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Abstract

Main goal of our presentation is a review of (earlier and new) results and problems concerning non-
equilibrium statistical physics of large systems of particles (vertices of large metric graph) with
arbitrary quadratic interaction and (deterministic and random) external influence. In particular,
we consider conditions for resonance, time evolution of the distribution of potential and kinetic
energies along the graph, and other problems.
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1. Models

We observe many qualitative phenomena in physics and biology and it is natural to look for
mathematical micro models with similar qualitative behavior. For example, biological organisms
can exist only in very narrow temperature range. Moreover, the temperature of all parts of the
organism should be in this range. Between these parts there are many interactions which still are
not yet understood on the level of mathematical non-equilibrium statistical physics models. That
is why it is important to find some many component models with external random forces and the
following properties: 1) it should demonstrate various qualitative phenomena, like smooth (small
fluctuations) temperature distribution along the components of large system, 2) some external
forces can produce resonance, that can “kill” many component system, 3) most interesting is
that some random forces also can help to avoid such resonance, 4) this model should not be too
complicated, that is should allow to obtain various rigorous mathematical results.

First of all, we assume that internal forces are purely deterministic and only external can be
random. We consider the following general linear systems of N0 point particles in Rd with N = dN0

coordinates qj ∈ R, j = 1, .., N . We denote:

vj =
dqj
dt
, pj = mjvj , j = 1, .., N,

q = (q1, ..., qN )T , p = (p1, ..., pN )T , ψ(t) = (q1, ..., qN , p1, ..., pN )T ,
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where mj is the mass of the particle which has qj as one of its coordinates. Potential (interaction)
and kinetic energies are defined as follows:

U(ψ(t)) =
1

2

∑
1≤j,l≤N

Vj,lqjql =
1

2
(q, V q), T (ψ(t)) =

N∑
j=1

p2j
2

=
1

2
(p, p),

The time evolution is described by the general linear system

q̈j = −
∑
k

Vjkqk + fj(t, pj), j = 1, .., N, (1)

or, in vector notation,

F = (0, ..., 0, f1(t, p1), ..., fN (t, pN ))T

as
q̇j = pj ,

ṗj = −
∑
k

Vj,kqk + fj(t, pj),

or
ψ̇ = Aψ + F, (2)

where

A =

(
0 E
−V 0

)
Here V is positive-definite matrix which defines the interaction between objects (particles), fj are
external forces acting on the coordinate j.

Two examples:
1. The simplest example (called harmonic oscillator) is N = 1 with the equation

q̈ = −ω2
0q + f(t, v),

where f(t, v) is the sum of two terms: driving force g1(t) and dissipative force g2(t, v) = −α(t)v +
β(t), where α(t) ≥ 0, β(t) can be random stationary processes.

2. Imagine that N coordinates qi of particles are vertices of some metric graph without multiple
edges l = (i, j). The edges of such graphs are all l = (i, j) such that Vij 6= 0. Assume also that for
each edge l some non-zero number al (its length) is given. We define potential:

U =
∑

l=(i,j)

(qi − qj − al)2,

which provides interaction force on the coordinate j:

Qj = −∂U
∂qj

.

Particular case (very popular in the literature) is the linear graph with edges (1, 2), (2, 3), ...,
(N − 1, N).
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Most interesting case for us is when all fk = 0 except one, for example, for k = N . For example,
convergence to Gibbs equilibrium due to white noise force [12] or due to random collisions of particle
N with external particles [9], convergence to Liouville measure due to energy conserving collisions
[11]. But convergence to equilibrium is not yet a really non-equilibrium phenomena. For example,
in biology such Gibbs equilibrium is death.

Simplest (but not “simple”) non-equilibrium models are linear models where each particle
does not walk randomly in space but is situated in its own potential well, however it can have
complicated dynamics inside its well. Moreover, the well itself moves in space. For such model it is
necessary that particles could not collide. Example is [10], where using such model, we proved the
convergence (under some scaling) the macro Euler equations for Chaplygin gas, very popular now
among physicists in (besides the gas itself) such fields as string theory, ball lightning, dark energy.

Adding nonlinear perturbations is more difficult problem and could demand cluster expansion
techniques. But, seemingly, it will not add much in qualitative features of dynamics because any
non-degenerate potential well is approximately quadratic.

The main question is to find parameters (V, F ) such that qk(t) and vk(t) are bounded uniformly
in t. Resonance is the contrary case - when as T →∞ for all or at least for some k:

max
0≤t≤T

|vk(t)| → ∞, max
0≤t≤T

|qk(t)| → ∞.

This can occur for many reasons:
1. External force is somehow synchronized with oscillations of the system itself. For the

harmonic oscillator this is the case when ω = ω0. Otherwise, there will be boundedness but the
bound is proportional to |ω − ω0|−1. If the dissipation force −αv with constant α > 0 is added,
resonance does not occur. For general α(t) we give examples when resonance does not occur.
We give also examples of other forces f(t, v), see also [1], where there are examples when the
deterministic dissipation force can be approximated by special random forces.

2. This could give impression that forces like

f(t) =

∫
a(ω) sinωtdω,

where the support of the function a(ω) contains ω0, also provide resonance. But this is not always
true. For example, if a(ω) is smooth and has finite support there will not be resonance. If f(t)
is random it should be in some sense symmetric with respect to ω0. But now there is no general
exact formulation.

3. For general case of N particles, if the external force sinωt acts on one specified particle, the
result is similar: for boundedness ω should not belong to the spectrum of the matrix V . And in
the boundedness case, the bound is also inverse proportional to its distance from the spectrum.
Such results were obtained in [7] for the case of linear graph with periodic boundary conditions.

4. Resonance for one particle shows complete periodic transfer of kinetic (heat) energy to
potential energy, and backwards. For large number of particles the situation is more complicated.
The central question is to understand how both energies are distributed over parts of the system.
In particular, the group of Petersburg physicists, see [7, 8], considered several linear models, similar
to (1) for linear graph. They considered similar force, as in (1), acting on one particle (they call
this “force loading”), and also the case called “kinematic loading” where one particle, say with
number 1, has fixed dynamics q1(t) = C sinωt, which disturbes the whole chain.
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5. Moreover, for the boundedness not only external forces but also the initial conditions (de-
terministic or random) qk(0), vk(0), k = 1, ..., N are very important. However, here there are many
asymptotics relative to large t and large N . In this case, without external forces, even if the initial
conditions are uniformly bounded, it does not guaranty the boundedness at all. If the initial con-
ditions are uniformly bounded but sufficiently random, then qk(t), vk(t) essentially grow with time.
That is, boundedness occurs relatively rare. But, for example, if the profile of initial conditions is
sufficiently smooth in some exactly defined sense, there are many examples of boundedness in the
series of papers [2, 3, 4, 5].

2. Conclusion

Main goal of our mathematical project is to find models of non-equilibrium mathematical
physics which could model various qualitative phenomena in physical and biological media.
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