) . . .D(βk) = µG(0, ε).

It follows from the definition of the Möbius function that

∑
ε∈AG

µG(0, ε) =
{

1 if 0 = 1,

0 if 0 < 1.

¿From this and (22), (23) we see that S(β) = 1 only for a completely disconnected graph,
i.e., for a regular set of bonds β; S(β) = 0 in all other cases. We observe that if the multi-
index sets {Γ1, . . . ,Γs} and {Γ′

1, . . . ,Γ′
s} in (19) are separately disjoint, then for every set

(β1, . . . , βs) on the right in (19), the union β = β1 ∪ · · · ∪ βs = {αlk} contains only pairwise
disjoint bonds, and the sets of their first and last multi-indices Γ0(αlk) and Γn+1(αlk} are
disjoint. If we write Γ0(β) =

∨
l,k Γ0(αlk) and Γn+1(β) =

∨
l,k Γn+1(αlk), then it is plain that

every partition β = β1 . . . βs into connected subsets βi gives rise to a disjoint decomposition

(Γ1,Γ′
1), . . . , (Γs,Γ′

s)

of the pair Γ0(β), Γn+1(β) satisfying (19a) and (19b). From this remark, Lemma 4, expres-
sion (17), and equation (19) it follows that the matrix elements aBΓ,Γ′ of the operator B admit
a cluster expansion (4) with cluster function ωB. Property 1), expressing the independence
of the clusters, now follows directly from the definition (19). The cluster estimate for ωB

and the bound on the norm ‖|B‖|cλ (where C is some absolute constant) now follow from
(19), the cluster estimates for the functions ωAi , and the following bound on D(β), where
β = {αk}m1 is a set of pairwise distinct bonds:

(24) |D(β)| ≤
m∏
k=1

C̃dsupp Γ(αk)

here C̃ is an absolute constant and dB for B ⊂ X is defined in Remark I, §1. The bound
(24) is derived in [26, Chapter 2, §6]. We also need the inequality∑

i,j,k

dΓi
j(k)

≥ n+ dΓ̃,
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which is valid for any connected set of bonds β = {αk, k = 1, . . . ,m}, αk = {Γij(k)}, for
which (19a) is satisfied and∨

k

(Γ0(αk)) = Γ,
∨
k

(Γn+1(αk)) = Γ′.

Here Γ̃ = (Γ,Γ′) denotes the standard multi-index determined by the pair (Γ,Γ′) (we regard
Γ′ as a multi-index with support in the slice Y1). This completes the proof of the lemma.

Now let A0, A1, . . . , An be a fixed set of cluster operators, Ai ∈ Wλ, i = 0, 1, . . . , n, where
the parameter λ is sufficiently small: λ < λ0. Let B = B(A0, A1, . . . , An) be the set of
operators expressible in the form

(25) B =
∑

{i1,...,ik}
xi1,...,ikAi1 . . . Aik ≡ T (A0, A1, . . . , An),

where the sum is over all finite ordered pairs {i1, . . . , ik}, is = 0, 1, . . . , n, s = 1, . . . , k,
k = 1, 2, . . . , and the coefficients xi1,...,in are such that

(26) |T (A0, A1, . . . , An)| ≡
∑

{i1,...,ik}
|xi1,...,ik |(Cλ)k−1

k∏
s=1

‖|Ais‖|λ <∞.

The lemma just proved shows that B(A0, A1, . . . , An) ⊆ WCλ and that it is an operator
algebra. Defining a norm on B by

|B|λ = inf
T

|T (A0, A1, . . . , An)|,

where the infimum is over all representations of B ∈ B as a series (25), we have the estimate

‖|B‖|Cλ ≤ |B|λ

and moreover,

(27) |B1B2|λ ≤ Cλ|B1|λ|B2|λ, B1, B2 ∈ B.

Let A be a cluster operator with cluster function ω; then its adjoint A∗ is again a cluster
operator, and its cluster function ω∗ is given by

(28) ω∗(τ) = ω(τ ′),

where τ ′ is obtained from the set of pairs τ = {(Γ1,Γ′
1), . . . , (Γs,Γ′

s)} by transposing each
pair, i.e.,

τ ′ = {(Γ′
1,Γ1), . . . , (Γ′

s,Γs)}.
A cluster operator A whose cluster function ω is a product

(29)
ω(τ) =ω{(Γ1,Γ′

1), . . . , (Γs,Γ
′
s)},

τ = {(Γ1,Γ′
1), . . . , (Γs,Γ

′
s)},
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will be called a multiplicative cluster operator; here ω{(Γ,Γ′)} is the value of the cluster
function on sets consisting of the single pair (Γ,Γ′). We see from (34.1) that the transfer
matrix for a Euclidean field is precisely of this type (for small β). It follows further from
equation (19) that the product of two multiplicative cluster operators is again a multiplica-
tive cluster operator. Moreover, if A ∈ Wλ is a cluster operator and T is a diagonal operator
of the form

(Tf)(Γ) = κN(Γ)f(Γ),

where N(Γ) =
∑
N(γ(x)) is the rank of the multi-index Γ, 0 < κ < 1, then TA and AT are

again cluster operators, and

(30) ‖|TA‖|λ ≤ κ‖|A‖|λ
with a similar estimate for ‖|AT ‖|λ. Let Mk

0 ⊂ M0, for k > 0 an integer, denote the set of
multi-indices Γ = {γ(x), x ∈ Y0} ⊂ M0 with rank

(31) N(Γ) = k

and for any subset R of the natural numbers denote by MR
0 the union

MR
0 =

⋃
k∈R

Mk
0 .

An operator A : lR1
2 → lR2

2 acting by the formula

(32) (Af)(Γ) =
∑

Γ′∈M
R1
0

aΓ,Γ′f(Γ′), Γ ∈ MR2
0

will also be said to be a cluster operator if its matrix elements are expressible in the cluster
form (4). Here lR2 = l2(MR

0 ) and R1, R2 can be any subsets of the natural numbers. The
cluster function ωA of A, which as before satisfies conditions (5) and (6), is defined only for
the sets {(Γ1,Γ′

1), . . . , (Γs,Γ
′
s)} for which

(33)
∑
i

N(Γi) ∈ R2,
∑
i

N(Γ′
i) ∈ R1.

Extending the definition of the cluster function ωA so that it is zero for all other sets, we
can extend A to a cluster operator acting on the whole space l2(M0) and will continue to
denote it by A. We then have

(34) l
N\R2
2 ⊆ KerA, ImA ⊆ lR2

2 .

Let R ⊂ N be a finite set of natural numbers, with M = max
n∈R

n, and let T : lR2 → lR2 be

the diagonal operator on lR2 ,

(Tf)(Γ) = κN(Γ)f(Γ), Γ ∈ MR
0 ,

where κ > 1. Then for every cluster operator A ∈ Wλ such that ImA ⊂ lR2 , the operator
TA is again cluster and

(35) ‖|TA‖|λ < κM‖|A‖|λ.

For every cluster operator A such that KerA ⊇ l
N\R
2 , AT is again a cluster operator and

its norm ‖|AT ‖| satisfies the estimate (35).
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§3. Invariant k-particle subspaces of a cluster operator

A cluster operator A : l{k}2 → l
{k}
2 , k is an integer, is called a k-particle cluster operator.

Now let A act on a Hilbert space H and commute with a unitary representation {Us, s ∈ Zν}
of the group Zν on H. A subspace W ⊂ H invariant under the operators A and {Us, s ∈ Zν}
will be called a cluster k-particle invariant subspace of A with respect to (E,N), where E
is our initial “space” and N is the graph of the indices γ (described in §1), provided there
exists a unitary transformation of W onto the space l(k)2 (M0) which takes A|W (the part of
A acting on the invariant subspace W) into a cluster k-particle operator, and the Us into
the operators (2.2).

It turns out that under quite general conditions, a selfadjoint cluster operator A with a
small enough cluster parameter λ admits k-particle invariant subspaces Hk, k = 1, 2, . . . , N
up to a certain N = N(λ) depending on λ. We will now state these conditions and construct
the associated subspaces.

To this end, for any cluster operator A we define its principal part A0 to be the cluster
operator whose cluster function ω is defined as follows. We see from the definition (38.1)
that for any pair of multi-indices Γ̃ = (Γ,Γ′) the quantities dΓ̃ ≡ dΓ,Γ′ satisfy

(1) dΓ̃ ≥ 1
2
(N(Γ) +N(Γ′)),

where equality dΓ,Γ′ = (N(Γ) + N(Γ′))/2 is clearly possible only if N(Γ) and N(Γ′) have
the same parity. A pair of multi-indices (Γ,Γ′) for which

(2) dΓ,Γ′ =
1
2
(N(Γ) +N(Γ′))

will be called minimal. We set

(3) ωA
0
(τ) =

{
ωA(τ) if τ = {(Γi,Γ′

i)} consists only of minimal pairs,
0 otherwise.

For any two subsets R1, R2 of natural numbers we write AR1R2

(4) AR1R2 = QR1AQR2 ,

where QR is the projection operator onto the subspace lR2 of l2(M0).
When R1 = R2 = {1, . . . , k} ≡ Rk we will write Ak for ARkRk . We now assume that

for some integer N the cluster operator A, with cluster parameter λ and norm ‖|A‖| ≥ 1,
satisfies the following conditions (the N -particle separability conditions):

i) All the operators A0
k, acting on the spaces lR2 for k = 1, . . . , N , are invertible.

ii) Each of the operators (A0
k)

−1 (on lRk
2 ) is expressible as

(5) (A0
k)

−1 = (T µ
(1)
k

k )−1Ã0
k(T

µ
(1)
k

k )−1,

where Ã0
k is a cluster operator acting on lRk

2 with cluster parameter λβk , where βk = 1
2(4k+12) ,

and with norm ‖|Ã0
k‖|λβk ≥ λ−ε, where ε = 1/4, and T µk is the restriction to lRk

2 of the
diagonal operator T µ on l2(M0):

(6) (T µf)(Γ) = (λµ)N(Γ)f(Γ)

and

(7) µ
(1)
k =

1 + βk
2

.
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Theorem 1. For any integer N there exists λ0 = λ0(N) such that if A is a selfadjoint
cluster operator with cluster parameter λ < λ0 and norm ‖|A‖| ≤ 1 satisfying the N -
particle separability conditions, then there exist N invariant mutually orthogonal subspaces
H1, . . . ,HN , where Hk is a k-particle cluster subspace, k = 1, . . . , N . The spectrum σ(A|Hk

)
of A restricted to Hk, is bounded by

(8) C2λ
k+3/8−∆

(2)
k < inf

z∈σ(A|Hk
)
|z| ≤ sup

σ(A|Hk
)

|z| < C1λ
k−5/8+∆

(1)
k ,

where C1, C2 are absolute constants and

(9) ∆(1)
k =

1
k + 2

, ∆(2)
k =

1
2(k + 3)

.

The spectrum of A on the orthogonal complement H̃N = (
⊕N

h=1 Hh)⊥ to the sum of the
subspaces Hk satisfies the bound

(10) sup
σ(A|HN

)

|z| < CλN+ 3
8 + 5

8(N+3) ,

where C > 0 is an absolute constant.

Remark. According to (8) and (10), the spectra of A on the subspaces H1, . . . ,HN ,

H̃N are pairwise disjoint.
Before proving this general theorem, we consider the cases N = 1 and N = 2 in more

detail.

Case N = 1 (one-particle subspace). For any minimal pair (Γ,Γ′) such that N(Γ) =
N(Γ′) = 1, the supports of Γ and Γ′ coincide and consist of a single point:

(10a) supp Γ = supp Γ′ = {x},

and N(γ(x)) = N(γ′(x)) = 1. Thus, the matrix elements of the operator A0
k=1 on the space

l
{1}
2 are given by

(11) a0
Γ,Γ′ = ω((Γ,Γ′)) = b

(1)
α,α′(s(x))δx,x′ ,

where {x} = supp Γ, {x′} = supp Γ′, α = γ(x), α′ = γ(x′) are the indices of the field vari-
ables, and s(x) is the orbit of the point x ∈ Y0 under the action of the group of translations
in E (= Y0). The numbers b(1)α,α′(s) are less than λ:

(12) |b(1)α,α′(s)| < λ

and we will denote the matrix {b(1)α,α′(s)} by B(1)(s). Thus, A0
k=1 has an inverse if and only

if all the matrices {B(1)(s), s ∈ E/Zν} are invertible, and in this case the matrix elements
of (A0

k=1)
−1 have the same form as before:

(13) a0,−1
Γ,Γ′ = b

(1),−1
α,α′ (s(x))δx,x′ ,
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where {b(1),−1
α,α′ (s)} = (B(1)(s))−1. When the estimate

(14) |b(1),−1
α,α′ (s)| < 1

λ1+1/4

holds, the representation (5) is valid for the operator (A0
k=1)

−1. Thus if the cluster operator
A has a small enough cluster parameter λ and conditions (13) and (14) are fulfilled, then
A possesses a one-particle subspace H1. It follows further from the estimates (12) and (14)
that the eigenvalues {Eα(s), α ∈M , s ∈ E/Zν} of the matrices B(1)(s) lie in the intervals

(15) k−1λ1+1/4 < Eα(s) < kλ,

where k is the number of field variables. The next theorem gives more precise information
concerning the location of the spectrum of A on the invariant one-particle subspace H1.

Theorem 2. When conditions (13) and (14) are satisfied, the spectrum of A|H1 is con-
tained in a Cλ2-neighborhood of the eigenvalues Eα(s) of the matrices B(s), s ∈ E/Zν ,
where C is an absolute constant.

The case N = 2 (one- and two-particle invariant subspaces exist). We consider
more closely the form of the operator A0

N=2 on the subspace lR2
2 , where R2 = {1, 2}. Every

minimal pair of multi-indices (Γ,Γ′) for which N(Γ) ≤ 2, N(Γ′) ≤ 2 is either of the form
(10a), with N(Γ) = N(Γ′) = 1, or of the form

(16) supp Γ = supp Γ′ = {x}, N(γ(x)) = N(γ′(x)) = 2.

Hence we find that the nonzero matrix elements a0
Γ,Γ′ must have one of the following three

forms. Either they are given by (11) with N(γ(x)) = N(γ′(x)) = 1; or they are of the form

(17)
a0
Γ,Γ′ = b

(1,1)
α1,α2,α′

1,α
′
2
(s(x1), s(x2))δsupp Γ,supp Γ′ ,

suppΓ = {x1, x2},

where x1 < x2 for a suitable ordering on E, and αi and α′
i index the field variables:

αi = γ(xi), α′
i = γ′(xi), αi, α

′
i ∈M, i = 1, 2

or, finally, they are of the form

(18)
a0
Γ,Γ′ = b

(2)
γ,γ′(s(x))δx,x′ ,

supp Γ = suppΓ′ = {x}, N(γ(x)) = N(γ′(x)) = 2.

The numbers {b(1,1)α1,α2,α′
1,α

′
2
(s1, s2)} ≡ B(1,1)(s1, s2) and {b(2)γ,γ′} ≡ B(2)(s) are bounded by

(19) max{|b(1,1)α1,α2,α′
1,α

′
2
(s1, s2)|, |b(2)γ,γ′(s)|} < λ2.

It is clear from (17) and (18) that the inverse operator (A0
N=2)

−1 exists if and only if
the matrices B(1)(s), B(1,1)(s1, s2), and B(2)(s) are invertible, and in this case the matrix
elements a0,−1

Γ,Γ′ of the inverse are given either by (13), or by equations (17) and (18), in which
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the matrix elements of the matrices B(1,1)
(s1,s2)

and B(2)(s) are replaced by the elements of the
inverses:

(20)
(B(1,1)(s1, s2))−1 = {b(1,1),−1

α1,α2,α′
1,α

′
2
(s1, s2)},

(B(2)(s))−1 = {b(2),−1
γ,γ′ (s)}.

Finally, the two-particle separability condition is equivalent to the estimate (14), together
with the estimates

(21) |b(1,1),−1
α1,α2,α′

1,α
′
2
(s1, s2)|, |b(2),−1

γ,γ′ (s)| < 1
λ2+1/4

.

Thus if (14) and (21) are satisfied, then there exist two invariant cluster subspaces H1 and
H2 (one-and two-particle subspaces, respectively). We now assume that the cluster function
ω of the operator A is nonzero only for sets {(Γ1,Γ′

1), . . . , (Γs,Γ
′
s)} such that for each pair

(Γi,Γ′
i) of multi-indices the ranks N(Γ) and N(Γ′) have the same parity:

(22) N(Γ) = N(Γ′) (mod 2).

In this case also the matrix elements a0
Γ,Γ′ are nonzero only when (22) holds. The location

of the spectrum of A on H2 is given more precisely by the following theorem. According to
(19) and (21), the eigenvalues {E1,1

α1,α2
(s1, s2)} and {E(2)

γ (s)} of the matrices B(1,1)(s1, s2)
and B(2)(s) lie in the intervals

(23) C2λ
2+1/4 < |E1,1

α1,α2
(s1, s2)| < C1λ

2,

where C1 and C2 are absolute constants; similar estimates hold for {E(2)
γ (s)}.

Theorem 3. Under the above hypotheses (21) and (22), the spectrum of A|H2 is con-
tained in a Cλ3-neighborhood of the eigenvalues of the matrices B(1,1)(s1, s2), B(2)(s) (C is
an absolute constant).

The verification of the separability conditions for N > 2 is more complicated than for
N = 1 or 2, because A0

k may contain off-diagonal elements when k > 2 (due to nondiagonal
minimal pairs (Γ,Γ′) of the form supp Γ = (x1, x2), where x1, x2 are adjacent points and
N(γ(x1)) = 2, N(γ(x1)) = 1, supp Γ′ = {x,N(γ(x)) = 1}).

Proof of Theorem 1. Let A ∈ Jλ be a selfadjoint cluster operator satisfying the
hypotheses of the theorem. We begin by constructing an increasing chain of subspaces

(24) L1 ⊂ L2 ⊂ · · · ⊂ LN ⊂ l2(M0)

invariant under A and the group {Us, s ∈ Zλ}. The subspaces Hk will then be defined by
taking successive orthogonal complements:

(25) H1 = L1, H2 = L2 � L1, HN = LN � LN−1.

Construction of the subspaces Lk, k = 1, . . . , N . The direct sum decomposition

lRk
2 ⊕ l

N\Rk

2
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of l2(M0) induces a matrix decomposition

A ∼
(
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

)
of the operator A, where A(k)

11 : lRk
2 → lRk

2 , A(k)
12 : lN\Rk

2 → lRk
2 , and so on. Here A(k)

11 is
expressible in the form

(26) A
(k)
11 = A

(0)
k +A

(1)
k ,

where A(0)
k is the restriction of the principal part A(0) of A to lRk

2 , and A(1)
k is expressible as

(27) A
(1)
k = T

µ
(1)
k

k Ã
(1)
k T

µ
(2)
k

k ,

where Ã(1)
k is a cluster operator with cluster parameter λβk and norm

(28) ‖|Ã(1)
k ‖|λβk < λµ

(2)
k , µ

(2)
k =

1 − βk
2

.

Lemma 4. Assume that the separability condition (5) is satisfied. Then the operator A(k)
11

is invertible and its inverse (A(k)
11 )−1 is of the form

(29) (A(k)
11 )−1 = (T µ

(1)
k )−1Ã

(k)
11 (T µ

(1)
k )−1,

where Ã(k)
11 is a cluster algebra in the algebra B(Ã(0)

k , Ã
(1)
k , T

µ
(2)
k −µ(1)

k

k ) of series of the form
(25.2), and

(30) |Ã(k)
11 |λβk < 2/λ1/4.

Proof. Using the decomposition (26) and expressions (5) and (27), we can write the
operator (A(l)

11 )−1 as

(31)

(A(k)
11 )−1 = (A(0)

k )−1 − (A(0)
k )−1A

(1)
k (A(0)

k )−1 + · · ·
+ (−1)n(A(0)

k )−1A
(1)
k (A(0)

k )−1 . . . A
(1)
k (A(0)

k )−1︸ ︷︷ ︸
n times

+ · · ·

= (T µ
(1)
k

k )−1[Ã(0)
k − Ã

(0)
k (T µ

(1)
k −µ(2)

k

k )−1Ã
(1)
k (T µ

(1)
k −µ(2)

k

k )−1Ã
(0)
k + · · ·

+ (−1)nÃ(0)
k (T µ

(1)
k −µ(2)

k

k )−1Ã
(1)
k (T µ

(1)
k −µ(2)

k

k )−1Ã
(0)
k · · ·

· · · Ã(1)
k (T µ

(1)
k −µ(2)

k

k )−1Ã
(0)
k + · · · ](T µ

(2)
k

k )−1.

We take Ã(k)
11 to be the sum of the series in square brackets in the last part of equation (31).

The norm |Ã(k)
11 |λβk in the algebra B(Ã(0)

k , Ã
(1)
k , T

µ
(1)
k −µ(2)

k

k ) is at most

‖|Ã(0)
k ‖|λβk +

∞∑
n=1

‖|Ã(0)
k ‖|n+1

λβk
|T µ

(1)
k −µ(2)

k

k |−n‖|Ã(1)
k ‖|λβk (Cλβk)n

<
1
λε

(
1 +

∞∑
1

(λ1/2−ε−(k+1/2)βk )nC2n

)
<

2
λ1/4
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if 1/2 − ε − (k + 1/2)βk > 0 and λ is sufficiently small. This completes the proof of the
lemma.

Now we want to find each subspace Lk as the graph

(32) Lk = {f + S(k)f, f ∈ lRk
2 }

of some operator S(k) : lRk
2 → l

N\Rk

2 . The invariance of Lk under A is equivalent to

A
(k)
21 +A

(k)
22 S

(k) = S(k)(A(k)
11 +A

(k)
12 S

(k)),

which in view of the preceding lemma can be recast in the form

(33) S(k) = A
(k)
21 (A(k)

11 )−1 +A
(k)
22 S

(k)(A(k)
11 )−1 − S(k)A

(k)
12 S

(k)(A(k)
11 )−1.

We take this as the equation defining the operator S(k). Note that the operators A(k)
12 and

A
(k)
21 are expressible as

(34) A
(k)
21 = Ã

(k)
21 T

µ
(2)
k

k , A
(k)
12 = T

µ
(2)
k

k Ã
(k)
12 ,

where Ã(k)
21 and Ã(k)

12 are cluster operators with cluster parameter λβk and norms

(35) ‖|Ã(k)
12 ‖|λβk , ‖|Ã(k)

21 ‖|λβk < λµ
(2)
k (k+1).

We can view A
(k)
22 as a cluster operator with cluster parameter λβk and norm

(36) ‖|A(k)
22 ‖|λβk < λ2µ

(2)
k (k+1).

Lemma 5. Equation (33) has a solution S(k) belonging to the algebra

B(Ã(0)
k , A

(1)
k , Ã

(k)
12 , Ã

(k)
21 , Ã

(k)
22 , (T

µk

k )−1)

and its norm |S(k)|λβk in this algebra is bounded by

(37) |S(k)|λβk < Cλ
1

4(12k+4) ,

where C is an absolute constant. A similar result holds for the adjoint operator (S(k))∗.

Proof. We first expand the solution of equation (33) as a series in the operators (A(k)
11 )−1,

A
(k)
12 , A(k)

21 , A(k)
22 . For any pair α = (s, q) of integers with s ≥ 0, q ≥ 0 we introduce the

operator

(38) Bα = (A(k)
22 )sA(k)

21 (A(k)
11 )−(q+1)

and for a sequence {α1, . . . , αr}, αi = (si, qi) we set

(39) Bα1,...,αr = Bα1A
(k)
12 Bα2A

(k)
12 . . . A

(k)
12 Bαr .
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The sequence (α1, . . . , αr) will be called regular if the sum

Si = s1 + s2 + · · · + si, Qi = q1 + · · · + qi

satisfies the conditions

(40)
Qi ≥ Si + (i− 1), i = 1, . . . , r − 1,

Qr = Sr + (r − 1)

and q2 > 1 for r > 1. We show that equation (33) has a solution expressible as a series

(41) S(k) =
∑

(α1,...,αr)

xα1,...,αrBα1,...,αr ,

where the sum is over all regular sequences (α1, . . . , αr). Substituting S(k) as in (41) into
equation (33), we obtain the following recursion relations for the coefficients xα1,...,αr :

1) for r = 1,

(42)
x(s,q) = x(s−1,q−1), s > 0, q > 0,
x0,0 = 1, x0,q = xs,0 = 0, s > 0, q > 0,

2) for r > 1 and α1 �= (0, q),

(43) xα1,...,αr = xα̂1,α2,...,αr
−
r−1∑
p=1

xα1,...,αpxαp+1,...,α̃r
,

where for α = (s, q), α̂ = (s − 1, q) (for s > 0) and α̃ = (s, q − 1) (for q > 0). When
α1 = (0, q) the term xα1,α2,...,αr does not appear in the left-hand side of (43). We note that
if the sequence (α1, . . . , αr) is not regular, then neither is the sequence (α1, . . . , αr), and for
any p = 1, . . . , r− 1 one of the sequences (α1, . . . , αp) or (αr+1, . . . , α̃r) must be nonregular.
Thus, our requirement that xα1,...,αr = 0 for all nonregular sequences is consistent with the
relations (43). It follows from (42) that when r = 1,

xs,q = δs,q,

while the coefficients xα1,...,αr for the regular sequences (α1, . . . , αr) can be recovered uniquely
from the recursion relations (43). Let us show that

(44)
∑

|xα1,...,αr |uSrvr <∞

for sufficiently small u and v. For this purpose we introduce the coefficients yα1,...,αr (where
(α1, . . . , αr) is a regular sequence) satisfying the recursion relations

(45)
y(s,q) = δs,q, r = 1,

yα1,...,αr = yα̂1,...,α̃r
+
∑
p

yα1,...,αpyαp+1,...,α̃r

for r > 0 and α1 �= (0, q) (if α1 = (0, q) then the first term yα̂1,α2,...,α̃r
does not appear in

the right-hand side of (45)). Evidently, we have yα1,...,αr ≥ 0 and

(46) |xα1,...,αr | ≤ yα1,...,αr .
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Defining

(47) Ys,r =
∑

(α1,...,αr):
Sτ=S>0

yα1,...,αr .

we easily get from (45) that for r > 1 and S > 0,

(48) YS,r = YS−1,r +
∑

S1+S2=S
1≤p≤r−1

YS1,pYS2,r−p,

and for r > 1 and S = 0

(49) Y0,r =
r−1∑
p=1

Y0,pY0,p−r.

Finally,

(50) YS,1 = 1.

¿From this we readily conclude that the function

(51) w(u, v) =
∑
S≥0
τ>0

YS,ru
svr

satisfies the quadratic equation

(52) w = v + uw + w2, w(u, 0) = 0.

For small u, v the solution of (52) vanishing at v = 0 is analytic in the variables u and v.
Thus the series (43), and hence also (44), converges in a small neighborhood of the point
u = v = 0.

Inserting expressions (29) and (34) for the operators (A(k)
11 )−1 and A

(k)
21 , A(k)

12 into (38),
we obtain

(53) Bα = (A(k)
22 )s(Ã(k)

21 )(T µ
(k)
1 −µ(k)

2
k )−1 Ã

(k)
11 (T µ

(k)
1

k )−2Ã
(k)
11 (T µ

(k)
1

k )−2 . . . Ã
(k)
11 (T µ

(k)
1

k )−1︸ ︷︷ ︸
(q+1) times

Thus, again using expression (34) for A(k)
12 , we find that

(54)

Bα1,...,αr =(A(k)
22 )s1(Ã(k)

21 )(T µ
(k)
2 −µ(k)

1
k )−1

× Ã
(k)
11 (T µ

(k)
1

k )−2 . . . Ã
(k)
11︸ ︷︷ ︸

(q1+1) times

(T µ
(k)
1 −µ(k)

2
k )−1(Ã(k)

12 )(A(k)
22 )s2

× Ã
(k)
21 (T µ

(k)
2 −µ(k)

1
k )−1 Ã

(k)
11 (T µ

(k)
2

k )−2 . . . Ã
(k)
11 (T µ

(k)
1 −µ(k)

2
k )−1︸ ︷︷ ︸

(q2+1) times

× Ã
(k)
12 (A(k)

22 )s3 . . . (A(k)
22 )s2Ã(k)

21 (T µ
(k)
1 −µ(k)

2
k )−1

× Ã
(k)
11 (T µ

(k)
2

k )−2 . . . Ã
(k)
11 (T µ

(k)
1

k )−1︸ ︷︷ ︸
(q2+1) times

.
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Since Ã(k)
11 is given as a power series in the operators Ã(0)

k , Ã
(1)
k , and (T µ

(k)
1 −µ(k)

2
k )−1, we see

that (41) does indeed imply that S(k) belongs to the algebra

B(Ã(0)
k , Ã

(0)
k , (T µ

(k)
2

k )−1, T
µ

(k)
1

k , A
(k)
22 , Ã

(k)
12 , Ã

(k)
21 ) ≡ Bk,

and in view of (30), (35), and (36) the norm |S(k)|λβk is bounded by

|S(k)|λβk <
∑

α1,...,αr

|xα1,...,αr | · |‖A(k)
22 ‖|Sr

λβk

× ‖|Ã(k)
21 ‖|rλβk

‖|Ã(k)
12 ‖|r−1

λβk
‖|(T µ(k)

2 −µ(k)
1 )−1‖|2r−1

λβk

× ‖|Ã(k)
11 ‖|Qr+r

λβk
‖|(T µ(k)

1 )−1‖|2Qr+1

λβk
(Cλβk)Sr+Qr+3r−2

< λ[(k+1)(1−βk)Sr+
1−βk

2 (k+1)(2r−1)−βkk(2r−1)]

× λ[−ε(Qr+r)− 1+βk
2 k(2Qr+1)+βk(Sr+Qr+3r−2)]

× 2Qr+rCSr+Qr−3r−2

<
1

2C3
[2C2λ1−(2k−1)βk−ε]Sr [4C4λ1−(4k+3)βk−2ε]rλ−

1
2+ε+(2k− 5

2 )βk .

Here we have made use of the regularity condition (40). Thus, provided that 1−(2k−1)βk−
ε > 0, 1− (4k+ 3)βk − 2ε > 0, we see that the series (41) converges and the norm |S(k)|λβk

satisfies the estimate

|S(k)|λβk < C1λ
1
2−ε−(2k− 11

2 )βk = Cλ
1

4(12k+4) ,

for absolute constants C1, C > 0. Thus, S(k) is a cluster operator with cluster parameter
C0λ

βk , and for ε = 1/4, λ sufficiently small, and

1
2
− ε−

(
2k − 11

2

)
βk =

1
4(12k + 4)

its norm ‖|S(k)‖|C0λβk is very small.
The operator (S(k))∗ is treated similarly. This completes the proof of the lemma.

We have thus constructed a subspace Lk of the form (32) which is invariant under A.
Moreover, Lk is also invariant under the translation group {Us, s ∈ Zν}, since it is plain
from the construction of S(k) that it commutes with every Us. We now derive bounds for
the spectrum σ(A|Lk

) of the operator A on Lk and on the orthogonal complement L⊥
k .

We first observe that the cluster operator (S(k))∗S(k) maps the subspace lRk
2 into itself,

and both its norm ‖|(S(k))∗S(k)‖|C0λβk and the operator norm ‖(S(k))∗S(k)‖ are small. This
implies, in particular, that we have a well-defined map

(55)
Vk : lRk

2 → Lk : f → g = (Ek + (S(k))∗(S(k)))−1/2f

+ S(k)(Ek + (S(k))∗(S(k)))−1/2f, f ∈ lRk
2 ,

where Ek is the identity operator on lRk
2 and Vk maps lRk

2 unitarily onto all of Lk. The
quadratic form (Ag, g), g ∈ Lk is equal to

(56) (Ag, g) = (Bkf, f), f = V −1
k g ∈ lRk

2 ,
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while the operator Bk acting on lRk
2 and unitarily equivalent to A|Lk

is given by

(57)

Bk =(Ek + (S(k))∗(S(k)))−1/2[A(k)
11 +A

(k)
12 S

(k)

+ (S(k))∗A(k)
21 + (S(k))∗A(k)

22 ](Ek + (S(k))∗(S(k)))−1/2

=(Ek + (S(k))∗(S(k)))−1/2(A(k)
11 +A

(k)
12 S

(k))(Ek + (S(k))∗(S(k)))−1/2.

Here we have used equation (33).
We have further

(58) A
(k)
11 +A

(k)
12 S

(k) = A
(k)
11 [Ek + (A(k)

11 )−1A
(k)
12 S

(k)]

and using (29) and (34) we find that

(A(k)
11 )−1A

(k)
12 S

(k) = (T µ
(k)
1

k )−1Ã
(k)
11 (T µ

(k)
1 −µ(k)

2
k )−1Ã

(k)
12 S

(k)

and the norm of this operator in the algebra Bk is at most

C1λ
−(

1+βk
2 )k−ε−βkk+(

1−βk
2 )(k+1)−ε−(2k+ 5

2 )βk

= C1λ
1−2ε−(4k+3)βk < Cλ

9
2(4k+12) ,

where C1 is an absolute constant. The norm of (A(k)
11 )−1A

(k)
12 S

(k) is thus small. From (57)
and (58) we find that Bk is invertible, and by (30) its norm satisfies

(59) ‖B−1
k ‖ < ‖(A(k)

11 )−1‖ < Cλ−(1+βk)+βk−1/4.

¿From this we see that the spectrum σ(Bk) = σ(A|Lh
) is bounded from below:

(60) xk ≡ inf
z∈σ(A|Lk

)
{|z|} > Cλk+(k−1)βk+1/4,

where C is an absolute constant independent of k and λ.
We next note that the orthogonal complement L⊥

k of the subspace Lk is of the form

L⊥
k = {f − (S(k))∗f, f ∈ l

N\Rk

2 }

and the map

(61) V k : lN−Rk
2 → L⊥

k : f → g = (E>k + S(k)(S(k))∗)−1/2f

− (S(k))∗(E>k + S(k)(S(k))∗)−1/2f, f ∈ l
N\Rk

2

takes lN\Rk

2 unitarily into L⊥
k (E>k is the identity operator on l

N\Rk

2 ). Arguing as above,
we find that A|L⊥

k
is unitarily equivalent under this map to an operator Bk on lN\Rk

2 of the
form

Bk = (E>k + S(k)(S(k))∗)1/2(A(k)
22 − S(k)A

(k)
12 )(E>k + S(k)(S(k))∗)−1/2.

¿From the expansion (41) of S(k) and representation (34) for Ak12 it follows that the norm
|S(k)A

(k)
12 |λβk is less thanC1λ

(k+1)−(3k+4)βkλ−1/4 and thus ‖S(k)A
(k)
12 ‖ < Cλ(k+1)−(3k+4)βk−1/4.
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Using the obvious estimate ‖A(k)
22 ‖ < Cλk+1 we find finally that ‖Bk‖ < Cλ(k+1)−(3k+4)βk−1/4

and thus,

(62) xk ≡ suppσ(A|L⊥
k
) < Cλ(k+1)−(3k+4)βk−1/4.

Since 1− (4k+ 3)βk − 1/2 = 9
2(4k+12) > 0, we have xk > xk for sufficiently small λ, i.e., the

spectrum of A|Lk
is separated from the spectrum of A on L⊥

k .
It follows from the above that Lk = H(−∞,−xk) ⊕ H(xk,∞) and L⊥

k =
H(−xk, xk), where {H(∆), ∆ ⊂ R1} is a spectral family of invariant subspaces for the
selfadjoint operator A.

We use the procedure described above to construct subspaces Lk for every k = 1, 2, . . . , N .
For k > 1 we see from estimates (6) and (62) that xk−1 > xk, so that Lk−1 ⊂ Lk. The
subspaces are thus well defined by (25). They are invariant under A and {Us} and mutually
orthogonal. We find from (60) and (62) that

(63)
C1λ

k+3/8− 7
8(k+3) < xk = inf

z∈σ(A|Hk
)
|z| < sup

z∈σ(A|Hk
)

|z|

≤ xk−1 < C2λ
k−5/8+ 5

8(k+2) ,

whence we obtain (8).
We now show that each of the invariant subspaces constructed above is a cluster k-particle

subspace. For k = 1, the unitary transformation V1 : lR1
2 → L1 = H1 takes A|H1 into the

operator B1 given by (57) with k = 1:

(64) B1 = (E1 + (S(1))∗S(1))−1/2(A(1)
11 +A

(1)
12 S

(1))(E1 + (S(1))∗S(1))−1/2.

Since (E1 + (S(1))∗S(1))±1/2 = E1 +D±
1 , where the D±

1 are cluster operators, we see from
(64) that B1 is a cluster operator belonging to the algebra B1.

In the case when k > 1, we construct a unitary map Wk : l{k}2 → Hk. We first define the
transformation

W̃k : l(k)2 → Hk : f → g = PL⊥
k−1

(f + S(k)f) ∈ Hk,

f ∈ l
{k}
2 , where PL⊥

k−1
is the orthogonal projection onto the space L⊥

k−1 orthogonal to Lk−1.
To find P explicitly, we note that for every ϕ ∈ l2(M0)

PLk−1ϕ = ψ + S(k−1)ψ, ψ ∈ lRk
2 ,

PL⊥
k−1

ϕ = ξ − (S(k−1))∗ξ, ξ ∈ l
N\Rk

2 .

Hence we have

Q
l
Rk−1
2

ϕ ≡ ϕ1 = ψ − (S(k−1))∗ξ,

Q
l
N\Rk
2

ϕ ≡ ϕ2 = ξ + S(k−1)ψ,

where Q
l
Rk−1
2

, Q
l
N\Rk
2

are the projections onto the corresponding spaces. Eliminating ψ

from these relations, we get

ξ = (E>(k−1) + S(k−1)(S(k−1))∗)−1(ϕ2 − S(k−1)ϕ1),
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where E>(k−1) is the identity operator on l
N\Rk

2 and the inverse operator (E>(k−1) +
S(k−1)(S(k−1))∗)−1 is taken on this space. We thus have

PL⊥
k−1

ϕ = (E>(k−1) + (S(k−1))∗)(E>(k−1) + S(k−1)(S(k−1))∗)−1(ϕ2 − S(k−1)ϕ1).

Recalling that Q
l
Rk−1
2

f = (f + S(k)f) = 0 for f ∈ l
{k}
2 , we find finally that

(65) W̃kf = (E>(k−1) + (S(k−1))∗)(E>(k−1) + S(k−1)(S(k−1))∗)−1(f + S(k)f).

¿From this we find after some straightforward algebra that

(W̃kf, W̃kf) = ((E{k} +Dk)f, f),

where E{k} is the identity operator on l
{k}
2 and Dk is a selfadjoint cluster operator acting

on l
{k}
2 and belonging to the algebra B̃k of series with generators in the algebras Bk and

Bk−1; moreover, the cluster norm of Dk is small. We have thus defined a map

(66) Wkf = W̃ (E{k} +Dk)−1/2, f ∈ l
{k}
2 ,

that takes l{k}2 unitarily onto Hk. The operator Bk = W ∗
kAWk acting on l

{k}
2 is then

unitarily equivalent to A|Hk
and is a cluster operator, as is easily seen from equations (65)

and (66). This concludes the proof of Theorem 1.

Proof of Theorem 2. We note that the eigenvalues {Eα(s)} of the matrices B(1)(s)
comprise the spectrum of the operator A(0)

1 (which is of infinite multiplicity). Since the norm
of A(1)

11 is less than Cλ2 (as follows from Lemma 2.2), the spectrum of A(1)
11 is contained in

a Cλ2 neighborhood of the eigenvalues {Eα(s)}, where C > C > 0 are absolute constants.
For k = 1, equation (33) reads

(67) S(1) = A
(1)
21 (A(1)

11 )−1 +A
(1)
22 S

(1)(A(1)
11 )−1 − S(1)A

(1)
12 S

(1)(A(1)
11 )−1.

The right-hand side can be regarded as a map T of the space of operators S ∈ A
l
{1}
2 ,l

N\{1}
2

,

S : l{1}2 → l
N\{1}
2 , into itself. Since

(68) ‖A(1)
21 ‖, ‖A(1)

22 ‖, ‖A(1)
12 ‖ < C0λ

2,

where C0 is an absolute constant, and ‖(A(1)
11 )−1‖ < λ−5/4, as follows readily from the

separability condition for A(1)
0 and the estimate Cλ2, we see that there exists a constant

C > 0 such that T takes the ball

(69) {S : ‖S‖ < Cλ3/4}

in A
l
{1}
2 ,l

N\{1}
2

into itself and acts as a contraction. Hence equation (67) has a solution S(1)

with norm at most (69), which is easily seen to coincide with the series (41). Using the
estimates (68) and (69), and also equation (57) with k = 1, we obtain that the operator B1

on l{1}2 unitarily equivalent to A|H1 is of the form

B1 = A
(1)
11 +G1,
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where ‖G‖ < Cλ5/2. Theorem 2 now follows.

Theorem 3 can be proved similarly if we observe that when condition (21) holds, the
subspaces leven2 = lNeven

2 and lodd
2 = lNodd

2 , where Neven and Nodd denote the even and odd
positive integers, are invariant under A and the group Us, and the subspace H2 ⊂ leven2 is
the “highest” invariant subspace in leven2 (i.e., the absolute value of the spectrum of A is
greatest for the subspace H2).

Remark. It follows from the computations given in the proof of Theorem 1 (see, e.g.,
equation (57)) that the operator A|Lk

restricted to the invariant subspace Lk is unitarily
equivalent to A

(k)
11 + A

(k)
12 S

(k). On the subspaces H1 and H2, which coincide with the
corresponding subspaces L1 and L2 (under the hypotheses of Theorem 3), the spectrum of A
coincides with the spectra of the operators A(1)

11 +A
(1)
12 S

(1) and A(2)
11 +A

(2)
12 S

(2), respectively.

§4. Some examples

We consider here some applications of the theory developed above to some specific models
that were mentioned in Chapter 2, §5.

1. High-temperature Ising model on the lattice Zν+1, ν > 0. This model was
described in Chapter 2, §5. We recall that the space of spins is S = {−1, 1}, and the
measure ν0 is given by ν0({1}) = ν0({−1}) = 1/2. An unperturbed basis for S consists of
the functions

ϕ0(σ) = 1, ϕ1(σ) = σ, σ = ±1.

The set of multi-indices in this case coincides with the set CZν of all finite subsets of the
lattice Zν . The results of the previous paragraphs specialized to this model show that the
transfer matrix of the Ising field is unitarily equivalent to a multiplicative cluster operator
A acting on l2(CZν ) with cluster parameter λ = C0β, where C0 > 0 is an absolute constant.
It is easy to check that the minimal pairs x, x′ ∈ CZν (see §3) for A are of the form

(1) X = X ′ = {x}, where x ∈ Zν ,

i.e., they consist of the same one-point subsets, and the operator A(0) (the principal part of
A, see §3) is diagonal with matrix elements

(2) a0
X,X′ =

∏
x∈X

ω({x}, {x})δX,X′ ,

where ω(X,Y ) is the cluster function for A. A simple estimate of this semi-invariant shows
that

(3) ω({x}, {x}) = C1β +O(β2),

where C1 is an absolute constant. It follows that for small enough β < β0(N), the N -particle
separability condition is satisfied for the operatorA, and consequently the transfer matrix for
the Ising model possesses N invariant cluster subspaces H1,H2, . . . ,
HN on which A has the cluster form (for a suitable choice of basis in Hk). In particu-
lar, on the space H1 we find that A|H1 = A1 acts by convolution:

(4) A1hx =
∑
y∈Zν

a
(1)
x−yhy
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in terms of the basis {hx, x ∈ Zν}, where hx = W1h
0
x, h0

x(T ) = δ{x},T , and the operator W1

was defined in the previous paragraph. In (4) the function aξ, ξ ∈ Zν can be estimated by

(5) |aξ| < L(C0β)|ξ|,

as follows from the estimates and formulas in the preceding paragraph. Moreover,

(6) |a0| > Dβ,

where L, C0, and D are absolute constants. The bounds (5) and (6) imply in particular
that the inverse operator A−1

1 exists and acts by the formula

(7) (A−1
1 )hx =

∑
y

b−1
x−yhy,

where

(8) |b−1
ξ | < L

β
(C0β)|ξ|,

where L is an absolute constant.
Let us examine the operator A2 = A|H2 in more detail. Because A2 is a cluster operator,

with respect to the basis {hx1,x2, x1, x2 ∈ Zν , hx1,x2 = W2h
0
x2,x2

, h0
x1,x2

(T ) = δT,{x1,x2}} its
matrix elements aT,T ′ admit the cluster expansion

(9) aT,T ′ = ω((x1, x
′
1), (x2, x

′
2))ω((x1, x

′
2), (x2, x

′
1)) + ω(T, T ′),

where T = (x1, x2), T ′ = (x′1, x
′
2), and the cluster function ω satisfies the cluster bounds

(6.2) with parameter λ2 = (C0β)β2 , C0 is a constant, and β2 = 1/40 (see the previous
subsection).

Theorem 1. There exists an orthonormal basis {ĥx1,x2} in H2 such that the cluster
expansion (9) continues to hold for the matrix elements of A2 in this basis ; furthermore,

(10) ω({x1, x
′
1}, {x2, x

′
2}) = a

(1)
x1−x′

1
a
(1)
x2−x′

2
,

where aξ is the function defined in (4).

Proof. We will assume as usual that H1 and H2 are subspaces of l2(CZν ). Then it
follows easily from the constructions in the preceding paragraph that the functions {hx(T ),
x ∈ Zν} have the form

(10a) hx(T ) =

{
δxy + h̃x({y}), T = {y},
h̃x(T ), |T | ≥ 2,

where h̃x(T ) satisfies the estimate

(11) |h̃x(T )| < L(Cβ)d{x}∪T .
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To construct the required basis ĥx1,x2 in H2, we consider the system {h̃x1,x2} of functions
in l2(CZν ) defined by

h̃x1,x2(T ) =

⎧⎪⎪⎨⎪⎪⎩
0, |T | = 1,∑
T1∪T2=T
T1∩T2=∅

hx1(T1)hx2(T2), |T | > 1.

Using (11) and the fact that A is a multiplicative cluster operator, one can show that

(12)

(Ah̃x1,x2)(T ) =
∑

T1∪T2=T
T1∩T2=∅

(Ahx1)(T1)(Ahx2)(T2) + gx1,x2(T )

=
∑

T1∪T2=T
T1∩T2=∅

ax1−x′
1
hx′

1
(T1)ax2−x′

2
hx′

2
(T2) + gx1,x2(T )

=
∑

{x′
1,x

′
2}

(ax1−x′
1
ax2−x′

2
+ ax1−x′

2
ax2−x′

1
)h̃x′

1,x
′
2
(T ) + g̃x1,x2(T ),

where g̃x1,x2(T ) satisfies the estimate

(12a) |g̃x1,x2(T )| = L(Cλ2)d{x1,x2}∪T .

We introduce the two families of functions

(13)
δ(1)x1,x2

= PH⊥ h̃x1,x2 ,

ĝ(1)
x1,x2

= PH⊥ g̃x1,x2,

where H⊥ is the orthogonal complement to the direct sum H1⊕H2 and PH⊥ is the projection
onto H⊥. We obtain from (12) that

(Aδ(1)x1,x2
)(T ) −

∑
x′
1,x

′
2

b(x1,x2),(x′
1,x

′
2)
δ
(1)
x′
1,x

′
2
(T ) = ĝ

(1)
(x1,x2)

(T ),

where

(14a) b(x1,x2),(x′
1,x

′
2)

= ax1−x′
1
ax2−x′

2
+ ax1−x′

2
ax2−x′

1
.

We will have occasion to use the following result, whose proof will be deferred.

Lemma 2. Let A0 be the cluster operator on l2(C
(2)
Zν ) (where C(2)

Zν is the set of two-point
subsets of Zν) defined by

(14b) (A0f)(T ) =
∑

T ′∈C(2)
Zν

bT,T ′f(T ′), T ∈ C
(2)
Zν ,

where bT,T ′ is given by equation (14). Then A0 is invertible on l2(C
(2)
Zν ) and its inverse A−1

0

is again a cluster operator with cluster parameter Cλ2 and norm

(15) ‖|A−1
0 ‖| < Lβ−2,
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where C and L are constants.

We denote the matrix elements of A−1
0 by b−1

{x1,x2},{x′
1,x2]} and rewrite (14a) as

(16)
∑
x′
1,x

′
2

b−1
{x1,x2},{x′

1,x
′
2}(A

⊥δ(1)x′
1,x

′
2
)(T ) − δ(1)x1,x2

(T ) =
∑
x′
1,x

′
2

b−1
{x1,x2},{x′

1,x
′
2}ĝ

(1)
x′
1,x

′
2
(T ),

where A⊥ = A|H⊥ .
Now consider the space K of families of functions {δx1,x2(T ), (x1, x2) ∈ C

(2)
Zν } such that

δx1,x2 ∈ H⊥ for all {x1, x2} and the estimate

(17) |δx1,x2(T )| < L(Cλ2)d{x1,x2}∪T

is satisfied, where L is a constant. The norm in K is defined in the usual way:

‖δ‖K = inf L,

where the infimum is taken over all L for which (17) holds. Using the results in the previous
subsection, one can show that

‖{A⊥δx1,x2}‖K ≤ Cβ3‖δ‖K.

Thus, in view of estimate (15) the map

K → K : δ = {δx1,x2} →
{ ∑
x′
1,x

′
2

b−1
{x1,x2},{x′

1,x
′
2}Aδx

′
1,x

′
2
, {x1, x2} ∈ C

(2)
Zν

}

is a contraction. From this and estimates (15) and (12) we see that the family {δ(1)x1,x2} has
a finite norm (of the order of a constant). We next consider

δ(2)x1,x2
= PH1 h̃x1,x2 =

∑
y

Cyx1,x2
hy,

where
Cyx1,x2

= (hy, h̃x1,x2).

It is easily established from the estimates for hx1,x2 that

|Cyx1,x2
| < L(Cλ2)d{x1,x2}∪{y}

so that it follows that the family {δ(2)x1,x2} satisfies the bound (17). Now set

(18) ˜̃
hx1,x2 = h̃x1,x2 − δ(1)x1,x2

− δ(2)x1,x2
∈ H2.

The Gramm matrix G{x1,x2},{x′
1,x

′
2} for this family is given by

(19) G{x1,x2},{x′
1,x

′
2} = (˜̃hx1,x2 ,

˜̃
hx′

1,x
′
2
) = δ{x1,x2},{x′

1,x
′
2} +D{x1,x2},{x′

1,x
′
2},
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where D{x1,x2},{x′
1,x

′
2} satisfies the bound

(20) |D{x1,x2},{x′
1,x

′
2}| < L(Cλ2)

d{x1,x2}∪{x′
1,x′

2} .

It follows that the matrix G−1/2 is also of the form (19), and hence that the orthonormalized
system of functions

ĥx1,x2 = G−1/2˜̃hx1,x2

is of the form
ĥx1,x2 = ˜̃

hx1,x2 + δ̂x1,x2 ,

where δ̂x1,x2 satisfies (17). From expression (10a) for hx it is easily shown that ĥx1,x2 gives a
basis in H2. The matrix elements of A2 with respect to this basis admit as before a cluster
expansion (9), as follows from Lemma 3.2, and (10) follows in view of equation (12) and the
uniqueness of the cluster expansion. The theorem is proved.

Remark. Equality (10) means that on H1⊕H2 the operatorA has a multiplicative cluster
form. This plainly remains true for any N : in each of the subspaces Hk, k = 1, . . . , N one
can find a basis {hT , T ∈ C

(k)
Zν } (C(k)

Zν is the set of all subsets of Zν consisting of k points)
with the property that the operator A on

⊕N
k=1 Hk has the multiplicative cluster form.

Proof of Lemma 2. The space l2(C
(2)
Zν ) can be identified with l̃sym

2 (Zν×Zν) ⊂ lsym
2 (Zν×

Zν), the space of symmetric functions F (x1, x2) of two variables x1, x2 ∈ Zν such that

f(x, x) = 0.

Taking the Fourier transform

f(x1, x2) → f̃(x1, x2) =
∑
x1,x2

ei[(λ1,x1)+(λ2,x2)]f(x1, x2)

(where λ1, λ2 ∈ T ν are points on the-dimensional torus), we find that A0 in (14b) goes into
the operator Ã0 acting on l̃sym

2 (T ν × T ν) by the formula

(Ã0f̃)(λ1, λ2) = ω̃(λ1, λ2)f̃(λ1, λ2)

−
∫

Tν×Tν

ω̃(µ1, µ2)δ(λ1 + λ2 − µ1 − µ2)f̃(µ1, µ2)dµ1dµ2,

where L̃sym
2 (T ν ×T ν) ⊂ Lsym

2 (T ν ×T ν) is the space of symmetric functions f̃(λ1, λ2) of two
variables λ1, λ2 ∈ T ν, such that∫

Tν×Tν

f(λ1, λ2)δ(λ1 + λ2 − Λ)dλ1dλ2 = 0

for any Λ ∈ T ν (dλ is the normalized Haar measure on the torus), and ω̃(λ1, λ2) is the
Fourier transform of the function aξ1aξ2 . An easy calculation shows that the inverse Ã−1

0 of
the operator Ã0 is given by

(Ã−1
0 f̃) =

1
ω̃(λ1, λ2)

[
f̃(λ1, λ2) −

( ∫
µ1+µ2=λ1+λ2

(ω̃(µ1, µ2))−1dµ1dµ2)−1

×
∫

µ1+µ2=λ1+λ2

f(µ1, µ2)ω̃−1(µ1, µ2)dµ1dµ2

)]
.
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Passing again to functions f ∈ l̃sym
2 (Zν × Zν), we find that A−1

0 acts by the formula

(A−1
0 f)(x1, x2) =

∑
(x′

1,x
′
2)

b−1
x1−x′

1
b−1
x2−x′

2
f(x′1, x

′
2) −

∑
(x′

1,x
′
2)

K(x1, x2;x′1, x
′
2)f(x′1, x

′
2),

where the kernel K(x1, x2;x′1, x′2) is given by

K(x1, x2;x′1, x
′
2) =

∑
z,t

b−1
x1−zb

−1
x2−zp(t− z)b−1

t−x′
1
b−1
t−x′

2
,

and

p(ξ) =
∫
Tν

ei(Λ,ξ)
(∫

µ1+µ2=Λ

ω−1(µ1, µ2) dµ1 dµ2

)−1

dΛ.

Note that by (5), (6) the function ω(λ1, λ2)−1 is analytic in a strip

| Imλi| < C1β
−1, i = 1, 2,

where C1 is an absolute constant. Using the same arguments, we find that the function( ∫
µ1+µ2=Λ

ω−1(µ1, µ2) dµ1 dµ2

)−1

depends analytically on Λ in the strip

| Im Λ| < C2β
−1.

¿From this and the estimates (5) and (6), it follows that p(ξ) satisfies the bound

|p(ξ)| < Lβ2(Cβ)|ξ|,

where L and C are absolute constants.
Thus, the kernel K(x1, x2;x′1, x

′
2) is bounded by

|K(x1, x2;x′1, x
′
2)| <

L

β2
(Cβ)d{x1,x2}∪{x′

1,x′
2} .

Lemma 2 now follows from this and estimate (8).

2. The rotator model. We recall (see Chapter 2, §5) that in this case S = T 1 is the
circle, the field variables are ϕ1 = eiθ and ϕ2 = e−iθ, θ ∈ T 1, and the basis in L2(T 1, dΘ) is
given by

{ϕn = einθ, n = 0,±1, . . .}.
The set of multi-indices M0 thus coincides with the set of all finite-support, integer-valued

functions on Zν . If Γ = {n(x), x ∈ Zν} is such a function, we have N(Γ) =
∑

x |n(x)|. For
small β, the transfer matrix for the rotator model is unitarily equivalent to a multiplicative
cluster operator A on l2(M0) with cluster parameter λ0 = C0β, where C0 is an absolute
constant.

We note that two symmetry groups preserving the interaction (53a.5.2) act on the field
configuration space Ω = SZ

ν

:
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1) the one-parameter group

G : θ(x) → θ(x) + α, α ∈ T 1, x ∈ Zν ,

2) the involution
J : θ(x) → −θ(x).

These symmetries generate unitary operators {Uα, λ ∈ T 1} and UJ acting on Hphys and
commuting with the transfer matrix J and the group of translations {Us, s ∈ Zν}. From the
procedure described in §1 for constructing the multiplicative basis {ΨΓ}, under the unitary
equivalence the group Uα acts on l2(M0) by the formula

(21) (Uαf)(Γ) = ein(Γ)αf(Γ),

where n(Γ) =
∑

x n(x), while the action of UJ is given by

(22) (UJf)(Γ) = f(−Γ).

Clearly, the desired invariant subspaces of the transfer matrix must be required to be in-
variant under the symmetry group Uα. Applying the previous constructions to the present
model, we obtain the following result concerning the one- and two-particle invariant sub-
spaces for the transfer matrix J .

Theorem 3. 1. There exist two one-particle subspaces H+
1 and H−

1 which are mutually
orthogonal and invariant under J , the translation group {Us}, and the group of symmetries
{Uα}. For every f ∈ H±

1 we have
Uαf = e±iαf

and

(23) UJH+
1 = H−

1 , UJH−
1 = H+

1 .

Here, as usual, the transfer matrix J on each of the spaces H±
1 is unitarily equivalent to

convolution with the functions a±(ξ); and by (23) a+(ξ) = a−(ξ) = a(ξ), and the function
a(ξ) satisfies the estimates (5) and (6). The spectrum of the transfer matrix on the spaces
H±

1 is contained in a Cβ2-neighborhood of the values εβ, where ε is the interaction constant
in (53a.5.2).

2. There exist three mutually orthogonal two-particle subspaces H±
2 , H0

2 invariant under
the transfer matrix, translation group, and symmetry group Uα. For f ∈ H±

2 we have

Uαf = e±2iαf

and for f ∈ H0
2

(24) Uαf = f, UJH±
2 = H∓

2 , UJH0
2 = H0

2.

There exist bases {h±,0Γ } in H±,0
2 labeled by multi-indices Γ = {n(x), x ∈ Zν} such that

N(Γ) = 2 and n(Γ) = ±2, 0 (in H±
2 and H0

2, respectively), with the property that the matrix
elements of the transfer matrix in these bases possess multiplicative cluster expansions, i.e.,
for any pair of multi-indices with one-point supports the function ω({Γ1,Γ′

1}, {Γ2,Γ′
2}) is

equal to the product

(25) ω({Γ1,Γ′
1}, {Γ2,Γ′

2}) = ω({Γ1,Γ′
1})ω({Γ2,Γ′

2}),
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with ω({Γ,Γ′}) = a(x− x′), where {x} = supp Γ′, {x′} = supp Γ.
The spectrum of J on all three spaces H±

2 , H0
2 lies in a (Cβ)3-neighborhood of the point

εβ2, where C is an absolute constant. By (24), the spectrum of J on H+
2 coincides with the

spectrum on H−
2 .

Almost all the statements of the theorem follow immediately from Theorems 1.3, 2.3,
and 3.3. The proof of the assertion concerning the multiplicative cluster property and the
cluster function is similar to the proof of the corresponding assertion for the Ising model.

Remark. It would be of interest to determine whether there exist three-, four-, and
higher k-particle invariant subspaces of the transfer matrix for the rotator model. This
problem is nontrivial because nondiagonal minimal pairs exist for this model (cf. the remark
after Theorem 1 in §3).

3. Yang-Mills gauge field. We start by considering a gauge field with abelian group
U(1) (the complex numbers z such that |z| = 1). Introducing a radial gauge as explained in
5.2 (i.e., setting g(b) = 1 on all “vertical” edges of Zν+1), we shall consider a field defined
only on the “horizontal” edges of the lattice, and the zeroth slice Y0 coincides with the set Eν

of edges of the lattice Zν. The set S = U(1) = {eiθ, 0 ≤ θ < 2π} coincides with the circle,
which we take with the standard normalized Haar measure dθ. As initial basis we choose
the functions {ϕn = einθ, n = 0,±1,±2, . . .}. We consider well-oriented edges, i.e., ones
directed along the unit vectors eµ of Zν . Writing each such edge in the form b = {x0, eµ},
where x0 is the initial vertex of b, we can introduce a lexicographic ordering in Eν . Then
as described in §1, we construct a basis in Hphys of the form

(26) ΨΓ =
∏

ψbn(b),

where Γ = {n(b)} is an integer-valued function on Eν with finite support. From the con-
struction of the functionals ψbn(b) described in §1, we conclude easily that under a gauge
transformation {eiα(x)} of the field they transform according to the formula

(27) ψbn(b) → exp{in(b)(α(x0) − α(x1))}ψbn(b),

where x1 and x0 are the endpoint and initial point of the edge b. It follows that the elements
of the basis {ΨΓ} transform as

(28) ΨΓ →
∏

x∈supp∂Γ

exp{∂Γ)(x)α(x)}

under gauge transformations. Here ∂Γ is the function on Zν defined by

(29) (∂Γ)(x) =
∑

b∈supp Γ

n(b)(−1)ε(b,x),

where the sum is over all edges in supp Γ incident on the point x; ε(b, x) = 0 if the edge b
leaves x, and ε(b, x) = 1 if b enters x.

According to (28), the matrix elements (JΨΓ,ΨΓ′) of the transfer matrix J in the basis
{ΨΓ} are nonzero only if

(30) ∂Γ = ∂Γ′.
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They admit the cluster expansion (34.1)

(30a) aΓ,Γ′ =
∑

{(Γ1,Γ′
1),...,(Γk,Γ′

k)}

k∏
i=1

ω(Γi,Γ′
i),

where the sum is over all partitions of (Γ,Γ′) into pairs ({Γi,Γ′
i}) for which condition (30)

is satisfied. Moreover, by a remark made in §1, in the definition (38.1) and (39.1) of the
quantity dΓ,Γ′ = dΓ̃ appearing in the cluster estimate for the semi-invariants ω(Γ,Γ′), the
function n = {n(p)} should be regarded as defined on the two-dimensional faces (plaquettes)
of the lattice Zν . It follows from (28) that the vectors {ΨΓ} that belong to the space Hphys

of gauge-invariant functionals are precisely the ones for which

(31) ∂Γ ≡ 0.

Simple estimates show that if a multi-index Γ satisfies (31) and the matrix elements (JΨΓ,ΨΓ)
are maximal, then we must have supp Γ = ∂p = (b1, b2, b3, b4), where p is a plaquette (a
two-dimensional face of the lattice), and the values n(bi) of the multi-index Γ on the edges bi
are equal to either +1 or −1 (the same choice holding for all four edges). All the plaquettes
in Zν can now be divided into k = ν(ν−1)/2 classes σ1, . . . , σk consisting of the orbits of the
action of the translation group. Thus, upon fixing a representative pσi in each class σi, we
see that every multi-index Γ for which (JΨΓ,ΨΓ) is maximal is given by a triple (σ, x, µ),
where σ is the class of the plaquette p, x is a vector taking the chosen representative pσ into
p, and µ = ±1 are the values of Γ on the boundary of p. Using the expansion (29) and the
cluster estimates, we verify easily that for such a multi-index Γ = (σ, x, µ)

(JΨΓ,ΨΓ) ∼ β4.

Moreover, if (Γ,Γ′) is any pair of multi-indices such that either Γ �= Γ′ or else Γ = Γ′ but
(JΨΓ,ΨΓ) is not maximal. Then we have

(JΨΓ,ΨΓ′) � β5.

An analog of the one-particle separability condition thus holds here, and the following the-
orem is valid.

Theorem 4. For a gauge field with gauge group U(1) on the lattice Zν+1 there exist
ν(ν − 1) one-particle subspaces H±,σ

1 invariant under the transfer matrix J and the group
of translations {Us}. In each of these subspaces one can choose an orthonormal basis {h±,σx ,
x ∈ Zν} such that

(32) J h±,σx =
∑
x′
a±,σx−x′h

±,σ
x′ ,

where the functions a±,σξ = aξ coincide for all the subspaces H±,σ
1 and aξ is of the form

aξ = β4δξ,0 +O(β8).

The subspaces H±,σ
1 introduced above describe excitations of the gauge field whose energy

4 lnβ is minimal (these are the so-called ground-state gluons). These are followed by the
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lowest excited gluons, with energy 6 lnβ. The spaces describing these states are obtained by
slightly perturbing the spaces spanned by the vectors ΨΓ, where supp Γ is a loop consisting
of six edges b1, . . . , b6 bounding two adjacent plaquettes, and n(bi) = ±1.

Similar arguments can also be used to treat the more general case of nonabelian, compact
gauge groups. Let us consider the case SU(2) (the 2× 2 unitary matrices u with detu = 1).
As a basis on SU(2) we choose the functions

ϕγ(u) =
√

2l + 1alm,n(u), γ = (l,m, n),

where the alm,n(u) are the matrix elements of the irreducible representation u → T lu of
SU(2) in the “canonical” basis {ξlm, m = −l, . . . , l} of SU(2). The number l is called the
weight of the irreducible representation (it can assume any integer or half-integer value),
and m,n = −l, . . . , l (see [9] for more details). As above, we can choose a multiplicative
basis in Hphys given by

ΨΓ =
∏
b

Ψb
γ(b).

The action of the gauge transformations u0 = {u0(x), x ∈ Zν} on the vector Ψb
γ(b) is given

by

(33) Uu0Ψ
b
γ(b) =

∑
γ′:l(γ′)=l(γ)

Cbγ,γ′Ψb
γ′ ,

where Cbγ,γ′ = alm,m′(u0(x0))aln,n′(u0(x1)), with γ = (l,m, n), γ′ = (l,m′, n′); x0 and x1 are
the origin and endpoint of the edge b.

Formula (33) can be used to construct an orthonormal basis {Ψ{λ(x)}
∆,L } in Hphys by

taking linear combinations of the vectors ΨΓ. Specifically, consider a multi-index Γ =
{l(b),m(b), n(b)}, b an oriented edge of the lattice Zν}. We will say that Γ is regular if for
every point x ∈ Zν we have the conditions

1) the equality

(34)
∑

b∈supp Γ
b enters x

m(b) =
∑

b∈supp Γ
b leaves x

n(b)

holds;
2) the tensor product

(35)
⊗

b∈supp Γ
b incident on x

T l(b)u

of representations contains the identity (trivial) representation (possibly with multiplicity
> 1) as an irreducible component.

Let ∆ denote a connected set of oriented edges b and let L = {l(b), b ∈ ∆} be a function
on ∆ taking integer and half-integer values, and such that condition (35) holds for every
point x ∈ ∂∆. Choose a vector

Ψ{λ(x),x∈∂∆}
L,∆ =

∑
Γ

∏
x∈∆

C(Γx)ΨΓ,
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where the sum is over all regular multi-indices Γ = {l(b),m(b), n(b), b ∈ ∆} such that
supp Γ = ∆, the function {l(b), l ∈ ∆} is equal to L, and Γx = {l(b),m(b), n(b), b ∈ supp Γ,
b incident to x} is a regular multi-index.

The numbers Cλ,l1,...,lkm1,...,ms,n1,...,nk−s
are the coefficients of one of the invariant vectors ηλ

(the superscript λ distinguishing these vectors) in the tensor product of representations⊗
T liu

in the basis ( s⊗
i=1

ξlimi

)
⊗
( k−s⊗
i=1

ξls+i
ni

)
.

For an arbitrary (nonconnected) set ∆ we define the functions Ψ{λ(x),x∈∂∆}
L,∆ by

(36) Ψ{λ(x),x∈∂∆}
L,∆ =

k∏
i=1

Ψ{λi(x),x∈∂∆i}
Li,∆i

,

where ∆1, . . . ,∆k are the connected components of ∆, Li is the restriction of the function
L to ∆i, and {λi(x)} is defined similarly.

One can show that the vectors (36) form an orthonormal basis in Hphys in terms of which
the matrix elements of J admit a natural cluster expansion. Using this expansion and
some precise estimates for the leading matrix elements of J in this basis, one can prove the
following analog of Theorem 4.

Theorem 5. Let J be the transfer matrix for a Yang-Mills field with gauge group SU(2),
and suppose that β is sufficiently small. Then there exist ν(ν − 1)/2 invariant one-particle
subspaces Hσ

1 , where the superscript σ labels the classes (orbits under the translation group,
see above) of the plaquettes in Zν . The spectra of J on all the spaces Hσ

1 coincide and lie
within a (Cβ)8-neighborhood of the values β4 (C > 0 is an absolute constant).

Remarks. 1. The number of highest one-particle subspaces for the gauge group SU(2)
is seen to be one-half the number for the group U(1). This comes about because every
irreducible representation of SU(2) is selfadjoint (i.e., coincides with its contragredient rep-
resentation, see [9]).

2. As in the case of a U(1) gauge field, so also for SU(2) there exist a series of one-particle
subspaces which are invariant under the transfer matrix J . The spectrum of J restricted
to these subspaces is ∼ β6, and they describe excited gluons.

4. Random walk of a particle in a stochastic medium. Here we will illustrate
the techniques discussed above for studying stochastic operators by considering the random
walk of a particle along the lattice Zν, on which a Markov field is given, and the particle
interacts with the field. Let xt ∈ Zν , t = 0, 1, . . . be the position of the particle at time t
and let ξt = {ξt(x), x ∈ Zν} be the field configuration, taking the values ξt(x) = ±1 at time
t.

The transition probabilities for the particle-field random system are given by

(37)
Pr(ξt ∈ A, xt = x|ξt−1 = η, xt−1 = z)

= Pr(ξt ∈ A|ξt−1 = η, xt−1 = z) Pr(xt = x|ξt = η, xt−1 = z),

where A ⊂ {−1, 1}Zν

is an arbitrary (measurable) subset of configurations and η = {η(y),
y ∈ Zν} is a fixed field configuration on Zν . In other words, the changes in position of the
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particle and the field configuration for fixed η and z are conditionally independent. We now
introduce the following hypotheses regarding the transition probabilities of the particle and
field:

1. We have

(38) Pr(xt = x|ξt−1 = η, xt−1 = z) = p0(x− z) + c(x− z; η(z)).

Here p0(x− z) is the probability that the particle will go from z to x on the lattice: Pr(z →
x) = p0(x − z), c(u, s), u ∈ Zν , s = ±1, is a function on Zν × {−1, 1} such that∑

u∈Zν

c(u, s) = 0, s = ±1,

and p0(u) + c(u, s) ≥ 0 for all u ∈ Zν and s = ±1. An additional condition on c(u, s) will
be given later (see equation (46a)).

2. We have

(39) Pr(ξt = ξ(x), x ∈ Λ|ξt−1 = η, xt−1 = z)
∏
y∈Λ

qy(ξ(y), η(y); z),

where Λ is an arbitrary finite set of Zν , ξ is any field configuration in Λ, and

qy(s, s′; z) =
{
q0(s, s′), y �= z,

q1(s, s′), y = z,

where the two stochastic matrices q0, q1 define ergodic Markov chains in the state space
{−1, 1}. We will henceforth assume that the field interacts weakly with the particle, i.e.,

max
u,s

|c(u, s)| ≡ ε0 � 1

and
max
s,s′

|q0(s, s′) − q1(s, s′)| ≡ ε1 � 1.

In addition, the functions p0(u) and c(u, s) will be assumed to have finite support:

p0(u) = 0 and c(u, s) = 0 for |u| > R.

We will now prove the next result.

Theorem 6. For sufficiently small ε0 and ε1 and for any initial distribution Π of the
values of the field ξ0, the probability for the particle to move a distance xt − x0 = u from its
initial position is given asymptotically for large t by

(40) Pr(xt − x0 = u) =
D1/2√
(2πt)ν

exp
{
− 1

2t
(A(u− bt)

}
{1 + o(1)},

where b ∈ Rν is a ν-dimensional vector, A(·) is a positive definite quadratic form on Rν , and
D is its determinant. The vector b and form A(·) do not depend on the initial distribution Π.
The asymptotic formula (40) is valid in the interval |u− bt| < t1/2+ε, where ε is sufficiently
small (ε < 1/6).
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Proof. We introduce the space C(Ω × Zν) of functionals Φ(ξ, x), ξ ∈ Ω = {−1, 1},
x ∈ Zν depending on the coordinates of the random system, continuous in ξ (Ω is endowed
with the Tikhonov topology), and tending rapidly to zero as x→ ∞. Define on C(Ω × Zν)
the operator

(41) (JΦ)(η, z) =
∫

Ω×Zν

Φ(ξ, x)dP (ξ, x|η, z)

(this is the stochastic operator, or the transfer matrix, for the random system).
It is easy to check that J does indeed take C(Ω × Zν) into itself. We fix the initial

position of the system: x0 = y, ξ0 = η, and for any functional Φ ∈ C(Ω × Zν) consider the
conditional mean

〈Φ(ξt, xt)|ξ0 = η, x0 = y〉,
where (ξt, xt) is the position of the system at time t. Then it is clear that

〈Φ(ξt, xt)|ξ0 = η, x0 = y〉 = (J tΦ)(η, y).

Hence in particular,

(42) Pr(xt = x|x0 = y) =
∫

Ω

(J tΦx)(η, y)dΠ(η),

where Φx(ξ, x) = δx,x.
Let {π0(s), s = ±1} be the stationary distribution of a Markov chain with transition

probability matrix q0(s, s′). Consider the initial distribution Π0 = (π0)Z
ν

and write H =
L2(Ω,Π0)⊗l2(Zν). Now set e0(s) ≡ 1 and let e1 be a normalized eigenvector of the stochastic
matrix

(Qe1)(s′) =
∑
s=±1

q0(s, s′)e1(s)

with eigenvalue µ, |µ| < 1. We choose the basis

(43) ΨQ,z(ξ, x) =
∏
y∈Q

e1(ξ(y))δz,x,

in H, where Q is a finite subset of Zν , z ∈ Zν .
In view of the obvious relation ∑

s

π0(s)e1(s) = 0

and the condition ∑
s

π0(s)|e1(s)|2 = 1

the basis {ΨQ,z} is orthonormal in H. Any element Φ ∈ H has an expansion

(43a) Φ =
∑
(Q,z)

f(Q, z)ΨQ,z
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which gives an isomorphism H → l2(CZν × Zν), where CZν is the set of all finite subsets
of Zν . The transfer matrix J defines a bounded operator on H which under the above
isomorphism has the form

(44)

(J f)(Q, z) =
∑
z′
RQ−z(z′ − z)f(Q, z′)

+ (1 − χ(Q− z))
∑
z′
G(Q−z)∪{0}(z′ − z)f(Q ∪ {z}, z′)

+ χ(Q− z)
∑
z′
H(Q−z)∪{0}(z′ − z)f(Q \ {z}, z′).

Here we have written

χ0(Q) =
{

1 if 0 ∈ Q,

0 otherwise.

Next, for Q �= ∅ we have

(45)

RQ(u) = µ|Q|p0(u) + χ0(Q)µ|Q|−1(α1p0(0) + c1(u))(µb1 + b1α1 + α0),

GQ(u) = µ|Q|−1{α0p0(u) + b0µc1(u) + α0b0c1(u)},
HQ(u) = µ|Q|c1(u).

For Q = ∅,

(46) R∅(u) = p0(u), G∅(u) = 0, H∅(u) = c1(u).

Here the constants α0 and α1, b0, b1, and the function c1(u) are defined as follows:∑
s

(q1(s, s′) − q0(s, s′))e1(s) = α0 + α1e1(s′),

e1(s)e1(s) = b0 + b1e1(s),

c(u, s) = c0(u) + c1(u)e1(s).

Assuming further that

(46a)
∑
s

c(u, s)π0(s) = 0

(as can always be arranged by modifying p0), then c0(u) ≡ 0. We note that the representa-
tion {Uν, ν ∈ Zν} of the group of lattice translations, acting on H by the formula

(UvΦ)(ξ, x) = Φ(ξ − v, x− v),

where ξ − v denotes the translate of the configuration ξ by the vector v, goes over into the
operators

(Uvf)(Q, x) = f(Q− v, z − v)

on the space l2(CZν × Zν).
We note further that any function on CZν × Zν of the form

fx(Q, z) = ϕ(Q− z)ei(x,z),
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where ϕ(Q) ∈ l2(CZν ) and κ ∈ T ν (the ν-dimensional torus), is a generalized eigenfunction
in the continuous spectrum of the operators Uv (see [10]) with eigenvalue exp{i(κ, v)}. We
denote the space of such functions by H(κ). It is evidently isomorphic to l2(CZν ), and every
function f ∈ l2(CZν × Zν) has a unique integral decomposition

f(Q, z) =
∫
Tν

ϕκ(Q− z) exp{i(κ, z)}dκ,

where dκ is the normalized Haar measure on T ν . Since J commutes with the group {Uv},
it generates a family of operators {J (κ), κ ∈ T ν}, each acting on the space H(κ) or, in view
of the above isomorphism, on l2(CZν ). We have

(J f)(Q, z) =
∫
Tν

(J (κ)ϕκ)(Q− z) exp{i(κ, z)}dκ,

and the operator J (κ) acts on l2(CZν ) by the formula

(47)

(J (κ)ϕ)(Q) =
∑
u∈Zν

[RQ(u)ϕ(Q− u)

+ (1 − χ0(Q))GQ∪{0}(u)ϕ((Q− u) ∪ {−u})
+ χ0(Q)HQ\{0}(u)ϕ((Q− u) ∪ {−u})]e−i(κ,u),

where RQ, GQ, and HQ are defined by (45) and (46).
We now consider the case of an “unperturbed” random walk: c(u, s) = 0 and q0 = q1 so

that the particle and field evolve independently. In this case the operators J 0(κ) act by the
formula

(48) (J 0(κ)ϕ)(Q) = µ|Q| ∑
u∈Zν

p0(u)ϕ(Q− u)e−i(κ,u).

We observe that the space l2(CZν ) splits as a direct orthogonal sum of the subspaces l2(CnZν ):

l2(CZν ) =
∞⊕
n=0

l2(CnZν ),

where CnZν is the set of n-point subsets of Zν (l2(C0
Zν ) is a one-dimensional space). Each

l2(CnZν ) is invariant under the operators J 0(κ). In particular, the one-dimensional subspace
l2(C0

Zν ) = {BδQ} is an eigenspace for J 0(κ) with eigenvalue

p̃0(κ) =
∑
ξ∈Zν

p0(ξ)ei(κ,ξ).

The norm of J 0(κ) on the orthogonal complement

l⊥2 (CZν ) =
∞⊕
n=1

l2(CnZν )

is bounded by
‖J 0(κ)|l⊥2 (CZν )‖ < |µ|.
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This is readily shown from the explicit formula (48). Now consider a neighborhood Vδ of
0 ∈ T ν such that

min
κ∈Vδ

|p̃0(κ)| > |µ| + δ,

where 0 < δ < 1− |µ| is a constant. Thus, the eigenvalue p̃0(κ) for κ ∈ Vδ is separated from
the rest of the spectrum of J 0(κ) by a gap of width at least δ. Since for small ε0, ε1 the
operator J (κ) is nearly equal to J 0(κ), for each κ ∈ Vδ it has an eigenvector χκ ∈ l2(CZν ),
normalized by the condition χκ(∅) = 1, with eigenvalue p̃(κ) very close to p̃0(κ). Both χκ
and p̃(κ) depend analytically on κ for κ varying in some complex neighborhood of Vδ. In
addition, it is not difficult to verify that

(49) |p̃(κ)| ≤ 1, p̃(0) = 1,

and the real part of the quadratic form satisfies

(50) Re
∑
i<j

∂2p̃

∂κi∂κj

∣∣∣∣∆κi∆κj

κ=0

> 0.

Consider the subspace Hδ of elements of the form

(51) f(Q, z) =
∫
Vδ

χκ(Q− z)ϕ(κ) exp{−i(κ, z)}dκ, ϕ ∈ L2(Vδ, dκ).

Clearly, Hδ is a subspace of l2(CZν ×Zν) invariant under J and {Uν , ν ∈ Zν}. Now consider
the operator J ∗ on H adjoint to J . Arguing as above, we construct an invariant subspace
H∗
δ for J ∗ in the same way that Hδ was constructed. The orthogonal complement

Hδ = (H∗
δ)

⊥

is plainly invariant under J , and the space l2(CZν × Zν) splits as a direct sum

l2(CZν × Zν) = Hδ + Hδ.

A similar splitting holds for the space H:

H = Ĥδ + Ĥδ,

where Ĥδ ⊂ H, Ĥδ ⊂ H are the inverse images of the spaces Hδ and Hδ under the isomor-
phism (43a).

We check further that under the decomposition

Φx = Φ(δ)
x + Φ

(δ)

x , Φ(δ)
x ∈ Ĥδ, Φ

(δ)

x ∈ Ĥδ

of the functional Φx(ξ, z) = δzx, both components satisfy

Φ(δ)
x ,Φ

(δ)

x ∈ C(Ω × Zν)

and we have
‖J tΦ

(δ)

x ‖C(Ω×Zν) = O((|µ| + δ)t).
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It follows that the computation of the asymptotics of the probability (42) reduces to evalu-
ating the integral ∫

Ω

(J tΦ(δ)
x )(η, y)dΠ(η) =

∫
Ω

(UxJ tΦ(δ)
0 )(η, y)dΠ(η)

=
∫
Vδ

(p̃(x))tϕ(κ, y)ei((y−x),κ)dκ,

ϕ(κ, y) = ϕ0(κ)
∑
Q

χκ(Q− y)aQ,

where aQ =
∫
Ω

ΦQ(η) dΠ(η), and ϕ0(κ) is the function appearing in (51) for f δ0 (Q, z), the
coefficients of Φ∆

0 with respect to the basis ΨQ,z. Applying the method of steepest descent,
we obtain the asymptotic expression (40) where the quadratic form A(·) is defined by the
inverse of the matrix of second derivatives

(52)
{
∂2p̃(κ)
∂κi∂κj

}∣∣∣∣
κ=0

,

and the vector b =
{
i ∂p̃∂kj

∣∣
k=0

}
. We see from (49) that b is a real vector, and since expression

(40) represents a probability, the matrix (52) is positive. This concludes the proof of the
theorem.

§5. Spectral analysis of the transfer matrix for a fermion field

In this section we generalize the methods for analyzing the spectrum of the transfer matrix
for ordinary random (boson) fields to the case when the field algebra contains Grassmann
variables (fermion field). We will begin by studying the case of pure fermion fields, and then
illustrate the general mixed case by means of an example.

We assume that a Gibbs modification 〈·〉 of an independent Gaussian quasistate 〈·〉0 has
been defined on the normed algebra EF by means of the Euclidean action described in 5.2
(with small parameter λ); here EF is generated by the set {ψα(x), ψα(x), x ∈ Z̃ν+1 =
Zν × Z̃1, α ∈M}, where M is an index set. We recall that the perturbed quasistate 〈·〉 on
EF is invertibly Markov (see 5.3).

The general approach to analyzing the transfer matrix J for such a field is similar to
the one described above for boson (probability) fields. However, there are some technical
differences stemming from the fact that the inner product (·, ·) on the algebra E1/2 (generated
by the elements ψα(x) and ψα(x) “living” on the time slice Y1/2 = Zν × {1/2}) is defined
using the involution θ, which takes E1/2 into the different algebra E−1/2. In order to preserve
the previous construction for the multiplicative basis {ΨΓ}, we define a Hermitian bilinear
form on E1/2 by the formula

(1) [F1, F2] = 〈F1, ϑF2〉, F1, F2 ∈ E1/2,

where ϑ is the antilinear involution on E1/2 acting on the generators by

(2)

ϑψα(x) =
∑
α′∈M

εα,α′ψα′(x),

ϑψα(x) =
∑
α′∈M

εα,α′ψα′(x).
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Here ε = {εα,α′} is the matrix defining θ in E (see 5.2, paragraph 2). We can then extend
ϑ to all of E1/2 by the analog of relation (17′′) in 5.2:

ϑ(A1A2) = ϑ(A2)ϑ(A1).

The Hermiticity of the form (1) follows from the ϑ-invariance of the state 〈·〉 on the algebra
EF :

〈ϑF 〉 = 〈F 〉,
which in turn follows from the representation

(3) ϑF = Ue0ΘF.

Without loss of generality, we may suppose that the matrix e is diagonal,

(4) εα,α′ = εαδα,α′ .

We now construct a multiplicative basis {ΨΓ} in E1/2 analogous to the basis (3.1) for the
case of ordinary random fields (the multi-indices Γ will be described below), orthonormal
with respect to the form (1):

(5) [ΨΓ1 ,ΨΓ2 ] = (−1)α(Γ)δα,α′ ,

where the function α(Γ) that determines the sign will be given below. We first consider the
case of an independent Gaussian state 〈·〉0 (unperturbed field) and construct the basis for
it. For any point x0 ∈ Y1/2 we write A(x0) ⊂ E1/2 for the Grassmann algebra generated
by {ψα(x0), ψα(x0), α ∈ M}. For each α ∈ M we denote by η±α (x0), η0

α(x0), η0
α(x0) the

elements

η+
α (x0) = ψα(x0), η−α (x0) = ψα(x0), η0

α(x0) = 1,

η0
α(x0) = ψα(x0)ψα(x0) − 1.

Consider the monomials

(6) ηs(x0) =
∏
α∈M

ηs(α)
α (x0),

in A(x0), where s = {s(α), s(α) = 0, 0,±} is a multi-index, and the factors in (6) appear in
order of increasing α (we assume that M has been ordered in some way). We easily compute
that these monomials are orthonormal with respect to the form [·, ·]0

(7) [ηs1 (x0), ηs2(x0)]0 = 〈ηs1(x0)ϑηs2 (x0)〉0 = δs1,s2(−1)σ(s1),

where σ(s) =
∑

α:s(α) �=0

ε(α)s{α : α = 0}. We further introduce the multiplicative basis

(8) Φ0
Γ =

∏
x

ηs(x)(x)
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in E1/2, where the factors are given in lexicographic order and the multi-index Γ = {s(x) =
{s(x, α)}} is orthonormal with respect to [·, ·]0:

(9) [Φ0
Γ,Φ

0
Γ′ ]0 = δΓ,Γ′(−1)σ(Γ),

where σ(Γ) =
∑
x σ(s(x)), and is orthogonal to the unit element:

[Φ0
Γ, 1] = 0.

We will now construct a basis ΦΓ for the perturbed field 〈·〉.
As before, for each x ∈ Y1/2 we define the elements

η̃s(x) = ηs(x) − 〈ηs(x)|E<x1/2〉,

where 〈F | E<x1/2〉 ∈ E<x1/2, F ∈ E1/2, denotes the conditional expectation relative to the
subalgebra E<x1/2 ⊂ E1/2 generated by {ψα(y), ψα(y), y < x, α ∈ M}, and we use the
lexicographic ordering on Zν . Consider the conditional Gramm matrix

Ds,s′ = 〈η̃s(x)ϑη̃s′ (x)|E<x1/2〉 ∈ E<x1/2,

whose entries are homogeneous elements of the superalgebra E<x1/2. Applying as before the
cluster expansions for the conditional means with respect to the quasistate 〈·〉 (see [26]), we
obtain that

(9a) Ds,s′ = δs,s′(−1)σ(s) +ms,s′(x),

where the ms,s′(x) ∈ E<x1/2 are “small” and can be expanded as a series (8) in the monomials
Φ0

Γ:

(9b) ms,s′(x) =
∑

Γ:suppΓ<x

Cx,s,s
′

Γ Φ0
Γ.

The coefficients Cx,s,s
′

Γ in this expansion satisfy the cluster estimates

(10) |Cx,s,s′Γ | < (Cλ)d{x}∪supp Γ ,

where dB for B ⊂ Z̃ν is the cardinality of the smallest connected collection ∆1, . . . ,∆k of
the supports of the potential in (58a.5.2) covering the set B.

We now observe that if we pass from the basis η̃s(x) to the basis

(11) hs(x) =
∑
s′
Bs,s′(x)η̃s(x),

where Bs,s′(x) = E<x1/2, then the Gramm matrix {Ds,s′(x)} for the new basis is given by

D̂ = B(x)D(x)B∗(x),

where {Bs,s′(x)}, and B∗(x) = {B∗
s,s′(x)}, where B∗

s,s′ = ϑBs,s′(x). Applying successive
transformations of the type (11), we now reduce D(x) to the diagonal matrix

(11a) {(−1)σ(s)δs,s′}.
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The set N of values of the multi-indices can now be divided into the two subsets N± =
{s : (−1)σ(s) = ±1}. Then the Gramm matrix D can be written in block form as

(12)
D =

(
D+,+ D+,−
D−,+ D−,−

)
,

D∗
+,+ = D+,+, D∗

−,− = D−,−, D∗
+,− = D−,+,

where D+,+ = {Ds,s′ , s, s
′ ∈ N+}, D+,− = {Ds,s′ , s ∈ N+, s

′ ∈ N−}, and so on. By (9a),
D+,+ = E+M+,+, D−,− = −E+M−,−, D+,− = M+,−, D−,+ = M−,+, where the matrices
M+,+ = {ms,s′ , s, s′ ∈ N+}, etc., are “small”. Applying a similarity transform using the
matrix

B1 =
(

(E +M+,+)−1/2 0
0 (E −M−,−)−1/2

)
,

we arrive at the Gramm matrix (
E D̂+,−

D̂−,+ −E
)
,

where D̂−,+ = D̂∗
+,−, and both D̂+,− and D̂−,+ are small with entries admitting an expansion

(9b) with cluster estimates (10) for the coefficients.
Transformation by the triangular matrix B2,

B2 =
(

(E +D+,−D∗
+,−)−1/2 (E +D+,−D∗

+,−)−1/2D+,−
0 −E

)
takes the matrix (12) into (11a). Thus, for each x ∈ Y1/2 we have constructed a conditionally
orthonormal basis {hs(x)} in E≤x

1/2 (the algebra E≤x
1/2 ⊂ E1/2 being defined analogously to

E<x1/2):

(13) 〈hs(x)ϑhs′ (x)|E<x1/2〉 = (−1)σ(s)δs,s′ .

The basis
ΨΓ =

∏
x

hs(x)(x)

is easily verified to be orthonormal with respect to the form [·, ·]:

(14a) [ΨΓ,ΨΓ′ ] = δΓ,Γ′(−1)σ(Γ).

Here Γ = {s(x), x ∈ Y1/2} is a finite multi-index, and the factors in the product in (14) are
taken in lexicographic order on Y1/2.

Just as we did above for the case of ordinary fields, we can show that for all sufficiently
large r > 1, the system of elements (14) is complete in E1/2 with respect to the norm ‖ · ‖r
defined by equation (57.5.2). We also note that the basis {ΨΓ} is invariant under spatial
translations:

UvΨΓ = ΨΓ+v,

where Γ + v is the multi-index Γ translated by the vector v ∈ Zν .
Let E0

1/2 ⊂ E1/2 be the linear span of the basis elements ΨΓ. Then for F ∈ E0
1/2 we have

the expansion
F =

∑
Γ

fΓΨΓ,
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where the sum is over some finite set of indices Γ. This induces a map E0
1/2 → lphys(M0) into

the set of finite-support functions on M0 (where M0 is the set of multi-indices Γ). Given
two elements F,G ∈ E0

1/2 we have

(F,G)phys = 〈FΘG〉 =
∑
Γ,Γ′

DΓ,Γ′fΓgΓ′ ,

where {DΓ,Γ′} is the (transpose) of the Gramm matrix for the basis {ΨΓ}:

(15) DΓ,Γ′ = (ΨΓ′ ,ΨΓ)phys = 〈ΨΓ′θΨΓ〉.

We will describe the physical Hilbert space Hphys in terms of the functions f = {fΓ,Γ ∈ M0}
on the set M0.

Again as in the case of an ordinary random field, we find from (15) that the matrix
elements DΓ,Γ′ have a cluster expansion

(16) DΓ,Γ′ =
∑

τ={(Γ1,Γ′
1),...,(Γk,Γ′

k
)}

(−1)π(τ)ω(Γ,Γ′) . . . ω(Γk,Γ′
k),

where as in (34.1) the sum is over all partitions {(Γ,Γ′)} of a pair of multi-indices into
disjoint (nonempty) pairs of multi-indices, and

(17) ω(Γ,Γ′) =
〈 ∏
x∈suppΓ

′
hs(x)(x),

∏
x′∈suppΓ′

θhs′(x′)(x′)
〉

are the semi-invariants of the two sets of elements

{hs(x)(x), x ∈ supp Γ, hs′(x′)(x′), x′ ∈ supp Γ′},

arranged in a suitable order (lexicographic order in the first set, antilexicographic order in
the second); the sign (−1)π(τ) depends on the parity of the permutation induced by the
partition τ (see [26] for more details).

Using once again the techniques discussed in detail at the beginning of this chapter (and
also in [26]), we obtain that when λ in (58a.5.2) is small, the semi-invariants ω(Γ,Γ′) satisfy
the cluster estimate (10):

(18) |ω(Γ,Γ′)| < (Cλ)dsupp Γ∪ϑ supp Γ′ ,

where dB , B ⊂ Z̃ν+1 was defined above, C is an absolute constant, and ϑ is time reflection.
It follows from this estimate that the matrixD = {D(Γ,Γ′)} defines a bounded selfadjoint

operator
(Df)(Γ) =

∑
Γ′∈M

D(Γ,Γ′)f(Γ′), f ∈ l2(M0),

on the space l2(M0), with moreover the property that

(Df, g)l2(M0) =
∑

(Γ,Γ′)

D(Γ,Γ′)f(Γ′)g(Γ) = (F,G)phys,

F,G ∈ E0
1/2, F =

∑
f(Γ)ΨΓ, G =

∑
g(Γ)ΨΓ,
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for all finite-support functions f , g in l2(M0). This means that we can enlarge the algebra
E1/2 to the Hilbert space E1/2 of elements of the form

∑
Γ f(Γ)ΨΓ, where f = {f(Γ)} ∈

l2(M0). This Hilbert space is isomorphic to l2(M0), and as before the bilinear form

(F,G)phys = 〈FθG〉

is well defined and continuous on E1/2. According to Lemma 11.5.2, the physical Hilbert
space Hphys is equal to

(19) Hphys = (E1/2/N),

where N ⊂ E1/2 is the subspace of E1/2 consisting of elements with zero norm (‖F‖2
phys =

(F, F )phys = 0), and the completion is with respect to the inner product (·, ·)phys.
Let K0 ⊂ l2(M0) be the subspace

K0 = KerD

(it is isomorphic to N) and let K1 be its orthogonal complement:

K1 = ImD = K⊥
0 ⊂ l2(M0),

which can be identified with l2(M0)/K0. The bilinear form

(Df, g)l2(M0) ≡ (f, g)phys

on K1 induces the inner product (·, ·)phys, and hence the space Hphys is isomorphic to the
completion of K1 with respect to (·, ·)phys, which we will denote by K1.

For each element of the basis {ΨΓ} we now consider the expansion

(20) 〈Ue0ΨΓ|E1/2〉 =
∑

aΓ,Γ′ΨΓ′ .

¿From equations (14a), (1), (3), and (33a.5.2), we find that

(21)
aΓ,Γ′ = (−1)σ(Γ′)[〈Ue0ΨΓ|E1/2〉,ΨΓ′ ] = 〈〈Ue0ΨΓ|E1/2〉ϑΨΓ′〉(−1)σ(Γ′)

= 〈〈Ue0ΨΓ, ϑΨΓ′〉〉(−1)σ(Γ′) = (−1)σ(Γ′)〈ΨΓθΨΓ′〉 = (−1)σ(Γ′)DΓ,Γ′ .

For every F ∈ E we have

F =
∑
Γ

f(Γ)ΨΓ, 〈Ue0F |E1/2〉 =
∑
Γ

f̃(Γ)ΨΓ,

where
f̃(Γ) =

∑
aΓ,Γ′f = (−1)σ(Γ)DΓ,Γ′f(Γ′).

Thus the conditional expectation operator 〈Ue0F | E1/2〉 extends to a bounded operator
on the space E1/2, which under the isomorphism of E1/2 with l2(M0) goes into the cluster
operator

(22) A = JD,
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where J is the diagonal operator

J(f)(Γ) = (−1)σ(Γ)f(Γ).

Note that KerA = KerD = K0. Together with equations (46a.5.2) and (19), this implies
that under the identification of Hphys with K1, the transfer matrix J of our field coincides
with the closure (with respect to the norm ‖ · ‖phys in K1) of the operator

(23) PK1JD1

acting on K1, where D1 is the part of D acting on the invariant subspace K1 and PK1 is
the projection of l2(M0) onto the subspace K1.

Note that the map

ImD
1/2
1 → K1 : f → D

−1/2
1 f, f = ImD

1/2
1 ⊂ K1

extends to a unitary transformation

U : K1 → K1,

where we take K1 and K1 with the inner products (·, ·)l2(M0) and (·, ·)phys, respectively.
We easily check that under this transformation the operator J acting on K1 goes into the
unitarily equivalent selfadjoint operator

(24) J ′ = D
1/2
1 J1D

1/2
1 ,

acting on K1, where J1 = PK1JPK1 . We remark that (24) is the restriction to the invariant
subspace K1 of the operator D1/2JD1/2 acting on l2(M0).

Although useful in some respects, equation (24) is not well suited for direct calculations
with the operator J , because no effective methods are available for obtaining a cluster
expansion for the square root of the positive cluster operator D (or even for establishing
that the square root has the cluster property).

It is therefore more convenient to deal directly with the cluster operator A. We have the
following simple lemma.

Lemma 1. Let L ⊂ l2(M0) be an invariant subspace for the operator A on l2(M0) such
that for all f ∈ L

(25) ‖Af‖l2(M0) > C‖f‖l2(M0),

for some constant C > 0. Then:
1) the quadratic form

(25a) (Df, f) = (f, f)phys > C‖f‖l2(M0), f ∈ L,

where C > 0 is a constant ;
2) the space L is complete with respect to the norm ‖ · ‖phys.
3) The map

j : l2(M0) → l2(M0)/D0 ⊂ Hphys
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takes the space L into a (closed in Hphys) invariant subspace L̂ of the transfer matrix J ,
and j : L → L̂ is unitary (with respect to the norm ‖ · ‖phys on L).

4) The operator A on L is unitarily equivalent to the transfer matrix J on L̂:

j(A|L̃)j−1 = J |L̂.

The first statement of the lemma follows from the estimate

(Af,Af) = ‖Df‖2 = (D2f, f)

≤ (Df, f)1/2(D2f,Df)1/2 < (Df, f)1/2‖D‖1/2‖Df‖.

Hence ‖Af‖l2(M0) = ‖Df‖l2(M0) < ‖D‖1/2(Df, f)1/2 and (25a) follows from (25). The
remaining assertions of the lemma are obvious.

Constructing the invariant subspaces for the transfer matrix J in Hphys thus reduces to
constructing invariant subspaces for A in l2(M0) satisfying condition (25).

Remark. If the invariant subspace L for A in l2(M0) constructed above does not satisfy
(25), so that (26) may also be violated, then one must consider the space L1 = L� (L∩D0)
(the orthogonal complement being taken with respect to the inner product in l2(M0)) and
the operator D̂1 = PL1D1PL1 , defining the inner product (·, ·)phys in L1. The space L1

is then unitarily equivalent to an invariant subspace L̂ ⊂ Hphys of the transfer matrix
J , and the restriction J |L̂ is unitarily equivalent to the operator D̂1/2

1 JD̂
1/2
1 on L1 (cf.

equation (24)). In some simple cases (for one-particle subspaces, say) the operator D̂1/2 is
not hard to compute.

Theorem 2. Let the coefficient λ in the action (58a.5.2) modifying the free Gibbs field
(58.5.2) be sufficiently small, and assume that the N -particle separability conditions (see
Theorem 1.3) are satisfied for the operator A = JD on l2(M0). Then l2(M0) contains N
invariant cluster subspaces H1, . . . ,HN for A, on which the spectra of A are disjoint and
lie in the intervals given in Theorem 1.3 (and in particular, they satisfy condition (10.3)).
These subspaces are mutually orthogonal with respect to the inner product (·, ·)phys.

The proof follows along the lines of the general Theorem 1.3 for a selfadjoint cluster op-
erator. The fact that A is not selfadjoint relative to the inner product (·, ·)l2(M0) (but is
selfadjoint only with respect to the form (Df, f)l2(M0) = (·, ·)phys) leads to some additional
complications which we will now indicate. We first note that the N -particle separability
condition can be used to construct N invariant subspaces L1, . . . ,LN for A just as was
done in the proof of the theorem. These spaces are constructed by using the operators
S(1), . . . , S(N), which map the spaces lRk

2 (M0), k = 1, . . . , N , respectively, into their or-
thogonal complements lN\Rk

2 (M0). Using the estimates given above in Theorem 1.3 for the
operators S(k), we can easily obtain the lower bound

inf
f∈Lk,‖f‖l2(M0)=1

‖Af‖l2(M0) = ck,

for the norms, where ck is equal to xk (see (60.3)).
We now consider the adjoint A∗ = DJ of A. This also satisfies the N -particle separability

condition and has N invariant subspaces

L̂1, . . . , L̂N
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defined by the operators Ŝ(k), lRk
2 → (lRk

2 )⊥. We observe that the orthogonal complements
L̂⊥
k to these spaces are invariant under A, and Lk ∩ L̂⊥

k = (0), the trivial element, so that
their sum is direct, and we have

(26) Lk + L̂⊥
k = l2(M0).

This is easily proved by use of the norm estimates for S(k) and Ŝ(k). Furthermore, as in the
proof of Theorem 1.3, we obtain the upper bound

inf
f∈L⊥

k ,‖f‖l2(M0)=1
‖Af‖l2(M0) = bk,

where bk = xk, see equation (62.3).
As above, we note that

(26a) ck > bk > ck+1

for all k = 1, . . . , N . From this, together with (25) and the selfadjointness of A relative to
the inner product (·, ·)phys, we conclude that

L1 ⊂ L2 ⊂ · · · ⊂ LN
and consequently,

L̂⊥
1 ⊃ L̂⊥

2 ⊃ · · · ⊃ L̂⊥
N .

We now define
Hk = Lk ∩ L̂⊥

k−1.

Clearly, Hk is an invariant subspace and the spectrum of A|Hk
is contained in the intervals

(8.3). Since by (26) the subspaces Lk and L⊥
k are orthogonal with respect to the inner

product (·, ·) for all k, the same is true of the subspaces H1, . . . ,HN . We must now prove
that A|Hk

is a cluster operator, i.e., find in each Hk a basis {ĥΓ, Γ ∈ M
(k)
0 } (in general,

nonorthogonal) such that the matrix elements bΓ,Γ′ of A|Hk
in this basis:

(27) AĥΓ =
∑
Γ

bΓ,Γ′ ĥΓ′

admit a cluster expansion (4.2) and, in addition,

UvĥΓ = ĥΓ+v, v ∈ Zν .

We note that the orthogonal projection PHk
onto the subspace Hk of l2(M0) is constructed

using the cluster operators S(k) and Ŝ(k) in exactly the same way as in the proof of Theorem
1.3, and is of the form

(28) PHk
= P

l
(k)
2

+D(k),

where D(k) is a cluster operator of small norm and P
l
(k)
2

is the projection onto the subspace

l
(k)
2 . Consider the basis hΓ = PHk

eΓ in Hk, where eΓ(Γ′) = δΓ,Γ′ is the standard basis in
l(k). The Gramm matrix relating the two bases is given by

(28a) B
(k)
Γ,Γ′ = (eΓ, hΓ′) = δΓ,Γ′ +D

(k)
Γ,Γ′ ,
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where the D(k)
Γ,Γ′ are the matrix elements for the cluster operator D(k) in the basis {eΓ}.

Thus if we pass to the bases

êΓ =
∑
Γ′
SΓ,Γ′eΓ′ = eΓ +

∑
Γ′
UΓ,Γ′eΓ′

and

(29) ĥΓ =
∑
Γ′
SΓ,Γ′hΓ′ = hΓ +

∑
Γ′
UΓ,Γ′hΓ′ ,

where SΓ,Γ′ = (E +D(k))1/2Γ,Γ′ = δΓ,Γ′ + UΓ,Γ′ , and {UΓ,Γ′} is a cluster operator with small
norm, these bases will be biorthogonal:

(30) (êΓ, ĥΓ′) = δΓ,Γ′ ,Γ,Γ′ ∈ M
(k)
0 .

We conclude from (27) and (30) that the matrix elements of A|Hk
with respect to the basis

{ĥΓ} are bΓ,Γ′ = (AĥΓ, êΓ′). ¿From this and equations (28), (28a), (29) we find that the
bΓ,Γ′ admit the cluster expansion (4.2). This proves the theorem.

As an application of the results established in this and the preceding subsections, we
consider the lattice model for quantum Euclidean electrodynamics on Z̃3+1, which was
introduced in 5.2 and describes a Dirac fermion field interacting with a gauge field (with
gauge group U(1)). Recall that this model contains three parameters: the fermion mass
m (which we take equal to 1); the interaction parameter κ > 0 for the interaction of the
fermion with the gauge field; and the parameter β (the coefficient in the Wilson action for
the gauge field). The results described below are valid for sufficiently small κ and β.

We note that the rotations of the lattice Z3 act differently on the invariant subspaces
of the transfer matrix. We therefore consider the algebra homomorphisms Tg : E1/2 → E1/2

that correspond to the representation g → Tg of the orthogonal group O(Z3) of rotations
of Z3 (i.e., the subgroup of the rotation group O(R3) of three-dimensional space taking the
lattice into itself). On the generators of the algebra E1/2 the homomorphism Tg acts by

Tgψα(x) =
∑

sαβ(g)ψβ(g−1x),

Tgψα(x) =
∑

sαβ(g)ψβ(g
−1x),

where s(g) = {sαβ(g)} and g ∈ O(Z3) is the matrix for the spinless representation of O(Z3)
(see [9]),

Tgu(b) = u(g−1b).

Consider for each x ∈ Y1/2 the following quadratic forms in the generators:

Φsc(x) =
∑
α

ψα(x)ψα(x),

Φpsc(x) =
∑
α,β

ψα(x)(γ5)α,βψβ(x),

Φµvect(x) =
∑
α,β

ψα(x)(γµ)α,βψβ(x), µ = 1, 2, 3,

Φµpvect(x) =
∑
α,β

ψα(x)(γµγ5)α,βψβ(x), µ = 1, 2, 3,
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where γ5 = γ0γ1γ2γ3.
These formulas are gauge-invariant, and under translations x→ x+ s, s ∈ Zν , x ∈ Y1/2,

we have
Φsc(x) → Φsc(x+ s)

and similarly for the other forms. Under the action Tg of the rotation group on E1/2, they
transform as scalar, pseudoscalar, vector, and pseudovector fields, respectively:

TgΦsc(x) = Φsc(g−1x),

TgΦpsc(x) = det gΦpsc(g−1x),

TgΦ
µ
vect(x) =

∑
µ′
gµ,µ′Φµ

′
vect(g

−1x),

TgΦ
µ
pvect(x) = det g

∑
µ′
gµ,µ′Φµ

′
pvect(g

−1x).

We now consider the linear spans of the corresponding forms:

Lsc =
∑
x

cxΦsc(x),

Lvect =
∑
x

cxΦ
µ
vect(x)

and so on, where almost all the coefficients cx are zero.
The subspaces Lsc, Lpsc, Lvect, Lpvect constructed above are invariant under gauge trans-

formations, translations, and rotations. One finds that for sufficiently small κ > 0 and
β > 0 such that κ > c|β|1/2 (c > 0 some absolute constant), there exist two highest J -
invariant subspaces Hpsc and Hvect close to the spaces Lpsc and Lvect, respectively. On
these subspaces, the spectrum of the transfer matrix J is ∼ κ2. More precisely, we can
choose orthonormal bases {hpsc

x , x ∈ Y1/2} and {hvect
x,µ , x ∈ Y1/2, µ = 1, 2, 3} in Hpsc and

Hvect which transform under translations and rotations in the same way as {Ψpsc(x)} and
{Φµvect(x)}, and on which the transfer matrix acts by the formulas

J hpsc
x =

∑
y

apsc(x− y)hpsc
y ,

J hvect
x,µ =

∑
y

avect(x− y)hvect
y,µ ,

where

apsc(ξ) = 4κ2δξ,0 +O(κ4),

avect(ξ) = 4κ2δξ,0 +O(κ4).

The spaces Hpsc and Hvect describe pseudoscalar and vector “meson” states in our model.
On the other hand, the quadratic form 〈FΘF 〉, F ∈ Lsc,pvect, is seen to be of order κ2β
when restricted to the spaces Lsc and Lpvect, and it is therefore more difficult to construct
the corresponding invariant subspaces (scalar and pseudoscalar “mesons”) for them. This
problem remains unsolved.
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§6. Continuous-time models

Here we will consider Gibbs fields defined on the “space-time” Zν × R1, where Zν is
the space and R1 the continuous time; the fields will take values in some finite set S. Let
an ergodic Markov process η0 = {η0(t), t ∈ R1} be defined with values in S and let the
measure ν0 be stationary. The “free field” on Zν×R1 is defined as the set of identical copies
{ηx = {ηx(t), t ∈ R1}, x ∈ Zν} of the process η0, one for each point x in Zν . We assume as
above that a finite number of “field variables” {ϕi, i = 1, . . . , k} are defined on S, and that
we have an orthonormal basis {ϕγ , γ ∈ N} in l2(s, ν0) consisting of polynomials in the ϕi
(including the functions ϕi themselves) which satisfies condition (1.1).

We will assume that the infinitesimal matrix a(s, s′) for the transition probabilities for
the process η0, defined by the relations

(1)
Pr(s → s′ during time ∆t) = a(s, s′)∆t+ o(∆t), s �= s′,

Pr(s→ s during time ∆t) = 1 − a(s, s)∆t+ o(∆t),

where
a(s, s) = −

∑
s�=s′

a(s, s′)

is symmetric, so that the process η(t) and hence also the free field {ηx(t)} are invariant
under time-reversal.

For any finite set Λ ⊂ Zν and time interval T ⊂ R1, we define the action

(2) SΛ,T = β
∑
i,j

x,y∈Λ
|x−y|=1

∫
T

Φi,jx,yϕi(ηx(t))ϕj(ηy(t)) dt

which we use to get a finite Gibbs modification µΛ,T of the measure µ0 (the “free field”
distribution).

As was shown in [26], for β small enough this measure admits a cluster expansion. Specif-
ically, the expansion reduces to the study of a discrete Gibbs field on the lattice Zν × Z1

a ,
where Z1

a is the one-dimensional lattice with spacing a = | lnβ|, and the cluster expansion
for this auxiliary lattice field is used to get a corresponding expansion for the original field
(the small cluster parameter λ in this expansion is given by λ = Cβ| lnβ| (see [26]), where
C > 0 is an absolute constant). The resulting cluster expansion implies, in particular, the
existence of the thermodynamic limit

µ = lim
Λ↑Zν

µΛ,T

of the measures µΛ,T . This limit field is a Markov process with state space SZ
ν

. Writing
Ω for the space of field configurations η = {ηx(t), (x, t) ∈ Zν × R1}, let Hphys ⊂ L2(Ω, µ)
be the subspace of functionals depending only on the values η0 = {ηx(t = 0), x ∈ Zν} of
the configuration at zero time. As above, one gets a contraction semigroup of stochastic
operators Jt, t > 0, which are selfadjoint by virtue of the symmetry of the matrix a(s, s′)
and the form (2) of the action. Representing this semigroup in the form

(3) Jt = exp{−tH}
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we get a nonnegative selfadjoint operator H ≥ 0, which is the Hamiltonian of our field. As
above, for the case of continuous time we can also construct a multiplicative orthonormal
basis {ΨΓ} in Hphys of the form

ΨΓ =
∏
x

ψxγ(x), Γ = {γ(x)},

where the quasilocal functionals ψxγ(x) admit an expansion of the form (12.1). The matrix
elements atΓ,Γ′ = (JtΨΓ,ΨΓ′) thus have a multiplicative cluster expansion of the form (34.1):

(4) atΓ,Γ′ =
∑

({Γ,Γ′})

∏
i

ωt(Γi,Γ′
i)

and the semi-invariants ωt satisfy the cluster bound

|ωt(Γ,Γ′)| < (Cλ)dsupp Γ∪supp(Γ+t) ,

where dB, B ⊂ Zν ×R1 is the length of the smallest connected graph with vertices lying in
the finite set B ⊂ Zν ×R1. Here the metric on Zν ×R1 is defined by the formula

ρ(x, t)(x′, t′) = ρZν (x, x′) +
[ |t− t′|

a

]
,

where [t] is the largest integer ≤ t.
We thus see that for t = a the operator Ja is a selfadjoint cluster operator, and if the

k-particle separability conditions are fulfilled, then Ja has k invariant spaces H1, . . . ,Hk, as
described in Theorem 1.3. These subspaces are also invariant under the Hamiltonian H .

Moreover, the cluster expansion (4), valid for all t > 0, implies that the matrix elements
bΓ,Γ′ of H in the basis {ΨΓ}, which are equal to

(5) bΓ,Γ′ =
d

dt
atΓ,Γ′

∣∣∣∣
t=0

,

have the form

(6) bΓ,Γ′ =
∑

(Γ,Γ′)⊂(Γ,Γ′)
Γ\Γ=Γ′\Γ′

W (Γ,Γ′),

where

(7) W (Γ,Γ′) =
d

dt
ωt(Γ,Γ′)

∣∣∣∣
t=0

,

and the sum is over all pairs of multi-indices (Γ,Γ
′
) subordinate to the pair (Γ,Γ′), and such

that the restrictions

Γ|supp Γ\supp Γ ≡ Γ \ Γ, Γ′|supp Γ′\supp Γ′ ≡ Γ′ \ Γ′

coincide. The formula is easily derived from the representation (4) by observing that aΓ,Γ′ →
δΓ,Γ′ as t→ 0.
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As an example, we consider the quantum Ising model. Here S = {1,−1} and the transition
probability matrix defining the unperturbed process is given by

as,s′ = 1, s �= s′, as,s = −1.

The invariant distribution ν0 on S is given by ν0(1) = ν0(−1) = 1/2. The action SΛ,T is

SΛ,T = β
∑
x,y∈Λ

|x−y|=1

∫
sx(t)sy(t) dt.

If β is small enough, the N -particle separability condition holds for the transfer matrix Jt
of the limit field in this model (for t ≥ a = | lnβ|), and hence it also holds for Ja. Thus,
there exist k-particle cluster invariant subspaces H1, . . . ,HN for the entire semigroup Jt.

Now the operator H |H1 = H1 is given by convolution

(8) H1hx =
∑
y

ax−yhy

with respect to a suitable orthonormal basis {hx, x ∈ Zν}, and |aξ| < (Cλ)|ξ|, ξ ∈ Zν . In
the two-particle subspace H2 we can choose a basis {hx,y, x, y ∈ Zν} in terms of which
H2 = H |H2 has the form

(9) H2hx,y =
∑
x′∈Zν

ax−x′hx′,y +
∑
y′∈Zν

ay−y′hx,y′ +
∑

x′,y′∈Zν

Bx,y,x′,y′hx′,y′ ,

where the function aξ is the same as in (8), and the kernel Bx,y,x′,y′ satisfies the estimate

|Bx,y,x′,y′ | < (Cλ)d{x,y;x′,y′}

(where both pairs (x, y) and (x′, y′) lie in the zero time slice).
The proof that the functions aξ in equations (8) and (9) coincide is similar to the proof

of the multiplicative cluster property for the operator J in the discrete-time Ising model.

§7. Spectral analysis of k-particle cluster operators

For a more detailed analysis of the spectrum of k-particle cluster operators (k < ∞), it
is helpful to use the Fourier transform in the space l(k)2 . For this purpose we introduce the
following class of operators, which will be called cluster operators in the p-representation.
Let L2(T ν , dp,N ) = L2(T ν , dp) × l2(N ) = L2 be the Hilbert space of functions f(p, γ)
defined on the Cartesian product T ν × N , where T ν is the ν-dimensional torus, dp is the
normalized Haar measure on T ν , and N is a finite or countable set. Let Fs(L2) be the Fock
space on L2, i.e., the space of sequences of functions

(1) F = {f0, f1(p, γ), f2((p1, γ1), (p2, γ2)), . . . , fn((p1, γ1), . . . , (pn, γn)) . . . },

symmetric under all permutations of the pairs (pi, γi) ∈ Nν ×N .
We write F̃ ⊂ Fs(L2) for the subspace of sequences (1) whose members satisfy the

condition

(2)
∫
fn((p1, γ1), . . . , (pn, γn))h(pi + pj)dpidpj ≡ 0
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for all n, i, j = 1, . . . , n, i �= j and all functions h ∈ L2(T ν).
Let F̃k ⊂ F̃ be the subspace of sequences (1) for which fn = 0 for all n �= k. Clearly,

(3) F̃ =
∞⊕
k=0

F̃k

and every operator A on F̃ can be expressed as an operator matrix A = {Am,n}, where
Am,n : F̃n → F̃m.

Definition of a cluster operator in the p-representation. Consider an operator A on F
such that each block Am,n is given by a (distribution) kernel

(4) Km,n((p1, γ1), . . . , (pm, γm); (p′1, γ
′
1), . . . , (p

′
n, γ

′
n)) =

∑
ε

aεδε,

where the sum is over all partitions of the pair of sets M = {1, . . . ,m}, M ′ = {1, . . . , n}
into pairs {(β1, β

′
1), . . . , (βk, β′

k)} of nonempty subsets βi ⊆M , β′
i ⊆M ′, and

δε =
∏
i

δ(Pβi − P ′
β′

i
).

Here, given (βi, β′
i) ⊆ (M,M ′) and any two sets (p1, . . . , pm), (p′1, . . . , p

′
n) we have written

(5) Pβ =
∑
k∈β

pk, P ′
β′ =

∑
k∈β′

p′k,

and δ(·) is the usual δ-function on the torus T ν . Moreover, aε in (4) is a smooth (analytic)
function defined on Γε ×Nm+n, where Γε is the submanifold of (T ν)m+n defined by

(6) Γε = {(p1, . . . , pm); (p′1, . . . , p
′
n) : pβi = p′β′

i
, i = 1, . . . , k}.

The kernels Km,n in (4) are assumed to be symmetric both in the variables {pi, γi} and in
{p′i, γ′i}.

As previously, let M0 be the space of multi-indices Γ = {γ(x)}. By convention we write
each multi-index Γ as an unordered sequence of pairs {xi, γ(xi)} for some enumeration of
the points in supp Γ.

The space l2(M0) can thus be identified with the subspace of the Fock space Fs(l2(Zν ×
N )) consisting of the sequences

(7) Ψ = {ψ0, ψ1((x1, γ1)), . . . , ψn((x1, γ1), . . . , (xn, γn)), . . . } ∈ Fs(l2(Zν ×N )),

for which
ψn((x1, γ1), . . . , (xn, γn)) = 0,

whenever xi = xj for some i �= j. Evidently, the Fourier transform

Ψ → {f0, f1(p1, γ1), . . . , fn((x1, γ1), . . . , (xn, γn)), . . . },
where

(8)

fn((p1, γ1), . . . , (pn, γn))

=
∑

{x1,...,xn}

n∏
k=1

exp{i(pk, xk)}ψn((x1, γ1), . . . , (xn, γn))

takes Fs(l2(Zν ×N )) into Fs(l2(T ν ×N )), and l2(M0) goes into the space F̃ .
Under Fourier transformation, the translation group {Us, s ∈ Zν} acting on l2(M0) by

equation (31a.1) goes into a group acting on F̃ by the formula

(9)
(UsF )n((p1, γ1), . . . , (pn, γn))

= exp{i(s, p1 + · · · + pn)}fn((p1, γ1), . . . , (pn, γn)).



§7. SPECTRAL ANALYSIS OF k-PARTICLE CLUSTER OPERATORS 199

Lemma 1. Let A be a cluster operator on l2(M0) with cluster parameter λ. Then under
Fourier transformation (8) A becomes a cluster operator in the p-representation. The func-
tions aε in (4) are analytic in a complex neighborhood of the manifold Γε and are bounded
there by

(10)

|aε((p1, γ1), . . . , (pm, γm));((p′1, γ
′
1), . . . , (p

′
n, γ

′
n))|

<
k∏
l=1

∏
i∈βl

λN(γi)/2
∏
i∈β′

l

λN(γ′
i)/2,

where ε = {(β1, β
′
1), . . . , (βk, β

′
k)}.

Proof. We have

(11)

Kn,m((p1, γ1), . . . , (pn, γn)); ((p′1, γ
′
1), . . . , (p

′
m, γ

′
m))

=
∑′

(x1,...,xn)
(x′

1,...,x
′
m)

a((x1, γ1), . . . , (xn, γn)); ((x′1, γ
′
1), . . . , (x

′
m, γ

′
m))

×
n∏
j=1

exp{i(xj , pj)}
m∏
j=1

exp{−i(x′j′ , p′j′ )},

where
∑′ indicates a summation over sets (x1, . . . , xn), (x′1, . . . , x

′
m) with pairwise distinct

elements in each set. We remark that the function Kn,m is separately symmetric in the pairs
{(pi, γi)} and {(p′i, γ′i)}. Since in (11) we sum over x1, . . . , xn, x

′
1, . . . , x

′
m for fixed γ1, . . . , γn,

γ′1, . . . , γ′m, in what follows we will suppress these variables so as not to burden the notation.
Using the cluster expansion (4.2) for the function a, we can rewrite (11) as

(11a)
∑
k

∑
ε={(βl,β′

l
),l=1,...,k}

∑′

(x1,...,xn)
(x′

1,...,x
′
n)

ω({xj , j ∈ βl}, {x′j′ , j′ ∈ β′
l}, l = 1, . . . , k)

×
k∏
l=1

∏
j∈βl

exp{i(xj , pj)}
∏
j′∈β′

l

exp{−i(x′j′ , p′j′)}.

Further, for a fixed partition ε we can write∑′

(x1,...,xn)
(x′

1,...,x
′
m)

=
∑′

ε

(x1,...,xn)
(x′

1,...,x
′
n)

−
∑′′

ε

(x1,...,xn)
(x′

1,...,x
′
n)

where
∑′ denotes a sum over sets (x1, . . . , xn), (x′1, . . . , x′n) in which elements with indices

in the same block βl (or β′
l), l = 1, . . . , k, are distinct;

∑′′ denotes a sum over pairs of sets
(x1, . . . , xn), (x′1, . . . , x

′
m) with the same property, but at least one of which contains two or

more elements that coincide but have indices in different blocks βl1 and βl2 (or β′
l1

and β′
l2

),
l1 �= l2. Recall that the cluster function ω is still defined for such sets, because the clusters
are independent (property (5.2)).

Now consider the first sum
∑′
ε and pick the smallest element sl in each block βl. We

note further that (again because the clusters are independent) this sum can be rewritten in
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the form

(12)

∑′
ε
ω({xj − xsl

, j ∈ βl}, {x′j′ − xsl
, j′ ∈ β′

l}, l = 1, . . . , k)

×
k∏
l=1

( ∏
j∈βl

exp{i(xj − xsl
, pj)}

×
∏
j′∈β′

l

exp{−i(x′j′ − xsl
, p′j′)} exp{i(xsl

, (Pβl
− Pβ′

l
))}

)
.

Having fixed the xs1 , we sum over the variables yj = xj −xs, y′j′ = x′j′ −xs1 . By the cluster
estimate (6.2), the sum (12) converges and represents an analytic function of the variables
{pj}j=1,...,n, {p′j′}j′=1,...,m and satisfies the bound (10). Summing over the xsl

leads to
additional factors

∏k
l=1 δ(Pβl

− Pβ′
l
).

Turning now to the sum
∑′′

ε , we observe that to each pair {xj}j=1,...,n, {x′j′}j′=1,...,m

appearing in the sum we may associate the pair (y1, . . . , y′n), (y1, . . . , y′m) consisting of the
distinct elements in {xj} and {x′j′}. To each yj , j = 1, . . . , n′ (and consequently to each y′j′ ,
j′ = 1, . . . ,m′) we associate the set αj ⊆ [1, . . . , n] (or α′

j ⊆ [1, . . . ,m]) such that xi = yj if
and only if i ∈ αj (similarly, x′i′ = y′j′ if and only if i′ ∈ α′

j′ ). We now associate to the two
sets {yj}j=1,...,n′ and {y′j′}j′=1,...,m′ the partition ε̃ = {(β̃1, β̃

′
1), . . . , (β̃p, β̃

′
p′)} of the pair of

sets (1, . . . , n′), (1, . . . ,m′) into pairs of subsets (β̃i, β̃′
i) which is obtained by “gluing” the

blocks of the original partition along the “intersecting blocks”. More precisely, this means
the following. From the blocks (βl, β′

l) of the partition we form a graph in which edges join
those pairs of blocks (βl1 , β′

l1
) and (βl2 , β′

l2
) for which either βl1 and βl2 both intersect the

same set αj , or else β′
l1

and β′
l2

both intersect one of the α′
j′ . We form the new partition

of the pair of sets (1, . . . , n), (1, . . . ,m) by combining into one block all the blocks in the
original partition lying in the same connected component of our graph. Going now from the
sets {xj}j=1,...,n and {x′j′}j′=1,...,m to the sets {yj}j=1,...,n′ and {y′j′}j′=1,...,m′ , we get the
desired partition. The number of blocks in ε̃ is clearly less than k. We can thus write the
sum

∑′′
ε in the form

(12a)

∑
n′,m′

∑
(α1,...,α

′
n)

(α′
1,...,α

′
m′ )

∑
p<k

∑
ε̃=(β̃i,β̃

′
i)

i=1,...,p

×
∑

y1,...,yn′
y′1,...,y

′
m′

ω̃({yj, j ∈ β̃s}, {y′j′ , j′ ∈ β̃′
s}, s = 1, . . . , p)

×
p∏
s=1

∏
j∈β̃s

exp
{
i

(
yj ,

∑
t∈αj

pt

)} ∏
j′∈β̃′

s

exp
{
−i
(
y′j′ ,

∑
t′∈α′

j′

p′t′
)}

.

The function ω̃ of the sets of clusters {yj, j ∈ β̃s}, {y′j′ , j′ ∈ β̃′
s}, s = 1, . . . , p, satisfy both

the conditions (5.2) and (6.2) in the definition of cluster function.
For each partition in the sum (12a) we must now repeat the preceding arguments and

again separate the terms in (12a), which gives rise to a product of p δ-functions in the
expression for Km,n. The remainder will again be a sum of the form (12a), and the partitions
involved in it contain fewer than p blocks. Repeating this procedure several times, we arrive
at the expression (4). This proves the lemma.
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Note that in the p-representation, a k-particle cluster operator on l2(M
(k)
0 ) becomes an

operator F̃ for which the kernels
Km,n((p1, γ1), . . . , (pm, γm); (p′1, γ

′
1), . . . , (p

′
m, γ

′
m))

are nonzero only when
m∑
i=1

N(γi) =
n∑
j=1

N(γ′j) = k

(and thus, m,n ≤ k).
We consider here the spectrum for a one- or two-particle cluster operator in more detail.
Case k = 1. The Fourier transform takes the one-particle operator A acting on l2(M

(1)
0 )

into an operator Ã on the space L2(T ν ×N (1)), acting by the formula

(13) (Ãf)(p, γ) =
∑

γ′∈N (1)

Bγ,γ′(p)f(p, γ′),

where B(p) = {Bγ,γ′(p), γ, γ′ ∈ N (1)} is a family of selfadjoint r × r matrices, r = |N (1)|
(N (1) ⊆ N is the set of indices γ for which N (γ) = k). Let

ε1(p) ≥ ε2(p) ≥ · · · ≥ εr(p)
be the eigenvalues of the matrix B(p). Clearly, the spectrum of A coincides with the union
of the ranges of the functions εs:

σ(A) =
r⋃
s=1

Im εs(p).

If A is the one-particle part of the transfer matrix for a Gibbs field, then its eigenvectors
(corresponding to the eigenvectors es(p) of B(p)) can be interpreted physically as states of
elementary particles (or “elementary excitations”) of a field with quasimomentum p ∈ T ν.
The energy of these particles is equal to − ln |εs(p)|.

Case k = 2. Here a cluster operator A on l2(M0) goes into an operator acting on the L2

space of pairs of functions

(14) {f1(p, γ), f2((p1, γ1), (p2, γ2))} = F, γ ∈ N (2), γ1, γ2 ∈ N (1).

The function f2((p1, γ1), (p2, γ2)) is symmetric in the pairs of variables (p1, γ1) and (p2, γ2)
and satisfies the general condition (2),∫

f2((p1, γ1), (p2, γ2))h(p1 + p2)dp1dp2 = 0

for every function h ∈ L2(T ν). The action of Ã on F is given by the formula

(ÃF )1(p, γ) =
∑
γ′
a
(1,1)
γ,γ′ (p)f1(p, γ′)

+
∑
γ′
1,γ

′
2

∫
p′1+p

′
2=p

a
(2,2)
γ;γ′

1,γ
′
2
(p; p′1, p

′
2)f2((p

′
1, γ

′
1), (p

′
2, γ

′
2)) dp

′
1 dp

′
2,

(ÃF )2((p1, γ1), (p2, γ2)) =
∑
γ′
a
(1,2)
γ′;γ1,γ2(p1 + p2; p1, p2)f1(p1 + p2, γ

′)

+
∑
γ′
1,γ

′
2

a
(2,2)
γ1,γ2;γ′

1,γ
′
2
(p1, p2)f2((p1, γ

′
1), (p2, γ

′
2))(15)

+
∑
γ′
1,γ

′
2

∫
p′1+p′2=p1+p2

b
(2,2)
γ1,γ2;γ′

1,γ
′
2
(p1, p2; p′1, p

′
2)f2((p

′
1, γ

′
1), (p

′
2, γ

′
2)) dp

′
1 dp

′
2.
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Switching to the variables P = p1 + p2 and writing p = p1, we can express the space L2 as
a direct integral:

(16) L2 =
∫
Tν

L2(P ) dP

of the Hilbert spaces L2(P ), consisting of pairs F = {f1(γ), f2(γ1, γ2, p)}, where for each
pair γ1, γ2 ∈ M

(1)
0 we have f2(γ1, γ2, p) ∈ L2(T ν), and in addition f2 satisfies the conditions

(17)
∫
Tν

f2(γ1, γ2, p) dp = 0

and

(18) f2(γ1, γ2, p) = f2(γ2, γ1, P − p).

The operator Ã on L2 can also be decomposed as a direct integral

(19) Ã =
∫
Tν

Ã(P ) dP

of operators Ã(P ), each acting on L2(P ) by the formulas

(20)

(Ã(P )F )1(γ) =
∑
γ′
â
(1,1)
γ,γ′ (P )f1(γ′) +

∑
γ′
1,γ

′
2

∫
Tν

â
(1,2)
γ;γ′

1,γ
′
2
(P ; p)f2(γ′1, γ

′
2; p) dp,

(Ã(P )F )2(γ1, γ2, p) =
∑
γ′
â
(1,2)

γ′;γ1,γ2(P ; p)f1(γ′) +
∑
γ′
1,γ

′
2

â
(2,2)
γ1,γ2;γ′

1,γ
′
2
(P ; p)f2(γ′1, γ

′
2, p)

+
∑
γ′
1,γ

′
2

∫
Tν

b̂
(2,2)
γ1,γ2;γ′

1,γ
′
2
(P ; p, p′)f2(γ′1, γ

′
2, p

′) dp′,

where the kernels â(1,1), â(1,2), and so on, admit a natural expression in terms of a(1,1), a(1,2), . . . .
We can also express Us as a direct integral of operators Us(P ), where Us(P ) = ei(s,P )EP ,

and EP is the identity operator on L2(P ).
The operators (20), sometimes called generalized Friedrichs operators, have been studied

by a number of authors (see [22, 41]). Applying those results to the present situation, we
obtain the following information concerning the spectrum of Ã(P ).

There exists a (unique) subspace H0 ⊂ L2(P ) which is invariant under the operators
Ã(P ) and Us(P ) and such that the restrictions Ã(P )|H0 and Us(P )|H0 to H0 are unitarily
equivalent to the operators

(Â(P )f)(γ1, γ2, p) =
∑
γ′
1,γ

′
2

â
(2,2)
γ1,γ2;γ′

1,γ
′
2
(P ; p)f(γ′1, γ

′
2, p),

(Us(P )f)(γ1, γ2, p) = ei(P,s)f(γ′1, γ
′
2, p),

which act on the space L̃P2 (T ν × N ′ × N ′) of functions f(γ1, γ2, p) satisfying (18). The
orthogonal complement L2(P ) �H0 is finite dimensional.
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Denoting by

(21) ε
(P )
1 (p) ≥ ε

(P )
2 (p) ≥ · · · ≥ ε(P )

g (p), g = r2 = |N (1)|2,

the eigenvalues of the matrix {â(2,2)
γ1,γ2;γ′

1,γ
′
2
(P ; p)}, we obtain that the spectrum of A(P )

consists of the union of the ranges of the functions {ε(P )
i (p), p ∈ T ν} plus, possibly, a finite

number of eigenvalues
µ1(P ) ≥ µ2(P ) ≥ . . . µs(P ),

where s = s(P ).
Because the functions â(1,1), â(1,2), . . . appearing in expression (20) for the operators Ã(P )

are analytic in the variables p and P , we see that for all P , except possibly for a set Scr

of P ∈ T ν consisting of finitely many manifolds of dimension less than ν, the eigenvalues
µ1(P ), . . . , µs(P ) lie outside the continuous spectrum of Ã(P ) and depend continuously on
P . In other words, this means that there exist a finite number of regions G1, . . . , Gm on the
torus T ν and continuous functions {µj(P ), P ∈ Gj}, each defined on Gj , such that for every
P ∈ T ν , P /∈ Scr contained in the regions Gj1 , . . . , Gjs , the eigenvalues µ1(P ), . . . , µs(P ) of
the operator Ã(P ) coincide with the values of the functions µj1(P ), . . . , µjs(P ).

Turning now to the complete operator A, we can state the following result.

Theorem 2. Let a two-particle cluster operator A be given on l2(MR2
0 ). Then there

exists a subspace H0 ⊂ l2(MR2
0 ) which is invariant under A and the group {Us}, such that

the restrictions A|H0 and Us|H0 are unitarily equivalent to the operators

(22)
(Â0f)((p1, γ1), (p2, γ2)) =

∑
γ′
1,γ

′
2

a
(2,2)
γ1,γ2;γ′

1,γ
′
2
(p1; p2)f((p1, γ

′
1), (p2, γ

′
2)),

(Usf)((p1, γ1), (p2, γ2)) = exp{i(s, (p1 + p2))}f((p1, γ
′
1), (p2, γ

′
2)),

which act on the Hilbert space L2(T ν×T ν×N (1)×N (1)) of functions that depend on two pairs
of variables (p1, γ1), (p2, γ2) and are symmetric in them. Here the function a(2,2)

γ1,γ2;γ′
1,γ

′
2
(p1; p2)

is defined in (15).

The orthogonal complement l2(MR2
0 ) �H0 splits as an orthogonal direct sum of a finite

number of subspaces H1, . . . ,Hk invariant under A and Us, and on which A and Us are
unitarily equivalent to the operators

(Âf)(P ) = µj(P )f(P ), P ∈ Gj ,

(Û (i)
s f)(P ) = ei(P,s)f(P ),

which act respectively on the spaces L2(Gj), where G1, . . . , Gm are suitable regions on the
torus T ν and the µj(P ) are continuous functions defined on Gj , respectively. For each
P ∈ T ν, P ∈ ⋂s

k=1Gjl , the values µj1(P ), . . . , µjs(P ) lie outside the set consisting of the
union of the eigenvalues ε(P )

1 (p), . . . , ε(P )
g (p) as p runs over the torus T ν.

The (generalized) eigenvectors of A|H0 correspond under the unitary isomorphism H0
∼→

L2(T ν × T ν × N (1) × N (1)) to the eigenvectors lm(p0
1, p

0
2)δ(p1 − p0

1)δ(p2 − p0
2) of the oper-

ator (22), where lm(p0
1, p

0
2) is an eigenvector of the matrix {aγ1,γ2;γ′

1,γ
′
2
(p0

1, p
0
2)} with eigen-

value εm(p0
1, p

0
2) = ε

(p01+p
0
2)

m (p0
1). According to the physical interpretation, these eigenvectors

describe the “free” motion of two particles with quasimomenta p0
1, p

0
2 ∈ T ν and energy
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− ln |εm(p0
1, p

0
2)| (“scattering states”). The generalized eigenvectors of the operators A|Hj ,

j = 1, . . . , k, corresponding to the eigenvectors ej(P0)δ(P − P0) (P0 ∈ Gj) of the oper-
ators Âj with eigenvalues µj(P0), describe the motion of two bound particles with total
quasimomentum p1 + p2 = P0 and energy − ln |µj(P0)| (“bound states” of two particles).

Assume further that we are given a two-particle cluster operator (15) in the p-representation
with a small cluster parameter λ. In this case, the “principal part” A0 of the operator

(A0F )1(p, γ) =
∑
γ′
a
(1,1)
γ,γ′ (p)f1(p, γ′)

(A0F )2((p1, γ1), (p2, γ2)) =
∑
γ′
1,γ

′
2

a
(2,2)
γ1,γ2;γ′

1,γ
′
2
(p1; p2)f2((p1, γ

′
1), (p2, γ

′
2))

has lower order of smallness in λ than the additional terms in (15). If the matrix function
A = {aγ1,γ2;γ′

1,γ
′
2
(p1; p2)} is assumed to be a function of “general position” (see [3]), it is

possible to effectively describe the number of possible “bound states” H1, . . . ,Hk, and also
the regions Gj ⊆ T ν of the total quasimomentum in which each of them exists. We will
suppose for simplicity that the index γ takes only one value, and that the off-diagonal terms
in (15) are zero. The operator (15) then splits into one- and two-particle parts, the latter
being of the form

(Af)(p1, p2) =λ2

[
a(p1, p2;λ)f(p1, p2)

−
∫

p′1+p
′
2=p1+p2

a(p′1, p
′
2;λ)f(p′1, p

′
2)dp

′
1dp

′
2

+ λ

∫
p′1+p′2=p1+p2

B(p1, p2; p′1, p
′
2;λ)f(p′1, p

′
2)dp

′
1dp

′
2

]
,

f ∈ L̃sym
2 (T ν × T ν) =

{
f :

∫
p1+p2=P

f(p1, p2)dp1dp2 = 0 for all P ∈ T ν
}
,

where λ is small, and for all λ the family a(p1, p2;λ) consists of functions in general position,
which stay away from zero by a finite distance independent of λ. Upon subtracting the total
momentum p1 + p2 = P , we get the family of operators

(AP f)(p) = λ2[aP (p;λ)f(p) −
∫
Tν

aP (p′;λ)f(p′)dp′ + λ

∫
Tν

KP (p, p′;λ)f(p′)dp′],

where aP (p;λ) = a(p, P − p;λ), KP (p, p′;λ) = B(p, P − p, p′, P − p′;λ), each acting on the
space Lp(T ν) of functions satisfying the conditions∫

Tν

f(p)dp = 0, f(p) = f(P − p).

We first consider the low-dimensional cases ν = 1 or ν = 2.
Case ν = 1. We observe that the function aP (p;λ) always has two critical points of the

form p0 = P/2, p0′ = P/2 + π, which we will call the principal critical points. All other
(supplementary) critical points pcr ∈ T ν occur in pairs pcr, p′cr, where p′cr = P − pcr �= pcr.
Note that

aP (pcr;λ) = aP (p′cr;λ)
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and
KP (pcr, pcr;λ) = KP (pcr, p

′
cr;λ) = KP (p′cr, pcr;λ) = KP (p′cr, p

′
cr;λ).

It will thus be convenient to regard a pair of supplementary critical points (pcr, p′cr) as
a single point. For the family of functions aP (p;λ = 0) (in general position) there can
exist only finitely many caustic values P caust

1 , . . . , P caust
s of the parameter P , at which the

function aP caust
i

(p; 0) has a degenerate absolute extremum (which is taken either at one of
the principal critical points, or at a pair of supplementary critical points). Moreover, for
each P caust

i the degeneracy at the extremal point is such that only the first three derivatives
of the function aP caust

i
(p; 0) vanish there. For all sufficiently small λ, this behavior is also

preserved for the family aP (p;λ). For each caustic value P caust
i |λ=0 we define

Bi =
∂2KP caust

i

∂p∂p′

∣∣∣∣
p=p′=pcr,λ=0

,

which is always real since the kernel KP is selfadjoint; here pcr is the point at which the
(degenerate) extremum aP caust

i
(p; 0) is reached.

We now consider multiple values Pmult
1 , . . . , Pmult

m of the parameter P (of which there are
also only finitely many), i.e., values such that the functions aP caust

i
(p;λ = 0) have at least

two critical points p(1)
cr , p(2)

cr , at both of which the function has either an absolute minimum
or an absolute maximum (recall that paired critical points are regarded as being the same,
i.e., the points p(1)

cr and p
(2)
cr are not paired). We note that the number m of points Pmult

j

does not change for small λ, and their positions (like those of the multiple critical points
p
(1)
cr and p

(2)
cr , vary only slightly for small changes in λ. For each value Pmult

j , j = 1, . . . ,m
we define the (real) quantity

Bj =KPmult
j

(p(1)
cr , p

(1)
cr , λ = 0) +KPmult

j
(p(2)

cr , p
(2)
cr , λ = 0)

−KPmult
j

(p(1)
cr , p

(2)
cr , λ = 0) −KPmult

j
(p(2)

cr , p
(1)
cr , λ = 0).

A caustic or multiple value P will be called regular if the associated Bi is ≤ 0 and the de-
generate or multiple extremum is a minimum, or if Bi ≥ 0 and the extremum is a maximum.
In all other cases we say that P caust

i or P caust
j is irregular. It turns out that for sufficiently

small λ, bound states can occur only near regular caustics or regular multiple values P .
More precisely, we have the following

Theorem 3. Let P0 = P caust
i or P0 = Pmult

j be a regular value of the parameter P . Then
for sufficiently small λ there exists an interval G ⊂ T 1, P0 ∈ G in a neighborhood of P0 such
that for all points P ∈ G the operator AP has a unique eigenvalue µ(P ). This eigenvalue lies
to the right (respectively, left) of the continuous spectrum if P0 corresponds to a degenerate
or multiple maximum (respectively, minimum) of the function aP0 (p, λ = 0). The distance
from µ(P ) to the nearest edge of the continuous spectrum (the gap width) is less than Cλ4

when P0 = P caust
i and less than Cλ2 when P0 = Pmult

j , where C is an absolute constant.
For small λ, the only values of the parameter P for which a bound state can exist belong to
the intervals G near the regular caustics or multiple values of P .

We now turn to the case ν = 2. Again, the function aP (p; 0) = a(p, P − p; 0), where p
and P ∈ T 2, has four principal critical points

P 0,0
cr =

(
P1

2
,
P2

2

)
, P 0′,0

cr =
(
P1

2
+ π,

P2

2

)
,

P 0,0′
cr =

(
P1

2
,
P2

2
+ π

)
, P 0′,0′

cr =
(
P1

2
+ π,

P2

2
+ π

)
,
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P = (P1, P2) and, possibly, some paired supplementary critical points (pcr, p
′
cr), where p′cr =

P − pcr; we will again regard each such pair as a single critical point. Note that in contrast
to the one-dimensional case, for the types of degeneracy possible for a family of functions in
general position when ν = 2, the degenerate critical points are not associated with bound
states of the operator A; the latter arise only when the function aP (p;λ = 0) has multiple
minima or maxima. Let ∆(h)

min ⊂ T 2 be the set of P ∈ T 2 at which aP (p;λ = 0) has at least
k distinct critical points corresponding to the absolute minimum. The set ∆(k)

max is defined
similarly. For ν = 2 and a function a(p1, p2;λ = 0) in general position, only ∆(2)

ext and ∆(3)
ext

can be nonempty (where ext = min or max); moreover, ∆(3)
ext is finite, and ∆(2)

ext decomposes
into a finite number of arcs ∆(2)

ext,1, . . . ,∆
(2)
ext,s with endpoints at the points P triple ∈ ∆(3)

ext, and

exactly three arcs ∆(2)
ext,1,∆

(2)
ext,2,∆

(2)
ext,3 converge at each point P triple in ∆(3)

ext (see Figure 1).

Figure 1

It turns out that bound states of the operatorA can be present only in some neighborhood
G of the set ∆(2)

ext, and for each P in G the operator AP has at most two eigenvalues µ(P ).
The following figures show all possible structures of the part of G containing the triple point
P triple. Figure 2 shows two regions,

Gsmall ⊂ Gbig,

and for all P ∈ Gsmall there are two eigenvalues (here ext = min)

µbig(P ) < µsmall(P ).

The eigenvalue µsmall(P ) vanishes on the boundary of the region Gsmall, while µbig(P ) re-
mains the same throughout the region Gbig. The “width” of Gbig (and also the diameter of
Gsmall) is of the order exp{− const |λ|−1}, and Gbig may be somewhat “elongated” along all
the arcs ∆(2)

min,1,∆
(2)
min,2,∆

(2)
min,3 converging at P triple.

Figure 2
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Figures 3–5 illustrate the cases when only one eigenvalue µ(P ) exists in a neighborhood
of P triple. In all cases the width of the depicted region is ∼ exp{− const |λ|−1}, and it is
elongated by a finite amount along one, two, or three of the arcs. Another case is also
possible, in which the triple point P triple does not lie in G; the case when G contains only
interior points of one of the arcs ∆(2)

ext can also occur (Figure 6).

Figure 3

Figure 4

Figure 5

In all these cases, the eigenvalues µ(P ) lie to the left of the continuous spectrum of AP
by a distance ∼ exp{− const |λ|−1}.

Figure 6
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A similar situation is found in a neighborhood of the set ∆(2)
max, except that the eigenvalues

µ(P ) now lie to the right of the continuous spectrum of AP .
There are some explicit recipes for determining which situation arises, but they are quite

elaborate and will not be given here (see [28]). For dimensions ν > 2, small λ, and a generic
function a(p1, p2), the operator A may fail to have any bound states at all.

A proof of all these results can be found in [28]. Let us note that in the case of an arbitrary
k-particle cluster operator A, the structure of spectrum of A is qualitatively similar to that
for a k-particle Schrödinger operator: each branch of the spectrum is determined by a
partitioning of the k particles into bound groups (clusters), each of which moves “freely”
(see [36] and [17] for more details).

§8. Asymptotic decay of the correlation functions for Gibbs fields

As an application of the results described above, we consider the asymptotic behavior of
the correlation functions

(1) 〈FA, FA+x〉 ≡ 〈FAFA+x〉 − 〈FA〉2

as |x| → ∞; here 〈·〉 denotes an average over a translation-invariant Gibbs field on the lattice
Zν+1, FA is a locally bounded functional of the field, and FA+x = UxFA is the translation
of FA by the vector x ∈ Zν+1. For simplicity, we will examine only the case when A ⊂ Y0 is
contained in the zero slice of Zν+1, and the vector x = (t, 0) points along the “time” axis.
Then

(2) 〈FAFA+t〉 = (JtFA, FA)Hphys ,

where Jt = J t, J is the transfer matrix.
Let us suppose that we have succeeded in finding the highest one-particle subspace H1 of

the transfer matrix J , such that the spectrum of J restricted to the orthogonal complement
H⊥

1 of H1 is separated from the spectrum of J on H1:

(2′) supσ(J |H⊥
1
) ≡ m2 < inf σ(J |H1).

We have the orthogonal decomposition

FA = F 0
A + F

(1)
A + F̂

(1)
A ,

where F 0
A = 〈FA〉, F (1)

A ∈ H1, F̂
(1)
A ∈ H⊥

1 . Then (1) and (2) imply that

(3) (J tFA, FA) = 〈FA〉2 + (J tF
(1)
A , F

(1)
A ) + (J tF̂

(1)
A , F̂

(1)
A ).

The last term is of order

(3′) O(mt
2).

Fourier transformation in the space H1 takes the element F
(1)
1 into the function f =

{f(p, γ)}, and the second term in (3) becomes

(4) (J tF
(1)
A , F

(1)
A ) =

∑
γ,γ′

∫
Tν

btγ,γ′(p)f(p, γ)f(p, γ′)dp,
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where the btγ,γ′(p) are the matrix elements of (B(ρ))t (see (13.7)). Finally, diagonalizing the
matrix B(p) for each p ∈ T ν , we find that the expression on the right in (4) in equal to

(5)
∑
k

∫
Tν

εtk(p)|pk(p)|2dp,

where the fk(p) are the components of the vector {f(γ, p)} with respect to a basis of eigen-
vectors of B(p) (with corresponding eigenvalues εk(p)). Let

m1 ≡ max
p,k

|εk(p)| = εk0(p0) > 0,

where for simplicity we take the largest eigenvalue of B(p0) to be positive of multiplicity
one. If we further assume that fk0(p) is continuous at the point p = p0, then the sum (5)
behaves asymptotically as

(6) C
|fk0(p0)|2
(2πt)ν/2

mt
1(1 + o(1)).

In view of (2′) and (3′), the expression (6) does in fact give the asymptotics of the correlation
function (1).

The above computation breaks down if the projection F
(1)
A of the function FA is equal

to zero. This will be the case for the Ising field, e.g., whenever F is an even function (i.e.,
expressible as a sum of even monomials in the variables {σx, x ∈ Zν}). Let us now suppose
that in addition to the one-particle subspace H1 we have also constructed a two-particle
invariant subspace H2 for the transfer matrix J , and let

(7) F = 〈FA〉 + F
(2)
A + F̂

(2)
A ,

where F (2)
A ∈ H2, F̂

(2)
A ∈ (H0 + H1 + H2)⊥ ≡ H.
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Suppose further that the spectrum of J restricted to H2 is separated from the spectrum
of J on H. Then as above, the asymptotic behavior of the correlation function (1) is given
by

(8) (J t
2F

(2)
A , F

(2)
A ),

where J2 is the part of J on H2. Two cases may be distinguished:
1) The regular case

(9) m2 = sup
k,p1,p2

εk(p1, p2) > sup
l,p

µl(p).

Here the εk(p1, p2) are the eigenvalues of the matrix {a(2,2)
γ1,γ2;γ′

1,γ
′
2
(p1, p2)} appearing in ex-

pression (15.7) for the two-particle cluster operator J2, and the µl(p) are the bound states
for J2.

2) The nonregular case, for which (9) is replaced by the opposite inequality.
In the regular case, calculations involving the resolvent of J2 (see [18]) show that the

asymptotic behavior of (8) is given as follows:
1) for ν = 1

c(FA)mt
2

t2
(1 + o(1)),

2) for ν = 2
c(FA)mt

2

t2(ln t)2
(1 + o(1)),

3) for ν ≥ 3
c(FA)mt

2

tν
(1 + o(1)),

where c(FA) is a constant depending on FA.
In the nonregular case, the large t behavior is given by (6) with m1 replaced by m2 =

supl,p |µl(p)|:
c(FA)mt

2

tν/2
(1 + o(1)).

In the case when the vector x in (1) is directed at an angle to the time axis, the large t
behavior of (1) for F (1)

A �= 0 is of the form (6), where m1 = m1(α) depends on the direction
α of the vector x.
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CHAPTER IV

ASYMPTOTIC COMPLETENESS FOR

INTERACTING FERMION SYSTEMS

In the previous chapters (see 4.0 and 3.1) we have considered the quantum dynamics of
fermion systems defined on a CAR algebra A(H), for an appropriate one-particle Hilbert
space. Our treatment was most complete for a quasifree dynamics, generated by a Hamil-
tonian

H = dΓ(h),

where h is a one-particle Hamiltonian acting on H (see 3.1). The spectrum of the energy
operator HGNS in the GNS representation for such a dynamics relative to a quasifree KMS
state was seen in 1.2 to consist of finitely many “branches” (“k-particle” branches), each
describing the free motion of k “quasiparticles.” If H = L2(Rν) (or H = l2(Zν)), i.e., the
particles move in ν-dimensional space (or on a ν-dimensional lattice) and the dynamics α(t)
on the CAR algebra is obtained from the free dynamics by adding a small interaction among
the particles, then it behaves much like a free dynamics, provided that the dimension ν is
not too small (usually ν ≥ 3 suffices, but in certain cases it may be necessary to require
ν ≥ 4 or ν ≥ 5).

In precise language, this means that there exists a ∗-automorphism of the
algebra A(H) taking the dynamics τ(t) into a quasifree dynamics τ0(t). This implies,
in particular, that for a dynamics with interaction, the operator HGNS gener-
ated by a representation with respect to some KMS state is unitarily equivalent
to the operator H0

GNS for the free dynamics (with respect to the corresponding quasi-
free KMS state). Among other things, this means that the spectrum of HGNS still
consists of branches that describe the motion of mutually independent quasi-
particles.

We note that the assumption that the particles interact weakly (and that the dimension
is large enough) is essential, because for strong interactions bound states can appear in
the spectrum of HGNS — these are spectral branches that describe the motion of a group
(cluster) of finitely many mutually bound particles. For one- or two-dimensional particles,
such branches can be present even for arbitrarily weak interactions. The similarity between
τ0(t) and τ(t) alluded to above can be proved by use of methods borrowed from the general
theory of scattering in quantum mechanics, and it belongs to the circle of problems in
scattering theory generally known as the asymptotic completeness problem (see [36] for
more details).

We will begin by considering some cases involving an interaction in a pure
fermion system. In the last section of this chapter we will analyze the analogous
problem for a system consisting of a fermi gas interacting with another type of
distinguished particle.
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§1. Fermi systems with bounded interaction

1. Møller morphisms. Let H be a separable Hilbert space and let A(H) ⊂ B(Fas(H))
be the CAR algebra for the bounded operators acting on the antisymmetric Fock space
Fas(H) generated by the creation and annihilation operators {a(f), a∗(f), f ∈ H} in
Fas(H). Let further h0 be a selfadjoint operator on H, H0 = dΓ(h0) its second quanti-
zation (see 3.1), and let τ0

t be the group of ∗-automorphisms of A(H) generated by H0:

(1) τ0
t (A) = exp{itH0}A exp{−itH0}, A ∈ A(H).

As was indicated in 3.1 and 3.2, this is called the free dynamics on A(H) generated by the
one-particle operator h0. The fact that τ0

t (A) ∈ A(H) for all t and A ∈ A(H) follows from
the formula

τ0
t (a#(f)) = a#(eith0f), f ∈ H

(see (9a.3.2)), where a(f#) is a creation or annihilation operator.
Now let V be a selfadjoint element in A(H) and

(2) H = HV = H0 + V

be the “perturbed operator”. The perturbed dynamics τVt on A(H) is defined by

(2a) τVt (A) = exp{itHV }A exp{−itHV }, A ∈ A(H).

That τVt (A) ∈ A(H) for every t follows from the series expansion

(3) τVt (A) = τ0
t (A) +

∑
(i)n

∫
∆t

n

[τ0
s1(V )[τ0

s2 (V )[, . . . , [τ0
sn

(V ), τ0
t (A)]]]] ds1 . . . dsn,

of the dynamics τVt given previously in 4.0; here for t > 0 we have

∆t
n = {0 ≤ s1 ≤ · · · ≤ sn ≤ t},

while for t < 0,
∆t
n = {t ≤ s1 ≤ · · · ≤ sn ≤ 0}.

The series is easily shown to converge for all t with respect to the norm topology on A(H).
We now introduce the general notion of Møller morphisms for an ordered pair (τ (2)

t , τ
(1)
t )

of dynamics acting on some ∗-algebra A.
Assume that the limits

(4) γτ
(2),τ (1)

± (A) = lim
t→±∞ τ

(2)
−t (τ (1)

t (A))

exist (in the norm on A) for all A ∈ A. The maps

γτ
(2),τ (1)

± : A → A : A→ γτ
(2),τ (1)

± (A)

are called the Møller morphisms for the pair (τ (2)
t , τ

(1)
t ).
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Lemma 1 (intertwining property for Møller morphisms). If τ (1)
t and τ (2)

t are two dynamics
on the algebra A, we have the following:

a) if the Møller morphisms γτ
(2),τ (1)

± and γτ
(1),τ (2)

± exist, then

γτ
(2),τ (1)

± = [γτ
(1),τ (2)

± ]−1;

b) if the Møller morphisms γτ
(2),τ (1)

± exist, then

γτ
(2),τ (1)

± τ
(1)
t = τ

(2)
t γτ

(2),τ (1)

± ;

c) if again both morphisms γτ
(2),τ (1)

± and γτ
(1),τ (2)

± exist, then

τ
(2)
t = γτ

(2),τ (1)

± τ
(1)
t γτ

(1),τ (2)

± .

Proof. Statement a) follows at once from the definition (4). Next,

(τ (2)
t γτ

(2),τ (1)

± )(A) = lim
s→±∞ τ

(2)
t (τ (2)

−s (τ (1)
s (A)))

= lim
s→±∞ τ

(2)
t−s(τ

(1)
s−t(τ

(1)
t (A))) = (γτ

(2),τ (1)

± τ
(1)
t )(A)

which is just b). Finally, c) follows from a) and b).

We now return to the pair of dynamics τ0
t and τVt (free and perturbed) on the algebra

A(H). Then provided they exist, the Møller morphisms

γτ
(V ),τ (0)

± (A) = lim
t→±∞ τV−t(τ

0
t (A)) = γ±(A)

and
γτ

(0),τ (V )

± (A) = lim
t→±∞ τ0

−t(τ
V
t (A)) = γ̂±(A)

are called the forward and inverse morphisms, respectively.
We now give a simple method which dates back to Cook [see (36)] for proving the existence

of the morphisms γ±.

Lemma 2 (Cook’s method). Let τ0
t and τVt be a free and perturbed dynamics on the

algebra A. Suppose there exists a dense subset A0 ⊆ A such that

(5)
∫ ∞

−∞
‖[τ0

t (V ), A]‖dt <∞, A ∈ A0.

Then the forward morphisms γ±(A) exist.

Proof. One checks readily that the element

At = τV−t(τ
0
t (A)) = exp{−it(H0 + V )} exp{iH0t}A exp{−iH0t} exp{i(H0 + V )t}

satisfies the equation
dAt
dt

= iτV−t(τ
0
t ([τ0

−t(V ), A])).
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Upon integrating over t, it follows that

At1 −At2 = i

∫ t2

t1

τV−t(τ
0
t ([τ0

−t(V ), A])) dt.

Since τVt and τ0
t are norm-preserving, we have

‖At1 −At2‖ ≤
∫ t2

t1

‖[τ0
−t(V ), A]‖ dt

and by (5) we find that for A ∈ A0 the limit lim
t→±∞At = γ±(A) exists. It now follows easily

that this limit exists for all A ∈ A because the maps γ± are isometric: ‖γ±(A)‖ = ‖A‖.
2. Existence of the forward Møller morphisms for bounded perturbations of

a free dynamics. In A(H) we have the dense ∗-subalgebra A0(H), the set of all finite
linear combinations of monomials in the creation/annihilation operators a#(f) for functions
f ∈ L2(Rν) whose Fourier transforms are in C∞(Rν).

Consider the C∗-subalgebra Al(H) of A(H) generated by the monomials in the creation
and annihilation operators containing an even number of factors. The elements of the C∗-
subalgebra Al(H) will be called even. The set A0

l (H) = A0(H)∩Al(H) is a dense ∗-subalgebra
of Al(H).

We introduce the following classes of bounded interactions. Let V = V ∗ and Vi be given
by

(6) V =
d∑
i=1

Vi, Vi =
Mi∑
k=1

cka
∗(f (k)

i,1 ) . . . a∗(f (k)
i,mi

)a∗(f (k)
i,mi+1) . . . a

∗(f (k)
i,mi+ki

),

where d and Mi are finite, mi + ni > 0, f̃ (k)
i,j ∈ C∞(Rν) for all i, j, k (f̃ is the Fourier

transform of f).
We say that V ∈ A0

l if the sums mi + ni in (6) are even for all i, and that V ∈ A0 if
mi > 0 and ni > 0 for all i. Both classes A0

l and A0 are evidently contained in A0(H), and
A0
l ⊂ Al(H).

Remark. All the results discussed below remain valid for less restricted classes A and
Al of smooth bounded interactions V , namely those for which V = V ∗ is of the form

(7) V =
d∑
i=1

∫
Vi(x1, . . . , xmi , xmi+1, . . . , xmi+ni)a

∗(x1) . . .

a∗(xmi)a(xmi+1) . . . a(xmi+ni) dx1 . . . dxmi+ni ,

with
Vi ⊂ S(Rmi+ni), mi + ni > 0.

If mi + ni is even for all i, then V ∈ Al. If on the other hand mi > 0 and ni > 0, then
V ∈ A. The theorems in this section will be proved for the most part only for interactions
in A0 or A0

l , and only brief comments will be made concerning the corresponding proofs for
interactions in A, Al.

In (6) and (7) we write, respectively,

mmax = max
i
mi = max

i
ni,

mmin = min
i
mi = min

i
ni
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(that maximi = maxi ni and minimi = minni follows from the selfadjointness of V ).
We also introduce the following class H of one-particle Hamiltonians h on L2(Rν). We

say that h ∈ H if the operator h (in the Fourier representation) is given by multiplication
by a function h(k), h ∈ C∞(Rν), k ∈ Rν , and h and its first two derivatives are bounded
by a polynomial on Rν . In addition, we require

dist(Sh, Gh) > 0,
mesSh = mesGh = 0,

where Sh = {k : ∇h(k) = 0} is the set of critical points of the function h, and Gh is the set
of k ∈ R for which the matrix of second derivatives of h is singular.

We note that the class H includes the nonrelativistic Hamiltonian −∆ +µ, as well as the
relativistic Hamiltonian (−∆ +m2)1/2, m > 0, both acting on L2(Rν).

We will henceforth assume that the free dynamics τ0
t is generated by a one-particle Hamil-

tonian h in the class H.

Theorem 3 (existence of forward Møller morphisms). Let ν ≥ 1; then for V = V ∗ ∈ Al
the morphisms

γ±(A) = lim
t→±∞ τV−tτ

0
t (A), A ∈ H(H)

exist.

Proof. The cases ν = 1, 2 differ slightly from the case ν ≥ 3, so let ν ≥ 3. By Cook’s
method, it is enough to exhibit a dense subset A0 ⊆ A(H) for which condition (5) is satisfied.

Let A0 ≡ A0(H), i.e.,

A0 = D{a∗(f1) . . .a∗(fm)a(g1) . . . a(gn), m, n ≥ 0,

f̃i, g̃j ∈ C∞
0 (Rν), i = 1, . . . ,m, j = 1, . . . , n}

where D{·} denotes the linear span of the set {·}.
If we show that (5) holds for A = a#(f), where f̃ ∈ C∞

0 (Rν) is an arbitrary function,
then since τV−tτ

0
t is a ∗-automorphism for any fixed t ∈ Rν , it will follow that γ±(A) exists

for all A ∈ A0.
For A = a(f) we have

(8)

‖[τ0
t (V ), A]‖ = ‖[τ0

−t(V ), A]‖ ≤ ‖[a(eithf), V ]‖

=
∥∥∥∥ d∑
i=1

Mi∑
k=1

mi∑
j=1

(−1)j−1(f (k)
i,j , e

−ithf)

× a∗(f (k)
1,j ) . . . ǎ∗(f (k)

i,j ) . . . a∗(f (k)
i,mi

)

× a(f (k)
i,mi+1) . . . a(f

(k)
i,mi+ni

)
∥∥∥∥ < C(V, f)

(1 + |t|)ν/2

where the symbol ˇ over a∗(fi,j) means that this factor is to be omitted. Then by the
method of stationary phase (see, e.g., [3]),

(9) |(f (k)
i,j , e

ithf)| < C(f, f (k)
i,j )

(1 + |t|)ν/2 ,
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where C(f, f (k)
i,j ) is a constant and

(10) C(V, f) =
d∑
i=1

Mi∑
k=1

mi∑
j=1

|ck|C(f, f (k)
i,j )

mi+ni∏
l �=j

‖f (k)
i,l ‖ <∞.

Since the right-hand side of (8) is a function in L1(R1), γ±(a(f)) exists by Cook’s criterion.
The case A = a∗(f) is treated similarly.

For ν = 1, 2 we choose the dense subset A0 in A(H) to be

A0 = D{a∗(f1) . . . a∗(fm)a(g1) . . . a(gn), m, n ≥ 0, f̃i, g̃j ∈ C∞
0 (Rν \ Sh)}.

For the function f̃i ∈ C∞
0 (Rν \ Sh) we integrate by parts q times for |t| > 1 to get the

estimate

(11) |(f, eithf (k)
i,j )| < Cq(f, f

(k)
i,j )

|t|q ,

where the constant Cq(f, f
(k)
i,j ) still depends on q. Taking q ≥ 2, we get a function in

L1(R \ [−1, 1]) in (8).
This proves Theorem 3 for an interaction in A0

l . To prove it for V ∈ Al, we note that only
the estimate (10) needs to be verified. For this, it suffices to write the interaction V ∈ Al in
the following form:

(12) V =
d∑
i=1

∑
N1

· · ·
∑

Nmi+ni

ci(N1, . . . , Nmi+ni)a
∗(eN1) . . . a

∗(eNmi
)

× a(eNmi+1) . . . a(eNmi+ni
),

where ‖eNj‖ = 1, eNj ∈ C∞
0 (Rν), and the Nj run over the countable set N ; moreover,

(13)
d∑
i=1

∑
N1

· · ·
∑

Nmi+ni

|ci(N1, . . . , Nmi+ni)| <∞

and for all N,N ′ ∈ N and f ∈ C∞
0 (Rν) we have the bounds

|(eN , e−ithf)| < C(f)
(1 + |t|)δ ,(14)

|(eN , e−itheN ′)| < C

(1 + |t|)δ ,(15)

where C(f) is a constant depending only on f , and C and δ are absolute constants with
δ > 1.

It is easy to see that (12)–(15) imply the bound (10).
Let us now prove that V ∈ Al can in fact be represented in the form (12). Assuming first

that the Fourier transforms of the kernels Vi satisfy

Ṽi ∈ C∞
0 (Rν(mi+ni)),
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we can choose L such that supp Ṽi ⊂ [−L,L]ν(mi+ni) for every i. Let

(16) en(k) =
κ(k) exp{2πin kA}

dn
,

where κ(k) ∈ C∞
0 (R) satisfies 0 ≤ κ(k) ≤ 1 for all k and κ(k) = 0 for |k| > B. The constants

dn are chosen so that ‖en‖ = 1.
Choose A and B so that L < B < 2L < A. Then

(17) Ṽi =
∑
N

ci(N)
Di∏
j=1

enj (kj),

where N = (n1, . . . , nD), Di = ν(mi + ni). Clearly, for every q there exists a constant C(q)
such that

(18) |cN | < C(q)
|N |q , |N | =

∑
i

|ni|.

Plainly, for q > maxiDi we have the estimate∑
N

|ci(N)| <∞.

For the functions

eN =
ν∏
j=1

enj (kj), eN ′ =
ν∏
j=1

en′
j
(kj)

N = (n1, . . . , nν), N ′ = (n′
1, . . . , n

′
ν)

we have the following estimates, uniformly in N,N ′ ∈ Zν :

|(eN , eitheN ′)| < C

(1 + |t|)ν/2−δ′ ,(19)

|(eN , eithf)| < C(f)
(1 + |t|)ν/2−δ′ ,(20)

where the constant δ′ > 0 can be chosen arbitrarily small, C = C(ν, δ′), C(f) = C(f, µ, δ′).
Inequalities (14) and (15) now follow upon taking δ = ν/2 − δ′ > 0 for ν ≥ 1, δ′ < 1/2 in
(19) and (20).

On the other hand, if Ṽi ∈ S(R(mi+ni)ν) then we use a partition of unity

(21)
∑
N

αN (k) = 1,

where diam suppαN ≤ const uniformly in N . We can then express the kernel Ṽi as a sum
ṼiαN of kernels with compact support, and using the analog of (10) for the ṼiαN , with
suitable translations of the functions eN , we can repeat the previous proof.

This concludes the proof of Theorem 3.
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3. Existence of inverse Møller morphisms for small bounded perturbations of
the free dynamics. To prove the invertibility of the forward Møller morphisms, it suffices
to prove the existence of the inverse Møller morphisms. As in the case of ordinary wave
operators, the proof that the inverse Møller morphisms exist for k-particle quantum systems
is considerably more difficult than the existence proof for the forward morphisms.

Theorem 4 (invertibility of the forward Møller morphisms). If ν ≥ 3 and V = V ∗ ∈ Al,
then there exists an ε0 > 0 such that when |ε| < ε0, ε ∈ R1 the forward Møller morphisms

γ±(A) = lim
t→±∞ τεV−t τ

0
t (A), A ∈ A(H),

exist and are invertible, and

(22) τεVt = γ±τ0
t γ

−1
± , t ∈ R.

Corollary. Let ν ≥ 3. Then for V = V ∗ ∈ Al there exists an ε0 > 0 such that for
|ε| < E0, ε ∈ R1, the C∗-dynamical systems {A(H), τ0

t } and {A(H), τεVi } are equivalent.

We preface the proof of Theorem 4 with two remarks.

Remark 1. In contrast to the forward Møller morphisms, when ν = 1, 2 the inverse
Møller morphisms may not exist for any nonzero value of the coupling constant ε. An
example may be constructed as follows.

Example. Let V = −a∗(f0)a(f0); then τεVt ∈ V is again a free dynamics, generated by
the operator hε = h+ εP0, where P0 is the projection on the vector f0. For A = A#(f) the
inverse Møller morphisms look like

(23) γ̂±(A) = lim
t→±∞ τ0

−tτ
εV
t (a#(f)) = a#(W±f),

where Ŵ± are the ordinary invertible wave operators. It is well known that if h = −∆ and
the function f0 is such that f̃0 ∈ C∞

0 (Rν) satisfies

(24)
∫
Rν

f̃0(k)dk <∞,

then the operator hε has an eigenvalue λε < 0 (with eigenvector eε) for arbitrarily small ε.
Therefore Ŵ±eε does not exist, and hence neither does γ̂±(a#(aε)).

Remark 2. In Theorem 4 with ν ≥ 3, the essential reason for requiring ε to be small
is to rule out bound states, which may be present for large ε. The previous example with
ν ≥ 3 and large |ε| illustrates this phenomenon.

Proof of Theorem 4. By Cook’s criterion and the remark made in the proof of The-
orem 3, to show that γ̂+ exists it suffices to prove that

‖[τεVt (V ), a#(f)]‖ ∈ L1(R+),

that is, that ∫ ∞

0

‖[τεVt (V ), a#(f)]‖dt <∞
for all f ∈ C∞

0 (Rν) for both values of #.
Using equation (5.4.0), we obtain

(25)

∫ ∞

0

‖[τεVt (V ), a#(f)]‖ dt ≤
∫ ∞

0

‖[τ0
t (V ), a#(f)]‖ dt

+
∞∑
n=1

|ε|n
∫ ∞

0

∫
∆n

‖[a#(f), [τ0
s1(V )[. . . [τ0

sn
(V ), τ0

t (V )] . . . ]]‖ ds1 . . . dsn dt.



§1. FERMI SYSTEMS WITH BOUNDED INTERACTION 219

Lemma 5. There exist a constant C = C(V, ν) independent of f , and a constant C(f, V )
such that the following estimates hold :

a)

(26)
∫ ∞

0

‖[τ0
s (V ), a#(f)]‖ ds < C · C(f, V );

b)

(27)

∫ ∞

0

∫
∆s

n

‖[a#(f), [τ0
s1 , [. . . [τ

0
sn

(V ), τ0
s (V )] . . . ]]‖ds1 . . . dsnds

< Cn+1C(f, V ).

Remark. Evidently, Theorem 4 follows from Lemma 5 with ε0 = C−1.

Proof of Lemma 5. We first estimate the integrand in (27) by a sum:

(27a) ‖[a#(f), [τ0
s1(V ), [. . . [τ0

sn
(V ), τ0

s (V )] . . . ]]‖ ≤
∑
G

WG(s1, . . . , sn, s),

where
∑

G is taken over all admissible diagrams with weight WG. These admissible diagrams
G and their weights will be described below. We now estimate∫ ∞

0

(∫
∆s

n

[∑
G

WG(s1, . . . , sn, s)
]
ds1 . . . dsn

)
ds < Cn+1C(f, V )

by means of a special technique for estimating sums of diagrams. To each si, i = 0, . . . , n+1,
where sn+1 = s and s0 = 0, we associate the vertex with subscript n+ 1 − i. We have

(28)
τ0
sj

(V ) =
d∑
i=1

M∑
k=1

cka
∗(eisjhfi1) . . . a∗(eisjhfi,mi)

× a(eisjhfi,mi+1) . . . a(eisjhfi,mi+ni).

Expression (27a) is an (n+ 1)-fold commutator, which we will expand out in n+ 1 steps.
In the first step, we work on the innermost commutator [τ0

sn
(V ), τ0

sn+1(V )] and use the
canonical anticommutation relations to move the creation and annihilation operators in
τ0
sn

(V ), i.e., the factors a#(eisnhfi,j) past the operator τ0
sn+1(V ). In other words, we use

the formulas

a(f)a(g) = −a(g)a(f),

a(f)a∗(g) = −a∗(g)a(f) + (f, g)I

and their analogs for a∗(f). This shuffling process gives rise to new factors of the form

(29) (eisnhfi,j , e
isn+1hfi′,j′)

or their adjoints. The generation of these factors will be called “pairing”, and they will
be shuffled one by one: first we move the leftmost creation/annihilation operator a#(f) in
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each term in τ0
sn

(V ) past the entire operator τ0
sn+1(V ). In each pairing the operator a#(f)

produces a term

(30) (eisnhfi,j , e
isn+1hfi′,j′)W,

where W is a monomial in the creation/annihilation operators a#(eishhfi,j) or
a#(eisn+1hfi′,j′). These terms will henceforth not be further disturbed, and instead we
shuffle the next operator a#(f) in τ0

sn
(V ) past τ0

sn+1
(V ), again picking up a set of terms of

the form (30). Continuing this process and noting that since V is even, the unpaired terms
are reduced to τ0

sn+1
(V )τ0

sn
(V ), we see that the commutator W1 = [τ0

sn
(V ), τ0

sn+1
(V )] is a

sum of terms of the type (30). To each such term we associate the edge (sn, sn+1), with
contribution (29).

Continuing, we can represent the commutator [τ0
sn−1

(V ),W1] by means of an analogous
shuffling procedure, in which creation/annihilation operators of the form a#(eisn−1hfi,j) are
moved past W1. At the second step we get some factors of the form

(eisn−1hfi,j , e
isn+1hfi′,j′ )

or
(eisn−1hfi,j , e

isnhfi′,j′ ).

In other words, the commutator [τ0
sn−1

(V ),W1] is a sum of terms

(eisn−1hf
(2)
i,j , e

iskhf
(2)
i′,j′)(e

isnhf
(1)
i,j , e

isn+1hf
(1)
i′,j′)W̃ ,

where k = n or n + 1, and W̃ is a monomial involving creation operators of the form
a#(eisn−1hf), a#(eisnhf ′), a#(eisn+1hf ′′). We associate the edge (sn−1, sk) to the factor
(eisn−1hf

(2)
i,j , e

ishf
(2)
i′,j′ ). Continuing this procedure, we get at each step v an edge (sv, sv′),

where v′ = v′(v) > v, with a factor of the form

rv,v′ = (eisvhfi,j, e
isv′hfi′,j′ ).

Clearly, for all 1 < i, j, i′, j′ ≤ d, 0 < v, v′ < n+ 1 we have the estimate

(30a) |rv,v′ | < C

(|sv − sv′(v)| + 1)δ
,

where δ = ν/2− δ′ > 1, δ′ is an arbitrarily small constant, and C > 0 does not depend on i,
j, i′, j′, v, v′, sv, sv′ . In the last step we shuffle the operator a#(f), so that the (n+ 1)-fold
commutator

a#(f)[τ0
s1 (V )[. . . [τ0

sn
(V )τ0

sk+1
(V )]]]

is now expressed as a sum of terms of the form

(31)
∏
v

r(v, v′)W̃ ,

where W̃ is a monomial in creation/annihilation operators of the form a#(eisnhf), and the
set {(v, v′)} forms a diagram G with vertices at the points 0 = s0 < s1 < · · · < sn+1 lying
on the real line and listed in increasing order. From each vertex sv there is exactly one
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right-directed edge (sv, sv′), i.e., one such that v′ > v, and at most 2mmax edges (sv, sv′′)
going to the left (v′′ < v). Such a diagram G will be called admissible. Noting that the
number of monomials of the form (31) corresponding to the same diagram G is at most
Cn0 , and the norm of each monomial is also bounded by Cn1 , where C1 and C0 are absolute
constants, we obtain finally the estimate (27a), where the sum on the right in (27a) is over
all the admissible diagrams G described above, and the weight WG is given by the formula

WG = (C0C1)n
∏
v

C

(|sv − sv′(v)| + 1)δ
.

It follows from (27a) that the integral (27) is bounded by

(32)

∫
∆∞

n+1

∑
WG(s1, . . . , sn, sn+1)ds1 . . . dsn

= (C)n
∫

∆∞
n+1

∑
{v′(v)}

∏
v

C

(|sv − sv′(v)| + 1)δ
ds1 . . . dsn+1,

where each v corresponds to a unique number n+1 ≥ v′(v) > v and the sum
∑

{v′(v)} is over
all sets {v′(v), v = 0, . . . , n} such that at most 2mmax of the numbers in {v′(0), . . . , v′(n)}
coincide with l, where l takes the values 0, 1, . . . , n+ 1.

The next lemma will be used to estimate the total contribution from all the diagrams.

Lemma 6. Let g ∈ L1(R), g(t) ≥ 0 for all t ∈ R1. Then for all n we have the bound

(33)
∫

∆∞
n+1

( ∑
{v′(v)}

∏
v

g(tv − tv′(v))
)
dt1 . . . dtn+1 ≤ cn

[ ∫
R

g(t) dt
]n+1

,

where the sum
∑

is over all sets of admissible diagrams, and the constant c > 0 is indepen-
dent of n.

Lemma 5 clearly follows from the estimates (32) and (33).

Proof of Lemma 6. We consider the Riemann sum approximations to both sides of
inequality (33) and prove that for them, (33) holds for any d satisfying

(34)

dn
( ∑

0<t1<···<tn

∑
{v′(v)}

∏
v

g(tv − tv′(v))
)

≤ dn+1cn
(∑
s�=0

g(s)
)n+1

= dncn
( ∑
s1 �=0

· · ·
∑

sn+1 �=0

n+1∏
i=1

g(si)
)
,

where d is the step size used in the approximation. The sum in (34) is over all ti, si ∈ Zd,
where Zd is a one-dimensional lattice with spacing d.

We will use an algorithmic procedure to show that for any set (s0, . . . , sn+1) with s0 = 0,
to the corresponding term on the right in (34) there are associated at most Cn admissible
diagrams on the left-hand side, with contribution

g(s1) . . . g(sn+1).
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The algorithm stops after at most 2mmaxn steps, which we enumerate

(1, 1), . . . , (1, 2mmax), . . . , (n, 1), . . . , (n, 2mmax).

At step (1, 1) we take s1 and construct an edge from the first vertex in s1; we have thus
constructed vertices 1, s1 and an edge joining them. We now continue inductively. Assume
that edges of length s1, . . . , sq have been constructed and that we have reached step (i, j);
we now proceed according to the following rules:

1. At each step we either construct one edge, or else we do not construct any edge (and
correspondingly, one vertex or no vertex at all).

2. If an edge is not constructed at step (i, j), then no edge will be constructed in the
subsequent steps (i, j′), j′ > j.

3. At step (i, 1) we choose one of the vertices vi already constructed, and in the subsequent
steps (1, 1), . . . , (1, 2mmax) we can construct edges only from the vertex vi. We say that vi
is “used” at step (i, 1).

4. The choice of the vertex vi is uniquely determined by the following rule: vi is the first
(has the smallest index) of the vertices that have already been constructed but have not
been used in the preceding steps, with the exception of the zero vertex; if all the vertices
constructed have been used, then we pick a new (not previously constructed) vertex with
smallest possible index (excluding the zero vertex).

5. The algorithm stops either at step (n, 2mmax), or when there are no unused vertices,
or when all n edges have been constructed, i.e., all the s1, . . . , sn+1 have been exhausted.

Evidently, any diagramG can be constructed using this algorithm, and each set s1, . . . , sn+1

will be used at most CN times, where C depends onmmax, since at steps (i, 1), . . . , (i, 2mmax)
(for each i, 1 ≤ i ≤ n) the algorithm can branch only in the following ways:

a) an edge can go to the right or to the left;
b) during these steps, at most 2mmax edges can be constructed from the vith vertex;
c) if the edge is directed to the right, then it may terminate in the zero vertex or it may

not.
Inequality (33) follows from (34) by letting d→ 0. This proves Lemma 6, and hence also

Theorem 4 for an interaction V in the class A0
l .

To generalize the proof of Theorem 4 to interactions of class Al, it is clearly enough to
express V ∈ Al in the form (12) in such a way that the estimates (13)–(15) are satisfied,
and it was shown in § 2 that this is possible. Theorem 4 is thus completely proved.

4. Unitary equivalence of the Hamiltonians for a free and bounded perturbed
Fermi gas in the ground state. In the previous sections we proved the existence of the
Møller morphisms as ∗-automorphisms of the CAR algebra for two dynamics: the free Fermi
gas, and a Fermi gas with a bounded interaction. In the case of an interaction V ∈ A, i.e.,
when each monomial in V contains annihilation operators (appearing as always to the left
of the creation operators), the vacuum Ω ∈ Fas as remains a ground-state vector for both
the free and the perturbed dynamics (there is no “polarization” of the vacuum), i.e., the
ground states for both dynamics are of the form

〈A〉 = (AΩ,Ω), A ∈ A(H).

The GNS representation of the CAR algebra constructed from this state is defined in a
Fock Fermi space, and the operators H0

GNS and HV
GNS for the free and perturbed dynamics

coincide with the Hamiltonians H0 = dΓ(h) and H0 + V , respectively. Thus in essence we
need to determine when the operators H0 and H acting on Fas are unitarily equivalent.

We prove the following theorem.
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Theorem 7. Let H = L2(Rν , dνx), H0 = dΓ(h), Hε = H0 + εV , where h ∈ H , V ∈ A.
Then for ν ≥ 3 there exists an ε0 > 0 such that when |ε| < ε0 the forward wave operators
exist and are invertible, and

(35) W± = s− lim
t→±∞ e−it(H0+εV )eitH0 ,

(36) H0 + εV = W±H0W
−1
± .

Remark. For an interaction V ∈ Al ∩ A, Theorem 7 follows from Theorem 4. Indeed,
because there is no polarization of the vacuum in this case, i.e., V Ω = 0, we have

(37) eit(H0+V )Ω = eitH0Ω = Ω

for all t.
Therefore, for

(38) A = a∗(f1) . . . a∗(fn), f̃i ∈ C∞
0 (Rν),

the limit

lim
t→±∞e

−itH0eit(H0+εV )AΩ

= lim
t→±∞ e−itH0eit(H0+εV )Ae−it(H0+εV )eitH0Ω = γ̂±(A)Ω

exists by Theorem 4 for sufficiently small ε. But since linear combinations of vectors of the
form AΩ, with A given by (38), are dense in Fas, the inverse wave operators exist. The
same is evidently also true for the forward wave operators.

Proof of Theorem 7. Again, there is no polarization of the vacuum when V ∈ A;
however, we cannot use Theorem 4 here because V may contain odd monomials. But we
can use the idea of the proof of Theorem 4.

Let
ΦN = (ϕ0, ϕ1, . . . , ϕN , 0, . . . ) ∈ Fas,0, ϕ̃k ∈ C∞

0 (Rνk).

The inverse wave operator Ŵ+ΦN is expressible as a perturbation-theoretic series

(39)
ŴΦN = ΦN +

∞∑
n=1

(−iε)n
∫

∆0,t
n

dt1 . . . dtnV (tn) . . . V (t1)ΦN .

Ŵ± = lim
t→+∞ Ŵ+(t),

where ∆0,t
n = {(t1, . . . , tn), 0 < t1 < t2 < · · · < tn < t},

V (t) = eitH0V e−itH0 .

The integrand is a product of Wick monomials and can be expressed as a sum

(40) V (tn) . . . Vt1 =
∑
G

VG(t1, . . . , tn)
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of Wick moments indexed by Friedrichs diagrams (see §2 below). But there are too many
of these diagrams, so we will use another expansion, in which we in fact carry out a partial
resummation of Friedrichs diagrams. We write the vector ΦN as a polynomial P in the
creation operators, applied to the vacuum vector Ω, and insert this expression for ΦN into
equation (39).

We further associate to the monomial V (tv) the vertex v of some graph and single out
the right-most annihilation operator in V (tv) of the form a(f (v)(tv)), where

f (v)(tv) = eitvhf (v),

which, by using the anticommutation relations

(41) a(f (v)(tv))a∗(f (v′)(tv′)) = −a∗(f (v′)(tv′))a(f (v)(tv)) + (f (v′)(tv′), f (v)(tv))

can be moved over to the right so as to act on the vacuum vector Ω.
During this shuffling, one of the two terms on the right in (41) is generated. If it is the

first term, we continue the shuffle, while if the second term is generated (i.e., there is a
pairing) then we say that a line (v, v′) of the diagram has been generated. If no pairing
occurs when the annihilation operator is moved over to the right, then the term gives a zero
contribution because a(f)Ω = 0 for all f ∈ H. We thus get precisely n edges (v, v′(v)),
v = 1, . . . , n. If a pairing occurs with a creation operator in the polynomial P then we say
that v′(v) = 0.

Evidently, we have

(42) |(f (v′)(tv′), f (v)(tv))| < C

(1 + |tv − tv′ |)ν/2 .

Consider the resulting graph G with vertices n, n+ 1, . . . , 1, 0 and edges (v, v′(v)), which
by construction is connected. We denote the class of all such graphs by CnN .

We note that the graphs in CnN differ from the corresponding admissible graphs described
above only in that the zero vertex may belong to several edges (not just one), but in any
case this number is at most N .

It is easy to see that in this case we have the estimate

(43) ‖V (tn) . . . V (t1)ΦN‖ ≤ C(ΦN )cN
( ∑

{v′(v)}∈Cn
N

∏
v

1
(1 + |tv − tv′(v)|)δ

)
.

Lemma 8. Let g ∈ L1(R), g(t) ≥ 0 for all t ∈ R1. Then for all n we have the estimate

(44)
∫

∆∞
n

( ∑
{v′(v)}∈Cn

N

∏
v

g(tv − tv′(v)

)
dt1 . . . dtn ≤ N !cn

(∫
R

g(t)dt
)n
,

where the sum
∑

is over all sets of admissible diagrams, and the constant c does not depend
on n.

The proof of Lemma 8 is completely analogous to that of Lemma 6, and Lemma 8 implies
Theorem 7.
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5. Unitary equivalence of the Hamiltonians for the free and boundedly per-
turbed Fermi gas in KMS states. We consider a free Fermi gas with dynamics τ0

t defined
by a one-particle Hamiltonian h = −∆+µ on the space L2(Rν), and its unique β-KMS state
〈·〉0β on the CAR algebra. Assume further that we are given an interaction V = V ∗ ∈ A

generating the dynamics τVt (see (2a)). We have the next lemma, which is proved in [49].

Lemma. For the dynamics τVt there exists a unique β-KMS state 〈·〉Vβ . It is given by

〈A〉Vβ =
〈F ∗AF 〉0β
〈F ∗F 〉0β

,

where the element F ∈ A is defined by

(45)

F
def= e−β/2(H0+V )eβ/2H0

= 1 +
∞∑
n=1

∫ β/2

0

∫ s1

0

∫ sn−1

0

τ0
is1 (V )τ0

is2 (V ) . . . τ0
isn

(V ) ds1 . . . dsn,

and the series (45) converges in norm.

Definition. A C∗-dynamical system (A, τ) is said to be L1(A0) asymptotically abelian
if

(46)
∫ ∞

−∞
‖[A, τt(B)]‖dt <∞

for all A, B in a norm-dense ∗-subalgebra A0 of A.

The KMS states are related to Møller morphisms in the following simple way.

Assertion 10 (see [49]). Let (A(H), τ0
t ) be L1(A0) asymptotically abelian. Then for

every V = V ∗ ∈ A0 the forward Møller morphisms

γ±(A) = lim
t→±∞ τV−t(τ

0
t (A)), A ∈ A(H)

exist, and if 〈·〉V is a (τVt , β) KMS state with β �= 0, then 〈γ±(·)〉V is a (τ0
t , β) KMS state.

Note that (Al(H), τ0
t ) is L1(A0

l (H)) asymptotically abelian, where τ0
t is generated by the

one-particle Hamiltonian h.

Theorem 11. Let ν ≥ 3, β �= 0, and V = V ∗ ∈ Al. Then there exists an ε0 = ε0(V, ν) >
0 such that for |ε| < ε0 the operators H0

GNS and HεV
GNS constructed from the corresponding

KMS states are unitarily equivalent.

Proof. By Theorem 4, there exists an ε0 = ε0(V, ν) > 0 such that for |ε| < ε0 the
Møller morphisms γ± exist and are invertible. It follows from Assertion 10 that 〈γ±(·)〉εV is
a (τ0

t , β) KMS state on Al(H); but such a state is unique (see [49]). By the gauge invariance
of 〈·〉0 and 〈·〉εV we have

(47) 〈γ±(A)〉εV = 〈A〉0

for all A ∈ A(H).
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We now define the operators U± : H0
GNS → V εVGNS by

(48) U±(π0(A)Ω0) = πεV (γ±(A))ΩεV ,

where for brevity we have set π0 = π〈·〉0 , πεV = π〈·〉εV
, Ω0 = Ω〈·〉0 , ΩεV = Ω〈·〉εV

.
The operators U± are unitary. Indeed,

(U±π0(A)Ω0, U±π0(B)Ω0) = (πεV (γ±(A))πεV (γ±(β))ΩεV , (γ±(B))ΩεV )

= 〈(γ±(B))∗γ±(A)〉εV = 〈γ±(B∗A)〉εV
= 〈B∗A〉0 = (π0(A)Ω0, π0(B)Ω0).

Clearly, RanU± = HεV
GNS and the invertible operators U−1

± are given as follows:

(49) U−1
± (πεV (A)ΩεV ) = π0(γ−1

± (A)Ω0)

for all A ∈ A(H).
By the definition of H0

GNS and HεV
GNS, we have

eitH
0
GNSπ0(A)Ω0 = π0(τ0

t (A))Ω0,

eitH
εV
GNSπεV (A)ΩεV = πεV (τεVt (A))ΩεV .

Hence since τεVt (A) = γ±τ0
t γ

−1
± , we have

U−1
± eitH

εV
GNSU±π0(A)Ω0 = U−1

± eitH
εV
GNSπεV (γ±(A))ΩεV

= U−1
± πεV (τεVt (γ±(A)))ΩεV = π0(γ−1

± τεVt γ±(A))Ω0

= π0(τ0
t (A))Ω0 = eitH

0
GNSπ0(A)Ω0.

Thus,

(50) eitH
0
GNS = U−1

± eitH
εV
GNSU±, t ∈ R,

and consequently,

(51) U−1
± HεV

GNSU± = H0
GNS.

6. The operator HGNS on the Hilbert space HGNS. Let (H0
GNS, π0,Ω0), (HεV

GNS, πεV ,
ΩεV ) be cyclic representations of A(H) with respect to the β-KMS states 〈·〉0 and 〈·〉εV ,
respectively. Let H0

GNS and HεV
GNS be the generators of the unitary groups acting on H0

GNS

and HεV
GNS and induced by the dynamics τ0

t and τεVt on A(H).
We define the operator U : HεV

GNS → H0
GNS by

(52) UπεV (A)ΩεV = CεV π0(AF )Ω0,

where

(53) CεV = 〈F ∗F 〉,
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and F is given by expression (45). We observe that U is unitary. Indeed, for all A,B ∈ A(H)
we have

(UπεV (A)ΩεV , UπεV (B)ΩεV ) = C2
εV 〈(BF )∗AF 〉0

= C2
εV 〈F ∗B∗AF 〉0 = 〈B∗A〉εV = (πεV (A)ΩεV , πεV (B)ΩεV ).

We will assume that the perturbation εV is polynomial in the creation and annihilation
operators a#(f), where F is an analytic vector for the operator h (see [49]). For small ε the
element F of the C∗-algebra A(H) is invertible, and (see [49])

(54)
F−1 = e−β/2H0eβ/2(H+εV )

= 1 +
∑

(−ε)n
∫ β/2

0

∫ sn

0

· · ·
∫ s2

0

τis1 (V )τis2 (V ) . . . τisn(V )ds1 . . . dsn.

Therefore, the inverse operator U−1 : H0
GNS → HεV

GNS acts by

U−1π0(A)Ω0 = C−1
εV πεV (AF−1)ΩεV .

Assertion 12. The operator HεV
GNS defined on the space HεV

GNS is unitarily equivalent to
the operator H ′ acting on H0

GNS by

(55) H ′π0(A)Ω0 = H0
GNSπ0(A)Ω0 + iε(π0(V A)Ω0 − π0(AVβ/2)Ω0),

for all A ∈ A(H) such that π0(A)Ω0 ∈ D(H0
GNS); here Vβ/2 = τ0

iβ/2(V ) ∈ A(H) and
D(H0

GNS) is the domain of the operator H0
GNS.

Proof. We will prove that the operator in (55) coincides with the operator UHεV
GNSU

−1.
We have

(56)
UHεV

GNSU
−1π0(A)Ω0 = UHεV

GNS(C−1
εV πεV (AF−1)ΩεV )

= C−1
εV UπεV (i[H0 + εV,AF−1])ΩεV .

Manipulating (56) further, we obtain

(57)

UHεV
GNSU

−1π0(A)Ω0 = π0(i[H0 + εV,AF−1]F )Ω0

= π0(i[(H0 + εV )A])Ω0 − π0((iAF−1H0 + V )F )Ω0

= π0(i[(H0 + εV )A])Ω0 − π0(iAτiβ/2(H0 + εV ))Ω0,

since

(58)
F−1(H0 + εV )F = e−β/2H0eβ/2(H0+εV )(H0 + εV )

e−β/2(H0+εV )eβ/2H0 = e−β/2H0(H0 + εV )eβ/2H0 = εe−β/2H0V eβ/2H0 +H0.

Here we have used the following facts: 1) the operators H0 + εV and e±β(H0+εV ) commute;
2) we have

(59) eβ/2(H0+εV )e−β/2(H0+εV ) = EFas(H)

on the set of analytic vectors of H0 in Fas(H); 3) the operators H0 and e±β/2H0 commute;
and 4) we have

(60) e−β/2H0eβ/2H0 = EFas(H)

on the set of analytic vectors of H0. Formula (55) evidently follows from (57) and (58).
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§2. Asymptotic completeness for interactions with
vacuum polarization (linked cluster theorem)

In subsection 5 of the previous section we considered a perturbation V ∈ A of the free
Hamiltonian H0 that preserves the vacuum: V Ω = 0, and we established under some general
hypotheses that the operatorsH0 andH0+V acting on Fa(H) are unitarily equivalent. In the
present section, we consider a more general perturbation V ∈ Al which no longer preserves
the vacuum. In this case, strictly speaking, the operators H0 and H0 + εV are no longer
unitarily equivalent, but this is not very important: for small ε there exists a real λε such
that the operator H0 + εV is unitarily equivalent to H0 + λεV , i.e., the spectra of these
operators differ only by a translation.

On a formal level this fact is well known, e.g., from the famous “linked cluster” theorem,
which is a basic computational tool of perturbation theory in many-body quantum theory.
The main result of this chapter is the proof of this theorem. This will allow us to rigorously
establish all the formal consequences presented in the classical books by K. Friedrichs [42]
and K. Hepp [44].

We will consider the following two situations:
1) Fa = Fas(L2(Rν)) is the antisymmetric Fock space over L2(Rν), ν ≥ 3, H = H0 + εV ,

where H0 = dΓ(h), or in the k-representation

(1) H0 =
∫
Rν

h(k)a∗(k)a(k) dνk,

and V ∈ Al, with either

h(k) = (k2 +m2)1/2, m > 0 (relativistic case),

or
h(k) = Lk2, L > 0 (massless case).

Since V = V ∗ ∈ A(H), we have that H = H0 + εV is a selfadjoint operator on Fa with
the same dense domain of definition as H0.

2) Fa = Fas(l2(Zν)), H0 = dΓ(h), h = −∆ + µ, where ∆ is the lattice Laplacian, µ ≥ 0.
We express the operator H0 in the k-representation. The Fourier transform takes l2(Zν)
into L2(T ν), where T ν = [0, 2π]ν is the ν-dimensional torus, Fa = Fas(L2(T ν)), and

(2) H0 =
∫
Tν

h(k)a∗(k)a(k)dk,

where

(3) h(k) =
ν∑
i=1

2(1 − cos(ki)) + µ, k = (k1, . . . , kν).

Since we are assuming that µ ≥ 0, the spectrum of H0 is nonnegative. In the present
case we limit ourselves to an interaction V ∈ Al of the form

(4) V =
d∑
i=1

cia
∗(fi,1) . . . a∗(fi,mi)a(fi,mi+1) . . . a(fi,mi+ni),

where mi + ni is even and fi,j ∈ C∞(T ν) for all i, j.
Although all the results proved below are valid in both cases, for ease of exposition we

will give the proof only for case 2).
Later, in subsections 5 and 6, we will dispense with the requirement that the one-particle

Hamiltonian be nonnegative (i.e., the condition µ ≥ 0).
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1. Friedrichs diagrams. Algebra of Wick exponentials. The operations Γ±
and Γ. We consider the vacuum (ground) state

(5) 〈A〉 = (AΩ,Ω)

on the C∗ CAR algebra A(L2(T ν)); this is a quasifree gauge-invariant state.
The effect of the Wick ordering with respect to this state (see Chapter 2) is simply to

reorder the factors so that the annihilation operators appear to the right of the creation
operators and the rule of signs is observed. In other words, the Wick ordering has no effect
on monomials of the form

W = a∗(f1) . . . a∗(fm)a(fm+1) . . . a(fm+n).

The product of several Wick monomials can be expanded as a sum of Wick monomials.
The relevant rule is easily formulated in the language of diagrams. To a monomial

(6)
Wi =

∫
wi(ki1, . . . , kimi , ki,mi+1, . . . , ki,mi+ni)

× a∗(ki1) . . . a∗(kimi )a(kimi+1) . . . a(kimi+ni)
× dki1 . . . dkimidkimi+1 . . . dkimi+ni

we associate a diagramGi with mi labeled left (right) legs, where the jth left leg corresponds
to a∗(kij) and the jth right leg to a(kimi+j).

Then

(7) W1W2 . . .Ws =
∑
G

WG,

where the sum is over all possible pairings (giving rise to the diagram G) in the disjoint
union of the diagrams Gi, and

(8) WG =
∫ ∏

wi
∏
i,j

dkij
∏′

δ(kij − ki′j′ ) :
∏′′

a#(kij) : (−1)π(G),

where the product
∏′ is over all lines (paired legs i, j and i′, j′) of the diagram G, and∏′′ is over all the unpaired legs. Formulas (7) and (8) are easily proved by using the

anticommutation relations to move each annihilation operator to the right of the creation
operators. Then π(G) is equal to the total number of such transpositions.

The following example will clarify our notation:

W1 = a∗(f1)a(f2),W2 = a∗(f3)a∗(f4)a(f5),
W1W2 = : W1W2 : +W1 − · −W2

= a∗(f1)a∗(f3)a∗(f4)a(f2)a(f5)

+ (f3f2)a∗(f1)a∗(f4)a(f5) − (f4, f2)a∗(f1)a∗(f3)a(f5).

Alternatively, we can express this graphically as
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Note that : W1W2 : is the term in the expansion of W1W2 in which no pairings are formed
when the annihilation operators are moved.

We introduce the following terminology:
(W1, . . . ,Ws)c is the sum over all connected diagrams G in (7);
(W1, . . . ,Ws)0,0 is the sum over all connected diagrams without external legs in (7);
(. . . )L = (. . . )c(. . . )0,0 is the sum over all connected diagrams in (7) with at least one

external leg;
(. . . )CR is the sum over all diagrams in (. . . )L whose external legs involve only creation

operators.
We will need some algebraic properties satisfied by series involving Wick monomials.
Given a formal power series

A =
∑
m,n

xmynAm,n,

where the Am,n are Wick monomials, we define

: A :=
∑
m,n

xmyn : Am,n : .

Assertion 1. Let

A =
∑
m,n

xmynAm,n, B =
∑
m,n

xmynBm,n

be formal power series in even Wick monomials Am,n, Bm,n (m + n is even). Then the
identities

A : expB :=: (A : expB :)c expB :,(9)

: expB : A =: (: expB : A)c expB :(10)

hold, where as before (·)c indicates that only connected diagrams are considered.

The proof reduces to simple combinatorial arguments, in which the coefficients of like
powers xmyn are compared (see [42, 44]).

Definition. The left connected product W1� : W2 . . .Ws : (respectively, right con-
nected product : W2 . . .Ws : �W1) is the sum of all Wick monomials in W1 : W2 . . .Ws :
(respectively, in : W2 . . .Ws : W1) whose graphs are connected. (We recall that each vertex
of the graph is labeled by the factor Wi.)

Remark. The identities (9) and (10) are usually written as

A : expB :=: (A⊥ : expB :) expB :,

: expB : A =: (: expB : ⊥A) expB : .

Definition. We define the Friedrichs operation Γ±κ on the monomials

Ump =
∫
ump(k1, . . . , km+p)a∗(k1) . . . a∗(km)a(km+1) . . . a(km+p)dk1 . . . dkm+p
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for κ > 0 to be given by

(11)

Γ±κ(Ump)
def= i

∫ 0

±∞
e−κ|t|τ0

t (Ump)dt

=
∫
ump(k1, . . . , km+p)[Ec − EA ± iκ]−1

× a∗(k1) . . . a∗(km)a(km+1) . . . a(km+p)dk1 . . . dkm+p,

and Γ±(Ump) is defined to be the strong limit of Γ±κ(Ump) as κ→ 0, where

Ec =
m∑
j=1

h(kj), EA =
m+p∑
j=m+1

h(kj).

The Glimm operation Γ is defined by

(12)
Γ(Ump) =

∫
Ump(k1, . . . ,km+p)E−1

c a∗(k1) . . . a∗(km)

× a(km+1) . . . . . . a(km+p)dk1 . . . dkm+p.

We also define the operation

(13) [H±κ
0 , Ump]

def=
d

dt
[e−κ|t|τ0

t (Ump)]
∣∣∣∣
t=±0

.

It amounts to replacing the kernel Ump by the kernel

iUmp(k1, . . . , km+p)(Ec − EA ± iκ).

Assertion 2. For κ > 0 we have the following formulas

(14) [H±κ
0 ,Γ±κ(Ump)] = Ump,

(15) [H±κ
0 , : exp(Γ±κ(Ump)) :] =: Ump exp(Γ±κ(Ump)) : .

Proof. The first equality (14) follows from the definition of the operation Γ±κ. In turn,
it implies that

[H±κ
0 , : exp(Γ±κ(Ump)) :]

=: [H±κ
0 − ◦

1
− Γ±κ(Ump) − Γ±κ(Ump) − ◦

1
−H±κ

0 ] exp(Γ±κ(Ump)) :,

where ◦
1

stands for all the Wick monomials with a single pairing. But the expression in
square brackets is equal to Ump.
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2. Adiabatic wave operators (linked cluster theorem). We introduce some more
notation. For −∞ < t, s <∞ and κ > 0, we define the evolution operator (with no adiabatic
cutoff) to be

(16) U(t, s) = eitH0e−i(t−s)HeisH0

and Uk(t, s) is the corresponding operator with adiabatic cutoff, defined by the equation

(17) Uκ(t, s) = 1 − i

∫ t

s

V κ(r)Uκ(r, s)dr,

where V κ(r) = e−iκτeirH0V e−irH0 .
It is well known that for finite t, s the formula

(18) Uκ(t, s) = 1 +
∞∑
n=1

(−iε)n
∫

∆s,t
n

dt1 . . . dtnV
κ(t1) . . . V κ(tn),

is valid for κ ≥ 0 (see [44]), where ∆s,t
n = {(t1, . . . , tn) : s < t1 < · · · < tn < t} and the series

converges in norm.
The integrand in (18) is a product of Wick monomials and can be expressed as a sum

(19) V κ(t1) . . . V κ(tn) =
∑
G

WG(t1, . . . , tn)

of Wick monomials indexed by Friedrichs diagrams.
Using the equality

(Γ±κ(V ))(t) = i

∫ t

±∞
V κ(s)ds,

for κ > 0, after integrating over ∆0,±∞ in each term of the series (18), we obtain that

(20) Uκ(0,±∞) = 1 +
∞∑
n=1

(−iε)nΓ±nκ(V . . .Γ±2κ(V Γ±κ(V )),

and upon integrating over ∆±∞,0, we get that

(21) Uκ(∓∞, 0) = 1 +
∞∑
n=1

(−iε)nΓ±nκ(. . . (Γ±2κ(Γ±κ(V )V ) . . . )V ).

Theorem 3. There exists an ε0 > 0 such that for |ε| < ε0, the series

(22)
∞∑
n=1

(−iε)n
∫

∆s,t
n

dt1 . . . dtn(V κ(t1) . . . V κ(tn))c
def= Uκ(t, s)c

is norm-convergent in each of the two cases

−∞ < t, s <∞ and κ ≥ 0;
−∞ ≤ t, s ≤ ∞ and κ > 0.

Moreover, ε0 does not depend on t, s, or κ. The same result is valid if (. . . )c is replaced by
(. . . )0,0, (. . . )L, or (. . . )CR.

The next result can be derived from this theorem.
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Theorem 4 (linked cluster theorem). Under the hypotheses of Theorem 3 we have the
equalities

Uκ(t, s) =: exp(Uκ(t, s)c) :,(23)

Uκ(t, s)
(Ω, Uκ(t, s)Ω)

=: exp(Uκ(t, s)L) :,(24)

where the exponentials on the right in (23), (24) are defined by the usual series expansion
in powers of Uκ(t, s)c,L, which are norm-convergent.

Let

(25) T κt,s
def=

Uκ(t, s)
(Ω, Uκ(t, s)Ω)

.

Theorem 5. For ν ≥ 3 there is an ε0 such that for |ε| < ε0 the following limits exist :

s-lim
κ→0

T κ0,±∞
def= T± (toward adiabatic wave operators),(26)

s-lim
κ→0

T κ±∞,0
def= T̂± (inverse adiabatic wave operators).(27)

Theorem 6. Under the hypotheses of Theorem 5, the renormalization constant

(28) Z−1 def=
∥∥∥∥ exp

(∑
n

(−ε)n(Γ(V . . .Γ(V )) . . .︸ ︷︷ ︸
n times

)CR

)
Ω
∥∥∥∥2

is finite, where n is the number of Friedrichs operations. The operator
√
ZT± is unitary

and gives a unitary equivalence

(29) HT± = T±(H0 + λε),

where

(30) λε = (Ω, (εV⊥T±)Ω)

(V⊥T± is a left connected product).

Before turning to the proof of Theorem 3–6, we will give a formal proof of Theorem 6
(see [44]), in which all series will simply be assumed to converge.

Formal proof of Theorem 6. By (20) and (24), we have

(31) T κ(0,±∞) =: exp
( ∞∑
n=1

(−iε)nΓ±nκ(V . . .Γ±2κ(V Γ±κ(V )) . . . )L

)
:,

hence for κ→ 0 we get

(32) T± =: exp(Γ±(Q±)) :,

where
Q± =

∑
(−iε)n(V Γ±(V . . .Γ±(V Γ±(V )) . . . ))L.
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Using Assertions 1 and 2, we have

(33) H0T
± = T±H0+ : QT± :

and

εV T± = ε : (V � T±)T± := ε : (V T±)cT± :

= ε : (V T±)LT± : +ε : (V T±)0,0T± :

=:
∞∑
n=1

(−ε)n(V Γ±(V . . .Γ±(V Γ±(V )) . . . ))LT± :

+ (Ω, ε(V T±)0,0Ω)T±,

where the last step follows from the relation (see [42])

(34) Q± = εV� : exp{−Γ±(Q±)} : −ε(Ω, V� : exp(−Γ±(Q±)) : Ω).

From (33) and (34) we get Theorem 6 with

(35) λε = (Ω, ε(V T±)0,0Ω) =
∞∑
1

(−ε)n(Ω, (V Γ(V . . .Γ(V Γ(V )) . . . ))0,0Ω),

where n is the number of operations Γ, and we have replaced Γ± by Γ, since in (35) a
contribution can be nonzero only if there are no annihilation operators, since a(f)Ω = 0 for
all f ∈ H.

Remark. These results can all be proved without recourse to the operations Γ± by using
the identity

(36)
d

dt
U (κ)(t, s)c = −iε(V (κ)(t) : expU (κ)(t, s)c :)

U (κ)(t, t)c = 1.

Definition. The S-matrix (or scattering matrix ) is defined by

(37) S = ZT ∗
+T− =: exp

(
2πi

∑
(−ε)n∆(V Γ−(V . . .Γ−(V Γ−(V ))) . . . )L

)
,

where the operation ∆ applied to a Wick monomial Ump means that its kernel Ump is
replaced by

Ump(k1, . . . , kmp)δ(Ec − EA).

It follows from Theorem 6 that the S-matrix is unitary.

3. Proof of Theorem 3. Decomposition into clusters and mode expansion. We
first consider the case κ = 0, −∞ < s, t < ∞, ν ≥ 3. We will be occupied with estimating
the expression

(38)
∫

∆s,t
n

(V (t1) . . . V (tn))c dt1 . . . dtn

whose absolute value will be shown to be bounded by |t − s|cn, where c is a constant
independent of s, t, and n. Theorem 3 will be derived from this estimate.

The main obstacle to proving the estimate is the large number of diagrams involved. This
number will be reduced by working in “time clusters or sectors”.
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Partitions. The subscripts 1, . . . , n are the vertices of the diagrams. Any subset α =
(α1, . . . , αk), α1 < α2 < · · · < αk of the set (1, . . . , n) defines a partition of (1, . . . , n) into
intervals

I1 = [1, α1) = {i : 1 ≤ i ≤ α1},
. . .

Ik = [αk−1, αk), Ik+1 = [αk, n].

Sectors. Every partition α defines a subset ∆α of the region ∆s,t
n , which will be called a

sector. It is uniquely determined by the following conditions:
a) if i, j lie in the same interval Ij of the partition α, then there exists an M such that

ti, tj ∈ [M,M + 1) def= ÎM ,

b) if i, j belong to Ii and Ij , respectively, then ti and tj belong to distinct intervals ÎM
and ÎL, M �= L.

Clearly,
⋃
α ∆α = ∆s,t

n . In the sequel we will refer to Ij as the jth group of the sector.

Subsectors. A subsector ∆α(M1, . . . ,Mk+1) of a sector ∆α is defined by the partition α
and integers M1 < M2 < · · · < Mk+1 to be the set of all (t1, . . . , tn) such that if i ∈ Ij then
ti ∈ [Mj ,Mj+1).

Modes. We choose an orthonormal basis {eN}N∈Zν in the space L2(T ν), where eN =
C exp{i(N, k)}, k ∈ T ν. The members of this basis will be called modes. Let

S
def=

d⋃
i=1

{fi,1, . . . , fi,mi+ni}.

Fix a subsector ∆α(M1, . . . ,Mk+1). Since if t ∈ [M1,M1 + 1) we have t = M1 + δt,
0 ≤ δt ≤ 1, it follows that

(39) V (t) =
d∑
i=1

a∗(eiM2heiδthfi,1) . . . a(eiM1heiδthfi,mi+ni).

Mode expansion. We expand the vectors eiδthf , f ∈ S, in terms of the basis {eN}:

(40) eiδthf =
∑
N∈Zν

cN,f(δt)eN .

Note that for every γ > 0, there exists a constant c(γ) such that the coefficients cN,f(δt)
of the series (40) are bounded by

(41) |cN,f(δt)| ≤ c(γ)
|N |γ , |N | =

ν∑
i=1

|N (i)|

uniformly in f ∈ S, |δt| < 1. The bound (41) is proved by integrating by parts. We now
choose γ > ν + 1 so that the inequality

(42)
∑
N∈Zν

|cN,f(δt)| < C <∞
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holds, where the constant C is independent of f and |δt| < 1.
Given a partition α = (α1, . . . , αk), we write Bα for the following subset of [0, 1]n:

Bα = {(δt1, . . . , δtn) : 0 ≤ δt1 < · · · < δtα1−1,

0 ≤ δtα1 < · · · < δtα2−1, . . . , 0 ≤ δtαk
< · · · < δtn}.

Using the above notation, we can write expression (38) as

(43)
∑
α

∑
M1,...,Mk+1

∫
Bα

n∏
i=1

d(δti)
∑

{Ni,fj}

∑
G

WG,

where we have (scanning (43) from left to right)
1) sums over all partitions;
2) sums over all subsectors;
3) integrals over each subsector;
4) sums over all modes;
5) sums over all admissible diagrams.

Diagrams. A diagram is a graph with vertices 1, . . . , n; mi right legs (corresponding to
annihilation operators) and ni left legs (corresponding to creation operators) are incident
on each vertex. A choice of modes amounts to placing each leg in correspondence with an
element eN of the basis {eN}. Each leg is labeled by an index (v, p), where v is the index
of the vertex and p is the index of the leg at the vertex v. An admissible diagram is a
connected graph formed by pairing some of the legs (v1, p1) and (v2, p2), v1 < v2, where
the first leg is a right leg and the second is a left leg. The paired legs are the edges of the
admissible diagram and will be referred to as internal edges (int). The unpaired legs are
called external edges (out).

A weight is associated to each diagram appearing in expression (43).

Weight of a diagram. Assume that a partition α = (α1, . . . , αk), subsector (M1,
. . . ,Mk+1), vector (δt1, . . . , δtn), and modes Nv,p have been fixed. We define the func-
tion M(v), v = 1, . . . , n, to be M(v) = Mi if v ∈ Ii, i = 1, . . . , k + 1. The weight of a
diagram G is defined to be

(44)

WG =(−1)π(G)
∏
int

(eih(M(v)−M(v′))eNv,p , eNv′,q)

× cNv,p(δtv)cNv′,p
(δtv′)

∏
out

a#(eiM(v)heNv,p),

where a# = a∗ for a right leg (v, p) and a# = a for a left leg (v, p).

Remark. Suppose G is a diagram having an internal edge (v, p, v′, q) that lies completely
in an interval Il for some l. Then (44) shows that if Nv,p �= Nv′,q then WG = 0, because
M(v) = M(v′) and (eNv,p , eNv,q) = 0. This fact will enable us to eliminate many of the
diagrams from consideration.

The subset Il of the vertices of a diagram G will be called the lth group of vertices. Let
Al(Bl) be the set of edges (external and internal) of G that originate from the lth group of
vertices, are directed to the right (left), and do not pair any two vertices in the lth group.

Fix a sector α = (α1, . . . , αk), the set ∆α(M1, . . . ,Mk+1), and the modes {Nv,p}. For
each l = 1, . . . , k+ 1 we denote by Nl some fixed set of modes Nl = {e1, . . . , eil}; the modes
of the legs Al coincide precisely with Nl.
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Lemma 7. a) There exists at most one diagram G in G(N1, . . . , Nk+1) with a nonzero
weight WG.

b) For each such diagram the sets Nl contain distinct modes.

Proof of Lemma 7. Both assertions are obvious consequences of the fact that

(45) {a#(eiMheN1), a
#(eiMheN2)} = 0,

if N1 �= N2 (where {·, ·} denotes an anticommutator) and

(46) (a#(eiMheN ))2 = 0.

If Il = {i1, . . . , iq} then we write VIl
= V (ti1) . . . V (tiq ).

We fix some VIl
and express it as a sum of Wick monomials. According to (45) and (46),

there exists just one nonzero diagram with the property that the modes for the unpaired
right legs coincide with Nl and are all distinct. Statements a) and b) of Lemma 7 now follow
from these observations.

We next turn to estimating the expression (43). Since all the sums there (except for the
sums over the modes) are finite, we can move the mode summation and the integration over
B to the left. In view of inequality (41) and the fact that Bα ⊂ [0, 1]N , to prove Theorem 3
it suffices to establish the following bound:

(47)
∥∥∥∥∑

α

∑
M1,...,Mk+1

∑
G

W̃G

∥∥∥∥ ≤ cn|t− s|

uniformly in the modes; here c is independent of n, s, t, and the modes, while W̃G is given
as in (44), but with all the factors cNv,p(δtv) removed.

Now assume that the set of modes has been fixed. We can choose the sets N1, . . . , Nk+1

in at most (2mmax)n ways, where mmax is the maximum number of creation operators in the
Wick monomials appearing in V . We may therefore assume also that N1, . . . , Nk+1 have
been fixed. By Lemma 1, every admissible diagram G can be associated to a connected
diagram G̃ with k + 1 vertices M1, . . . ,Mk+1 and total number of edges at most mmaxn.

The weight ŴG̃ of the diagram G̃ is given by the formula

(48) ŴG̃ =
∏
int

|(eih(M(v)−M(v′))eNv,p , eNv′,q)|,

where

(49) ‖W̃G‖ < cn1 ŴG̃,

for some constant c1.
For all M,N ∈ Zν we have the bound

(50)
∣∣∣∣ ∫

Tν

dkeN (k)EM (k)eith(k)

∣∣∣∣ < c

(1 + |t|)ν/2 ,

with c independent of M , N , and t, whence, recalling (49) and (50), we see that

(51) ‖W̃G‖ ≤ (const)n
∏
int

1
(|Ml(v,p) −Ml(v′,q)| + 1)ν/2

,
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where l(v, p) is the index of the group α to which the vertex v belongs.
Putting together all the above observations, we have

(52)

∥∥∥∥∑
α

∑
M1,...,Mk+1

∑
G

W̃G

∥∥∥∥
≤ (const)n

∑
M1,...,Mk+1

∑
G̃

∏ 1
(|Ml(v,p) −Ml(v′,q)| + 1)ν/2

.

Let M1 be an integer lying in the closed interval [s, t].

Lemma 8. We have the bound

(53)

∣∣∣∣ ∞∑
k=1

∑
M2,...,Mk+1

∑
G̃

∏
int

1
(|Ml(v,p) −Ml(v′,q)| + 1)ν/2

∣∣∣∣
≤
( ∞∑
M=−∞

c

(1 +M)ν/2

)nmmax

.

This result follows by applying the standard cluster expansion technique (see [26]) to
the left-hand side of (53). The summation over M1 gives the factor |t − s| in (47). This
completes the proof of Theorem 3 when κ = 0, and the case κ > 0 is treated similarly.

4. Asymptotic completeness. We can now give a rigorous (nonformal) proof of The-
orems 5 and 6 which will imply the asymptotic completeness of the Hamiltonian H0 + εV
for small ε, in the case when the interaction V polarizes the vacuum but is even.

Proof of Theorem 5. We show that for ψ = a∗(f1) . . . a∗(fm)Ω, where fi ∈ C∞(T ν),
the limit

(54) lim
κ→0

∑
n

(−iε)n
∫ 0

±∞
dt· · ·

∫ 0

±∞
dtn(V (κ)(t1) . . . V (κ)(tn))Lψ

exists. Consider the nth term in the series (54). We first prove the existence of the limit
for the sum over the diagrams in L, i.e., which have at least one external edge with an
annihilation operator. Repeating the proof of Theorem 3, we see that this sum is bounded
from above by Cnεn, uniformly in κ. In addition, each term in the sum is easily seen to
have a limit as κ→ ∞.

We next analyze the sum over the diagrams having no external edges with annihilation
operators. The external edges here are therefore associated with creation operators, which
give the contribution

(55)
∏

a∗(eitvh−κ|tv |eNv,p) =
∫ ∏

v,p

a∗(kv,p)eitvh−κ|tv|eNv,p(kv,p)dkv,p.

We make the change of variables t′1 = t1, t′2 = t2 − t1, . . . , t
′
n = tn − tn−1 and integrate over

t′1. Note that

(56) lim
κ→0

∫ 0

±∞
dt′1 exp

{
it′1

∑
v,p

h(kv,p) − κ|t′1|
}

=
1∑

v,p h(kv,p)
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belongs to L2 if µ ≥ 0. We may therefore expand (
∑
v,p h(kv,p))−1 in terms of the modes.

The method developed in the proof of Theorem 3 can now be applied.

Remark concerning adiabatic cutoffs. In the preceding we considered wave operators
depending on two parameters: the adiabatic cutoff parameter κ and the time t, and it was
necessary to investigate the repeated limits k → 0, t → ∞. According to Theorems 3–6,
these limits exist in the strong sense, i.e., with respect to the norm in Fa. The question arises
of whether the adiabatic cutoff plays any role and whether it might be avoided somehow.
(We note that adiabatic cutoffs are a typical feature in stationary scattering theory.)

We observe also that if the limit

s-lim
t→0

U(0, t)

exists with no cutoff, then so does the limit

s-lim
κ→0

U (κ)(0,∞),

with an adiabatic cutoff, and the two coincide. This situation occurs, for instance, when
V ∈ A and V Ω = 0.

Analysis of the proof of Theorems 3–6 shows that their analogs hold for the corresponding
wave operators without an adiabatic cutoff. However, in this case we are obliged to replace
all the norm (strong) limits by weak limits. It remains unclear how the existence of the
weak limits might be exploited to prove asymptotic completeness.

5. Existence of a perturbed vacuum vector. In this and the next subsection we will
show that the dynamics of the fermion system under consideration does not depend strongly
on the chemical potential µ. The results in subsections 2–4 show that the perturbed system
is unitarily equivalent to a “shifted” free system in µ ≥ 0. This condition is used in an
essential way in the proof of Theorems 3–6.

Notice that if µ ≥ 0, then the point λ0 = 0 of the discrete spectrum of H0 = dΓ(h) lies
outside or on the boundary of the continuous spectrum of H0. When the interaction εV is
“switched on”, λ0 is shifted to the value λε.

If µ < 0, then the discrete spectrum of H0 is contained in the interior of the continuous
spectrum of H0. It turns out that even in this case the eigenvalue does not disappear, as
might have been expected. For example, such a situation is encountered for the model of
an interacting Fermi gas with spin, in which case an eigenvalue imbedded in the continuous
spectrum disappears when the interaction is turned on (ε �= 0).

In the present subsection we prove that the perturbed operator has an eigenvector for
arbitrary real µ. We will use the method for estimating diagrams developed in subsections
2–4 and retain all the terminology used there.

Theorem 9. Let the one-particle Hamiltonian h be given by (3), µ ∈ R1, and let the
operator V be as in (4). Then for ε sufficiently small, the operator Hε = H0 + εV has an
eigenvector Ωε.

Proof. One can show as in Theorem 6 that for small enough the quantity

Z−1 =
∥∥∥∥ exp

{∑
(−ε)n(Γ(V, . . . ,Γ(V )) . . . )CR

}
Ω
∥∥∥∥

is finite. On the other hand, one can show as we did in subsections 2–4 that

(57) Z−1 = lim
t→∞

1
|(Ω, U(0, t)Ω)|2 = lim

t→∞
1

|(eiHεtΩ,Ω)|2 .



240 4. ASYMPTOTIC COMPLETENESS FOR INTERACTING FERMION SYSTEMS

Therefore, the operators
eitHε

(eitHεΩ,Ω)

are bounded uniformly in t. The next lemma can be proved by the same method as Theo-
rem 3.

Lemma 10. There is a dense subset D of Fa for which a finite limit

(58) 〈F 〉 = lim
t→∞

(eitHεΩ, F )
(eitHεΩ,Ω)

, F ∈ D

exists.

The following general lemma asserts that this limit exists and is finite for all F ∈ Fa.
Lemma 11. Let be a separable Hilbert space and α : R → H be a uniformly bounded

function, i.e.,

(59) ‖αt‖ < M <∞.

Assume that a finite limit

(60) lim
t→∞(αt, F )

exists for a set of vectors {F} that is dense in H. Then the limit exists and is finite for all
F ∈ H.

Since Hilbert spaces are weakly complete, there exists a vector Ωε such that for all F ∈ Fa

(61) lim
t→∞

(eitHεΩ, F )
(eitHεΩ,Ω)

= (Ωε, F ).

We will show that Ωε is an eigenvector of the perturbed operator Hε. First of all, setting
F = Ω in (61) we see that (Ωε,Ω) = 1, i.e., Ωε �= 0. Then for every s ∈ R we have

(Ωε, F ) = lim
t→∞

(ei(t+s)HεΩ, F )
(ei(t+s)HεΩ,Ω)

= lim
t→∞

(eitHεΩ, e−isHεF )
(eitHεΩ, e−isHεΩ)

= lim
t→∞

(eitHεΩ, e−isHεF )
(eitHεΩ,Ω)

(eitHεΩ,Ω)
(eitHεΩ, e−isHεΩ)

(62)

=
(Ωε, e−isHεF )
(Ωε, e−isHεΩ)

=
(eisHεΩε, F )
(eisHεΩε,Ω)

.

That is, for all s ∈ R and F ∈ Fa we have the identity

(Ωε, F ) =
(eisHεΩε, F )
(eisHεΩε,Ω)

or

(63) (Ωε, F )(eitHεΩε,Ω) = (eisHεΩε, F ).

Differentiating both sides of (63) with respect to s and setting s = 0, we get

(64) (Ωε, F )(HεΩε,Ω) = (HεΩε, F ).

Since (64) holds for all F ∈ Fa, we have HεΩε = (HεΩε,Ω)Ωε , i.e., Ωε is an eigenvector of
Hε. This concludes the proof of Theorem 9.
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6. Unitary equivalence, general case. Here we consider a further generalization of
the results in subsection 1 to the case of a chemical potential µ of arbitrary sign. We will
prove the next result.

Theorem 12. Let the one-particle Hamiltonian h be given by (3), let µ ∈ R1, and let V
be given by (4). Then there exists an ε0 > 0 such that for |ε| < ε0 there is an λε such that
the operators Hε and H0 + λεE are unitarily equivalent.

Remark. The proof of Theorem 12 is based on the results of the previous subsection on
the existence of a perturbed eigenvector.

Proof. Consider the following two dynamics in the C∗-algebra A(H):

τ0
t = eitH0Ae−itH0 ,

τεVt = eit(H0+εV )Ae−it(H0+εV ).

By Theorem 4.1, for small enough ε the Møller morphisms

(64a) γ±(A) = s-lim
t→±∞ τεV−τ (τ0

t (A)), A ∈ A(H)

exist and are invertible in the C∗-algebra A(H). Let Ωε be a perturbed vacuum vector for
the operator H0 + εV , whose existence is guaranteed by Theorem 9; we may assume that it
is normalized, i.e., ‖Ωε‖ = 1. We set γ ≡ γ±.

Lemma 13. For every f ∈ H we have

(65) (γa(f))Ωε = 0.

Proof. Writing ã(f) = γa(f), we have

(66) lim
t→∞ τεV−τ (τ0

t (a(f)))Ωε = ã(f)Ωε.

On the other hand, using the fact that Ωε is an eigenvector of Hε = H0 + εV , we have

(67) ‖τεV−τ (τ0
t (a(f)))Ωε‖ = ‖e−itHεa(eithf)eitHεΩε‖ = ‖a(eithf)eitHεΩε‖ → 0

as t → +∞. Indeed, suppose that Ω(n)
ε → Ωε as n → ∞, where Ω(n)

ε is a finite linear
combination of vectors of the form

a∗(f1)a∗(f2) . . . a∗(fm)Ω, fi ∈ C∞
0 (Rν).

Let ‖Ω(n)
ε − Ωε‖ < δ for n > N0. Then

(68) ‖a(e−ithf)Ωε‖ ≤ ‖a(e−ithf)Ω(n)
ε ‖ + δ‖f‖.

Using the anticommutation relations, we can move the operator a(eithf) from left to right
past the operators a∗(f1)a∗(f2) . . . a∗(fm); a(eithf)Ω(n)

ε will contain a finite number of terms,
each involving a factor of the form

(69) (eithf, fj).

It follows from spectral theory and Lebesgue’s theorem (if we use the absolute continuity of
the spectrum of h) that (69) tends to zero as t → ∞. Since δ is arbitrary, this implies the
assertion of Lemma 13.

The next lemma follows easily from Lemma 13.
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Lemma 14. For every A ∈ A(H) we have

(70) (AΩ,Ω) = (γ(A)Ωε,Ωε).

Define an operator U : Fa → Fa by

(71) U(AΩ) = γ(A)Ωε.

Then U is norm-preserving, since

‖AΩ‖2 = (A∗AΩ,Ω) = (γ(A∗A)Ωε,Ωε) = ‖γ(A)Ωε‖2.

It is therefore well defined and isometric. Since A(H) is irreducible on Fa, we have AΩε =
Fa, and hence the image of U is all of Fa, i.e., U is unitary.

For every A ∈ A(H) we have

(72)

eit(H0+εV )UAΩ = eit(H0+εV )γ(A)Ωε

= τεVt γ(A)eit(H0+εV )Ωε = eitλεγ(τ0
t (A))Ωε

= eitλεUτ0
t (A)Ω = eitλεUeitH0AΩ.

Here we have used the intertwining property of the Møller morphisms: τεVt = γτ0
t , and the

fact that Ωε is an eigenvector of H0 + εV with eigenvalue λε.
It follows from expression (72) that

eit(H0+εV ) = eitλεUeitH0U∗

or
H0 + εV = U(H0 + λεE)U∗.

This proves Theorem 12.
We also have the next

Theorem 15. The Møller morphisms γ± defined by (64a) are unitarily representable
(i.e., they are given by an inner automorphism).

Proof. For every B ∈ A and operator U given by (71), we have

γ(A)BΩε = γ(Aγ−1(B))Ωε = UAγ−1(B)Ω = UAU∗BΩε.

Since B is arbitrary, it follows that

(73) γ(A) = UAU∗.

§3. Fermi gas interacting weakly with a particle

In the previous sections we studied a small perturbation of the free dynamics for an
ideal Fermi gas and showed that under mild hypotheses the Hamiltonian for the perturbed
dynamics is unitarily equivalent either to the original Hamiltonian or to a “shift” of it by
some constant.

Here we will study a small perturbation of a free system consisting of an ideal Fermi gas
and an independently moving particle and show that the previous results remain valid in
this case.



§3. FERMI GAS INTERACTING WITH A PARTICLE 243

1. Statement of the main theorem. We consider the Hilbert space

K = Fa(L2(Rν)) ⊗ L2(Rν),

where Fa = Fa(L2(Rν)) is the antisymmetric Fock space over L2(Rν), i.e., K is the space
of infinite sequences

(1) {F0(y), F1(x1, y), F2(x1, x2, y), . . . , Fn(x1, . . . , xn, y), . . . },
where xj , y ∈ Rν and the functions Fn are antisymmetric in the xj .

Let selfadjoint operators h1 and h2 acting on L2(Rν) be given. We take the free Hamil-
tonian to be the selfadjoint operator

H0 = dΓ(h1) ⊗ 1 + 1⊗ (h2).

In the sequel we will consider the case when h1 and h2 are both equal to −∆.
Let the total Hamiltonian have the form

(2) H = H0 + εV, ε ∈ R1,

where V belongs to one of the operator classes A or B.
Let f = a∗(ψr) . . . a∗(ψ1)Ω ⊗ ψ, where ψ and ψj ∈ S(Rν); then V ∈ A means that

V f =
M∑
j=1

∫
Rν

dz

∫
Rν(mj+nj+1)

dx1 . . . dxmj+nj dy1(3)

×Kj(x1 − z, . . . , xmj − z, xmj+1 − z, . . . , xmj+nj − z, y1 − z, y2 − z)

× a∗(x1) . . . a∗(xm)a(xmj+1) . . . a(xmj+nj )a
∗(ψr) . . . a∗(ψ1)Ω ⊗ ψ(y1),

i.e., in terms of the variables describing the independently moving particle, V is a translation-
averaged integral operator; if on the other hand V ∈ B, then

V f =
M∑
j=1

∫
Rν

dz

∫
Rν(mj+nj+1)

dx1 . . . dxmj+nj

×K(x1 − z, . . . , xmj − z, xmj+1 − z, . . . , xmj+nj − z, y − z)(4)

× a∗(x1) . . . a∗(xm)a(xmj+1) . . . a(xmj+nj )a
∗(ψr) . . . a∗(ψ1)Ω ⊗ ψ(y),

i.e., in terms of the variables of the distinguished particle, V is a translation-averaged mul-
tiplication operator; here M <∞, and Kj ∈ S(Rν(mj+nj+2)) or Kj ∈ S(Rν(mj+nj+1)) (in
cases A and B, respectively); xp, ys ∈ Rν , p = 1, . . . ,mj + nj , s = 1, 2.

The operator V is bounded inK and will be taken to be selfadjoint. Then if the conditions

(5) mj ≥ 1, nj ≥ 1 and m = max
j
mj = max

j
nj <∞

are satisfied, H is a symmetric operator on the subset D of vectors of the form

(5a) a∗(ψr) . . . a∗(ψ1)Ω ⊗ ψ, ψ, ψj ∈ S(Rν),

which is dense in K. In fact, H is known to be essentially selfadjoint on D, and this will
also follow from the convergence of the expansions derived below.

We define the inverse and forward wave operators for finite t by

Wt = exp{−itH0} exp{itH},
Ŵt = exp{−itH} exp{itH0}.
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Theorem 1. If ν ≥ 3, condition (5) holds, and V is in class A or B, then there exists
an ε0 = ε0(ν,m, V ) such that for |ε| < ε0 the strong limits

Ŵ± = s-lim
t→±∞ Ŵt

and
W± = s-lim

t→±∞Wt

exist for the forward and inverse wave operators, respectively.

Remark 1. The hypotheses in Theorem 1 are in some sense best possible. In dimension
ν = 1, 2, even for particles in an external field, bound states may be present for arbitrarily
small ε. When mmin = 0, where mmin = minmj , then as we have seen, the operator H is
“shifted”. The requirements concerning the smoothness of the kernels Kj can be weakened,
but only slightly.

A standard consequence of Theorem 1 is the following:

Corollary. The operators W+ = Ŵ ∗
+ and W− = Ŵ ∗− are unitary and give a unitary

equivalence of H and H0, i.e., for instance,

H = W ∗
+H0W+.

2. Perturbation-theoretic series. We consider the following series for 0 ≤ t < ∞,
F ∈ D:

(6) F +
∞∑
n=1

(iε)n
∫

∆n
t

Vtn . . . Vt1dt1 . . . dtnF,

where
Vt = exp{−itH0}V exp{itH0},

and we recall that ∆n
t is the region

∆n
t = {0 ≤ t1 < t2 < · · · < tn < t} ⊂ Rn.

The main result to be proved reads as follows:

Theorem 2. Under the hypotheses of Theorem 1, there exists an ε0 > 0 such that when
|ε| < ε0,

1) the norm of the nth term of the series (6) is less than (εc1)nc2(F ), where c1 does not
depend on n, t, F , and c2(F ) is independent of n and t.

2) As t → ∞, the nth term of the series (6) has a limit in the topology of K defined by
the norm.

The first assertion in Theorem 2 implies in the standard way that the series (6) is equal
to WtF , while the second assertion implies the existence of the inverse wave operators. The
corresponding arguments for the forward operators Ŵ+ as well as for W− and Ŵ− are all
similar.

Remark 2. When ν = 1 or 2 one cannot prove analyticity in ε, even for the forward
wave operators; however, their existence (for arbitrary dimension ν = 1, 2, 3, . . . ) is easily
proved using Cook’s method without the assumption that ε is small.
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We will prove Theorem 2 for interactions V in the class A; the proof for V ∈ B is similar,
except that in equation (11) below the function Gv(Kv) has to be somewhat modified.
We will first prove Theorem 2 for a dense subset of A and then extend it to include all
interactions in A.

We consider interactions which in the k-representation have the special form

(7) V =
M∑
j=1

∫
Rν

V
(1)
j (z) ⊗ V

(2)
j (z) dz,

where

(8) V
(1)
j (z) =

∫ ∏
p

e±i(z,k,j,p)fj,p(kj,p)a#(kj,p) dkj,p

for fj,p ∈ S(Rν), and the plus or minus sign in e±i(z,k,j,p) is chosen according as a#(kj,p) is
a creation or an annihilation operator; # = ∗ for p = 1, . . . ,mj , the order of the creation
and annihilation operators in the product is the same as in (4), and

(9) V
(2)
j ψ = (ψ, gj)fj , ψ ∈ L2(Rν)

for suitable fj and gj ∈ S(Rν).

Let us write out in more detail the nth term of the series (6) for vectors of the form (5a):

(10)

∑
π

∫
∆n

t

dt1 . . . dtn

∫
Rνn

dz1 . . . dzn

∫ ∏
v,p

fπ(v),p(kv,p)a#(kv,p)e±(itvh1(kv,p))

× e±(izv,kv,p)dkv,pa
∗(ψr) . . . a∗(ψ1)Ω

⊗
∫ n∏

v=1

ei(tv−1−tv)h2(kv)+i((zv−1−zv),kv)fπ(v−1)(kv)gπ(v)dkv

× e−itn(h2(kn+1)−i(zn,kn+1))fπ(n)(kn+1),

where π is an arbitrary function (1, . . . , n) → (1, . . . ,M), t0 = z0 = 0, and fπ(0) = ψ. The
sign ± is chosen depending on whether the variable kv,p corresponds to a creation or an
annihilation operator, respectively. Since the subsequent estimates will be uniform in π, we
will take π(v) = v for brevity.

We integrate over the space variables z1, . . . , zn and then eliminate the resulting δ-
functions by integrating over the variables k1, . . . , kn describing the particle. Straightforward



246 4. ASYMPTOTIC COMPLETENESS FOR INTERACTING FERMION SYSTEMS

computations transform (10) into∫
∆n

t

dt1 . . . dtn

∫ ∏
v,p

fv,p(kv,p)a#(kv,p)

× e±(ith1(kv,p))dkv,p

∫ n∏
v=1

ei(tv−1−tv)h2(kv)

×Gv(kv)δ
(∑

p

(±kv,p) + kv − kv+1

)
dkv

× a∗(ψr) . . . a∗(ψ1)Ω ⊗ (e−ith2(kn+1)fn(kn+1))

=
∫

∆n
t

dt1 . . . dtn
∏
v,p

∫
fv,p(kv,p)a#(kv,p)(11)

× e±(itv(kv,p)dkv,p

n∏
v=1

ei(tv−1−tv)h2(kv)Gv(kv)

× a∗(ψr) . . . a∗(ψ1)Ω ⊗ (e−itnh2(kn+1)fn(kn+1)),

where we have written Gv = fπ(v−1)gπ(v),

kv = −
n∑

v′=v

(∑
p

(±kv′,p) + kn+1

)

and the choice of sign ± is as in (10).

3. Expansion in resummed diagrams. Although the norm of the integrand on the
right in (11) is finite, we still need to perform an integration over an infinite time interval.
In order to get the required time decay, we note that the last product

∏
v,p on the right in

(11) is a product of Wick monomials indexed by Friedrichs diagrams. It is well known that
each diagram decays rapidly in the variable tv; however, the number of diagrams increases
as n!. It is therefore necessary to show that cancellations occur. We will employ another
expansion which is, of course, equivalent to a partial summation of the diagrams.

To this end, for each vertex v we pick the leftmost creation operator a(kv1) and use the
anticommutation relations

(12) a(kv1)a∗(kv′,j) = −a∗(kv′,j)a(kv1) + δ(kv1 − kv′,j)

to move it over to the right toward the vacuum vector Ω.
Each such transposition produces one of the two terms on the right in (12). If the first

term is generated, we continue the shuffle, while if a δ-function appears (i.e., there is a
pairing) then we say that a line ((v, 1), (v′, j)) has been generated in the diagram. This
procedure thus generates exactly n lines ((v − 1), (v′(v), j(v))), v = 1, . . . , n. Moreover, if
the pairing involves a creation operator appearing in the product

a∗(ψr) . . . a∗(ψ1)Ω =
∫ (∏

a∗(kv,j)ψ(kv,j)dkv,j

)
Ω,

then we say that v′(v) = 0. Here, of course, all pairs (v′(v), j(v)) are distinct.
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The result of these operations is to eliminate from (10) the corresponding creation/annihilation
operators a(kv1), a∗k(v′(v),j(v)) and to produce a new term∑

{v′(v),j(v)}

∏
δ(kv,1 − kv′(v),j(v))

in the integrand, where the sum
∑

is over all sets of pairwise distinct pairs such that
v′(v) < v. We take this sum outside the integral and integrate over all variables kv′(v),j(v),
v = 1, . . . , n. All δ-functions then disappear, and if we set

F =
n∑
v=1

fv,1(kv,1)fv′(v),j(v)(kv,1)Gv(kv),

the integrand becomes

(13)

F
∏
v,p

[fv,p(kv,p)e±(ith1(kv,p)a#(kv,p)]

× exp
(−i∑(tv − tv−1)h2(kv) + (tv − tv′(v))h1(kv,1)

)
× Ω ⊗ (e−ith2(kn+1)fn(kn+1)),

where in kv all the kv′(v),j(v) have been replaced by kv,1, and no factors corresponding to v,
1 and (v′(v), j(v)) appear in the product

∏
; f0,p = ψp.

Consider the graph G with vertices n, n− 1, . . . , 1, 0 and edges (lines) (v, v′(v)). We note
that this graph is connected by construction.

4. Stationary-phase estimates and summation of diagrams. Let us consider in
(13) the integral

(14)
∫
F exp

(
− i

n∑
v=1

[(tv − tv−1)(kv)2 + (tv − tv′(v))(kv,1)2]
) n∏
ν=1

dkv,1

=
∫
F1 exp

[
− 1

2
(Bk, k) + i(a, k)

]
dk,

where we recall that h1(k) = h2(k) = (k)2; here k = (k1,1, . . . , kn,1), and the components
of the vector a are linear combinations of the kv,j , j �= 1, obtained by expanding out the
square (kv)2.

We have set

−1
2
(Bk, k) = −

[ n∑
v=1

(tv − tv−1)(k
(1)

v )2
]
−
[ n∑
v=1

(1 + tv − tv′(v))(kv,1)2
]

= −1
2
(B1k, k) − 1

2
(B2k, k),(15)

F1 = F exp
{
i
n∑
v=1

[
(tv − tv−1)(k

(2)

v )2
]

+
n∑
v=1

k2
v,1

}
,

and k
(1)

v = kv, where all variables other than k1,1, . . . , kn,1 are set equal to zero; k
(2)

=

kv − k
(1)

.
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Taking the Fourier transform in the variables (k1,1, . . . , kn,1), we can rewrite (14) as

(16)
1

(2πi)nν/2(DetB)1/2

∫
exp

[
i
1
2
(B−1κ, κ)

]
F̃1(κ− a)dκ,

where κ = (κ11, . . . , κn1).
Observe that (16) is a function of the parameters kv,p, where p �= 1 and (v, p) =

(v′(v), j(v)).
The next two results will be needed to estimate (16).

Assertion 3. Since the matrices B1 and B2 are both positive, we have

(17) (DetB)−1 < (detB2)2 =
n∏
v=1

1
(|tv − tv′(v)| + 1)ν/2

.

Assertion 4. The integral in (16), which is a function of the variables kv,p such that
j(v) �= 1 and (v, p) �= (v′(v), j(v)), belongs to S(RνN )∩L2(RνN ), where N is the number of
variables. Moreover, its norm ‖ · ‖L2 is bounded by c1(ψ)cn2 uniformly in {tv}, where c2 > 0
is a constant independent of n.

Proof. We now set

f1 =
n∏
v=1

fv1(kv,1) exp{ik2
v,1}, f2 =

∏
v

′
fv′(v),j(v)(kv,1),

f3 =
∏
v

′′
ψj(v)(kv,1), f4 =

n∏
v=1

Gv(kv),

where the product
∏′′ (respectively,

∏′) is over all vertices v paired (respectively, not paired)
with the zero vertex. Then

F1 = f1f2f3f4 exp
{
i

n∑
v=1

[(tv−1 − tv)(k
(2)

v )2]
}
,∣∣∣∣ ∫ exp

[
i
1
2
(B−1κ, κ)

]
F̃1(κ− a)dκ

∣∣∣∣ ≤ ‖F̃1‖1

≤ ‖ ˜f1f2f3f4‖1 = ‖f̃1 ∗ (f̃2f3) ∗ f̃4‖1 ≤ ‖f̃1‖1‖f̃2f3‖1‖f̃4‖1.

Here we have written the Fourier transform of a product of functions as a convolution
and used Young’s theorem. The norm of each factor can be estimated uniformly in {k(2)

v ,
v = 1, . . . , n) by

(18)

‖f̃1‖1 =
n∏
v=1

‖fv,1(kv,1) exp{ik2
v,1}‖1,

‖f̃2f3‖1 =
∏
v

′‖f̃v′(v),j(v)‖1

∏
v

′′‖ψj(v)‖1,

‖f̃4‖1 =
1

(2π)nν/2

∫ ∣∣∣∣ ∫ exp
{
− i

n∑
v=1

(κv, kv,1)
}
Gv(kv)

n∏
v=1

∣∣∣∣ n∏
v=1

dκv

=
1

(2π)nν/2

∫
|f̃4((D−1)∗κ) det(D−1)|

n∏
v=1

dκv =
( n∏
v=1

∫
|G̃v(κv)|dκv

)
,

(det(D−1))(det(D)∗) =
n∏
v=1

‖G̃v‖1 ≤
n∏
v=1

‖f̃v‖1‖g̃‖1,
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and the constant-coefficient matrix D satisfies k = Dk, where

k = (k1, . . . , kn); k = (k1,1, . . . , kn,1),

κ = (κ1, . . . , κn); κ = (κ1, . . . , κn),

κ = (D−1)∗κ.

Since D is triangular with identity diagonal entries, (18) yields the bound

‖ ˜f1f2f3f4‖1 < (Cf )4nCrψ ,

where

Cf =max
v,j

{‖fv,j‖2, ‖f̃v,j‖1, ‖fv1 exp{−ikv,1}‖1} > 1,

Cψ =max
j

{‖ψj‖2, ‖ψ̃j‖1) > 1.

Using the estimate∥∥∥∥∫ Q(y1, . . . , yN )a#(y1) . . . a#(yN) dy1 . . . dyN

∥∥∥∥ ≤ ‖Q‖2

valid for any Q ∈ L2, we obtain Assertion 4 with C2 = (Cf )2m+2.

Assertions 3 and 4 imply that the nth term in the series (6) is bounded by

(19) Cn
( ∑

{v(v),j(v)}

∏
v

1
(|tv − tv′(v)| + 1)ν/2

)
.

Lemma (6.1) can then be used to estimate the total contribution from all the diagrams.

5. Two-particle interaction. Here we consider an operator H that preserves particle
number and whose restriction to F (N)

a (L2(Rν)) ⊗ L2(Rν) is given by

(20) HN = −
N∑
j=1

∆xj − ∆y + ε

N∑
j=1

V (xj − y) = H0 + ε

N∑
j=1

V (xj − y),

where V ∈ S(Rν) and xj , y ∈ Rν .

Theorem 3. For ν ≥ 3 and V ∈ S(Rν) there exists an ε0 = ε0(ν, V ) > 0, independent
of N , such that for all N and |ε| < ε0 the system (20) is asymptotically complete and HN

is unitarily equivalent to the free Hamiltonian H0.

This result differs from the previous ones in that the interaction operator in the “second
quantization representation” is given by

ε

∫
Rν

V (x − y)a∗(x)a(x) dx,

i.e., an extra δ-function is present.
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Since the proof of this theorem is a verbatim repetition of the proof of Theorems 1 and
2 apart from the difference just noted, we will merely indicate the changes required in the
proof.

Formally, the difference consists in the fact that in expression (7) M = 1, mj = nj = 1,
and there is an additional δ-function:

V =
∫
Rν

V (x1 − y)δ(x1 − x2)a∗(x1)a∗(x2) dx1 dx2 ⊗ δy dy,

where δy is the δ-function at the point y.
Let Ṽ (k) be the Fourier transform of V (x), so that in the k-representation the nth term

of the series (6) for vectors of the form (5a) in the present case takes the form

(21)

∫
∆n

t

dt1 . . . dtn
∏
v

{∫
Ṽ (kv,2 − kv,1) exp{itv[h(kv,1) − h(kv,2)]}

× a∗(kv,1)a(kv,2)dkv,1dkv,2

}
a∗(ψr) . . . a∗(ψ1)Ω

⊗
[ n∏
v=1

∫
ei(tv−1−tv)h(kv)δ(−kv,1 + kv,2 − kv + kv+1)dkv

]
dkn+1ψ(k1),

where h(k) = k2.
We note that this differs from (11) in that all the functions fv ≡ 1, gv ≡ 1 for v = 1, . . . , n;

f0 = ψ.
Eliminating the δ-function in (21), we obtain

(22)

∫
∆n

t

dt1 . . . dtn
∏
v

{∫
Ṽ (kv,2 − kv,1) exp{itv[h(kv,1) − h(kv,2)]}

× a∗(kv,1)a(kv,2)dkv,1dkv,2

}

× a∗(ψr1) . . . a
∗(ψ1)Ω ⊗

[ n∏
v=1

∫
ei(tv−1−tv)h(kv) dkn+1ψ(k1)

]
,

where
kv = kv,1 − kv,2 + kn+1.

As in (11), we can represent (22) as sums over Friedrichs diagrams. Let v′(v) be the
number of vertices paired with vertex v. Setting ψj(v) ≡ 1 if v′(v) �= 0, we see that each
term of the sum is of the form

(23)
∫
F

{ ∏
v∈L2

a#(kv,2)
}{∏

j∈I
a∗(ψj)

}
Ω ⊗ e−itnh(kn+1)ψ(k1)

n∏
v=1

dkv,1
∏
v∈I2

dkv,2,

where

(24)

F =
{ ∏
v∈I1

Ṽ (kv′(v),1 − kv,1)e−i(tv−tv′(v))h(kv,2)ψj(v)(kv,1)
}

×
{ ∏
v∈I2

Ṽ (kv,2 − kv,1)e−i(tv−tv′(v))h(kv,1)ψj(v)(kv,1)

}

× exp
{
i

n∑
v=1

[(tv−1 − tv)h(kv))
]}
,
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and I1 is the set of vertices with which there is a pairing, I2 is the set of vertices with which
there is no pairing, and I is the set of unpaired legs of the zero vertex.

Consider the function F1 of the variables {kv,1, v = 1, . . . , n} and {kv,2, v ∈ I2}, where

F1 =
{ ∏
v∈I1

Ṽ (kv′(v),1 − kv,1)ψj(v)(kv,1)
}{ ∏

v∈I2
Ṽ (kv,2 − kv,1)ψj(v)(kv,1)

}
.

As in (15), we take the Fourier transform in (23). It remains only to prove the analog of
Assertion 4 for the function

(25)

F2(kv,2, v ∈ I2, kn+1)

=
1

(2π)nν/2

∫ ∣∣∣∣ ∫ exp
(
− i

n∑
v=1

(xv, kv,1)
)
F1(k)

n∏
v=1

dkv,1

∣∣∣∣ n∏
v=1

dxv.

Assertion 6. The function F2(kv,2, v ∈ I2, kn+1) is in L2(RνN ), where N is the number
of variables {kv,2, v ∈ I2}, kn+1; moreover, its L2 norm is bounded by

‖F2‖ < CnC(ψ),

where C > 0 is a constant independent of n, ψ, ψ1, . . . , ψr, and C(ψ) depends only on
ψ, ψ1, . . . , ψr.

Proof. Set k = (k1,1, . . . , kn,1), x = (x1, . . . , xn). For each component of the variable
kv,1 = (k(1)

v,1, . . . , k
(ν)
v,1) we split the inner integral into the parts over |x(i)

v | ≥ 1 and |x(i)
v | < 1.

Integrating the first one twice by parts with respect to k(1)
v,1, we obtain the estimate

(26)

F2(kv,2, v ∈ I2, kn+1) ≤ Cn
∫ ∫ n∏

v=1

1
(|xv| + 1)2ν

∣∣∣∣ ∂2νnF1(k)

∂2k
(1)
11 . . . ∂

2k
(v)
n,1

∣∣∣∣,
n∏
v=1

dkv,1

n∏
v=1

dxv ≤ Cn
∫ ∣∣∣∣ ∂2νnF1(k)

∂2(k(1)) . . . ∂2(k(v))

∣∣∣∣ n∏
v=1

dkv,1,

where |xv| = |x(1)
v | + · · · + |x(ν)

v |.
Note that ψ(k1) depends on at most 2r + 1 variables, since

k1 = −
∑
v∈I

kv,2 + kn+1 +
∑
v∈I3

kv,1,

where I3 is the set of vertices joined by edges to the zero vertex.
Expanding the product in (26), we therefore get at most Cn(2r)2r terms, which involve

derivatives of order at most 4ν in the functions V , ψ1, and ψr, and of order at most 2rν in
the function ψ.

Consequently,

(27) |F2(kv,2, v ∈ I2, kn+1)| < Cn
∑
j

∫
|F j1 (k)|

n∏
v=1

dkv,1,
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where F (j)
1 has the same form as F1, except that V , ψj , and ψ are replaced by derivatives

of order ≤ 4ν or ≤ 2rν, as described above. Hence

(28)

‖F2‖ < Cn
∑
j

∑
i

∫ (∫
|F (j)

1 (k)|
n∏
v=1

dkv,1

×
∫

|F (i)
1 (k′)|

n∏
v=1

dk′v,1

) ∏
v∈I2

dkv,2 dkn+1.

Each integral in (28) is easily estimated by applying Fubini’s theorem and then using the
estimate |V (i)(kv,2 − k′v,1)| < C for v ∈ I2, and |ψ(k

′
1)| < C(ψ). Making the obvious change

of variables, we get the desired estimate.

Remark. The result of this subsection remains valid for symmetric Fock space.
Indeed, consider a particle-number-conserving operator H whose restriction to
FN
s (L2(Rν)) ⊗ L2(Rν) is given by

(29) HN = −
N∑
i=1

∆xi − ∆y + ε

N∑
i=1

V (xi − y),

where FN
s (L2(Rν)) ⊂ Fs(L2(Rν)) is the N -particle subspace of symmetric Fock space,

V ∈ S(Rν), and xi, y ∈ Rν .

Theorem 4. For ν ≥ 3 and V ∈ S(Rν) there exists an ε0 = ε0(v, V ) > 0, independent of
N , such that for all N and |ε| < ε0, system (29) is asymptotically complete and the operator
HN is unitarily equivalent to the free Hamiltonian H0

N .

The proof of Theorem 4 is the same as for Theorem 3, except that the boson creation and
annihilation operators a#(f), which are unbounded when considered on all of Fs(L2(Rν)),
are bounded on each subspace Fr

s by (r + 1)1/2 times the L2 norm of f . In our case we get
exactly r unpaired creation operators, which for each r enables us to estimate the norm of
their product independently of N .

6. One-particle operators h1 and h2 of general form. Here we mention a result
related to asymptotic completeness for operators

H = H0 + εV,

where as before H0 is of the form

H0 = dΓ(h1) ⊗ 1 + 1 ⊗ h2

and the operators h1 and h2 need not coincide with the Laplace operator, which was assumed
in the previous theorems. Specifically, we assume that after taking the Fourier transform,
h1 and h2 are given by multiplication by smooth functions h̃1 and h̃2 which have finitely
many critical points, which are all of Morse type (see [3]). However, the price to be paid
for working in this generality is that some conditions must be imposed on the interaction
operator

V =
M∑
i=1

∫
dx1 . . . dxmi+niKi(x1, . . . , xmi+ni , y)

× a∗(x1) . . . a∗(xmi )a(xmi+1) . . . a(xmi+ni),
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where the Ki are smooth kernels invariant under translations of their arguments.
In the theorem stated below, it is essential that the dimension ν be strictly greater than

4; in addition, the nonpolarization of the vacuum

m = minmi = minni > 0

by the operator V is required to hold in the stronger sense, that is

m >
ν + 2
ν − 4

.

We now have the next theorem.

Theorem 5. Under the above hypotheses, for sufficiently small ε the forward and inverse
Møller operators W± and Ŵ± for the operators H0 and H0 + εU exist.

The proof of this theorem again makes full use of the complicated machinery employed
in the previous proofs (partitions, sectors, diagrams). For simplicity we consider the case
when

V =
∫
Rν

V
(1)
2 ⊗ V (2)

z dz =
∫
Vz dz,

where

(30)
V (1)
z = a∗(f1(· − z)) . . . a∗(fm(· − z))a(fm(· − z))a(f1(· − z)),

V (2)
z g = (g, f(· − z))f(· − z), f̃ , f̃i ∈ C∞

0 (Rν).

To estimate the nth term

(31) An(t, ψ) =
∫

∆t
n

∫
(Rν)n

Vz1(t1) . . . Vzn(tn)ψ(1) ⊗ ψ(2)dz1 . . . dzndt1 . . . dtn,

in the series (6), where ψ = ψ(1)⊗ψ(2), we appeal to the following inequality for u ∈ C∞
0 (Rν),

suppu ⊂ [−R,R]ν:

(31a)
∣∣∣∣ ∫

Rν

ei(x,k)+ith(k)u(k) dk
∣∣∣∣ < C(u)I(t, x),

where

(32) I(t, x) =

{ 1
(1+|t|)ν/2 , |x| ≤M |t|,

c(d)
(1+|t|+|x|)d , |x| > M |t|,

M = max
x∈suppu

|∇h|

for every d ≥ 1, and c(d) depends on d. Using (31) and (32), one proves without difficulty
that

(33) ‖V (1)
z1 (t1) . . . V (1)

zn
(tn)ψ(1)‖ < c(V (1), d)nc(V (1), d, ψ)

n∏
i=1

I(ti − ti−1, zi − zi−1),

where t0 = 0, z0 = 0. Then (30) and (33) imply the bound

(34)
‖An(t, ψ)‖ < cnc(ψ)

∫
∆t

n

A(1)
n (t1, . . . , tn, ψ(1))

×
∏ 1

(1 + |ti − ti−1|)ν/2 dt1 . . . dtn,
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where d = 2ν and

(35) A(1)
n (t1, . . . , tn, ψ(1)) = suppz1,...,zn

‖V (1)
z1 (t1) . . . V (1)zn(tn)ψ(1)‖,

and the constant c depends on ν, V (1), R = R(V (2)), where R is such that supp f̃ ⊆ [−R,R]ν.
We then expand (35) as a sum of Friedrichs diagrams and carry out a partial summation

of the latter which differs from the one employed above.
Namely, we introduce partitions and sectors as was done in subsection 3 of §2. Since

there are at most 2n distinct sectors, we can fix some sector α = (α1, . . . , αk) and the right
endpoints of its intervals: Γ1, . . . ,Γk, where Γ1 = 1, Γi = αi−1 + 1, i = 2, . . . , k. Using the
canonical anticommutation relations, we move all the annihilation operators at the vertices
Γi, i = 1, . . . , k, to the right until they act on the vacuum vector. This shuffle gives rise to
lines in the diagrams, each corresponding to a “propagator”

(36) (eitjh1f (j)
q (xj), eitih1f (i)

p (xi)),

which as in (30a) can be estimated by

C(R(1))
(1 + |ti − ti−1|)ν/2 .

Here R(1) = R(1)(V (1)) is such that supp f̃q ⊂ [−R(1), R(1)]ν for q = 1, . . . , n.
We thus obtain graphs with n+ 1 vertices n, . . . , 1, 0. A graph will be called admissible

if:
1) each vertex i ∈ I is the left-hand endpoint of at leastm lines (these result from shuffling

the annihilation operators from the vertex i ∈ I to the vacuum vector);
2) each vertex i is the right-hand endpoint of at most m lines (they result from pairing

with the creation operators at the vertex i).
Since ‖a#(f)‖ = ‖f‖ for every f , we can estimate expression (34) by the quantity

(37)

cnc(ψ)
∑
α

∑
G

∫ ∏
(i,j)∈G

1
(1 + |ti − ti−1|)ν/2

n∏
v=j

|tv − tv−1|ν/2dt1 . . . dtn

< cnc(ψ)
∑
α

∑
G

∫ ∏
(i,j)∈G

1
(1 + |ti − ti−1|)ν/2(1− 1

m )
dt1 . . . dtn,

where the sum
∑
G is over all admissible graphs for the sector α.

Lemma 9. For β = (ν/2)(1 − 1/m) > 2 we have the bound

∑
α

∑
G

∫ ∏
(i,j)∈G

1
(1 + |ti − ti−1|)β dt1 . . . dtn < Cn,

where C is independent of m.

We refer to [48] for the proof. Theorem 5 now follows from this lemma and estimate (37).
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§4. Weak-interaction limit for a quantum
Schrödinger particle interacting with Fermi gas

In the interaction of a particle with Fermi gas, the latter can be regarded as a “heat
reservoir” vis-à-vis the particle, and the motion of the latter can be analyzed under the
influence of the reservoir. More precisely, this means the following. The interaction of
the particle with the gas generates a perturbed dynamics τεt (where ε is the interaction
parameter) in the algebra A = As⊗AR, where the C∗-algebra As describes the particle and
the C∗-algebra (CAR algebra) AR describes the reservoir. This dynamics and an equilibrium
state ω for the reservoir can be used to define a family of maps γεt of As into itself by

γεt (B) = ω(τεt (τ
0
−t(B) ⊗ 1)),

where τ0
t is the free dynamics on As, and A ∈ AR. In general, the family of maps γεt : As →

As (sometimes called the reduced dynamics of the particle) does not form a group, nor even
a semigroup of transformations. However, in the weak-interaction limit

(1) lim
ε→0
ε2t→s

γεt (B) = Ts(B)

the maps Ts : As → As can be taken to define a semigroup. In this section we will study the
existence of the limit (1) in some particular cases.

1. Reduced dynamics and the weak-interaction limit. Let Hs = L2(Rν), ν ≥ 3,
and let HR = Fa(Hs) be the antisymmetric Fock space over Hs, where Com(Hs) is the
algebra of compact operators on Hs, and As is the C∗-algebra of compact operators on
Hs with the identity element adjoined. Let AR be the C∗-algebra generated by the cre-
ation/annihilation operators {a(f), a∗(f), f ∈ Hs} on HR. We have the selfadjoint operator

(2) H0 = Hs ⊗ 1 + 1 ⊗HR,

where Hs = −∆ is the Laplace operator on Hs and HR = dΓ(Hs) is the second-quantized
Laplace operator on HR; then H0 defines a free dynamics

τ0
t (A) = exp{itH0}A exp{−itH0}, A ∈ A, t ∈ R

on the C∗-algebra As ⊗ AR.
Let ωβ be a KMS state on the algebra AR corresponding to the inverse temperature β

relative to the dynamics τ0
t ; ωβ is a quasifree state (see Chapter 2). Consider the interaction

V

(3) V =
ν∑
j=1

pj ⊗ Vj ,

where p = (p1, . . . , pν) = i∇ is the momentum operator on Hs, and

Vj =
Mj∑
k=1

: a∗(f (k)
j,1 ) . . . a∗(f (k)

j,mj
)a(f (k)

j,mj+1) . . . a(f
(k)
j,mj+nj

) :,

f̃
(k)
j,i ∈ C∞

0 (Rν), 1 ≤ j ≤ ν,(4)
1 ≤ i ≤ mj + nj , 1 ≤ k ≤Mj, Mj <∞,
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where : · · · : are the Wick dots relative to the quasifree gauge-invariant state ωβ (see Chap-
ter 2). Let

I = {f (k)
j,i ∈ C∞

0 (Rν), 1 ≤ j ≤ ν, 1 ≤ i ≤ mj + nj , 1 ≤ k ≤Mj}

be the set of all functions by means of which V is defined.

Remark. The choice of V in the special form (4) is not accidental but corresponds to
a renormalization of the interaction Vj . If the Wick dots are omitted in (4), then the
weak-interaction limit may fail to exist.

We set mmax = maxj(mj +nj), mmin = minj(mj +nj). Let D0 be the linear span of the
functions f ∈ Hs such that f̃ ∈ C∞

0 (Rν), and let F0 be the subspace of HR spanned by the
vectors

a∗(f1) . . . a∗(fk)Ω, fj ∈ D0, j = 1, . . . , k,

where Ω is the vacuum vector.
The operator Hε = H0 + εV, ε ∈ R, is essentially selfadjoint on D0 ⊗ F0 and defines a

perturbed dynamics

(5) τεVt (A) = exp{itHε}A exp{−itHε}, A ∈ A, t ∈ R

on A. Let A⊗B ∈ A and set ω(A⊗B) = Aωβ(B). Extending ω by linearity and continuity
to all of A, we can define γεt : As → As as follows:

γεt (A) = ω(τεVt τ0
−t(A⊗ 1)), A ∈ As.

In this section we will be interested in proving the existence of the weak-interaction limit

(6) lim
ε→0,t→∞
ε2t→s

γεt (A) = Ts(A), A ∈ As, s ≥ 0,

where Ts is a quantum dynamical semigroup on As. For this it suffices to prove the existence
of the limit on the left in (6) for all A ∈ A0

s for 0 < s < sA, where A0
s ⊆ As is a dense

subalgebra and sA > 0.

2. Existence of the weak-interaction limit. Let A0
s,r be the subalgebra of As gen-

erated by the identity operator and the projections (g, ·)f , where the Fourier transforms f̃
and g̃ are in C∞

0 and have support contained in Sr, the ball of radius r in Rν . We set

A0
s =

⋃
r>0

A0
s,r.

The correlation functions {gij , 1 ≤ i, j ≤ ν} are defined by

gij(s) = ωβ(Vi,sVj),(7)

Vk,s = exp{isHR}Vk exp{−isHR}.(8)

The definition of the operator Vk and the properties of the KMS state ωβ imply that:
a)

(9) |gij(s)| < const(1 + |s|)−νmmin ;
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b) if αij =
∫∞
0 gij(s) ds, then

(10) Imαij = Imαji, 1 ≤ i, j ≤ ν;

c) the matrix {Reaij , 1 ≤ i, j ≤ ν} is positive definite on Cν .
Let Q = {Qij, 1 ≤ i, j ≤ ν} be the positive square root of the matrix

{Re(aij − aji)}. For u = (u1, . . . , uν) ∈ Rν and p = (p1, . . . , pν), we define

(11) P =
ν∑

i,j=1

Imαijpipj , (u,Qp) =
ν∑

i,j=1

Qijuipj , u2 =
ν∑
i=1

u2
i .

Theorem 1. There exists a quantum dynamical semigroup {Ts, s ≥ 0} on As such that
for every A ∈ A0

s there exists a number sA such that the limit

lim
ε→0,t→∞
ε2t=s

γεt (A) = Ts(A)

exists uniformly in s ∈ [0, sA]. If A ∈ A0
s,r then sA depends only on τ . The generator L of

the semigroup Ts is given by

(12) L(A) = −
ν∑

k,l=1

{
1
2

Re(αk,l + αl,k)[pk, [pk, A]] + i Imαkl[pkpl, A]
}
,

for A ∈ A0
s, and the semigroup itself acts on As as follows :

(13) Ts(A) = (2Pt)−ν/2
∫
e−(u2/(2t)ν)

× exp{itp+ i(u,Qp)}A exp{−itp− i(u,Qp)} du.

Proof. We will only sketch the main steps in the proof of this theorem. For A ∈ As,r
we have a convergent power series for γεt (A):

(14) γεt (A) = A+
∞∑
n=1

(iε)n
∫

∆t
n

ωβ(Vtn , [Vtn−1 , . . . [Vt1 , A⊗ 1] . . . ]dt1 . . . dtn,

where

Vs = exp{isH0}V exp{−isH0} =
ν∑
j=1

pj ⊗ Vj,s.

The proof of Theorem 1 is based on the following estimate for the nth term Itn(A) of the
series (14):

(15) ‖Itn(A)‖ ≤ cn|ε|nt[n/2]C(A),

where [ε] denotes the largest integer ≤ ε, the constant c > 0 is independent of n, and C(A)
depends on A.
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The main difficulty in deriving (15) is that after the commutators are expanded out, one
needs to estimate the integrals

(16)
∫

∆t
n

ωβ(Vi1,ti1 . . . Vin,tin
)dt1 . . . dtn,

where π : (1, . . . , n) → (i1, . . . , in) is a permutation. Associating to each Vi,ti the vertex with
index i, we can express the integrand as a sum of diagrams which we will call admissible.
Each edge in an admissible diagram contributes the multiplicative factor

rij(ti − tj) = ωβ(a#(fti)a
#(gtj )),

to the weight of the diagram, where f, g ∈ S(Rν). We note that two vertices may be joined
by more than one edge. Plainly, rij ∈ L1(R) for all i, j. The admissible diagrams do not
contain any loops, as follows directly from the properties of the Wick dots. Among the
admissible diagrams there are many that are not connected.

The proof of estimate (15) is simple in the case when mmax = mmin = 2: we need only
apply Lemma 6.1 after adding some more edges so as to make each admissible diagram
connected.

The case mmax > 2 is much more difficult and requires a combination of the methods
used to derive the estimates in §§2, 3.

The algebra As admits a state ρ0 that is invariant under every quantum dynamical semi-
group, namely

ρ0(a1 +B) = a, a ∈ C, B ∈ Com(Hs).

Theorem 2. If the operator V �= 0, then ρ0 is the only invariant state for the semigroup
Ts (see [15]).

Remark. Theorem 1 is valid for interactions V of the type

V =
ν∑
j=1

fj(pj) ⊗ Vj ,

where Vj is given by (4) and the fj ∈ C∞(Rν) are bounded in absolute value by a polynomial.
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CHAPTER V

THE METHOD OF BETHE-SALPETER

KERNELS (DYSON’S EQUATION)

In Chapter 3 we discussed a general technique (sometimes called the “Moscow method”)
for studying the highest branches of the spectrum of the transfer matrix for a Gibbs field
on the lattice Zν , where the field takes values in a compact set S. Here we will give
another method for analyzing the one-particle spectrum of the transfer matrix, which
can also be applied when S is not compact. This method, which is somewhat arbitrarily
called the Bethe-Salpeter kernel method, can also be used to investigate bound states in
two-, three-, and higher-particle subspaces, but we will touch on this only briefly. We
note that although the Bethe-Salpeter kernel method applies to a larger class of models
than does the Moscow method, it is less informative: although it can provide information
on, say, the one-particle spectrum of the transfer matrix, this sheds little light on the
properties of the one-particle subspace itself.

In order to illustrate the essence of the method, and also to relate it to the constructions
in Chapter 3, we will first describe it for the example of the transfer matrix for the Ising
field on the lattice Zν+1 (this field was introduced in §2, Chapter 2, and its transfer
matrix in subsection 1 of §4, Chapter 3). We then apply the method to the study of the
one-particle spectral branches of the transfer matrix for a Gibbs field on Zν+1 taking
arbitrary real values (this case has so far not been amenable to the Moscow approach).

§1. The Dyson equation and the Bethe-Salpeter
kernel method for the Ising field

1. Dyson’s equation and the one-particle spectrum. Let {σ(x), x = (x, x(0)) ∈
Zν × Z1, σ(x) = ±1} be a Gibbs Ising field defined on the (ν + 1)-dimensional lattice
Zν+1 for small values of the parameter β (see Chapter 2, §5). Consider the covariance
function

(1)
s2(x, y) = s2(x − y) = 〈σ(x), σ(y)〉

≡ 〈σ(x)σ(y)〉 − 〈σ(x)〉〈σ(y)〉 = 〈σ(x)σ(y)〉

of this field (here we have used the fact that 〈σ(x)〉 = 0 for all x ∈ Zν+1 for the Ising
field). The average is over the distribution of the field in the space Ω = {−1, 1}Zν+1

.
Evidently, for x = (x, x(0)) we have

(2) s2(x) = (UxJ |x(0)|σ(0), σ(0))H,

where (·, ·)H is the inner product in the physical Hilbert space H (which as we recall
consists of functionals that depend only on the values of the field {σ(x, 0)} on the zero
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slice: {x = (x, x(0)), x(0) = 0}); {Us, s ∈ Zν} is a unitary representation of the group of
translations acting on H, and J denotes the transfer matrix of the field. In what follows
we will use the decomposition

(3) σ(0) = h1 + h2,

where h1 ∈ H1 is the projection of the functional σ(0) ∈ H onto the one-particle invariant
subspace of the transfer matrix J , and h2 ∈ H̃1 is the projection of σ(0) onto the
orthogonal complement of H1 (see Chapter 3, §4). The constructions in Chapter 3 imply
that h1 and h2 are functionals with rapidly (exponentially) decaying dependence on the
values of the configuration σ = {σ(x), x ∈ Zν} at points far from zero:

(4) |h1(σ1) − h2(σ2)| < λd,

where σ1 and σ2 are two configurations coinciding in a d-neighborhood of 0: σ1(x) =
σ2(x) if |x| ≤ d and 0 < λ < 1 (with a similar estimate for h2). We showed in Chapter 3
that the spectrum of the transfer matrix J restricted to the invariant subspace H̃1 is
contained in the interval

(5) Sp(J /H̃1) ⊂ [−Cβ2, Cβ2],

where C is a constant. From this and (4) it follows that

(6) |(UxJ |x(0)|h2, h2)| < Bλ|x|(Cβ2)|x
(0)|,

where B is a constant. Furthermore, as was shown in Chapter 3, §7, the space H1 can
be mapped unitarily onto the space L2(T ν, dp), where T ν is the ν-dimensional torus, in
such a way that the operators {Us|H1 , s ∈ Zν} go into multiplication by the functions
{exp{i(s; p), p ∈ T ν}, while J |H1 becomes multiplication by some smooth (analytic)
function ε(p) satisfying

(7) c2β < ε(p) < c1β

for suitable constants c1 > c2 > 0. Under this isomorphism H1
≈→ L2(T ν , dp) the

functional goes into a smooth (analytic) function ϕ0(p) defined on T ν. Thus,

(8) (Ux,J |x(0)|h1, h1)H =
∫
Tν

|ϕ0(p)|2ε|x(0)|(p)ei(p,x) dp.

We now consider the Fourier transform of the function s2(x) = s2(x, x(0)), the so-called
Green function:

(9)
s̃2(p, k) =

∑
(x,x(0))∈Zν+1

s2(x, x(0))e−i(p,x)e−ikx
(0)

=s̃′2(p, k) + s̃′′2(p, k), p ∈ T ν, k ∈ T 1,

where s̃′2(p, k) and s̃′′2 (p, k) are the Fourier transforms of the functions (Ux,J |x(0)|
h1

, h1)

and (Ux,J |x(0)|
h2

, h2), respectively. From estimate (6) we see that for each fixed p ∈ T ν,
the function s̃′′2 (p, k) is analytic in k on the strip

(10) | Im k| < | lnCβ2| = 2| lnβ| + const .
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Equality (8) and estimate (7) also show that for fixed p, s′2(p, k) is meromorphic in
the strip (10) and has two first-order poles at the points

(11) k± = ±i ln ε(p).
The determination and analysis of ε(p) thus reduces to studying the poles of the Green
function s̃2(p, k) (relative to the variable k) which have the smallest imaginary part.

In this method the poles (11) of s̃2(p, k) are found using a special equation for the
function s2(x), called the Dyson equation:

(12) s2(x− y) = I(x − y) + sinhβ
∑

(x′,y′)∈Zν+1

|x′−y′|=1

I(x− y′)s2(x′ − y), x, y ∈ Zν+1.

In the next sections we will discuss the derivation of Dyson’s equation for the correlation
functions s2 of Gibbs fields of a rather general type. We will also discuss in detail the
function I(x) appearing in (12). Here we merely briefly mention that the derivation of
(12) is based on a general cluster expansion of s2 discussed in detail in [26]. That is,
s2(x−y) is represented as a sum of contributions from a collection of connected diagrams
(graphs) containing the points x and y. The sum is over the “one-particle irreducible”
diagrams, i.e., the ones for which there exist at least two nonintersecting paths going
from x to y, and the sum gives rise to the function I(x− y) (see below for more details).
From the definition of I(x) it follows that

(13) I(x) < c(Cβ2)|x|

and consequently, for any fixed p ∈ T ν, the Fourier transform

Ĩ(p, k) =
∑

(x,x0)∈Zν+1

I(x, x(0))e−i(p,x)eik|x
(0)|, (p, k) ∈ T ν × T ν

can be continued analytically to k in the strip (10). Taking the Fourier transform of
equation (12), we obtain that

s̃2(p, k) = Ĩ(p, k) + sinh βĨ(p, k)
( ν∑
j=1

cos p(j) + cos k
)
s̃2(p, k),

where p = (p(1), . . . , p(ν)). Hence the Green function is

(14) s̃2(p, k) = Ĩ(p, k)
[
1 − sinhβĨ(p, k)

( ν∑
j=1

cos p(j) + cos k
)]−1

.

Thus for fixed p ∈ T ν, the function s̃2(p, k) has poles in the strip (10) that coincide with
the roots of the equation

(15) 1 − sinhβĨ(p, k)
( ν∑
j=1

cos p(j) + cos k
)

= 0.

A detailed analysis of this equation in the general case will be given in the following
sections; it confirms that (as we already know) s̃2(p, k) has two poles in the strip (10)
which lie at the points k± = iε(p) on the imaginary axis.
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2. The Bethe-Salpeter kernel and bound two-particle states of the transfer
matrix. The approach described above can be suitably generalized to find two-particle
bound states of the transfer matrix for the Ising model. We recall that these are defined
as follows (see §4 and §7 in Chapter 3). We decompose the physical Hilbert space H as
a direct integral

(16) H =
∫
Tν

H(P ) dP

of spaces {H(P ), P ∈ T ν} consisting of eigenvectors of the translation group {Us, s ∈ Zν}
with eigenvalues {exp{i(s, P ), P ∈ T ν}. The transfer matrix J commutes with the group
{Us, s ∈ Zν} and is also expressible as a direct integral

(17) J =
∫
Tν

J (P ) dP

of operators {J (P ), P ∈ T ν} acting on the respective spaces H(P ). We next recall
that for small β, in addition to the one-particle subspace H1 the space H also contains
a two-particle subspace H2 which is invariant under J and Us, so that we have the
decomposition

(18) H = H0 + H1 + H2 + H̃2,

where H0 = {const}, H1 is defined above, and H̃2 = (H0 + H1 + H2)⊥ is also invariant
under J . The spectrum also satisfies

(19) Sp(J |H2 ⊂ [−Cβ3, Cβ3],

where C is a constant.
The space H2 and the operator J2 = J |H2 acting on it also admit decompositions

(20) H2 =
∫
Tν

H2(P ) dP, J2 =
∫
Tν

J2(P ) dP

analogous to (16) and (17);

H2(P ) ⊂ H(P ), J2(P ) = J (P )/H2(P ).

As was shown in Chapter 2, §6, the spectrum of the operator H2(P ) consists of a con-
tinuous (Lebesgue) part which contains the range of the function

(20a) εP (p) = ε(p)ε(P − p), p ∈ T ν,

(where ε(p) was defined above) plus, possibly, a finite number of eigenvalues ε̃1(P ),
. . . , ε̃s(P ) with eigenvectors ϕ(1)

P , ϕP ∈ H2(P ), which are called coupled states (with
total quasimomentum P ). In general, it is not known if for small β bound states can
exist for the Zν+1 Ising model for some range of values of the total quasimomentum
P . It is known (from explicit calculations of Onsager and Kaufman, see [47a]) that for
ν = 1 there are no bound states, and moreover it can be seen that (for small β) no
bound states are present when ν > 2 (see Chapter 3, §7). The existence of bound states
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when ν = 2 has not been ruled out. However, since the subsequent constructions apply
to more or less arbitrary models, the Ising model having been chosen merely as a very
simple illustration, we will postulate without further justification that there is a region
G ⊆ T ν of values of P for which the space H(P ) contains a unique bound state ϕP with
eigenvalue ε(P ) lying to the right of the continuous spectrum:

(21) ε(P ) > max
p∈Tν

εP (p).

This eigenvalue ε(P ) can be found and analyzed by exploiting the analytic properties
of the correlation function

s4(T, T ′) = 〈σ̃T , σ̃T ′〉 = 〈σTσT ′〉 − 〈σT 〉〈σT ′ 〉,

where T = (x1, x2), T = (x′1, x
′
2) ⊂ Zν+1 for the two-point subsets of the lattice Zν+1,

and
σT = σ(x1)σ(x2), σ̃T = σT − 〈σT 〉.

Expanding the monomial 〈σTσT ′〉 (see [26]), we obtain that

(22) s4(T, T ′) = s2(x1 − x′1)s2(x1 − x′2) + s2(x1 − x′2)s2(x2 − x′1) + sc4(T, T
′),

where s2(x − y) is the correlation function defined above, and the “connected part”
sc4(T, T

′) is the semi-invariant

(23) sc4(T, T
′) = 〈σx1 , σx2 , σx′

1
, σx′

2
〉

of the values of the fields at the points x1, x2, x′1, x
′
2. Using the standard cluster bounds

for the semi-invariants of Gibbs fields (see [26]), we find that

(24) |sc4(T, T ′)| < (Cβ)dT νT ′ ,

where dB, B ⊂ Zν+1 is the length of the smallest connected graph constructed on the
points in the set B (see Chapter 3), and C is a constant. Let C

(2)

Zν+1 ⊂ C
(2)
Zν+1 be the set

of “simultaneous” two-point sets T = ((x1, x
(0)
1 ), (x2, x

(0)
2 )), i.e., such that x(0)

1 = x
(0)
2 .

Let l2(C
(2)

Zν+1) = l2 be the Hilbert space of functions f = (f(T ), T ∈ C
(2)

Zν+1), and let the
operator R be defined by

(25) (Rf)(T ) =
∑

T ′∈C(2)
Zν+1

s4(T, T ′)f(T ′), f ∈ l2.

Note that in view of (22), the estimates (24) and |s2(x− y)| < (Cβ)|x−y| follow from the
representation (2), and R is a cluster operator (with cluster parameter Cβ).

We now take the Fourier transform of functions in l2, i.e., we consider the functions

(26) f(p1, p2, k) =
∑

T={(x1,x(0)),(x2,x(0))}
f(T )e−i(x1,p1)−i(x2,p2)−ikx(0)

.
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It is easy to check that f is symmetric in the variables p1, p2 and satisfies the condition

(27)
∫

p1+p2=P

f(p1, p2, k) dp1 dp2 = 0

for all P ∈ T ν and k ∈ T 1. We denote the space of such functions by L̃2. The Fourier
transform takes R into the operator R̃ on L2 with kernel

(28)
R̃(p1, p2, k; p′1, p

′
2, k

′) =s̃2(p1, k)s̃2(p2, k)δ(p1 − p′1)δ(p2 − p′2)δ(k − k′)

+ δ(p1 + p2 − p′1 − p′2)δ(k − p′)S̃c4(p1, p2; p′1, p
′
2, k),

where S̃c4(p1, p2; p′1, p
′
2, k) is a smooth function defined on the manifold p1 + p2 = p′1 + p′2

and s̃2(p, k) is the Fourier transform of s2(x) (the Green function). This formula shows
that when L̃2 is decomposed as a direct integral

(29) L̃2 =
∫
Tν×T 1

L̃2(P, k) dP dk

of spaces L̃2(P, k), consisting of functions f(p), p ∈ T ν such that f(p) = f(P − p) and∫
f(p) dp = 0, R̃ can be expressed as the direct integral

(30) R̃ =
∫
Tν×T 1

R̃(P, k) dP dk,

where the R̃(P, k) act on L̃2(P, k) by the formula

(31) (R̃(P, k)f)(p) = s̃P,k(p)f(p) +
∫
s̃cP,k(p, p

′)f(p′) dp′.

Here
s̃P,k(p) = s̃2(P, k)s̃(P − p, k)

and
s̃cP,k(p, p

′) = s̃4(p, P − p; p′, P − p′; k).

The next lemma relates the operators R̃(P, k) to the eigenvalues {ε(P ), P ∈ G} in (21).

Lemma. For any fixed P ∈ G, the operator-valued function R̃(P, k) of the variable k
is meromorphic in the strip

(32) | Im k| < min
p1+p2=P

{| ln ε(p1)| + | ln ε(p2)|}

and has there two poles at the points

(33) k± = ±| ln ε(P )|

(we recall that the function ε(p) defines the one-particle branch of the spectrum of J ).
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Proof. We denote by Ty ⊂ C
(2)

Zν+1 the set

Ty = ((0, 0), (y, 0)), y ∈ Zν ,

and use the decompositions

(34) σ̃Ty = h
(1)
Ty + h

(2)
Ty , σ̃Ty′ = h

(1)
Ty′ + h

(2)
Ty′ ,

where h(1)
Ty , h

(1)
T ỹ′ ∈ H2, h

(2)
Ty , h

(2)
T ỹ′ ∈ H2 (the projections of the vectors σ̃Ty and σ̃Ty′ on

the subspaces H0 and H1 are equal to zero).
Thus,

〈σ̃Ty , σ̃Ty′+(ξ,ξ0)〉 =(UξJ |ξ(0)|σ̃Ty , σ̃Ty′)H

=(UξJ |ξ(0)|h(1)
Ty , h

(1)
Ty′)H + (UξJ |ξ(0)|h(2)

Ty, h
(2)
Ty′)H

=
∫
Tν

ei(P,ξ)(J |ξ(0)|
2 (P )h(1)

Ty(P ), h(1)
Ty′(P ))H(P ) dP

+
∫
Tν

ei(P,ξ)(J |ξ(0)|
2 (P )h(2)

Ty(P ), h(2)
Ty′(P ))H(P ) dP.

Here h(i)
Ty(P ), h(i)

Ty′(P ), i = 1, 2, are the components of the vectors h(i)
Ty, h

(i)
Ty′ , i = 1, 2

in the direct-integral decomposition (20). One computes readily that the kernel of the
operator R̃(P, k) is

R̃P,k(p, k′) =
∑

ξ,ξ0,ξ,ξ
′
〈σ̃Ty, σ̃Ty′+(ξ,ξ0)〉e−i(ξ,P )−ikξ0ei(y,p)−i(y

′,p′)

=
∑

y,y′,ξ(0)

(J |ξ(0)|
2 (P )h(1)

Ty(P ), h(1)
Ty′(P ))H2(P )e

i(y,p)−i(y′,p′)e−ikξ
0

+
∑

y,y′,ξ(0)

(J |ξ(0)|
2 (P )h(2)

Ty(P ), h(2)
Ty′(P ))H(P )e

i(y,p)−i(y′,p′)e−ikξ
0
.

According to estimate (19), the second term (for fixed P ) can be analytically continued
as a function of k into the strip | Im k| < 3| lnβ| + const. Next, we expand the vector
h

(1)
Ty(P ) as

h
(1)
Ty(P ) = Cy(P )ϕP + ĥ

(1)
Ty(P ),

where ϕ̃P is an eigenvector of J2(P ) with eigenvalue ε(P ), and ĥ(1)
Ty(P )⊥ϕP . Using also

the analogous decomposition for h(1)(P ), we find that∑
ξ(0)

(J |ξ(0)|
2 (P )h(1)

Ty(P ), h(1)
Ty′(P ))H2(P )e

−ikξ0

=
∑
ξ(0)

Cy(P )Cy′(P )(ε1(P ))|ξ
(0)|(P )e−ikξ

0

+
∑
ξ(0)

(J |ξ(0)|
2 (P )ĥ(1)

Ty(P ), ĥ(1)
Ty′(P ))H2(P )e

−ikξ0 .
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The second term is analytic in k in the strip (32), while the first has poles at the points
(33). This proves the lemma.

The following method can be used to find the poles of (33) directly. Consider the
operator R̃0 on l2 with kernel

s04(T, T
′) = s2(x1 − x′1)s2(x2 − x′2) + s2(x1 − x′2)s2(x2 − x′1).

Again taking Fourier transforms, we can decompose R̃0 as a direct integral of operators
R̃0(P, k) given by the kernels

R̃0
P,k(p, p

′) = s̃P,k(p)δ(p− p′) + s0,cP,k(p, p
′).

Using the constructions in Chapter 3, §7, one shows without difficulty that for fixed P ,
R̃0(P, k) has an analytic continuation for k in the strip (32). In addition, it can be shown
that R̃(P, k) and R̃0(P, k) are invertible and that their difference

(35) (R̃0(P, k))−1 − (R̃(P, k))−1 = K(P, k)

is an integral operator having a smooth kernel KP,k(p, p′) which is analytic in k for k in
the strip (32). The definition (35) implies that

R̃(P, k) = R̃0(P, k) + R̃(P, k)K(P, k)R̃0(P, k)

and consequently,

R̃(P, k) = (E +K(P, k)R̃0(P, k))−1R̃0(P, k).

This formula shows that the poles (33) of R̃(p, k) coincide with the zeros of the Fredholm
determinant: Det(E +K(P, k)R̃0(P, k)) = 0. The kernel KP,k(p, p′) is called the Bethe-
Salpeter kernel and can be expressed as a series summed over a set of diagrams in much
the same way as the function Ĩ appearing in Dyson’s equation.

To find bound states in three-, four-, . . . , k-particle invariant subspaces of the transfer
matrix, one must analyze the higher-order covariance functions of the field; this proceeds
along the same lines as in the case of two-particle bound states. A higher-order Bethe-
Salpeter kernel arises naturally in this context (see [12]).

§2. One-particle spectrum of the transfer matrix for a Gibbs field
with unbounded spin. Description of the model and results

In the previous section we saw that for an Ising field, the Fourier transform s̃2(p, k) of
its covariance function extends as a meromorphic function of k to a strip in the complex
plane, in which the poles of s̃2(p, k) are related in a very simple way to the one-particle
spectrum of the transfer matrix. The situation turns out to be much the same for a
larger class of Gibbs lattice fields, and this will be discussed in the present section.

Consider the Gibbs modification of the free (independent) measure

(1) µ0 = λZ
ν+1

0 ,
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where λ0 is a probability measure on the number line R1. We assume that the modified
measure µ1 is given by means of an interaction

(2) UΛ(ξ) = β
∑

x,x′∈Λ

Φ(ξ(x), ξ(x′)), ξ = {ξ(x), x ∈ Λ}, ξ(x) ∈ R1

where Λ ⊂ Zν+1 is a bounded set and the sum in (2) is over all pairs of adjacent points
x, x′ ∈ Λ. Here Φ(ξ1, ξ2) is a nonnegative real-valued symmetric function of the real
variable ξ1, ξ2 with finite moments

(3)
∫
R1

∫
R1

Φn(ξ1, ξ2) dλ0(ξ1) dλ0(ξ2) < n, n = 1, 2, . . . .

According to the results in [26] (see Chapter 4, §2), the limit Gibbs modification

(4) µ = lim
Λ↑Zν+1

µΛ

exists for sufficiently small β. Here the random field {ξ(x), x ∈ Zν+1}, with values in
R1 on the lattice Zν+1 and with probability distribution µ, is Markov.

Let ϕ1 and ϕ2 be two arbitrary real-valued bounded functions defined on R1. Consider
the correlation function

(5)
sϕ1,ϕ2(x) =〈ϕ1(ξ(0)), ϕ2(ξ(x))〉

=〈ϕ1(ξ(0))ϕ2(ξ(x))〉 − 〈ϕ1(ξ(0))〉〈ϕ2(ξ(x))〉,

where the mean 〈·〉 = 〈·〉µ is taken with respect to the distribution µ. Let further

s̃ϕ1,ϕ2(p, k) =
∑

x=(x,x(0))∈Zν+1

sϕ1,ϕ2(x)e
i(p,x)+ikx(0)

be the Fourier transform of sϕ1,ϕ2(x), i.e., the Green function.
Consider now the integral operator Φ̂ on L2(R1, dλ0) with kernel Φ(u, v),

(6) (Φ̂f)u =
∫
R1

Φ(u, v)f(v) dλ0(v).

This operator is symmetric and compact on L2(R1, dλ0), because of condition (3). We
introduce the operator M = (E − P )Φ̂(E − P ), where P projects L2(R1, dλ0) onto
the subspace of constant functions. Let ψ1, ψ2, . . . , ψN , . . . be a system of orthonormal
eigenvectors of M with nonzero eigenvalues µ1, . . . , µN such that |µ1| > |µ2| > · · · >
|µN | > . . . , and we assume that all the µi are simple. We consider the two cases

1) there are finitely many eigenvalues µi, i = 1, . . . , N ;
2) there are infinitely many: i = 1, . . . , N, . . . .
We have the following two theorems.
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Theorem 1. Assume that case 1) holds. Then for sufficiently small β and any two
bounded functions ϕ1, ϕ2, the Fourier transform s̃ϕ1,ϕ2(p, k), regarded as a function of
the variable k for any fixed p ∈ T ν , can be continued to a meromorphic function in the
strip

(7) | Im k| < 2| ln c1β|,

where the constant c1 = c1(Φ, λ0, ν) does not depend on β. Furthermore, the Green
function s̃ϕ1,ϕ2(p, k) has 2N poles in the strip (7); they lie on the imaginary axis,

(8) k0
j = ±i ln |εj(p)|, j = 1, . . . , N,

where the εj(p) are functions of p ∈ T ν and satisfy

(9) |εj(p) − µjβ| < c2β
2

with a constant c2 = c2(Φ, λ0, ν) independent of β.

Theorem 2. Assume that case 2 holds. Then for any N there exists a β0 = β0(N) > 0
such that for all 0 < β < β0(N) the function s̃ϕ1,ϕ2(p, k) admits a continuation in the
variable k to the strip

(10) | Im k| < ln
2

(|µN | + |µN+1|)p

and has poles at the points (8); estimate (9) is again valid.

We now relate the poles of s̃ϕ1,ϕ2(p, k) described above to the spectrum of the transfer
matrix J of our field. Let Φϕ be the functional

(11) Φϕ(ξ) = ϕ(ξ(0)) − 〈ϕ(ξ(0))〉,

where is an arbitrary bounded function defined on R1. Clearly, we have

(12) sϕ1,ϕ2(x, x
(0)) = (UxJ |x(0)|Φϕ1 ,Φϕ2)H,

where {Ux, x ∈ Zν} is the unitary group of spatial translations acting on Hphys = H.
As before, we have direct-integral decompositions

(13) H =
∫

H(p) dp, J =
∫

J (p) dp,

where the H(p) are the eigenspaces for the group {Ux, x ∈ Zν}, with eigenvalues
exp{i(p, x)}. The right hand side of (12) then becomes

(14)
(UxJ |x(0)|Φϕ1 ,Φϕ2)H =

∫
Tν

ei(p,x)(J |x(0)|(p)Φϕ1(p),Φϕ2(p))Hp dp

=
∫
Tν

ei(p,x)
∫ 1

−1

u|x
(0)| dρ(p)

ϕ1,ϕ2
(µ),
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where Φϕi(p) ∈ H(p), i = 1, 2, is the component of the vector Φϕi in the decomposition
(13), and

(15) ρ(p)
ϕ1,ϕ2

(µ) = (Ep(µ)Φϕ1(p),Φϕ2(p))H(p)

is the spectral measure corresponding to the elements Φϕ1(p) and Φϕ2(p) and generated
by the spectral family of projections {Ep(µ)} for the selfadjoint operator J (p) acting on
the space H(p). ¿From (12), (14) and (15) we get

s̃(p, k) =
∫ 1

−1

( ∑
x0∈Z1

u|x
(0)|e−ikx

(0)
)
dρ(p)
ϕ1,ϕ2

(µ)

=
∫ 1

−1

(
1 +

µ

eikx(0) − µ
+

µ

e−ikx(0) − µ

)
dρ(p)
ϕ1,ϕ2

(µ).

Together with Theorems 1 and 2, this formula implies that for any ϕ1 and ϕ2 and
any fixed p, the support of the measure ρ(p)(µ) is concentrated at the points ε1(p), . . . ,
εN (p), and some set that belongs to the segments

(16) |µ| < C1β
2

and

(17) |µ| < |µN+1| + |µN |
2

β

in cases 1 and 2, respectively.
Writing Ĥ(p) ⊂ H(p) for the smallest closed subspace invariant under J (p) and con-

taining the functional Φϕ(p), we see from the above result that the space Ĥ(p) contains
N eigenvectors ψ1(p), . . . , ψN (p) of the transfer matrix with eigenvalues ε1(p), . . . , εN (p),
and on the orthogonal complement of these vectors the spectrum of J (p) lies in the inter-
vals (16) or (17). If {Cψj(p)} denotes the one-dimensional subspace spanned by ψj(p),
then it is clear that the spaces

Hj =
∫
{Cψj(p)} dp ⊂ H, j = 1, . . . , N,

are one-particle invariant subspaces for the operator J and group {Ux, x ∈ Zν}.
Remark. It is plausible that on the entire orthogonal complement of the sum of the

subspaces Hj , the spectrum of the transfer matrix J should also be of order O(β2)
(in case 1). In other words, this means that the smallest closed subspace invariant
under J and containing all the functionals {UxΦϕ} should contain the spectral subspace
E([−1, 1] \ [−Cβ2, Cβ2])H, where {E(∆), ∆ ⊂ [−1, 1], a closed interval} is the spectral
family of projections for J . More generally, we may conjecture the following. For every
ε > 0 there exists an n such that the smallest invariant subspace for J containing the
monomials of the form

(18) Ux1Φϕ1Ux2Φϕ2 . . . UxnΦϕn ,

contains E([−1, 1]\ [−ε, ε])H (i.e., the polynomial states are complete). This question, as
well as the problem of finding the two-, three-, . . . , k-particle subspaces for the transfer
matrix, requires an analysis of the correlation functions for monomials of the form (18),
i.e., of the higher-order correlation functions of the field, as we explained in the previous
section. Here it is natural to seek Bethe-Salpeter kernels that might be used to find and
analyze bound states in the k-particle subspaces. Some parts of this program have been
carried out for the P (ϕ)2 Euclidean continuous quantum field models (see [12]).
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§3. Cluster expansion of the covariance operators

The rest of this chapter is devoted to the proof of Theorems 1 and 2. In this section we
will establish a cluster expansion for the correlation function sϕ1,ϕ2(x) that will be needed
below, while in the next section we will derive a Dyson equation similar to equation (12.1)
in §1; finally, in the last section we use this equation to prove both Theorems 1 and 2.

Thus we begin by considering the cluster expansion of the correlation function sϕ1,ϕ2(x)
for small β. To this end, consider the graph L(Zν+1) whose vertices are the points of
the lattice Zν+1 and whose edges are all possible pairs of adjacent points (x, x′) of Zν+1.
To each connected finite subgraph Γ ⊂ L(Zν+1) we define

KΓ =
〈 ∏

(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)
〉

0

,

KΓ(x;ϕ) =
〈
ϕ(ξ(x))

∏
(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)
〉

0

(here 〈·〉0 = 〈·〉µ0) and

KΓ(x1, x2;ϕ1, ϕ2) =
〈
ϕ1(ξ(x1))ϕ2(ξ(x2))

∏
(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)
〉

0

,

where x, x1, x2 ∈ Γ̃ and ϕ, ϕ1, ϕ2 are bounded functions. Henceforth, Γ̃ will always
denote the set of vertices of the graph Γ.

Then for sufficiently small β > 0 (see [26]) we have
(1)
〈ϕ1(ξ(0)),ϕ2(ξ(x))〉µ

=
∞∑
n=0

{ ∑′

Γ0,...,Γn

1
n!
ϕcon(Γ0, . . . ,Γn)KΓ0(0, x;ϕ1, ϕ2)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1

1
n!
ϕcon(Γ0, . . . ,Γn+1)KΓ0(0, ϕ1)KΓ1 . . .KΓnKΓn+1(x, ϕ2)

}
,

where the sum
∑′ is over all ordered sets of finite connected graphs Γ0, . . . ,Γn ⊂ L(Zν+1)

such that 0, x ∈ Γ̃0, and the graph Γ0∪· · ·∪Γn is connected; the sum
∑′′ is over all ordered

sets of finite connected graphs Γ0, . . . ,Γn+1 ⊂ L(Zν+1) such that 0 ∈ Γ̃0, x ∈ Γ̃n+1, the
graph Γ0 ∪ · · · ∪ Γn+1 is connected, and for all Γ0, . . . ,Γn

ϕcon(Γ0, . . . ,Γn) =
∑
G

(con)
(−1)|G|,

the sum being over all connected graphs G with vertex set {0, . . . , n} and edges (i, j),
0 ≤ i < j ≤ n, where (i, j) ∈ G only if Γ̃i ∩ Γ̃j �= ∅; |G| is the number of edges of G.

The proof that the series (1) converges for small enough follows straightforwardly from
the general theory of cluster expansions for correlation functions (see [26, Chapter 3]) by
use of the cluster estimates derived in [26, Chapter 4, §2], together with estimates that
follow easily from the positivity of Φ:

(2) |KΓ(x;ϕ)| < ‖ϕ‖L2|KΓ′ |,
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where ‖ · ‖L2 is the norm on L2(R1, dλ0), and the graph Γ′ ⊂ Γ contains all the edges of
Γ, except those that leave from the vertex x ∈ Γ̃, and

(3) |KΓ(x1, x2;ϕ1, ϕ2)| ≤ ‖ϕ1‖L2‖ϕ2‖L2|KΓ′′ |,

where the graph Γ′′ ⊂ Γ contains all the edges of Γ except for the ones leaving the vertices
x1 ∈ Γ̃ and x2 ∈ Γ̃.

We fix β0 > 0 so that series (1) converges absolutely for all β ∈ (0, β0). It will be
assumed henceforth that 0 < β < β0.

We will need the following estimate for the function ϕcon(·):

(4) |ϕcon(Γ0, . . . ,Γn)| ≤ |J (Γ0, . . . ,Γn)|

for all Γ0, . . . ,Γn ⊂ L(Zν+1), where J (Γ0, . . . ,Γn) is the set of all trees with vertices
{0, 1, . . . , n} and edges (i, j), where 0 ≤ i < j ≤ n and Γ̃i ∩ Γ̃j �= ∅. In [26, Chapter 4,
§2] the estimate

(5) |KΓ| < (cβ)γ|Γ|

was derived for the quantities KΓ, where Γ ⊂ L(Zν+1), |Γ| <∞; here γ = 1/(ν + 1) and
c > 0 is a constant.

Inequalities (2)–(5) imply in particular that for small enough β > 0, β < β0,

(6) |〈ϕ1(ξ(0)), ϕ2(ξ(x))〉| ≤ ‖ϕ1‖L2‖ϕ2‖L2c2(c1β)γ|x|,

for all ϕ1 and ϕ2, where c1, c2 > 0 are constants (see [26], Chapter 3, §3).
We consider the system of covariance operators Ŝx, x ∈ Zν+1 on L2(R1, dλ0), where

for every x ∈ Zν+1, Ŝx is defined by

〈ϕ1, Sxϕ2〉 = 〈ϕ1(ξ(0)), ϕ2(ξ(x))〉, ϕ1, ϕ2 ∈ L2(R1, dλ0)

and (·, ·) is the inner product on L2(R1, dλ0).
It is easily seen that for each x ∈ Zν+1 the operator Ŝx is selfadjoint, and by (6) we

have.
‖Ŝx‖ < const(c1β)γ|x|.

We next write out the cluster expansion for the operators Ŝx, x ∈ Zν+1. For this
purpose, if Γ ⊂ L(Zν+1) is any finite connected graph, we consider the conditional
expectations with respect to the free measure µ0:

kΓ(x;u) =
〈 ∏

(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)|ξ(x) = u

〉
0

and

kΓ(x, x′;u, u′) =
〈 ∏

(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)|ξ(x) = u, ξ(x′) = u′
〉

0

.



272 V. THE METHOD OF BETHE-SALPETER KERNELS (DYSON’S EQUATION)

Since Φ(u, v) > 0, we see easily that

kΓ(x; ·) ∈ L2(R1, dλ0),

kΓ(x, x′; ·, ·) ∈ L2(R1, dλ0 × dλ0) for x �= x′.

We also set
kΓ(x, x′;u, u′) = δuu′kΓ(x;u),

where δuu′ is the δ-function in the space L2(R1, dλ0):∫
R1
δu,u′ψ(u′) dλ0(u′) =

∫
R1
δu′,uψ(u′) dλ0(u′) = ψ(u).

Let k̂Γ(x, x′) be the integral operator on L2(R1, dλ0) with kernel

kΓ(x, x′;u, u′), u, u′ ∈ R1,

and let k̂Γ1,Γ2(x, x
′) be the integral operator on L2(R1, dλ0) with kernel kΓ1(x;u)kΓ2(x

′;u′).
Then for small enough β > 0, β < β0 and any x ∈ Zν+1, we obtain from (1) that

(7)

Ŝx =
∞∑
n=0

1
n!

{ ∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)k̂Γ0(0, x)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1

ϕcon(Γ0, . . . ,Γn+1)KΓ1 . . .KΓn k̂Γ0,Γn+1(0, x)
}
,

or, for the kernel Sx(u, u′), u, u′ ∈ R1 of the integral operator Ŝx, x ∈ Zν+1,

(8)

Sx(u,u′) =
∞∑
n=0

1
n!

{ ∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)kΓ0(0, x;u, u
′)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1

ϕcon(Γ0, . . . ,Γn+1)kΓ0(0, u)KΓ1 . . .KΓnkΓn+1(x, u
′)
}
,

where the sums are the same as in (1).
We will need the following estimates for the functions

kΓ(x, x′; ·, ·), kΓ(x; ·),Γ ⊂ L(Zν+1), x, x′ ∈ Γ̃.

Assertion 1. There exists b1 > 0 such that
1) for every finite graph Γ ⊂ L(Zn+1) the inequalities

‖kΓ(x, x′; ·, ·)‖L2(R2,dλ0×dλ0) < (b1β)|Γ|

hold for all x, x′ ∈ Γ̃, x �= x′,

‖kΓ(x, ·)‖L2(R2,dλ0) < (b1β)|Γ|
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for every x ∈ Γ̃, and
sup
u∈R1

|kΓ(x, u)| < (b1β)|Γ|−2(ν+1)

for every x ∈ Γ̃;
2) for any finite graphs Γ1,Γ2 ⊂ L(Zν+1) and any x1 ∈ Γ̃1 and x2 ∈ Γ̃2, |x1−x2| = 1,

we have

‖kΓ1(x1; ·) ⊗ kΓ2(x2; ·)(exp{·βΦ(·, ·)} − 1)‖L2(R2,dλ0×dλ0) ≤ (b1β)|Γ1|+|Γ2|+1,

where

(kΓ1(x1; ·) ⊗ kΓ2(x2; ·))(u1, u2) = kΓ1(x1;u1)kΓ2(x2;u2), u1, u2 ∈ R1.

Proof. For the proof, we note that

‖kΓ(x, ·)‖L2(R2,dλ0) ≤ ‖kΓ(x, x′; ·, ·)‖L2(R2,dλ0×dλ0)

≤
(〈 ∏

(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)4
〉

0

)1/4

,

sup
u∈R1

|kΓ(x, u)| ≤ const
(〈 ∏

(y,y′)∈Γ

′
(exp{−βΦ(ξ(y), ξ(y′))} − 1)2

〉
0

)1/2

,

where the product
∏′ is over all the edges (y, y′) ∈ Γ that do not enter the point x ∈ Γ̃,

and

‖(kΓ1(x1; ·) ⊗ kΓ2(x2; ·))(exp{−βΦ(·, ·)} − 1)‖L2(R2,dλ0×dλ0)

≤
(〈 ∏

(y,y′)∈Γ1

(exp{−βΦ(ξ(y), ξ(y′))} − 1)4
〉

0

)1/4

× (〈(exp{−βΦ(ξ(x1), ξ(x2))} − 1)4〉0)1/4

×
(〈 ∏

(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)4
〉

0

)1/4

.

Thus, to prove Assertion 1 it is enough to show that for every finite connected graph
Γ ⊂ L(Zν+1) we have

(9)
(〈∏

(exp{−βΦ(ξ(y), ξ(y′))} − 1)4
〉

0

)1/4

≤ (b1β)|Γ|,

where b1 = const > 0.

In proving (9) it is helpful to introduce the notion of the dimension of a graph Γ ⊂
L(Zν+1).

Definition 1. A graph Γ ⊂ L(Zν+1) is said to have dimension n, 0 ≤ n ≤ ν + 1, if
n is the smallest number m, 0 ≤ m ≤ ν+ 1, such that Γ is homeomorphic to some graph
Γ′ ⊂ L(Zm).

For the proof of (9) we consider the next lemma.
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Lemma 1. For any finite graph Γ ⊂ L(Zν+1) we have the inequality

(〈 ∏
(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m

〉
0

)2−m

≤
∏

(y,y′)∈Γ

(〈(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m+n〉0)2−m−n

.

Proof of Lemma 1. The proof is by induction on n = 1, . . . , ν + 1. The result is
obvious for a graph Γ ⊂ L(Zν+1), |Γ| < ∞, of dimension 1. Indeed, we can then label
the vertices of Γ in the order in which they are joined by edges. Let Γ̃ = (y1, . . . , y|Γ̃|),
Γ = {(y1, y2), . . . , (y|Γ̃|−1, y|Γ̃|)}. Here the points y1, . . . , y|Γ̃| are all distinct, and

|yj+1 − yj | = 1, j = 1, . . . , |Γ̃| − 1.

It is easy to show that

(〈 |Γ̃|−1∏
j=1

(exp{−βΦ(ξ(yj), ξ(yj+1))} − 1)2
m

〉
0

)2−m

≤
(〈∏

j

(1)
(exp{−βΦ(ξ(yj), ξ(yj+1))} − 1)2

m+1
〉

0

)2−m−1

×
(〈∏

j

(2)
(exp{−βΦ(ξ(yj), ξ(yj+1))} − 1)2

m+1
〉

0

)2−m−1

≤
|Γ̃|−1∏
j=1

(〈(exp{−βΦ(ξ(yj), ξ(yj+1))} − 1)2
m+1〉0)2−m−1

,

where the product
∏(1) is over all odd j with 1 ≤ j ≤ |Γ̃| − 1, and

∏(2) is over all even
j with 1 ≤ j ≤ |Γ̃| − 1. Lemma 1 is thus proved in the case when n = 1.

Now let n > 1 and take a graph Γ ⊂ L(Zν+1) of dimension n. We divide it into
subgraphs Γ1, . . . ,Γk in such a way that no two subgraphs Γ1, . . . ,Γk have a common
edge, no two of Γ1, . . . ,Γk with even indices have a common vertex (with the analogous
statement for the graphs with odd indices), and all the graphs Γ1, . . . ,Γk have dimension
less than n.

If n = 2, this can be achieved, for instance, by splitting each vertex of the lattice Z2

into two parts, one joining an upward and rightward directed edge, the other a downward
and leftward directed edge. Then the graph Γ′ ⊂ L(Z2) homeomorphic to Γ splits into
several subgraphs Γ1, . . . ,Γk of dimension 1, where for each j = 1, . . . , k the graph Γj
can have vertices in common only with Γj−1 for j > 1, and with Γj+1 for j < k.

For n > 2 we proceed similarly and divide each point of Zν joining the edges (y−ej, y),
(y, y+ej), j = 1, . . . , n, where ej = (e(1)j , . . . , e

(n)
j ), eij = δij , j = 1, . . . , n, into two nodes,

one joining the edges (y − ej , y), j = 1, . . . , n, and the other the edges (y, y + ej),
j = 1, . . . , n. The graph Γ′ ⊂ L(Zn) homeomorphic to Γ then decomposes into finitely
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many subgraphs of dimension < n, say Γ′
1, . . . ,Γ′

N , where for each j, 1 ≤ j ≤ N , the
graph Γ′

j can have vertices in common only with Γ′
j−1 if j > 1, and with Γ′

j+1 if j < N .
The decomposition of Γ into subgraphs Γ1, . . . ,ΓN is given by the homeomorphism

ρ : Γ → Γ′ such that ρ : Γj → Γ′
j , j = 1, . . . , N . It is easy to see that for any m ∈ Z+,

m ≥ 1,

(10)

(〈 ∏
(y,y′)∈Γ

(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m

〉
0

)2−m

≤
(〈 (1)∏

j

∏
(y,y′)∈Γj

(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m+1

〉
0

)2−m−1

×
(〈 (2)∏

j

∏
(y,y′)∈Γj

(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m+1

〉
0

)2−m−1

=
N∏
j=1

(〈 ∏
(y,y′)∈Γj

(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
m+1

〉
0

)2−m−1

,

where the products
∏(1) and

∏(2) are over all the graphs Γ1, . . . ,ΓN with odd and even
indices, respectively. By induction on n, (10) gives the assertion of Lemma 1 for all
n ∈ Z+, n ≥ 1. This completes the proof of Lemma 1.

The proof of Assertion 1 is concluded by using Lemma 1 and the inequality

(〈(exp{−βΦ(ξ(y), ξ(y′))} − 1)2
n+2〉0)2−n−2 ≤ b1β, 1 ≤ n ≤ ν + 1,

where
b1 = max

k=1,...,ν+3
(〈(Φ(ξ(y), ξ(y′)))2

k〉0)2−k

,

which holds by virtue of (3.2) and the positivity Φ(u, v) ≥ 0. This proves Assertion 1.
The next result is a corollary of Assertion 1.

Assertion 2. For β > 0 sufficiently small, we have ‖Ŝx‖ < c2(b2β)|x| for every
x ∈ Zν+1, where

|x| =
ν+1∑
j=1

|x(j)|, x = (x(1), . . . , x(ν+1))

and b2 and c2 are positive constants.

Proof. We remark that for any finite graph Γ ⊂ L(Zν+1) we have

KΓ = 〈kΓ(x; ξ(x))〉0 , x ∈ Γ̃

and hence by Assertion 1,

(11) |KΓ| ≤ (b1β)|Γ|.

The rest of the proof is now routine, using the estimates (4), (11), and Assertion 1.
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§4. Dyson’s equation for the covariance operators

Assertion 1. For sufficiently small β, 0 < β < β1, the operators Ŝx satisfy the
system of equations

(1) Ŝx = Ix +
∑

y,y′∈Zν+1

|y−y′|=1

IyF̂ Ŝx−y′ ,

where F̂ is an integral operator on L2(R, dλ0) with the kernel

F (u, v) = exp{−βΦ(u, v)} − 1,

where u, v ∈ R1, and Iy, y ∈ Zν+1, are linear bounded selfadjoint operators on L2(R, dλ0)
satisfying the following conditions:

a) for all y ∈ Zν+1, y �= 0, Iy is an integral operator on L2(R, dλ0) with kernel Iy(u, v)
satisfying

(2)
Iy(·, ·) ∈ L2(R, dλ0 × dλ0),

‖Iy(·, ·)‖L2(R,dλ0×dλ0) ≤ c3(b3β)2|y|,

for suitable positive constants c3 and b3;
b) for y = 0, we have I0 = I ′0 + I ′′0 + P0, where I ′0 is multiplication by the bounded

function I ′(u), I ′(·) : R → R, and

(3) ‖I ′0F‖ < (b3β)2,

whereas I ′′0 is an integral operator on L2(R, dλ0) with kernel I ′′(u, v) ∈ L2(R, dλ0 × dλ0)
and

(4) ‖I ′′0 ‖ ≤ b3β.

Here P0 is the orthogonal projection of L2(R, dλ0) onto the subspace orthogonal to the
subspace of constant functions in L2(R, dλ0):

P0f = f − 〈f〉0, f ∈ L2(R, dλ0),

c) for every y ∈ Zν+1 we have Iy1 = 0, where 1 ∈ L2(R, dλ0) is the constant function
on R taking the value 1.

Proof. Consider all graphs with edges in L(Zν+1), where multiple edges are allowed.
Let A be the set of all such finite connected graphs.

Definition 1. A finite connected graph D ∈ A with two distinguished vertices y and
y′ ∈ D̃ (where D̃ is the set of vertices of the graph D) is called a diagram and denoted by
D(y, y′). We have D(y, y′) �= D(y′, y), and y and y′ are called the first and last vertices
of D(y, y′).
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Given a diagramD(y, y′), we define an integral operatorRD(y,y′) on the space L2(R, dλ0)
with kernel

(5)

RD(y,y′)(u, v) =
∑
n

{ ∑′

Γ0,...,Γn

1
n!
ϕcon(Γ0, . . . ,Γn)kΓ0(y, y

′;u, v)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1

1
n!
ϕcon(Γ0, . . . ,Γn+1)

× kΓ0(y;u)KΓ1 . . .KΓnkΓn+1(y
′; v)

}
,

where the sum
∑′ is over all ordered sets of connected graphs Γ0, . . . ,Γn with edges of

multiplicity one; here y ∈ Γ̃0, y′ ∈ Γ̃0, and the union Γ0∪· · ·∪Γn, with allowance for the
multiplicity of the edges, is D; |Γj| ≥ 1 for 1 ≤ j ≤ n; Γ0 may reduce to a single vertex if
y = y′. Similarly, the sum

∑′′ is over all ordered sets of graphs Γ0, . . . ,Γn+1 with edges
of multiplicity one, where y ∈ Γ̃0, y′ ∈ Γ̃n+1, the union Γ0 ∪ · · · ∪Γn+1 (allowing for edge
multiplicity) is D, |Γj | ≥ 1 for j = 1, . . . , n, and Γ0 and Γn+1 may reduce to a single
vertex y and y′, respectively.

Lemma 1. 1) For y �= y′, y, y′ ∈ Zν+1, we have RD(y,y′)(·, ·) ∈ L2(R, dλ0 × dλ0) for
any diagram D(y, y′), and for every N ∈ Z+ we have

(6)
∑(N)

D(y,y′)

‖RD(y,y′)‖ ≤ c4(b4β)N ,

where the sum
∑(N) is over all diagrams D(y, y′) with fixed vertices y and y′, and the

number of edges of D(y, y′) (counting multiplicity) is equal to

|D| = N,

where c4 and b4 are positive constants.
2) If y = y′, y ∈ Zν+1, then for every diagram D(y, y) we have

RD(y,y) = R′
D(y,y) +R′′

D(y,y),

where the operator R′
D(y,y) on L2(R, dλ0) is given by multiplication by a bounded func-

tion rD(y,y)(·) : R1 → R1, R′′
D(y,y) is an integral operator on L2(R, dλ0) with kernel

R′′
D(y,y)(u, v) ∈ L2(R, dλ0 × dλ0), and

∑(N)

D(y,y)

sup
u∈R1

|rD(y,y)(u)| < c4(b4β)N−2(ν+1),(7)

∑(N)

D(y,y)

‖R′′
D(y,y)‖ ≤ c4(b4β)N ,(8)

for all N ∈ Z+.
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3) For all y, y′ ∈ Zν+1 with |y − y′| = 1, and N1, N2 ∈ Z+, we have

(9)
∑(N1)

D1(y,y)

∑(N2)

D2(y′,y′)

‖R′
D1(y,y)F̂ R̂

′
D2(y′,y′)‖ ≤ c4(b4β)N1+N2+1,

where F̂ is the integral operator on L2(R, dλ0) with kernel exp{βΨ(u, v)} − 1.
4) For any diagram D(y, y′), y, y′ ∈ Zν+1, we have

RD(y,y′)1 = 0.

Proof of Lemma 1. Let R′
D(y,y) be given on L2(R1, dλ0) by multiplication by the

function

rD(y,y)(u) =
∞∑
n=0

1
n!

∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)kΓ0(y;u)KΓ1 . . .KΓn

and let R′′
D(y,y) be the integral operator on L2(R1, dλ0) with kernel

R′′
D(y,y)(u, v) =

∞∑
n=0

1
n!

∑′′

Γ0,...,Γn+1

ϕcon(Γ0, . . . ,Γn+1)

× kΓ0(y;u)KΓ1 . . .KΓnkΓn+1(y
′; v),

the sums
∑′ and

∑′′ being as in (5). All the sums here are finite, and the function kΓ(y; v)
is bounded for every finite Γ ⊂ L(Zν+1) and y ∈ Γ̃ (see Assertion 1.3); consequently, the
functions rD(y,y)(·) and R′′

D(y,y)(·, ·) are bounded, and the operators R′
D(y,y) and R′′

D(y,y)

are defined on L2(R1, dλ0). By (5) we have RD(y,y) = R′
D(y,y) +R′′

D(y,y).
To prove the estimates (6)–(9) we use Assertion 1.3 and the bounds (4.3), (11.3).

Assume that y �= y′; then

(10)

∑(N)

D(y,y′)

‖RD(y,y′)‖ ≤
∞∑
n=0

1
n!

{ ∑′

Γ0,...,Γ
(N)
n

|J (Γ0, . . . ,Γn)|(b1β)N

+
∑′′

Γ0,...,Γ
(N)
n+1

|J (Γ0, . . . ,Γn+1)|(b1β)N
}
,

where b1 is the constant in Assertion 1.3, J (Γ0, . . . ,Γn) is the set of all trees with vertices
{0, . . . , n} and edges (i, j), 0 ≤ i < j ≤ n, where Γ̃i ∩ Γ̃j �= ∅. The sum

∑′
(N) is over all

ordered sets of finite connected graphs Γ0, . . . ,Γn ⊂ L(Zν+1) (possibly coinciding) such
that y, y′ ∈ Γ̃0, the graph Γ0 ∪ · · · ∪ Γn is connected, and |Γj | ≥ 1, j = 1, . . . , n,

n∑
j=1

|Γj | = N.

The sum
∑′′

(N) is over all ordered sets of finite connected graphs Γ0, . . . ,Γn+1 ⊂ L(Zν+1)

such that y ∈ Γ̃0, y′ ∈ Γ̃n+1, the graph Γ0∪· · ·∪Γn+1 is connected, |Γj | ≥ 1, j = 1, . . . , n;
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Γ0 and Γn+1 may reduce to the single vertex y or y′, respectively, and |Γ0|+ · · ·+ |Γn+1 =
N . Similarly,

(11)

∑(N)

D(y,y)

sup
u∈R

|rD(y,y)(u)|

≤
∑
n≥0

1
n!

∑′

Γ0,...,Γ
(N)
n

|J (Γ0, . . . ,Γn)|(b1β)
∑n

j=1 |Γj |(b1β)|Γ0|−2(ν+1),

where the sum
∑′

(N) is as in (10):

(12)
∑′′

D(y,y)(N)

‖R′′
D(y,y)‖ ≤

∑
n≥0

1
n!

∑′′

Γ0,...,Γ
(N)
n+1

|J (Γ0, . . . ,Γn+1)|(b1β)N ,

where again the sum
∑′′

(N) is as in (10), and for y, y′ ∈ Zν+1 with |y − y′| = 1 we have

(13)

∑(N1)

D(y,y)

∑(N2)

D(y′,y′)

‖R′
D1(y,y)

F̂R′
D2(y′,y′)‖

≤
∑
n1≥0

1
n1!

∑
n2≥0

1
n2!

∑′

Γ1
0,...,Γ

1
n1

(N1)

|J (Γ1
0, . . . ,Γ

1
n1

)|

×
∑′′

Γ2
0,...,Γ

2
n2

(N2)

|J (Γ2
0, . . . ,Γ

2
n2

)|(b1β)N1+N2+1.

Here the sums
∑′

N1
and

∑′
N2

over Γ1
0, . . . ,Γ

1
n ⊂ L(Zν+1) and over Γ2

0, . . . ,Γ
2
n ⊂ L(Zν+1),

respectively, are as in (10).
Given (10)–(13), the rest of the proof of the estimates (6)–(9) is now routine (see [26]).

The first three statements of Lemma 1 have thus been proved. To establish the fourth,
we observe that it follows directly from (5); indeed, for every ψ ∈ L2(R1, dλ0) we obtain
from (5) that

(ψ,RD(y,y′)1) =
∑
n≥0

1
n!

{ ∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)KΓ1 . . .KΓnkΓ0(y, y
′;ψ,1)

+
∑′′

Γ0,...,Γn+1

ϕcon(Γ0, . . . ,Γn+1)KΓ1 . . .KΓn+1kΓ0(y;ψ)
}

=
∑
n≥0

1
n!

{ ∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)kΓ0 (y;ψ)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1

ϕcon(Γ0, . . . ,Γn+1)kΓ0(y;ψ)KΓ1 . . .KΓn+1

}
since kΓ0(y, y′;ψ,1) = kΓ0(y;ψ) for every finite graph Γ ⊂ L(Zν+1) and ψ ∈ L2(R1, dλ0).
Recall that as in (5), all the sums here are finite. We break the sum

∑′′ into two parts:∑′′

Γ0,...,Γn+1

=
∑′′

Γ0,...,Γn+1:|Γ̃n+1|=1

+
∑′′

Γ0,...,Γn+1:|Γ̃n+1|>1
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(the sum
∑′′ here being defined in the same way as in (5)). We will show that

(14)

∑
n≥0

1
n!

{ ∑′

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)kΓ0(y;ψ)KΓ1 . . .KΓn

+
∑′′

Γ0,...,Γn+1:|Γ̃n+1|>1

ϕcon(Γ0, . . . ,Γn+1)kΓ0 (y;ψ)KΓ1 . . .KΓn

}

= −
∞∑
n≥0

1
n!

∑
Γ0,...,Γn,Γn+1={y′}

ϕcon(Γ0, . . . ,Γn+1)kΓ0(y;ψ)KΓ1 . . .KΓn .

For this we note that if the graph Γn+1 in
∑′′ consists of a single vertex Γ̃n+1 = {y′},

then y′ ∈ Γ̃0 ∪ · · · ∪ Γ̃n and the graph Γ0 ∪ · · · ∪ Γn is connected. Moreover, if exactly m
of the graphs Γ0, . . . ,Γn contains the vertex y′ (0 ≤ m ≤ n), then

(15) ϕcon(Γ0, . . . ,Γn+1) = −mϕcon(Γ0, . . . ,Γn).

To prove (15) it suffices to consider

ϕcon(Γ0, . . . ,Γn+1) =
∑(1)

G

(−1)|G| +
∑(2)

G

(−1)|G|,

where the sum
∑(1) is over all connected graphs G with vertices {0, . . . , n+1} and edges

(i, j), 0 ≤ i < j ≤ n, where Γ̃i ∩ Γ̃j �= ∅, 0 ≤ i < j ≤ n + 1. It is easy to see that if
|Γn+1| = 1 and exactly m of the graphs Γ0, . . . ,Γn contain the vertex y′, then we have∑(1)

G

(−1)|G| = −m
∑con

G

(−1)|G| = −mϕcon(Γ0, . . . ,Γn)

and ∑(2)

G

(−1)|G| = 0.

Thus the right-hand side of (14) is equal to

(16)
∑
n≥0

1
n!

n+1∑
m=1

∑(m)

Γ0,...,Γn

ϕcon(Γ0, . . . ,Γn)kΓ(ψ; y)KΓ1 . . .KΓn ,

where the sum
∑(m), m = 1, . . . , n+1, is over all ordered sets of finite connected graphs

Γ0, . . . ,Γn ⊂ L(Zν+1) (possibly coinciding) such that y ∈ Γ̃0, y′ ∈ Γ̃0 ∪ · · · ∪ Γ̃n, and the
union Γ0 ∪ · · · ∪Γn (with allowance for edge multiplicities) is D (the diagram D(y, y′) is
fixed); here |Γj | ≥ 1 for j = 1, . . . , n, Γ0 may reduce to the single vertex y, and exactly
m of the graphs Γ0, . . . ,Γn contain the vertex y′. We now observe that

∑′

Γ0,...,Γn

+ n
∑′′

Γ0,...,Γn:|Γn|≥1

=
n+1∑
m=1

m
∑(m)

Γ0,...,Γn

,

where the sums
∑′ and

∑′′ are the same as in (5), except that we always have |Γn| ≥ 1.
By (16), this implies (15), proving Lemma 1.
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Definition 2. We say that D(y, y′) is a one-particle irreducible diagram if either
y = y′ or the graph D contains at least two paths joining the vertices y and y′ which are
either disjoint or satisfy the cndition that the multiplicity of each common edge of these
two graphs is greater than 1.

Let us not than if the diagram D(y, y′) is not one-particle irreducible, then D contains
an edge (y1, y′1) ∈ D of multiplicity one, such that when the edge is removed we get two
nonintersecting graphs D1 and D2:

D = D1 ∪ {(y1, y′1)} ∪D2,

where y, y1 ∈ D̃1 and y′, y′1 ∈ D̃2. In this case, we say that the edge (y1, y′1) splits D(y, y′)
into the two disjoint diagrams D1(y, y1) and D(y′1, y

′).

Lemma 2. Assume that the edge (y1, y′1) ∈ D, D ∈ A, splits the diagram D(y, y′),
y �= y′, into two disjoint diagrams D1(y, y1)andD2(y′1, y

′). Then

RD(y,y′) = RD1(y,y1)F̂RD2(y′1,y′).

Proof. Indeed, let Γ0, . . . ,Γn ⊂ L(Zν+1) be such that the union Γ0 ∪ · · · ∪ Γn is D
(counting edge multiplicity), and suppose that (y1, y′1) ∈ Γj for some j, 0 ≤ j ≤ n. Then
Γj = Γ′

j ∪ Γ′′
j {(y, y′)}, where the graphs Γ′

j ,Γ
′′
j ⊂ L(Zν+1) have no vertices in common,

each is connected, and y1 ∈ Γ′
j ⊂ D1, y′1 ∈ Γ′′

j ⊂ D2. We note that if j = 0 and y, y′ ∈ Γ̃0,
then

k̂Γ0(y, y
′) = k̂Γ′

0
(y, y1)F̂ k̂Γ′′

0
(y′1, y

′)

and similarly,

kΓj (y;u) =
∫
R2
kΓ′

j
(y, y1;u, u1)F (u1, u

′
1)kΓ′′

j
(y′1;u

′
1) dλ0(u1) dλ(u′1),

if y ∈ Γ̃′
j ,

kΓj (y
′;u′) =

∫
R2
kΓ′

j
(y1;u1)F (u1, u

′
1)kΓ′′

j
(y′1, y

′;u′1, u
′) dλ0(u1) dλ(u′1),

if y ∈ Γ̃′′
j , and

KΓj =
∫
R2
kΓ′

j
(y1;u1)F (u1, u

′
1)kΓ′′

j
(y′1;u

′
1) dλ0(u1) dλ(u′1).

Thus to prove Lemma 2, it remains to show that if Γ0, . . . ,Γn ⊂ L(Zν+1) are such
that the union Γ0 ∪ · · · ∪ Γn (counting edge multiplicity) is D, and if (y1, y′1) ∈ Γj for
some j, 0 ≤ j ≤ n, then

ϕcon(Γ0, . . . ,Γn) = ϕcon(Γ′
j ,Γi ⊂ D1, i �= j, 0 ≤ i ≤ n)

× ϕcon(Γ′′
j ,Γi ⊂ D1, i �= j, 0 ≤ i ≤ n).

For this it suffices to note that if the union Γ0∪· · ·∪Γn (with edge multiplicity) is D and
(y1, y′1) ∈ Γ for some j, 0 ≤ j ≤ n, then every graph G with vertex set {0, 1, . . . , n} and
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edges (i, j), 0 ≤ i < j ≤ n, where Γ̃i ∩ Γ̃j �= ∅, is expressible as a union of two connected
graphs G1 and G2 which have a single vertex j in common, and which have the property
that i ∈ Gl if and only if Γi ∈ Dl, i = 0, . . . , n, i �= j, l = 1, 2. This concludes the proof
of Lemma 2.

We now observe that in the statement of Lemma 2, the edge (y1, y′) ∈ D can be
chosen so that the diagram D1(y, y1) is one-particle irreducible. We can now repeat
the preceding arguments for the diagram D2(y′1, y′), and so on. Thus we remove edges
(y1, y′1), . . . , (yk, y

′
k) ∈ D, which divide the diagram D(y, y′) into one-particle irreducible

parts
D1(y, y1), D2(y′1, y2), . . . , Dk+1(y′k, y

′).

Successive application of Lemma 2 then leads to the following expression for RD(y,y′):

(17) RD(y,y′) = RD1(y,y1)F̂RD2(y′1,y2)F̂ . . . F̂RDk+1(y′k,y′).

Now observe that by (8.3) and (15), for every x ∈ Zν+1 we have

Ŝx =
∑
D(0,x)

RD(0,x),

where the sum is over all diagrams D(0, x). Substituting expression (17) for RD(0,x), we
find that

(18)

Ŝx =
∑(1)

D(0,x)

RD(0,x) +
∞∑
k=1

∑(2)

(y1,y′1),...,(yk,y′k)

∑(3)

D1(0,y1),...,Dk+1(y′
k
,x)

RD1(0,y1)F̂RD2(y′1,y2)

. . . F̂RDk+1(y′k,x)

∏
1≤i<j≤k+1

(1 + χ(Di, Dj)),

where the sum
∑(1) is over all one-particle irreducible diagrams D(0, x), and

∑(2) is
over all ordered sets of pairs of points (y1, y′1), . . . , (yk, y

′
k), yj , y

′
j ∈ Zν+1 such that

|yj − y′j| = 1, j = 1, . . . , k (some of these pairs may coincide). The sum
∑(3) is over all

one-particle irreducible diagrams D1(0, y1), D2(y′1, y2), . . . , Dk+1(y′k, x), and

χ(Di, Dj) = −1, if D̃i ∩ D̃j �= ∅,
χ(Di, Dj) = 0, if D̃i ∩ D̃j = ∅.

We now use the diagram expansion (18) to derive Dyson’s equation. Let
g(D1, . . . , Dk+1), D1, . . . , Dk+1 ∈ A, be the graph with vertices {1, . . . , k+ 1} and edges
(i, j), 1 ≤ i < j ≤ k + 1, where (i, j) ∈ g(D1, . . . , Dk+1) if and only if D̃i ∩ D̃j �= ∅,
1 ≤ i < j ≤ k + 1. Then∏

1≤i<j≤k+1

(1 + χ(Di, Dj)) =
∑

G≤g(D1,...,Dk+1)

(−1)|G|,

where the sum is over all subgraphs G ≤ g(D1, . . . , Dk+1) with vertex set {1, . . . , k+ 1};
|G| is the number of edges in G.
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Definition 3. A graph G with vertex set {1, . . . , n} is decomposable if it consists of
two disjoint parts G1 and G2, where for some j, 1 ≤ j ≤ n

G̃1 = {1, . . . , j}, G̃2 = {j + 1, . . . , n}.
If this is not the case, G is said to be indecomposable (a graph G on a single vertex,
n = 1, is considered to be indecomposable).

If the graph g(D1, . . . , Dk+1) is indecomposable, we set

ϕH(D1, . . . , Dk+1) =
∑
G

(H)(−1)|G|,

where the sum is over all indecomposable subgraphs G ⊆ g(D1, . . . , Dk+1) with vertex set
{1, . . . , k+1}; otherwise (if g(D1, . . . , Dk+1) is decomposable), we define ϕH(D1, . . . , Dk+1) =
0. It is easy to see that

(19)

∑
G⊆g(D1,...,Dk+1)

(−1)|G| = ϕH(D1, . . . , Dk+1)

+
k∑

n=1

ϕH(D1, . . . , Dn)
∑

G⊆g(Dn+1,...,Dk+1)

(−1)|G|.

Define the operators Iy , y ∈ Zν+1 for y �= 0 by

(20)
Iy =

∑(1)

D(0,y)

RD(0,y) +
∞∑
k=1

∑(2)

(y1,y′1),...,(yk,y′k)

∑(3)

D1(0,y1),...,Dk+1(y′k,y)

ϕH(D1, . . . , Dk+1)

×RD1(0,y1)F̂RD2(y′1,y2) . . . F̂RDk+1(y′k,y),

and for y = 0 set

I ′0 =
∑(1)

D(0,0)

R′
D(0,0),

I ′′0 =
∑(1)

D(0,0)

R′′
D(0,0) +

∞∑
k=1

∑(2)

(y1,y′1),...,(yk,y′k)

∑(3)

D1(0,y1),...,Dk+1(y′k,0)

ϕH(D1, . . . , Dk+1)

× RD1(0,y1)F̂RD2(y′1,y2) . . . F̂RDk+1(y′k,0).

The sums
∑(2) and

∑(3) are the same as in (18), and
∑(1) is over all diagrams D(0, 0)

with more than one vertex, i.e., |D̃| > 1.
Lemma 1 and the next result readily imply that each of these series is norm-convergent

in the space of bounded linear operators on L2(R1, dλ0).

Lemma 3. For any D1, . . . , Dk ∈ A we have

|ϕH(D1, . . . , Dk)| < qk1 ,

for some positive constant q1.

Proof. We will need the concept of a minimal indecomposable graph on a set of
vertices.
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Definition 4. An indecomposable graph G with vertex set {1, . . . , k} is minimal if
a decomposable graph results whenever an edge is removed from G.

To every indecomposable graph G with vertex set {1, . . . , k} we associate the sequence
of all its edges:

{(i1, j1), . . . , (i|G|, j|G|)} = G,

where is < js, s = 1, . . . , |G|, and is ≤ is+1, s = 1, . . . , |G| − 1, i1 = 1. Note that for a
minimal graph, this sequence is uniquely determined and satisfies the condition

is+1 < js, s = 1, . . . , |G| − 1

and
js−1 < is+1, s = 2, . . . , |G| − 1.

We order the set of minimal graphs with vertices {1, . . . , k} as follows. Let {(i1, j1),
. . . , (i|G|, j|G|)} be the sequence of edges of the minimal graph G and {(i′1, j′1), . . . ,
(i′|G|, j

′
|G|)} the corresponding sequence for another minimal graph G′. Then define

G < G′ if for some s, 1 ≤ s ≤ min{|G|, |G′|} we have (im, jm) = (i′m, j
′
m) for 1 ≤ m < s

(provided s > 1), and either js > j′s, or else js = j′s but is < i′s. It is easy to see that
this gives a total ordering on the set of all minimal graphs.

We use the above ordering to enumerate all the minimal graphs with vertex set
{1, . . . , k} contained in g(D1, . . . , Dk), G1, . . . , GN , Gi < Gj , 1 ≤ i < j ≤ N .

Let Gj , j = 1, . . . , N , be the set of all indecomposable graphs G ⊆ G(D1, . . . , Dk)
with vertex set {1, . . . , k}, each of which contains the jth minimal indecomposable graph
Gj but not any of the preceding minimal indecomposable graphs Gi, 1 ≤ i < j. Defining

σj(D1, . . . , Dk) =
∑
G∈Gj

(−1)|G|

we have

ϕH(D1, . . . , Dk) =
N∑
j=1

σj(D1, . . . , Dk).

We next derive an explicit form for the quantities

σj(D1, . . . , Dk), j = 1, . . . , N.

Let {(i1, j1), . . . , (i|G2|, j|G2|)} be the sequence of edges of the minimal graph Gl, 1 ≤ l ≤
N . We remove all the edges (i, j) ∈ g(G1, . . . , Gk) \Gl such that for some m, 1 ≤ m ≤ l,
i ≤ jm−1 and either j > jm, or else j = jm but i < im. The set of edges removed in
this way will be denoted by O(Gl). Note that if G < Gl, 1 ≤ l ≤ N , then G contains
no edges in O(Gl), because otherwise we would have G ⊃ Gm for some 1 ≤ m < l. And
conversely, if G ∩O(Gl) = ∅ and Gl ∈ G, then G < Gl. Thus,

σj(D1, . . . , Dk) = (−1)|Gj|
∑
G

(−1)G, j = 1, . . . , N,

where the sum is over all graphs G ⊂ g(D1, . . . , Dk) \ (O(Gj) ∪ Gj), and consequently
σj(D1, . . . , Dk) = 0 if g(D1, . . . , Dk) \ (O(Gj) ∪ Gj) �= ∅ and σj(D1, . . . , Dk) = (−1)|Gj|



§5. ANALYTIC STRUCTURE OF THE GREEN FUNCTIONS 285

if g(D1, . . . , Dk) = (O(Gj) ∪ Gj). Thus, |ϕH(D1, . . . , Dk)| is less than the number of
minimal indecomposable subgraphs g(D1, . . . , Dk) with vertices {1, . . . , k}. It is easy to
see that the number of minimal indecomposable graphs with vertex set {1, . . . , k} is less
than 4k. Lemma 3 is proved.

We can now conclude the proof of Assertion 1. Let us show that for any y ∈ Zν+1 the
operator Iy is selfadjoint. Indeed, F̂ ∗ = F̂ by the symmetry of the function Φ: Φ(u, v) =
Φ(v, u), and it follows easily from (5) that R∗

D(y,y′) = RD(y,y′) for every diagram D(y, y′);
thus, I∗y = I−y = Iy . We further have by definition that I0 = I ′0 + I ′′0 + P0, where P0 is
the orthogonal projection in L2(R1, dλ0) given by

P0f = f − 〈f〉0, f ∈ L2(R1, dλ0),

and I ′0 on L2(R1, dλ0) is multiplication by the function

I ′0 =
∑(1)

D(0,0)

r′D(0,0)(u),

where the sum is over all diagrams D(0, 0) with more than one vertex: |D̃| > 1. The
boundedness of this function follows easily from (7). For y �= 0, y ∈ Zν+1, I ′′0 and Iy are
Hilbert-Schmidt operators on L2(R1, dλ0) (i.e., they have a kernel in L2(R1, dλ0×dλ0)).

Estimate (3) follows easily from (9) and Lemma 3. To prove (2) and (4), we notice that
for any yj , y′j ∈ Zν+1 such that |yj − y′j| = 1, j = 1, . . . , k, and all N1, . . . , Nk+1 ∈ Z+,
we have by (6), (8), and (9) that

(21)
∑(N1,...,Nk+1)‖RD1(0,y1)F̂RD2(y′1,y2) . . . F̂RDk+1(y′k,y)‖ ≤ (b′β)k+N1+...,Nk+1,

where b′ is a positive constant and the sum is over all one-particle irreducible diagrams
D1(0, y1), D2(y′1, y2), . . . , Dk+1(y′k, y) such that |Dj | = Nj , j = 1, . . . , k+1. Inequality (4)
now follows easily from (21), (8), and Lemma 3.

To prove (2) we observe that if

D1(0, y1), D2(y′1, y2), . . . , Dk+1(y′k, y),

where |yj − y′j | = 1, j = 1, . . . , k, are one-particle irreducible diagrams and the graph
g(D1, . . . , Dk+1) is indecomposable, then

∑k+1
j=1 |Dj | + k ≥ 2|y|, whence (21) implies (2)

easily.
Part c) of Assertion 1 follows automatically from the fourth statement in Lemma 1.
The Dyson equations themselves (1) now follow readily from the diagram expansions

(18) and (20) upon recalling (19).
This completes the proof of Assertion 1.

§5. Analytic structure of the Green functions

Here we will use Assertion 1.4 above to prove Theorems 1 and 2, which were stated
in §2.
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Let β be sufficiently small, 0 < β < β1, where β1 is the constant appearing in Asser-
tion 1.4. Consider the Fourier transform of the operators Ŝx:

S(p, k) =
∑

x=(x,x(0))∈Zν+1

e−(p,x)−ikx(0)
Ŝx, (p, k) ∈ T ν × T 1,

(p, x) =
ν∑
j=1

p(j)x(j), p = (p(1), . . . , p(ν)), x = (x(1), . . . , x(ν)).

By Assertion 2.3, for any fixed p ∈ T ν and any k in the strip | Imk| < ln(b2β)−1 (where
b2 is the constant in Assertion 2.3), we have that S(p, k) is a bounded linear operator on
L2(R1, dλ0) such that

(1) S(p, k)1 = 0,

since by definition Ŝx1 = 0 for every x ∈ Zν , and S∗(p, k) = S(p, k) in view of the
obvious symmetry S∗

x = S−x = Sx, x ∈ Zν+1. Similarly, for the Fourier transform of Ix,
where x = (x, x(0)) ∈ Zν+1, Assertion 4.1 implies that, for any fixed p ∈ T ν and any k
in the strip | Im k| < ln(b3β)−2 (where the constant b3 is as in Assertion 4.1),

I(p, k) =
∑

x∈Zν+1

e−(p,x)−ikx(0)
Ix

is a bounded linear operator on L2(R1, dλ0) such that

(2) I(p, k)1 = 0, I∗(p, k) = I(p, k),

and

(3) I(p, k) = P0 + I ′0 + I ′′(p, k).

Here P0f = f − 〈f〉0, f ∈ L2(R1, dλ0), I ′0 is multiplication by the bounded function

I ′0 : R1 → R1

and I ′′(p, k) is the Hilbert-Schmidt operator on L2(R1, dλ0) with kernel

I ′′(u, u′; p, k) = I ′′0 (u, u′) +
∑

x∈Zν+1

x �=0

e−(p,x)−ikx(0)
Ix(u, u′).

Let H ⊂ L2(R1, dλ0) be the subspace spanned by the functions f−〈f〉0, f ∈ L2(R1, dλ0).
By (1) and (2), H is invariant under S(p, k) and I(p, k), where

S(p, k) = P0S(p, k)P0,

I(p, k) = P0I(p, k)P0,

and P0 is the orthogonal projection of L2(R1, dλ0) on H. We will henceforth regard
S(p, k) and I(p, k) as operators on H.

We can then rewrite equation (3) as

I(p, k) = E + P0I
′
0 + P0I

′′(p, k),

where E is the identity operator on H.



§5. ANALYTIC STRUCTURE OF THE GREEN FUNCTIONS 287

Lemma 1. For any h > 0 there exist a β2 > 0, β2h < 1, and a κ1 > 0 such that
for any β with 0 < β < β2, any k in the strip | Im k| < ln(hβ)−1, and any p ∈ T ν the
inequalities

(4) ‖I(p, k)F̂‖ < κ1β, ‖(I(p, k) − E)F̂ ‖ < κ1β
2

hold, where ‖ · ‖ is the norm on the space of bounded linear operators on H.

Proof. The first inequality follows automatically from the second, since

‖F̂‖ ≤ ‖(e−βΦ − 1)‖L2(R2,dλ0×dλ0) ≤ β‖Φ‖L2(R2,dλ0×dλ0).

To prove the second inequality, we appeal to the estimates in Assertion 1.4. Consider

‖(I(p, k) − E)F̂‖ ≤ ‖I ′0F̂‖ + ‖I ′′0 F̂‖ +
∑

x∈Zν+1

x �=0

|e−ikx(0) | ‖IxF̂‖.

In view of (2.4), (3.4), and (4.4), for small enough β > 0 this gives

‖(I(p, k) − E)F̂‖ ≤(b3β)2 + b3β
2‖Φ‖L2(R2,dλ0×dλ0)

+
∑

x∈Zν+1

x �=0

β(b3β)2|x|ex
(0) Imk‖Φ‖L2(R2,dλ0×dλ0),

and for | Imk| < ln(hβ)−1, h > 0, we have

‖(I(p, k) − E)F̂‖ ≤(b3β)2 + b3β
2‖Φ‖L2(R2,dλ0×dλ0)

+
∑

x∈Zν+1

x �=0

β

(
b3β

h

)|x0|
(b3β)2|x|‖Φ‖L2(R2,dλ0×dλ0),

where b3 is the constant in Assertion 1.4. This last inequality easily implies the second
inequality in (4) for 0 < β < hb−2

3 . This proves Lemma 1.

We now take Fourier transforms in (1.4):

(5) S(p, k) = I(p, k) + 2
( ν∑
j=1

cos p(j) + cos k
)
I(p, k)F̂S(p, k),

or

(5a)
(
E − 2

( ν∑
j=1

cos p(j) + cos k
)
I(p, k)F̂

)
S(p, k) = I(p, k).

For any fixed p ∈ T ν, S(p, k) and I(p, k) are functions of k with values in the space of
bounded linear operators on L2(R1, dλ0), where the first is defined and analytic on the
strip | Im k| < ln(b2β)−1, and the second on the strip

(6) | Im k| < ln(b3β)−2
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(where b2 is the constant in Assertion 2.3 and b3 the constant in Assertion 1.4). In what
follows, p ∈ T ν will be fixed. Consider the operator

B(p, k) = E − 2
( ν∑
j=1

cos p(j) + cos k
)
I(p, k)F̂ .

The analyticity of I(p, k) on the strip (6) implies that if the operator B(p, k) : H → H
is invertible for k = k0, | Im k0| < ln(b3β)−2, then by (5a) the operator-valued function
S(p, k) is analytic at the point k = k0, which implies that the Green function

s̃ϕ1,ϕ2(p, k) =
∑

x∈Zν+1

ei(p,x)+ikx
(0)

(ϕ1, Sxϕ2) = (ϕ1, S(p, k)ϕ2)

is analytic at k = k0, where ϕ1, ϕ2 ∈ L2(R1, dλ0) and (·, ·) is the inner product on
L2(R1, dλ0). For any k in the strip (6) the spectrum of B(p, k) is discrete, as follows
from the compactness of F̂ . Consequently, B(p, k) is invertible if and only if its set of
eigenvalues stays away from zero.

Let 0 ≤ Im k < ln(b3β)−2 (all the arguments are analogous for Im k < 0). We consider
the operator

B0(k) = E − βe−ikP0Φ̂P0

on H.

Lemma 2. For any h > 0 there exist a β3, β3h < 1, and a κ2 > 1 such that for any
β, 0 < β < β3, and any k in the strip 0 ≤ | Im k| < ln(hβ)−1 we have

‖B(p, k) −B0(k)‖ < κ2β.

The proof follows easily from Lemma 1. Indeed,

‖B(p, k) −B0(k)‖ <(2ν + |eik|)‖I(p, k)F̂‖ + |eik| ‖(I(p, k) − E)F̂‖
+ |eik| ‖e−βΦ − 1 + βΦ‖L2(R2,dλ0×dλ0).

By (4), the first term here is less than (2ν + 1)κ1β and the second is less than κ1β/h,
while the third is bounded by

1
hβ

∥∥∥∥Φ2

∫ β

0

dβ′
∫ β′

0

dβ′′e−β
′′Φ
∥∥∥∥
L2(R2,dλ0×dλ0)

≤ β

2h
‖Φ2‖L2(R2,dλ0×dλ0),

by virtue of the condition Φ ≥ 0. This proves Lemma 2.
We now consider the eigenvalues

µ1, . . . , µN , . . . , µj ∈ R1, j = 1, 2, . . .

of the operator P0Φ̂P0, where |µ1| ≥ |µ2| ≥ · · · ≥ |µN | ≥ 0. By hypothesis µi �= µj for
i �= j, i, j = 1, 2, . . . . We set h = (|µN | + |µN+1|)/2.
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Lemma 3. There exist β4 > 0 and κ3 > 0 such that for every β, 0 < β < β4, and any
k in the strip 0 < Im k < ln(1/(hβ)), satisfying the condition

(7)
∣∣∣∣e−ik − 1

µiβ

∣∣∣∣ > κ3

|µN | , j = 1, . . . , N,

the operator B(p, k) is invertible.

Proof. The operatorB0(k) is invertible for every k in the strip 0 < Im k < ln(1/(hβ))
with the exception of the points k for which |eik − 1

µjβ
| = 0, j = 1, . . . , N . We

have ‖B0(k))
−1‖ = maxj=1,...,N |1 − βe−ikµj |−1. Let 0 < Imκ < Im(1/(hβ)) and

1 − βe−ikµj �= 0, j = 1, . . . , N , and consider the representation

B(p, k) = B0(k)[E +B−1
0 (k)(B(p, k) −B0(k))].

To prove Lemma 3 it is enough to show that

(8) ‖B−1
0 (k)(B(p, k) −B0(k))‖ < 1,

if β > 0 is sufficiently small and∣∣∣∣e−ik − 1
µiβ

∣∣∣∣ > κ3

|µN | , j = 1, . . . , N,

where κ3 is some positive constant.
In view of Lemma 2, there exist β3 > 0 and κ2 > 0 such that for any β > 0, β < β3

and any k in the strip 0 < Im k < ln(1/(hβ)) we have

(9) ‖B(p, k) −B0(k)‖ < κ2β.

Setting κ3 = 2κ2, we see that for every k in the strip 0 < Im k < ln(1/(hβ)) satisfying
(7), we have

(10) ‖B0(k)‖ <
(
κ3

|µN |
)−1

max
j=1,...,N

(β|µj |)−1 =
1

2κ2β
.

Estimate (8) now follows from (9) and (10), completing the proof of Lemma 3.

Let the constant κ3 > 0 of Lemma 3 be fixed, and take κ2 = κ3/2. We now examine
the case when ∣∣∣∣e−ik − 1

µiβ

∣∣∣∣ < κ3

|µN |
for some j, 1 ≤ j ≤ N . Let ψ1, . . . , ψN be the eigenvectors of the operator P0F̂P0 on H
corresponding to the eigenvalues µ1, . . . , µN . Let H1

j be the subspace of H spanned by
the vector ψj and H2

j be the orthogonal complement of H1
j in H. Then on H = H1

j ⊕H2
j

we can write the operators B(p, k) and B0(k) in block form(
B11
j (p, k) B12

j (p, k)
B21
j (p, k) B22

j (p, k)

)
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and (
B11

0j (k) B12
0j(k)

B21
0j (k) B22

0j(k)

)
respectively, where

Bmlj (p, k) : Hl
j → Hjm,

Bml0j (k) : Hl
j → Hjm,m, l ∈ {1, 2}.

It is easily seen that B12
0j(k) = 0, B21

0j(k) = 0, and B11
0j (k) = (1 − µjβe

−ik)E. We show
that for small enough β > 0, the operator B22

j (p, k) is invertible. Indeed, for sufficiently
small β we have

(11) ‖(B22
0j(p, k))

−1‖ < 1
κ3β

,

because for small β > 0 we have ∣∣∣∣e−ik − 1
µlβ

∣∣∣∣ > κ3

|µN |
for all l �= j, 1 ≤ l ≤ N . Moreover,

(12) ‖B22
j (p, k) −B22

0j(k)‖ < ‖B(p, k) −B0(k)‖ < κ2β,

where κ2 = κ3/2 is the constant in Lemma 2. The invertibility of B22
j (p, k) follows readily

from (11) and (12), and the norm of the inverse satisfies

(13) ‖(B22
j (p, k))−1‖ < 2

κ3β

for any k such that |e−ik − 1/(µjβ)| > κ3/|µN |. From the invertibility of B22
j (p, k) we

see easily that B(p, k) is invertible if and only if

B11
j (p, k) −B12

j (p, k)(B22
j (p, k))−1B21

j (p, k) �= 0.

Lemma 4. For sufficiently small β > 0, 0 < β < β4, where β4 is a suitable positive
constant, the equation

(14) B11
j (p, k) −B12

j (p, k)(B22
j (p, k))−1B21

j (p, k) = 0

has for every j = 1, . . . , N and any fixed p ∈ T ν a unique solution in the region

(15)
{
k ∈ C :

∣∣∣∣e−ik − 1
µjβ

∣∣∣∣ < κ3

|µN | , Im k ∈
(

0, ln
1
hβ

)
, Re k ∈ [0, 2π]

}
.

Proof. Indeed, by Lemma 2

‖B12
j (p, k)‖, ‖B21

j (p, k)‖, |B11
j (p, k) −B11

0j(k)| <
1
2
κ3β
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and hence by (13) we have

|B11
j (p, k) −B12

j (p, k)(B22
j (p, k))−1B21

j (p, k) −B11
0j(k)| < κ3β

for every k in the region (15) for β > 0 sufficiently small. Thus, for small β > 0 and all
k such that |e−ik − 1/(µjβ)| = κ3/|µN |, we have

|B11
0j (k)| > |B11

j (p, k) −B11
0j(k) −B12

j (p, k)(B22
j (p, k))−1B21

j (p, k)|.
An application of Rouché’s theorem [31] now gives Lemma 4.

Theorem 2.2 now follows easily from Lemmas 3 and 4, because the solution of equa-
tion (14) is a pole of the Green function

Sψj ,ψj (p, k) =
∑

x=(x,x(0))∈Zν+1

e−(p,x)−ikx(0)〈ψj(ξ(0)), ψj(ξ(x))〉.

The proof of Theorem 1.2 will use the next lemma.

Lemma 5. Suppose that µk = 0 for all k > N , k ∈ Z+, and

|µ1| ≥ |µ2| ≥ · · · ≥ |µN | > 0.

Then there exist β5 > 0 and q, 0 < q < 1, such that for every β > 0, β < β5 and any k
satisfying

ln
2

|µN |β < | Im k| < ln
(

q

βb3

)2

,

the operator B(p, k) is invertible (here b3 is the constant in Assertion 1.4).

Proof. We consider Im k > 0, the case Im k < 0 being analogous. It is enough to
show that if β > 0 is small enough, then for any k satisfying

ln
2

|µN |β < Im k < ln
q2

(βb3)2
,

where q is a positive constant such that 2b3β/|µN | ≤ q2 < 1, we have the inequality

(16) ‖βe−ikP0Φ̂P0‖ = |µNβe−ik| > 1 + ‖B(p, k) − E + βe−ikP0Φ̂P0‖.
Indeed, suppose that |e−ik| =

(
q
βb3

)2
> 2

|µN |β , 0 < q < 1. Then

‖(I(p, k) − E)F̂‖ < ‖(I ′0 + I ′′)F‖ +
∑

x∈Zν+1

x �=0

(
q

βb3

)2x(0)

‖IxF̂‖

and by Assertion 4.1,

(b3β)2 + b3β
2 + β

∑
x∈Zν+1

x �=0

(
q

βb3

)2x(0)

(b3β)2|x|

≤ (b3β)2 + b3β
2 +

(1 + (b3β)2)ν

(1 − (b3β)2)ν
β
∑
x0

(
q

βb3

)2x(0)

(b3β)2|x
0|

+
2ν(b3β)2

1 − (b3β)2
(1 + (b3β)2)ν−1

(1 − (b3β)2)ν−1
β

∑
x0∈Z1

q2x
(0)

(b3β)2|x
0|−2x0

.
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We note that for small enough β,

∑
x0

q2x
(0)

(b3β)2(|x
0|−x0) <

q2

1 − q2
+

b23β
3|µN |

1 − b23β
3|µN | ,

since q2 > b3β/|µN |, and for β > 0 sufficiently small, we have

b23β
3|µN | < 1.

Thus when |e−ik| =
(
q
βb3

)2
> 2

|µN |β , 0 < q < 1, we have

(17) ‖(I(p, k) − E)F̂ ‖ < c1β
2 + c2q

2β,

where c1 and c2 are positive constants. Consequently, we have

(18) ‖I(p, k)F̂‖ < c1β
2 + c2q

2β + β‖Φ̂‖.

For |e−ik| =
(
q
βb3

)2
> 2

|µN |β , 0 < q < 1, we now estimate

‖B(p, k) − E − βe−ikP0Φ̂P0‖ < (2ν + 1)‖I(p, k)F̂‖

+
q2

βb23
(‖(I(p, k) − E)F̂‖ + ‖e−βΦ − 1 + βΦ‖L2(R2,dλ0×dλ0)).

For small enough β > 0, (18) shows that the first term here is bounded by const ·β; by
(17), the second term is bounded by const ·q4β−1; and since Φ ≥ 0, the third term is
≤ const ·β2. Thus, if |e−ik| =

(
q
βb3

)2
> 2

|µN |β , 0 < q < 1 and β > 0 is small enough, we
have

‖B(p, k) − E − βe−ikP0Φ̂P0‖ < const q4β−1.

On the other hand,

‖βe−ikP0Φ̂P0‖ = |µN | q
2

b23β

and consequently we can find a q0 > 0, 2b23
|µN | ≤ q0 < 1, such that for every q, 2b23

|µN | ≤ q < q0,

inequality (16) holds for small enough β > 0 when |eik| =
(
q
βb3

)2.
It follows easily from this that the operator B(p, k) is invertible for every k in the strip

ln
2

|µN |β ≤ Im k ≤ ln
(
q0
βb3

)2

.

The case

− ln
(
q0
βb3

)2

≤ Im k ≤ − ln
2

|µN |β
is handled similarly. Lemma 5 is proved.

Theorem 1.2 now follows easily from Lemmas 3, 4, and 5.
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GUIDE TO THE LITERATURE

The introductory Chapter 0 discusses well-known material, parts of which can be found
in the books by Ruelle [37], Glimm and Jaffe [12], Bratteli and Robinson [7, 49], Reed
and Simon [36], as well as in the review article by Dobrushin, Sinai, and Sukhov [14].

Part of Chapter 1 is purely expository (§§2 and 3, see the related material in the books
by Dixmier [13] and Berezin [5]). Other parts are illustrative in character: §1, where we
give a brief exposition of work by Sinai [39] and Dobrushin and Fritz [50] on the dynamics
of a one-dimensional gas; §4, in which we construct a dynamics for a nonideal continuous
Fermi gas by a method similar to that of Robinson [37]; and finally, §5, which is devoted
to a simple example of a “linear dynamics” on the CAR and Weyl algebras (see [5]).
Essentially new results appear in §§6 and 7. In §6 we construct a stochastic dynamics
and its equilibrium states for a continuous-time Markov field. These constructions are
inspired by ideas in “stochastic quantization” (see the review article by Migdal [29]);
our treatment follows the work of Ignatyuk, Malyshev, and Sidoravicius [19]. Section
7, where we study in detail the dynamics for a special class of Markov fields with local
interaction, follows work of Malyshev, Petrova, and Scacciatelli [56].

Chapter 2 is primarily expository and contains, with few exceptions, known material,
suitably reworked for our purposes. However, the material in §3 is new (see the article by
Botvich [47]), as is the material in §4 and also Part A of subsection 4 of §5 (see Kashapov
and Malyshev [52]).

The foundations of a powerful method for studying the lower spectral branches for the
Hamiltonians of lattice quantum field theory models (called the “Moscow method”) are
laid in Chapter 3. This method goes back to the work of Minlos and Sinai [31], which
introduced the construction of multiplicative bases and, in embryonic form, the idea of a
cluster operator. No proofs were given in [31]. A central idea in Chapter 3 is the concept
of cluster operator introduced by Abdulla Zade, Minlos, and Pogosyan [1], which was
subsequently investigated in detail by Malyshev and Minlos [27, 54, 55], Malyshev [25],
Kashapov and Malyshev [52], and Zola̧dek [17]. Many applications of this method to
various specific models are presented in the review by Minlos [57], where a large bibli-
ography is given (see also additional reference list). There exist interesting applications
of this method to Markov chain with local interaction (Boldregini, Minlos, and Pelle-
grinotti, [47b, 4∗], and to the computation of correlations of Gibbs fields (Minlos and
Zhizhina [18, 31∗]).

Finally, Chapter 4 sets forth recent results regarding asymptotic completeness for
a weakly perturbed Fermi gas (perturbed either by a weak self-interaction, or by an
interaction with some foreign particle). These results should be viewed as an extension
and rigorous justification of the work of Friedrichs [42] and Hepp [44] on this subject.
The presented results are contained in a series of papers by Botvich, Malyshev, and
Domnenkov. Our treatment follows works of Aizenshtadt, Botvich, and Malyshev [2],
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Botvich, Malyshev [6], and also Botvich, Domnenkov, and Malyshev [48]. An extensive
bibliography of work in this area is given in [2].

Chapter 5 is an introduction to an alternative technique for studying the spectrum
of the transfer matrix, somewhat arbitrarily referred to as the Bethe-Salpeter method.
This method is used primarily by Western scientists. In §1 we give a brief exposition
of the method for the case of the Ising model and compare it with the results discussed
in Chapter 3. The bulk of this chapter, in which the Dyson equation is used to analyze
the one-particle spectrum of the transfer matrix for Gibbs fields with unbounded spin,
is taken from the dissertation of Ignatyuk [19a]. In spite of its frequent use in journal
articles, the Bethe-Salpeter method has been discussed hardly at all in the monograph
literature. A brief review of the method can be found in [12], where a large bibliography
is given.
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20∗. V. A. Malyshev, V. A. Podorolskĭı, and T. S. Turova, Ergodicity of infinite systems of stochastic
equations, Mat. Zametki 45 (1989), no. 4, 78–88; English transl. in Math. Notes 45 (1989).

21∗. V. A. Malyshev, One particle states and scattering for Markov processes, Locally Interacting
Systems and Their Application in Biology, Lecture Notes in Math., vol. 653, Springer-Verlag,
New York, 1978, pp. 173–193.

22∗. , Convergence in the linked cluster theorem for many body fermion systems, Comm. Math.
Phys. 119 (1988), 501–508.

23∗. , Equivalence of C∗-dynamical systems, Dynamical Systems and Ergodic Theory (Warsaw,
1986), Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 391–397.

24∗. V. A. Malyshev, A. D. Manita, E. N. Petrova, and E. Scacciatelli, Hydrodynamics of weakly
perturbed voter model, CARR. Reports in Math. Phys. (1993), no. 17, 1–51.

25∗. V. A. Malyshev, I. V. Nikolaev, and Yu. A. Terletskĭı, Temperature dynamics of the locally per-
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