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Uniqueness of Gibbs Fields via Cluster Expansions
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For the unbounded spin systems one cannot get cluster expansion if there exist
large enough boundary values. A simple idea to avoid these difficulties is to
prove that with probability p, — 1 when A1 2’ there is a large subvolume A’ of
A such that on dA’ all spin values do not exceed some fixed number. This gives
a new method to prove uniqueness results for the unbounded spin systems
generalizing some results of Refs. 1 and 2. The formulations of these results are
in Section 1; the proofs are in Section 2.
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1. THE UNIQUENESS RESULTS

Let Ay, 0<w<1, be the family of cubes A,y ={7€ 7" :{t?| < wN,
i=1,...,v}, Ay=A.
Let us define the boundaries of the set A

dA=09,A = {tEZ":t_E_A, p(t,A) = 1}
o,A = {t:teA,p(t,aA)= 1}

Let p be the Lebesgue measure on R”. We consider the lattice model with
values in R with the Gibbs measure u, , (dx,)on R* defined by

dp‘A,x;, _
n A= ZA’lMexp(— Urx,,) (1.1)
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where x;, is the configuration on dA (boundary conditions) and

Urx)y =M > |x— x|+ 3 P(x)
teA

[t=rf=1

(LrYNA=@
. (1.2)
P(x)= > my| x|
Jj=1

where v, > La <y, >y (> - >y, >0,my>0, m >0. Let us fix a
positive number B to be specified below and a configuration x A on A and
let us define the set of “B points” with respect to x,:

Dy(xp)={tEA:|x|> B)

The sequence L = (¢,, . . ., #,) which is contained in (A — Anya) 0 Dg(xy)
is called the B path with respect to x, if , E9,A, ¢, € 3 Anja L, E(A—
Ay =(A=Aysp, j=2,....,n—1, |t,—t, =1, i=1,...,n—1.
Let Py = P,(x,,) be the probability of the existence of at least one B path
(with fixed boundary conditions).

The main technical result is as follows:

Lemma 1. If y, > a then there exist B >0 and 4 > 1 such that if
boundary conditions x, for all # € dA,, satisfy the following estimation,

x| < 44" (1.3)
then
Py < Ciexp(— C,N) (14)

where constants C,, C, > 0 depend only on B, P(x), », m,, and 4. If Y= a
then instead of (1.3) one must assume

x| < 4,47 (1.3
where 4, >0, 4, > 1.

Let us consider the class U =U(A4), 4 > 1, of random fields on a
lattice such that for any N and all 1 € S, (Sy = {t:p(0,/)= N })

P(lx|> A7) = o(ISy|7") (1.5)

This class contains all translation-invariant fields for which P(jx,| > M)
decreases roughly faster than (In(In M))~¢~ D,

Let us consider also the class of Gibbs fields on the lattice with the
interaction (1.2) for which either

(i) a=2,  P(x)=mx’+\P(x)

where P is the polynomial of the finite degree > 4 bounded from below,
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A > 0 is sufficiently small, or

(i) myg > 0 1s sufficiently small

Theorem 1. Any Gibbs field with fixed interaction of the class (1) or
(i1) is unique among the fields of the class 11(4) for some 4 > 1.

To prove this theorem let us note that as it follows from Lemma 1
there exists with probability 1 — Py the (random) volume A, A, s CACA,
such that |x| < B for r €9A. Let us choose for the given A and X,
maximal such volume A_,, (if A, and A, satisfy the above condition then
their union A, U A, also satisfies this condition).

Let us consider the random event

Q(Axg5) = {xp 1 A=Apand xyly5 = X34 )
This event is measurable with respect to the o-algebra 2a- i generated by

random variables x,, € A — A. Then the conditional distribution in A
with respect to Q(/"i,xa %) is the Gibbs distribution in A with boundary
conditions x, ;.

Let us denote it by p Roxase

In cases (i) and (ii) one can obtain the cluster expansion (see Refs. 3, 4,
and 5) for Pix,;- Integrating this cluster expansion term by term with
respect to the distribution P of A and x,; we obtain the cluster expansion
for the correlation functions with probability 1 — P,. We need not know
the measure P exactly as it does not influence on the terms by of cluster
expansion with R C A, .. Then if we tend N-> oo we prove uniqueness
and obtain the cluster expansion coinciding with that for the empty
boundary conditions. Theorem 1 is proved.

2. PROOF OF LEMMA 1

It is convenient to design the potential
a1
(D(xt !xt’) = mOIxt - xt’l + '2_1, (P(xt) + P(xt'))

and the transformation of R into itself

x—C, x>B
8(%) = 8pc(x) =1x, |x| < B (2.1
x+ C, x< —B

where 0 < C < B.
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Lemma 2.1. We consider C < B. (a) If |x,|,|x,| > B then
1 .
O(x1,x2) > B(g(x1) 8(x2)) + 5, min (P(x) — P(g(x)))

> ®(g(x)), g(xy)) +d (2.2)
where d = d(B,C) > 0,

(b) D(x1,xy) > B(x,, g(x3)) (2.3)

if |x,] > B and |x;| < |x,| + Cylx,)'*< for some C,>0 and sufficiently
large B > 0; moreover, € > 0 for y, > a and € = 0 for vy, = a.

Proof. (a) is evident.
To prove (b) let us write, e.g., for x, > B,

D(x), x) — P(x), g(x2))
= |x; = x| = |x; = x, + C|* + P(x;) — P(x,~ C)
> Colx "7 = Cylx, — xp|* !

for some positive constants C; and C, which do not depend on B. Then for
I+ e<(y,— 1)/(a—1)for y, > a we obtain the proof of Lemma 2.1.

For vy, = a we must consider two cases. If x;, — x, < —C, then |x, —
X|* > |x, — x,+ C|* and P(x,) — P(x,— C)>0. So (2.3) is evident. If
x; — x, > — C then taking e =0 and C, sufficiently small we obtain the
proof of Lemma 2.1. W

Now let a configuration x, be given for which at least one B path
exists. Let T = T(x,) be some 1-connected component of D,(x,) contain-
ing at least one B path.

We define also »n sphere S, = {t:5(¢,0)=n}, where §(¢,t')=
max,|#? — )|, and define the sequence of numbers B, = B + CoB'*",
B,=B,+ CyB/*, ... .

We delete now some points from 7. Let us denote T, the set of points
t€T NS, such that |x,| < B, y, n=N/2+1,..., N. We denote the
remaining subset by T = T\(UN=n 241 T,)-

Definition. Any maximal l-connected subset of T éontaining a l-
connected path (B path) connecting 3,Ay , and 9,Ay 4 is called a regular
B set.

There can be more than one regular B set R. We shall estimate the
probability that there is at least one such R.
The main properties of R, which we shall use later, are the following:

(a) |R| > N/4 (2.4)
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(b) Ifr€ R and forsomem=1,...,N/2|x|> B, then for any ¢,
such that |t — ¢#}=1and ¥ €R

x| < By (2:5)

Both (2.4) and (2.5) follow from the construction of R.

To prove the main estimation (1.4) we shall make use at the modifica-
tion of “Peierls argument” for the comparison of the numerator and
denominator in the Gibbs formula. Let us define the transformation
G = G(x,,R) of the set X, of configurations in A into itself

X, tER

(Gx),= g(x), teR

(2.6)
Let us fix the set R C A and the set X { of configurations x, in A such

that R is the regular B set for any x, € XX. We are interested in the
probability of such X X:
[ xgexp(— Uy, ) dus
P(xP) == (= Yas) fA) Q.7
fXAexP( - UAvXaA) dp'o
If we take into account that G leaves the Lebesgue measure p{" invariant,
then from (2.7) and estimations (2.2) and (2.3) it follows that

P(Xf) < Ciexp(— G| R|) (2.8)

The constant C, may be taken large enough because B may also be taken
large enough; and d=d(B)—> o if B> as v, >1 and C <« B. The
number of regular B set R with |R| = m does not exceed [dAj 14 C™
Recalling the property (2.4) we have the desired proof. W
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