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0. Introduction

This report concerns the construction of some missing examples in asymptotically
complete scattering theory for a class of self-adjoint operators in Hilbert space

.1/ = Fa(Hl) ® Lz(Rv)a

where F, is the antisymmetric Fock space over the one-particle space H,, for which we
choose either (a) H, = L,(R"), or (b) Hy = Ly(R") @ L,(R").

The Hilbert space F, corresponds to a system consisting of an unbounded number
of free fermions, L,(R*) is the set space of the tagged particle.

Case (b) corresponds to the presence of two types of particles: ‘particles’ with
spectrum [0, oc) and ‘antiparticles’ with spectrum (— oo, 0].

In quantum mechanics, statistical physics, and quantum field theory, the question
of asymptotic completeness (including the existence problem of singular spectra) is the
final structural question of the theory. This question has been studied sufficiently well
for one or two particle systems. L. D. Faddeev's famous work [1] and its subsequent
extensions, settled the question for three particle systems in its main aspects. Many
technical problems of n-particle systems nevertheless are not well understood, despite
some beautiful results [3].

The essential new difficulty (uniform bounds on the number of particles) was the
reason that, until now, there has been no example {except in the trivial noninteracting
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118 D. D. BOTVICH ET AL.

case) of any proof of the asymptotic completeness for systems with an unbounded
number of particles.

The first such example [4], and its generalizations [6--8, 13], gave the solutions of
some classical problems of Friedrichs [11] and Hepp [10] for the case when
interaction takes place only in a bounded region of space outside of which the system
is free. The first translation invariant example was announced in [5]; the proof is given
below in Theorem 2.

Our method involves proving the convergence of perturbation series for wave
operators. This series can converge only if the following conditions are satisfied:

(1) £ 1s small;

{2) dimension v satisfies v > 3, since for v = 1,2 bound states can appear;

(3) each Wick monomial contains at least one annihilation operator, since in the
contrary case, mass renormalization for the tagged particle must be performed
(there is no vacuum in the sector under consideration).

Assuming these conditions, we prove asymptotic completeness in the case

(@) H; = L,(R, hy = —A+u hy = —A.

However, in the case

(b) H, = Ly(R)@® L,(R"), hy =(=A)@ A, h, = —A, we suppose addi-
tionally the presence of creation and annihilation operators both in ‘particles’ and
‘antiparticles’ in any interaction term (see below).

Let us note that in case (b), the one-particle spectrum is not bounded from below
(such operators appear in temperature states [4]).

In the case

(@) H,; = L,(R"), and h; are of a general nature (see below), our results are not
complete (they correspond to [5]) and involve the same difficulties that appear when
trying to generalize lorio—O’Carroll's theorem to one-particle Hamiltonians different
from the Laplacian.

We denote all absolute constants by C. As a rule, they depend on v and on the
Hamiltonian in question.

1. Formulation of the Main Results
Let us consider the Hilbert space
A = F,(H;)® Ly(R),

where F, = F,(H,) is the antisymmetric Fock space over H,, i.e. X is the space of
infinite sequences: if H, = L,(R"), then

(Fo(Y), Fl(xlv y), . ’Fn(xl’ e ,X,,, y)s . -), (lla)

where x;, ye R and the functions F, are antisymmetric in x;;if Hy = L,(R*) @ L,(R"),
then ¢ is the space of two index arrays

{Fm(Xyy o X, 24, o3 Iy Yooy myn 2 0}, (1.1b)
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where x;, z;, yeR" and the functions F,, are antisymmetric in x; and in z;,
simultaneously.

In the case (a), we define creation-annihilation operators a*(f) and a(g), f,ge L,(R")
which satisfy the canonical anticommutation relations (CAR)

a*(fa*(g) + a¥(ga*(f) =0,
al(falg) + algla(f) = 0,
a*(falg) + alg)a*(f) = (f, 91,

where (f, g) is the scalar product in Ly(R"), which is assumed to be antilinear in the

second argument.
In the case (b), we define in addition creation-annihilation operators b*(f), blg),

1. g€ Ly(R), which also satisfy the CAR and, moreover

a*(fb*(g) + b*(@a*(f) =0,

where ‘# means either “** or the absence of the asterisk.
Let self-adjoint operators hy in H,, h, in Ly(R") be given. Let us consider the self-
adjoint operator in ¥

Hy= diith)® 1 + 1 @(hz),

where dI'(h) is the second quantization functor ([3]).
We shall consider Hamiltonians of the type

H=H, +¢U, U:J

V.dz, e€eR, (1.2)
R

where the operator V belongs to one of the classes of operators A or B. These classes
of operators are defined differently for cases (a) and (b).
Case (a)
Let [ = a*(y,) - a*(y)Q® Y. ¢;. ¥ € S(RY); then V € 4 means that
M

Vi = Z f dxm,+1,"'dx1 dy Kj(Xpy 41 -5 X105 Vi y2) X

ji=1
X (X, 41) o @4, 4 )alx) - alx)a* (@) - a* (Y )Q @ Ylyy), (1.3a)
KjES(Rv{kj+m,-+2})’
ie. V is an integral operator in the tagged particle; if Ve B, then

M
Vf = Z Jdxm,+l,"'dlej(xmj-+ljv'"’xl’y) X

j=1
X @ (X, o) e A%, 4 )a(X) o alx)a* W) - a* (Y )Q @ YY), (1.4a)
Kjes(Rv'(kj+m,+ lb)’

i.e. V is a multiplication operator in the tagged particle.
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120 D. D. BOTVICH ET AL.

Case (b)
Let [ = af(,) - a*()Q, ® (b)) 16X, )Q% ® Y. ¥;, @;, weSRY), then Ve A
means that

M
Vil=Y d,\‘,,,l”J--‘dzldy,Kj(x,,,jHj,...,,vcl,z,,,j+,j,...,zl, Vis ¥2) X
i1

X (1*(-\’m,+11) a*(xlj+ 1)0(—’%) - alxJa*(y,) - a*(lﬂ,)Qa ®
@ b*(zp,4,) -+ b¥(zp, 4 1)D(2,) - Bz )B*(,) - b*(0,)Q @ Yy, ),

K e SR mirprart 2y, (1.3b)
if Ve B, then
M
vi=Y Jd-“m,H,"'dzldJ’lKj(xm,H,-v-~sx1’Zm,-+1,~’~~~,21,y) x
i=1

x a*(xm,u,) a*(-"z,+ Jalx,) - a(x)a*(y,) -+ a*(y,)Q, ®
@ b*(zp,4q,)  bMzp, 0 B2, - Bz )0 -+ b¥(0,)Qy ® (),
K;e SR *miteita+ 1y (1.4b)
Here we use operator-valued distributions defined by

a*(f) = f a*(k)f(kydk,  a*(f) = f a*(x)f(x)dx, L3

a(f):Ja(k)f:'(k)dk, a(f):fa(x)f(x)dx,
o 1 .
a*(kya(k') + a(k')a*(k) = &k — k), flk)y= o v/2j e "N f(x)dx,
T
and similarly for h(k) and b*(k).
If T_ is the representation of the group of space translations in A, ie.
T:(Fo(}’)» Fl(xla y)» .. ) = (FO(y - Z), Fl(xl -,y — Z), .. ')y
then V_ is as in (1.3a) (for A) and as in (1.4a) (for B) with a kernel (e.g. for case A) of the
form
KiXp o, —2,....X, =2,y — 2, y, — 2)

and similarly for case B.
The operator V is bounded in # and we assume it is self-adjoint. Then, if both of
the following conditions are fulfilled

My =Maxm;=maxl; < oo, m=1,1>1, 16
j i (1.6)

Pmax = Mapp; =maxgq; <o, p;>1,¢;>1,
J j

then H is symmetric in the domain D (dense in ') of vectors in case (a)

a*@y,) - a*(y,)QA® ¥, (1.7a)
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where Q is the vacuum vector in Fy, ¥/}, e S(RY),
in case (b)
a*(y,) -+ a* (P )Q, ® b)) - DX )% ® Y, (1.7b)

where r,s = 0, ¥, ¥;, @;eS(R°).

In fact, it is known that H is essentially self-adjoint on D. This follows from
theorems of Kato or Nelson, and also from the convergence of the expansions
obtained below.

Let us define the inverse and direct wave operators as follows

W, = exp(—itH,) explitH), W, = exp(—itH) exp(itHo).

The main results are the following.

THEOREM 1. Let v > 3, and either hy = h, = —A for case (@) or hy =(—A) + A,
h, = —A for case (b). If (1.6) holds and V belongs to A or B, then there is an
£o = £o(v,m, V) > 0 such that for |g| < g the following strong limits of direct

W, =s— lim W, ;

1=+
and inverse
Wi =s5— lim "V,, W
t—+x

wave operators exist.

Remark 1. In a certain sense, Theorem 1 cannot be improved. In dimension v = 1,2
even for a particle in an external field, bound states can appear for arbitrary small ¢. .
For m,,, = 0, where i

M, = minm; = min
J J
under conventional ideas mass renormalization is required. Smoothness conditions i
for kernels K; can be substantially weakened, but this is not required under the ;
present state of affairs. It should be noted that for the existence of direct wave
operators, one does not need ¢ to be small. This can be easily proved by Cook’s
method.

Let us define the class G of functions h(k), ke R", such that the matrix of second-
order derivatives has a nonzero determinant for keR".

Let us note that the functions h(k)=k* =(k, k) and h(k)=k*+m?, m>0 (one-
particle relativistic Hamiltonian) belong to G.

THEOREM 2. Let h, and h, belong to G, v > 4, m,,, > (v+2)/(v—4). If we have (1.6)
and assume that V belongs to A, then there exists an &g = &o(v,m, V) > 0 such that for
le| < &g strong limits for direct and inverse wave operators exist.

Remark 2. Limitations on dimension v ~ 4 and on the degree of interaction
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Meyin > (0 + 2)/(v—4) in Theorem 2 may perhaps be weakened up to v = 3, My 2 1,as
in Theorem 1.

A standard consequence of Theorems 1 and 2 is the following corollary.

COROLLARY 1. Under the conditions of Theorem 1 or 2, Wy, W, are unitary and
yield unitary equivalence of H and H,, ie. for example, HoW. = W.H.

We also consider the operator H which preserves the number of particles and
which is defined either on FM(LRY), ® L,(R") (antisymmetric case) or on

F™(L,(R), ® LR (symmetric case) in the following way
N N N
Hﬁz—Zij—A,.HZV(x,.—y)zH’g+eZV(x,.—y), (1.8)
=1 i=1 =1
where V(x)e S(RY), x;, yeR".

THEOREM 3. Ifv 2 3, Ve S(RY), then there exists an &g = golv, V) > 0 which does not
depend on N and is such that for all N and |g| < & the system (1.8) is asymptotically
complete and H{' is unitarily equivalent to the free Hamiltonian HY.

2. Proof of Theorem 1. Perturbation Series

Let us consider the following series for 0 <t < %0, yeD

v+ s (is)"j U, - U, dty - did, @21
n=1 i

o

where
., = expl —itHy)U explitHo),
or = (Lot L > > > t, >0}eR"

: =

We will now prove that the main result is the following.

LEMMA 1. Under the conditions of Theorem 1, there exists an & >0 such that for
le] < &o:
(1) the norm of nth term of the series (2.1) is bounded by (eC)"C(¥), where C does not

depend on n, Y, t and C{ys) does not depend on n,t;
(2) the nth term of the series (2.1) tends to a limit in the norm topology as t = ©.

From the first assertion of Lemma 1, it follows in the standard way that (2.1) is
equal to W and, from the second, that there exist inverse wave operators W. For W,
everything is the same and that is why Theorem 1 follows from Lemma 1.
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Remark 3. For v = 1,2, analyticity in ¢ cannot be proved, even for direct wave
operators; however, their existence can be easily proved by Cook’s method for
arbitrary e.

Let us consider only case (a). Case (b) is similar.

The operators h, and h, in the k-representation are the multiplication operators by
the functions h,(k)=hy(k) =k* = (k, k).

We shall prove Lemma 1 for interactions V of class A. For class B, the proof is

similar.
First, we shall prove Lemma 1 for a dense subset in A and then we shall extend this

proof to all interactions in A.
Let the interaction V in the k-representation be of the following special type

V = V{l)® V(Z)
JZI

2.2)
mji+i;
ij__.‘[ ]—[l fiotkjpa* (k;,)dk ,,
o=

where # = = for p=m; + I;,...,1; + 1, the order of creation-annihilation operators
in the product being the same as in (1.4)

l/j(Z)d/ = ('l’» gl)L’ d/e LZ(R‘.)’ (23)
for some f,, f;, g;€ S(R®).
Let us rewrite more thoroughly the nth term of the series (2.1) for vectors of type
(1.7)

zj dt,,--‘dtlj dz, ---dz, x
n 4 R™*

# (it h (k) iz ke
Jnfn(l)p lp (kvp)e Hell e 4 dkvp X

x a*(y,) - a* (Y )Q ® (24)
®J n gyt Mok + iz =2 )fnlt gnl»)(k Jdk, x
v=1
% e*”nhz(kn L A l)fn(n)(kn+ 1)’
where 7 is an arbitrary permutation (1,...,n) = (1,..., M), 1, = 2o = 0, f, 0, = ¥. The

sign + depends on whether the varlable k,p corresponds to creation or annihilation
operators (in the first case it is "+, in the second it is *—’).

Our estimates will be uniform in =, so for conciseness, we put n(v) = v.

Let us integrate w.r.t. the space variables z,,...,z,. We get rid of the arising o-
functions by integrating w.r.t. the variables k,, ..., k,, which are connected with ‘the

A R TR Aot e e
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particle’. After simple calculations, we reduce (2.4) to (we denote G, = Jate - )Yrw))
J d,---dt, f n_f'l.‘p(k,,,)a#(kl.,,)eiilph-(k.vp) dk,, x
o p

X

el“( o *l.)hz‘k.-)G"(kv)d <Z ( i kvp) + kL‘ - kv+ 1) dkv X
P

\:a

v=1

X a*() - a* @) ® (e f (k1)

dtn T dtl n J f;r,p(kvp)a#(kvp)etilrhl(klp) dkvp x
v.p

o

% J eltte-1 —kIG (K ) x

a

X a*(,) - a* (@ JQ @ (e M- Of (ks ),

and the sign + is defined as in {2.4).

3. Expansion in Resummed Diagrams

The integrand in the right-hand side of (2.5) has finite norm, however we must also
perform integration in the time variables over an infinite interval. To obtain the
necessary decay in time, let us note that the last product I, , in the right-hand side of
(2.5) is the product of Wieck monomials and can be expanded into a sum of Wieck
monomials which are enumerated by Friedrich diagrams [11]. It is well known that
an arbitrary diagram does have the necessary decay in variables ¢;, but the number of
diagrams has factorial growth in n. That is why it is necessary to perform a mutual
contraction of diagrams. So we shall use another expansion, which is, nevertheless,
equivalent to some resummation of diagrams.

We single out in any vertex v the extreme right creation operator a(k,,) and, using
anticommutation relations,

alk, )a*(k,.;) = —a*(k.palk,,) + ok, —ky ), v <, (3.1

we carry this to the right of the vacuum vector Q.

After the applications of (3.1), one of two terms in its right-hand side appears. If the
first term appears, we continue carrying to the right and if a 6-function, i.e. a coupling
occurs, then we say that the line (v1,v'j) of the diagram appears. So we shall have
exactly n lines (v1,v'(v)j(v)), v = 1,...,n. Moreover, if coupling occurs with the
creation operator from the vector

a*(y,) - a* @ )Q = J [Ta*(k, )k, ) dk,; Q,
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we say that v'(v) = 0. All pairs (v'(v), j(v)) are pairwise different.
After all these operations in (2.4), instead of the operators a(k,,), a*(K, ). juy) under
the integral, we get
n 6(k1'l - kl"(l‘)j(r))’

fe e jient e =1

where the sum X is taken over all arrays of pairwise different pairs such that v'(v) < v.
We take this out from under the integral sign and integrate over all variables Kooy ey
v=1..., n. Then all é-functions disappear. We put

F= 11 fatke otk G, (k).

then the integrand reduces to
FIT Ufiptkepe =M %oa* k, )] x
v.p

X exp(—i z’l: [( - tr* 1 + tl')hz(kr) + (- tl"{v) + [l')hl(krl)]> X (32)

r=1
x Q@ (e bk, L),

where in k, all the ke .jey are replaced by k., Il' means that the factors
corresponding to (v1) and (¢'(v), j(r)) are absent and f;,, = ¥,

Let us consider the graph G with the verticesn,n — 1,..., 1,0 and lines (v, v'(v)). This
graph is connected by construction.

4. Stationary Phase Bounds and Summation of Diagrams

Let us single out the integral in (3.2)
J F exp (—i Y=ty — 1 )Mk)? =ty — t,.)(kl,1)2]> [T dk., @1)
v=1 =1 .

= J F, exp[ — Bk, k) + i(a, k)] dk,

where k =(ky,...,k,;), a is the vector linearly depending on the k,;, j # 1, which
appear when one unfolds the brackets in (k)% Let us put

_%(Bk* k) = v[ i (zr—rr' l)(Et‘“)z:l *[

r=1

I][\/]a

(1 + tr - Il"(l‘))klz'l:l
= — }{B k., k) — 3B,k k), 4.2)

kfl},
1

where k!' = k_and all variables different from k,,,...,k,, are set equal to zero,
E2 — kK
r r o

1

1P™1=

Fl = F eXp {’ i [([r*l - tl‘)(zig))z +

v=1 [

ey r vem e,
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Using the Fourier transform w.r.t. the variables (ki{s...,ky), (4.1) can be rewritten
as
!
(2miy™? /det B

j exp[i¥B ™~ 'x,x)]F,(x — a)dx, (4.3)

where X = (x;,,...,: Xp1)-
Let us note that (4.3) is a function of the parameters k,,, where p # 1, and

(v, py # (C'(x), j(r)).
To estimate (4.3), we use two propositions.

PROPOSITION 1. Since B, = 0, B, = 0, we have

1
te — tv'(r}l + 1)\‘/2 .

(det B)"! < (det B,) ! = n T
v=1

PROPOSITION 2. The integral in (4.3) (which is a function of the parameters k,, such
that j# 1 and (v,p) # (V(v), j(v)) belongs simultaneously to the spaces S(R)*™ and
L,(R*™), where N is the number of variables; moreover, its norm I Il; is bounded C,C"
uniformity in {t_}, where C > 0 is some constant not depending on n.

Proof. Let us put

fl = H jll(kll) exp(+ik[2,1), f4 = nl Gv(Ev)’
r=1 b=
fZ = n' j;"(x'lj(v) (krl)’ f3 = n” wj(v)(kul)’
where I’ is the product over all v that are not coupled with the zero vertex and 1" is

the product over all vertices that are coupled with the zero vertex.
Then

Fy=fifafsfaexp {i ‘Zn:l [y — tu)(kf;z))zl}a (4.4)

U explid(B ™ 'x, x)]F,(x — a)dx

<IE L < I oo Sl
NI ATT A TAN I ANTAN

where in (1) we use the fact that the Fourier transform of multiplication is convolution
and in (2) we use Young’s inequality.
Let us estimate uniformly in {k!¥, v = 1,...,n} the norm of the factors
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Hml = lj v1lker) exp(+lk1,l)H1v
12falh =TT il T 150l (4.52)

R 1 n _ n
“14“1 = W'[ !J‘ Cxp<—_ilz (Xm kl‘l)) Gt(kl) Hl dkvl

=1
1

..

1

|

T @
{U J G ,(x,)| dx, }{det(D )} {det(D)*)}

n

1 [T 16, < r[ Iflly el

j exp(—i(x, D™ k) fu(k) ﬁl dk,,{det(D™")} % 4sb)
v= v=1 .

Jo(D™ 'y x){det(D ")}

U dxvl

ol
where D is the matrix with constant coefficients such that k = Dk, where

( k) k=(kyys s kny);
= (Xygs-esXph

=
—_
=
=
x
=
)
—_—
)
|
Nl
*
-~

Since D is triangular with units on the diagonal, it follows from (4.5) that we have
the bound

1fy fofsfalls < (Cp)*Cl

where

Cy = max {L | fogllas 15500, 1Cfer exp(—ikE D} > 1,
v.J

Cy = max (L, 915, 19,11 > 1
J

Using the following bound (valid for any function Q€ L)

11l

‘U ,--~»YN)a#(Y1)”'a#(YN)dY1"'d}’N 2<

we get Proposition 2 for C = (C,)*" "2
From Propositions 1 and 2, it follows that the nth term of the series is bounded by

1
cr ) (4.6)
<<r'(v;.juvn U(Vv — ol 1) /2>

To estimate the sum of all diagrams, we use the following lemma [4].

et el s
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LEMMA 2. For v = 3 the following bound holds

n 1
,[Q?(Zr'nzi.:j(r)i rljl (Jt, = o+ 1) 2>

dt n 4.7)
! -
g (C('nmux)) r. [:JR(I + |[|)\2] s

where the sum X is taken over all arrays v'(v) < v such that among the numbers
e t’(n) can be not more than m,,, = max; m; repetitions of a nonzero value.

From (4.6) and (4.7), Lemma 1 now follows.

Proof of Lemma 2. The proof of the bound (4.6) is similar to the proof of (4.1) in [4],
where it was proved for the case m;, = m=2,r = 1.

Remark 4. Let us point out some special features of the proof of Theorem 1 in case
{b). Expanding in the diagrams, we carry over to the right-hand side only the terms
atk,).v=1,..., n. Then, as in case (a), we also obtain a sum over connected diagrams.
The main observation here is that Proposition 1 also holds. This was the reason we
used only an atk)-operator but no b(k)-operator. So again we have the inequality

B =B, + B, <B,,

and. hence, Proposition 1. The remaining part of the proof of Theorem 1 for case (b) is
quite similar to that in case (a).

5. General Type of Interaction

To prove Theorem 1 for interactions of a general type, it is sufficient to prove
Proposition 2. For this, one needs to establish estimate (4.4).
Let the Fourier transform of the kernels K; (case 4) be

Kie CyRy ! ms 2y,
then one can choose N so that

supp K,e[ =N, NJ**m*2) for any i.
Let

e, (k) = y(k) exp(2mink/A), keR,

where the function y(k) is from CF(R), 0 < x(k) < 1, ytk) = 1 for [k| < B and x(k) =0
for all |k| > B + 1. Choose 4 and B so that N < B < 2N < 4; then

K=Y cal ] enlko. (5.1)

where n = (n,, ..., ny), M = v(l; + m; + 1). It is evident that for any g, there exists a
¢(g). such that

el <D = Yo, (52)
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So we have represented the operator V by the series
V=Yoo v (5.3)

n

where the V! are Wieck monomials and V2 can be written as
vy = Z(V‘Z'w em)en = Z(tﬂ ViD*eslen = an i (5.4)

where the bi(y) satisfy a bound similar to (5.2)

< Sl T = T (55)

Choose g > 2v + 1 to be sure that the series of coefficients converges.

Using the bounds (5.2) and (5.5) and the fact that £, < M", one can repeat the proof
of Theorem 1 {and Lemma 1) for interactions V of type (5.3) and (5.4).

If K ;e S(R*%*™* ) we shall use the partition of unity

Y ailk) =1, (5.6)

where diam supp yz < const umformly in 7.

Then we represent the kernel K by the sum Ky of CZ-kernels and, using an
expansion similar to (5.1) for K,z (with correspondingly shifted functions ez), we
repeat the proof.

6. Proof of Theorem 2

We prove Theorem 2 for the inverse Moller morphisms W, . For W_, the proof is the
same.

We shall prove Theorem 2 first for a simpler form of the interaction V and then use
this simpler form to approximate the general case (1.3a).

We assume further on that the Fourier transforms f; ;, f;, g; belong to C3(R") and
that (2.2) is formally symmetric.

Let us put

fdk) = fk) ™, xeR, (6.1)

and suppose that V,, Vi, V{2 are the operators defined above into which f;; ., fi.

g; . are substituted in place of f;, f;, g;. Theorem 2 then follows from the following
Lemma.

LEMMA 3. The nth term of (2.1) converges in the norm topology when t — oo and the
norm of the nth term is bounded by (eCY'C(/), uniformly in t, where C does not depend on
n, Y, and C() does not depend on n.

First we shall prove Lemma 3 for interactions of type (6.1).
The nth term of (2.1) can be rewritten as

Z J‘(R) mn), x,, t,) - Vr(l), xq, ) dty - de, dxg - dx, i, (6.2)

R R o

s g

o A e
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where

V(i x. 1) = expl —itH V) @ Vi explitHo)
and the sum X, is taken over all maps m: {1....,nj = {L.... M}

So if ¥ = ® ¥ e D, the norm of (6.2) is bounded by

S v an), X, 1) - V@), x4 ot x
™ (6.3)

x |V 3 (r(n), X, t,) - VE(r(l), xy, O
First. we shall obtain an estimate for the second factor in (6.3). For /e Ly(R"), we get
VR v ) f = (f e Rty e itk ikl (6:4)
For any u(k). let us put
D(u) = {grad h(k): ke supp u},

R = inf!r: D(u)e sphere of radius r with center at the origin},

where inf is over all u = Yg,. figi. ¥ = ¥'?. We shall use the following estimate (see
Theorems XI1.14 and XI.15 in [3})

J expli(x, k) + ithj(k))u(k)dk‘

< Clutly gl x) j=1.2 (6.5)
where
(".11 +oe g
lully,, = 2 A
Ujg, . +v.;1‘gd oL &% "
. . LA+ % {xl < Rt
[(r. x) = Ig 4. x) = 6.6
rdl {C(d)xtl +o4 x> Rl (6
Further, we put d = v + 2. Using (6.4), we get

LVRmtn), X, 1) VD), X000 W

= Y| 1 e =7 O TT CM Il femlls W Gain 2.5 % (6.7)

i=1

n n
X jUZ [ feti- 09l j+ 2.4 ,~U1 W — X — x5,

where to = 0, x5 = 0.
For fixed '’ let us denote,

=sup sup Xx

n X1 Xn

x V3 r(n), X, ) - VR, xy, t )

A A R e S s i i SRR e g it e S8
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Now using X, < M" and performing x-integrations in (6.2),
dx, - dx, = dx;d(x; — x) - dlx, = X, 1)
using (6.6) and (6.7) and the bound
J dix; — x; ) < R — 4]
- X <RI - X W

we get the following estimate for the norm of (6.2)

ft; =ty "2 dey oo dey (6.8)

::

C"C((//‘Z‘)J Alty, ..oty

n
t

i

i=1

We shall prove here that (6.8) is bounded by C"C(y) uniformly in t. Convergence as
{ > o also follows from our proof. To do this, we must compensate for extra powers
of It; — t;_ | in (6.8). To simplify notations, we take A(t,,....t,) to be the norm of the
individual term

V(tl) T V(In)a*(wl) T a*(l//r)Qﬁ (69)

where V(1,) = V3(n(i), x;, 1) for fixed m and xy,.... X,
We shall use an expansion of (6.9) into the Friedrich diagrams. Complete expansion
gives too many diagrams, and we use a partial expansion which is more involved than

the expansion in Section 4.
First of all, we subdivide Q" into sectors the Q,

Q:l = Uan* Qlezz = 0* * = L5
DEFINITION. The index x denotes any partition of (n, .. .,0) into intervals
T T k= k@),
Ge=(mn—q +1....6, =(q. 0, g¢g;,=n |I']=gq:
given the n-tuple
(tye oo on b by > oo >t >0 = 1o,

we say that r; and 1, _, belong to the same interval if |, — t;_,| < 1. This defines a map
P: Q" — {a}. We say that (t,,.... 1) and (,.....1,) belong to the same sector if
Pty ... ty) = Pty ..., 1}).

The number of sectors does not exceed 2", so we must establish the uniform bound
C" for any sector. So let us fix some sector x and the right end points of its intervals
I.....T,. The set of these points is

lz(q] + -+ G- + 1,....q1+q2+ l.q] + 1)

For any annihilation operator which appears in V(t;). iei = I{x). one can pull it
through to the right in (6.9), i.e. to vacuum, by using the anticommutation relations. In
the process, either we get zero or a line of the Friedrichs diagram with ‘propagator’

(explit;h (K) + i(x;, k)) fim- €xplitshy(k) + (X, k) fop) (6.10)

S A A O
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for some jel and s <., or
(explit k¥ + i(xX ;o k) [ W) (6.11)

for some s, 1 <s<r.

We process all annihilation operators in all V(). ie i. in this way in some order (e.g.
from right to left).

Then we use the bounds {a*( /) < i f1. lla( /)| < |||} for all those «* and ¢ which
remain.

For (6.10) and (6.11), we use the bound (6.6) and get

const (6 12)
/2 .
(1 + |tj - [t|)

so we obtain graphs with n + 1 vertices n,..., 1,0. The graph is called admissible iff

(1) any vertex iel has not less than m = min(m;, k) lines to the right (i.e. which
appear from coupling of the annihilation operator at the vertex i),

(2) any vertex il has not more than m = min(m,, k;) lines to the left (i.e. from the
contraction of a creation operator from the vertex i).

Since [ja*(f)] < IS lla(f ) < LS, the expression (6.8) is bounded by

1
e 2 1 V2] T = 412

2 g lineS(l +‘[jwts“ iel

<CCWT Y ] :

.
x g lines(1 + |tj— [.\'|)

(6.13)

2 —vi2m,

where the sum X is taken over all admissible graphs for a fixed sector a.

Let us consider the quotient graph G = G/{I',,.... T} with k vertices 1,..., k. Itis
clear from the construction that G, is connected and has no loops. To any vertex
j€ G, weassign ‘time’ s; = 1,. wherei = i(I')) is the right end point of I'; . The set L;
of lines G, incident to the vertex j consists of the ‘left’ lines L;, connecting j with i < j.
Then

Lj = Lj.l o Lj.r‘ ’nmin < 'Lj.r| g ’nmux' (614)
Instead of t-interactions, we obtain s-integrations with the key property that
|s; —s;_ =1 foralli (6.15)
Let us note that there is not more than
[T (e L) (6.16)
graphs G with the same quotient graph G,.
We subdivide

1
Y ML Y S, PR S

(I+1t;—1) {L+1;—1) (T+t;~1)
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in (6.13) and use the second factor to compensate the combinatorial factor (6.16). For
any vertex je G, by (6.14) and (6.15),

[Ths = 8ol 2 (k)17 (6.17)

where the product is taken over all left lines (j. p)e L;,.
We are left with the bound

1
ZJ dsy-ds, |1 a, (6.18)

G linesof G, 15i = S,
where integration is over the entire domain
Sy > S > >8, >85 =0
under the conditions (6.15). We shall prove that if
a=v2—v2m,, —1>1 (6.19)

then (6.18) is bounded by C™=~. Integration in variables y; = 5; — Si-, yields

TY Y. (6.20)

G, =1 vy =1

This gives an estimate from above. Due to the connectedness of G,, (6.20) is bounded

by
<2 i 1 >mnm“
a
y=1 (1 + _V)

(see a similar bound in [4]). This ends the proof of Theorem 2 for the simplest class

(6.1) of interactions under condition (6.19).
The proof in the general case of the interactions (1.3a) is similar to that in the

general case of Theorem 1.

7. Two-Point Interaction

Let us prove Theorem 3, first for the antisymmetric case in the space X'; this means

that &, > 0 does not depend on N.
The difference from the case above is that the interaction operator in ‘second

quantized’ representation looks like this:
EJ‘ Vix — y)a*(x)a(x)dx, xeR", (7.1)
i.e. it has an additional d-function.

However, the proof of this theorem repeats the proof of Theorem 1 with changes
produced by the above remark. We focus only on these changes.

s ot L0

e
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The difference is that in (2.2) we have M

= L.m; =1 = 1and there is an additional
o-function

V= f Vix, — 1)d(x, — Xy)a¥(xy)a(x,)dx,dy, ® o,dy,

where 0, is d-function in ).

Let I7(I<) be the Fourier transform of V(x), then in the k-representation the nth term
of the series (2.1} for vectors (1.7) looks like

e

fQ" dtn T d’l l—I {f I7(k('2 - krl)exp(i[r [h(ktl) - h(klz)]) X

x a*(k, Ja(k,,)dk,, dk,.,_} ary,) - a0 ® (7.2)

® [ I f e TS ke ki, — ke 1>dk,]dk” Wik, ),
r=1

where h(k) = k2.

Let us note that in this case, all functions satisfy f,
Jo=1.
We get rid of the d-functions in (7.2), obtaining

=lg.=tforv=1,. n:

f dr, --dr, [] U Vik,y = koexplit,Thik,,) — h(k,)]) x
or

x a*(k. alk,,)dk, dkl.z}a*up,) e aMy ) ® (7.3)

® ,: H el 1,)!111(,;] dk, ., 1‘//@1)-
r=1
where
Er = kl‘l - er + kn+l'
We expand (7.3) in the Friedrichs diagrams. We denote by "v(

vertices which are coupled with the vertex v, 'v(v)
Any term of this sum has the form

v) the number of the
>v. Let us put y = 1, if v'(v) # 0.

J r{esalfpelas

® ennh(kn‘.il//(/"(l){ﬁ dk“}{ﬂ dk,z}, (7.4)
r=1

vel
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where

— 0, =1,
{n V ‘peyl T xl)e A=t U‘ )l/,_,(l) )} X

vel

s {H P,y = kpy)e ooy (k) X (7.5)

vely

X exp(i ; [(t,_, — tIhk,) ])

and I, is the set of vertices with which there are couplings, i, is the set of vertices with
no couplings and [ is the set of noncoupled arms of vertex 0.

Let us consider functions F, in the variables {(k.,, v=1,....n}, and (K., vel,l,
k,. ., where

= {n V(k'rlr)l - krl)l//j(v;(krl)}{ n i;'(kfo - krl)wj(r)(krl)}~
rel, vel,

Let us carry out the Fourier transform of (7.5). It is sufficient to prove the analog of
Proposition 2 for the function

Fotkoy rels kyyy)

l . n n
= WJ <j exp<*1rz1 (x,. k,.1)> F (k) ,Ux dk,.,>

PROPOSITION 3. The function F(k,y, v €15, k,, ) belongs to Ly(R*Y). where N is the
number of variables {k.,. v € i)', k,., and its Ly-norm has the bound

n dx,. (7.6)

r=1

[F.ll < C"Cy,

where C > 0 is some constant not depending on n, . .. .. ¥,, C, > 0depends only on

2% ZORER

Proof. Let us put
k=(kip s kg X =(Xyyeo, X

Subdividing for any component of k; = (k4. ..., kL)) the interior integral into zones
(1x?] = 1), and (}x""] < 1) and integrating by parts in the first case twice over kW, we
obtain

|Folkoa, 0E 1y Ky gl

l ‘:ZmFl(k)
|x|+1 e kY
J ‘*Z\nF
<

(‘12]\,11)___ 1\(\)
1 (v
where [x,| = [x{"] + - 4 X

n

11 dk,, [] dx, (7.7)

r=1 =1

rie

r=1

T

O

Tz
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Let us note that w(k,) depends on not more than 2r + | variables, since
k= — 2 ke +kyy + 2 ket
vel, rely
where I is the set of vertices which have lines with vertex 0.
So we get no more than C™2r)* terms for the derivative in (7.7), and, moreover, the
derivatives of V, Yis.... ¢, will be of orders not exceeding 4v and those of i of orders

not greater than 2rv,
Thus

le(kl-zs UEih ko)l < C"Zf IF‘ljj(k” ﬁ dk, . (7.8)
J v=1

where F{ looks like F,, but instead of V, ¥, ¥, their derivatives of the orders pointed
out above appear.
It follows that

sy [ [ i an, [ rn 11 k) x
I =1 vr=1

J
x [ dk., dk, , . (7.9)

tel

Any integral in (7.9) can casily be estimated by Fubini’s theorem and by using
W%, — k) <C. for vel,,
Wkl < C,.
After a change of variables, we get the required bound.

Remark 5. In the symmetric case, the Bose creation a*(f) and annihilation a(f)
operators are unbounded on F(L,R*) and bounded on any FY(L,R*) by

/1ol + 1y,

In our case, we always get exactly r noncoupled creation operators; this allows us to
uniformly estimate the norm of thejr product for any r.
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