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Introduction to stochastic models of transportation flows. Part I.

V. A. Malyshev, A. A. Zamyatin

Abstract

We consider here probabilistic models of transportation flows. The main goal of this introduction is rather
not to present various techniques for problem solving but to present some intuition to invent adequate and
natural models having visual simplicity and simple (but rigorous) formulation, the main objects being cars
not abstract flows. The papers consists of three parts. First part considers mainly linear flows on short
time scale - dynamics of the flow due to changing driver behavior. Second part studies linear flow on longer
time scales - individual car trajectory from entry to exit from the road. Part three considers collective car
movement in complex transport networks.
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Mathematical models of car traffic can be very different: from partial differential equations to modern com-
puter graphics where points move on video along the edges of some graph. We consider here only probabilistic
models. The main goal of this introduction is rather not to present various techniques for problem solving but
to present some intuition to invent adequate and natural models having visual simplicity and simple (but rig-
orous) formulation, the main objects being cars not abstract flows. Moreover, the postulates and parameters in
these models should allow statistical verification and estimation, and should not use doubtful physical analogies.
Probabilistic models should be tightly related to psychology of drivers, if the drivers are not robots. There is
no such theory, and we present an attempt to start it.

Probabilistic approach to transportation problems exists already more than 50 years, see [1, 2, 3], however
in this paper we follow newer probability theories and consider more difficult problems. There are however some
works which, for various reasons, we did not include in our introduction, see for example [12, 14]

The papers consists of three parts. First part considers mainly linear flows on short time scale - dynamics of
the flow due to changing driver behavior. Second part studies linear flow on longer time scales - individual car
trajectory from entry to exit from the road. Part three considers collective car movement in complex transport
networks.
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1 Car flows

1.1 Marked point fields

Current is normally the mean number J of cars crossing, per unit of time and in the given direction, some
section of the road. Flow is normally either a static random configuration

... < xi < xi−1 < ...

of cars at a given time moment, or a probability measure on the set of car trajectories {xi(t)}.

What is a car configuration In this paper the maximally detailed description for the configuration of cars
at a given time moment will be as follows. The car is specified by some index α. For example, a road (route)
with k (traffic) lanes 1, 2, ..., k , is represented by k lines, parallel to x-axis. Then the index α = (m, i) marks
out the i-th car on the lane m. Index i enumerates cars on the lane so that i-th car follows car with index i− 1.
Let dα the length of the car indexed by α, xα(t) - its coordinate (for example, of the front buffer). The cars
move in the positive x-direction. Further on we omit the lane index (the reader can add it whenever necessary)
and use only index i.

Denote
d+i (t) = xi−1(t)− xi(t)− di−1

the distance of the car i to the previous car at time t. The distance of the car to the following car

d−i (t) = d+i+1(t)

is also important for the driver.

How probabilities on the car configurations are introduced Formally, the point flow on the real line
R is given by the probability measure on the set of all countable locally finite (that is finite on any bounded
interval) subsets of R. Otherwise speaking, it is given by compatible systems of probabilities

P (I1, k1; ...; In, kn)

of the events that in the intervals Ij , j = 1, ..., n there are exactly kj particles.
The main question of course is how to specify this system more concretely. There are two big parts of

probability theory which use different ways of doing this. These are renewal theory (see for example, [6]) and
Gibbs point fields theory [23, 24]. The first is essentially simpler but works only in one-dimensional case. The
second has deep relations with physics, is suitable also for multidimensional point configurations but is more
complicated, and we shall not touch it here.

The simplest point flow is the Poisson flow, see [30]. Most natural way to understand it is as follows.
Consider the interval [−N,N ] and throw (choose) on it independently and randomly (more exactly, uniformly)
M = [ρN ] points, where ρ > 0 is some constant called density. It is easy to calculate the binomial probability
PN,M (k, I) that exactly k points will be inside the finite interval I. This probability tends, as N → ∞, to the
Poisson expression (Poisson distribution for given I)

P (k, I) =
{ρ|I|}k

k!
e−ρ|I|.

More general flows can be easily constructed on the half line [0,∞). Namely, random points

x0 = 0, x1, ..., xn, ...

are defined as the sums
x1 = ξ1, x2 = ξ1 + ξ2, ....

of i.i.d. (independent identically distributed) random variables ξi > 0, i = 1, 2, ..., with the distribution function
G(x) = Pr(ξi < x).

To define a translation invariant point flow on all real line one problem remains - how to choose point 0,
from which one can consecutively place independent variables to the right and to the left. For this one should
use the following (in fact, one of the main) assertion of the renewal theory. Let P (t, t+∆t) be the probability
that the interval (t, t + ∆t) will contain exactly one point. Then, if ξi have density, then on the half-line the
limit lim∆t→0

1
∆tP (t, t+∆t) exists and tends (as t → ∞) to ρ = (Eξ)−1. Then the limit (as t → ∞) probability
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density of the event A(t, s), that the distance from point t to the first random point xi > t is greater than some
s > 0, equals

ρPr(ξi = xi − xi+1 > s) = ρ(1−G(s)). (1)

That is why the first (after 0) point x1 should be taken on the random distance from 0 with density (1). The
following consecutive distances should be independent with distribution G(x).

Alternating flows The distances in-between neighbor points are not necessarily identically distributed. The
distributions can alternate. Take, for example, two sequences of i.i.d. random variables ξ1, ξ2, ... and η1, η2, ...,
and put

x2n = ξ1 + ...+ ξn + η1 + ...+ ηn, x2n−1 = ξ1 + ...+ ξn + η1 + ...+ ηn−1.

Then the construction of the flow on the whole line can be done as above.
In our case the (i.i.d.) lengths of cars di and (i.i.d.) functions d+i alternate.

Marked flows To each point xi of the point process one can assign some variable σi, taking values in some
set S. This variable is called a mark or a spin of the point (particle, car) i, then one can call the new object
random marked point set (flow, process). It is defined by some probability measure on the set of sequences of
pairs (xi, σi). Often the measure on the countable sets is given, that is the flow without marks being given,
then σi are considered to be i.i.d. random variables. In section 1.5 we shall consider marked process where the
marks will be the velocities of the cars, moreover with sufficiently complicated correlations of the velocities with
the coordinates.

About Markov processes The models of time evolution of cars often use Markov processes and it is useful to
remind some terminology. However, the mere definitions of the Markov process and its properties (for example,
ergodicity) may differ. We give the definition we use for discrete time.

Consider on some phase space X a system of measures (transition probabilities) P (A|x), meaning the
probability that the process at time t+ 1 hits the set A ⊂ X , if at time t the process was at the state x ∈ X .
If all measures P (A|x) are one-point, then it is equivalent to the deterministic map T : X → X , that is P (.|x)
is the unit measure at the point T (x). This deterministic map defines a dynamical system.

Note that the system of measures P (A|x) defines the mapping U of the set of all measures on X to itself

Uµ =

ˆ

P (.|x)dµ(x)

The notion of invariant (with respect to U) measure is very important. Normally one studies its existence,
uniqueness and other properties.

Using the system of transition probabilities one can construct various sequences of random variables ξn = xn

with values in X , or their distributions µn on X , where Pr(ξn ∈ A) = µn(A). The probability space is the set of
trajectories {xn}. For example, it can be stationary Markov process ξn, n ∈ Z, where µn are invariant measures
on X , or non-stationary process ξn, n ∈ Z+, with given initial distribution µ0 on X .

Markov process can be understood either as ONE of this sequences ξn, or as the whole family of such
sequences. Correspondingly, the terminology (for example the notion of ergodicity) differs. Dynamical system
with given invariant measure µ is called ergodic if any invariant subset has µ zero or one. Any stationary process
can be considered as the dynamical system - time shift on the set of trajectories. Then the ergodicity can be
defined as the ergodicity of this dynamical system. However more often, Markov process is understood more
generally and the notion of ergodicity is defined differently. Namely, the process is called ergodic if there exists
the only invariant measure µ on X , and for any initial measure µ0 as n → ∞ we have µn → µ in the sense of
weak convergence.

Note that Markov processes normally belong to one of two classes. The first class includes all processes
such that there exists a positive measure on X (may be infinite), with respect to which all measures P (.|x)
are absolutely continuous. This includes all classical Markov process - finite and countable Markov chains,
diffusion processes, etc. Such process are ergodic if there are no non-trivial invariant subsets (this property is
called irreducibility), and there is a unique invariant measure. In most cases convergence to it from any initial
state follows. For countable chains an equivalent condition is positive recurrence that is finiteness (for any pair
x, y ∈ X) of the mean hitting time of x starting from y.

The second class is characterized by the property that all measures P (.|x) are mutually singular. All infinite
particle processes are in this class. The theory of such processes is essentially more complicated.
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1.2 Traffic capacity as a function of velocity

Driver’s psychology in the simplest flow Detailed modeling of the driver psychology is impossible but
some relation is obvious. Thus, the driver i sees several cars (often only one car in front of him) in the flow and

chooses subjectively optimal distance to the preceding car. If the velocity vi−1(t) =
dxi−1(t)

dt of the preceding car

changes slowly, then one can assume that the driver’s reaction is faster, and the chosen distance D+
i depends

of the velocity of the preceding car at the same time moment

D+
i = D+

i (vi−1)

(index i says that the functions D+
i (v) can be different for different drivers). Let us call the flow algorithmic at

time t, if for all i
d+i (t) = D+

i (vi−1(t)),

that is all velocities are consecutively defined by the velocity of the previous cars. Of course, individual functions
can be interesting for policemen, but we are interested with their statistical characteristics. In probabilistic
approach the functions D+

i (v) become i.i.d. random variables, depending on the velocity v of the previous car
as a parameter. The distribution of these functions cannot be deduced from mathematical or physical laws, but
rather it depends on the individual and collective psychology of drivers and should be found experimentally, see
[22].

Deterministic dynamics without overtaking If all cars, drivers and velocities v are identical, then many
problems appear to be very simple. Let d be the length of cars and d+ = D+(v) be the distance to the previous
car, which the driver strictly follows. Already such dynamics allows to understand many qualitative aspects.

Let us define the road capacity as maximally possible current through it

Jmax = max
v

vλ(v),

where maximum is over the allowed interval of velocities, and where

λ(v) =
k

d+D+(v)

is the density of cars on k-lane road for a fixed velocity v. It is clear that the flow capacity can become smaller
when the velocity increases. This simple conclusion says only that many drivers increase the distance to the
previous car when the velocity becomes too big.

Random dynamics without overtaking We get the same conclusion if the velocities v are the same, but
the functions d+i are random independent, and their expectations (for given v) are equal to some number d+(v).
We see that the fact of non-trivial dependence of the road capacity from the velocity is in fact the trivial
consequence of the driver behavior and does not need any models. However, for nicer questions stochastic
models are necessary. Now we will introduce a sufficiently general probabilistic model with a rich spectrum
of phases. The well-known exclusion processes appear as a degenerate particular case. Other models see in
[12, 10, 22].

1.3 Random dynamics with overtaking (random grammars)

Here we have an interesting connection with recently discovered object - random grammars, see [25]. We give
short substantial description of one such model.

Let at time t = 0 all cars are situated on the left half-axis, and the movement is one-lane. We subdivide the
lane onto intervals (cells, enumerated by Z) of fixed length and assume that there can be at most one car in
the cell. Thus, finite sequence (group, cluster) of cars is identified with the pair (S, r), where r ∈ Z, and S is a
finite sequence (word) of three symbols 0, 1, 2

S = sN ...s2s1.

Here 0 corresponds to empty cell, 1 - to active (fast) driver in the cell, 2 - to a quiet driver. The length N = N(t)
of the word and all symbols sk(t) change with time, with the restriction that always s1(t) 6= 0 for all t ≥ 0. At
any time t any symbol sk(t) has coordinate x(sk(t)). The coordinates

x(sk(t)) = x(s1(t))− k + 1 (2)
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are uniquely defined by the coordinate x(s1(t)) of the first symbol, denoted by r = r(t).
This dynamics models the process of acceleration and slowdown of different drivers. It is defined as continuous

time Markov chain (S(t), r(t)) on the set {(S, r)} of pairs. Jump intensities are defined as follows. Process r(t)
models the movement of all group with common velocity v. Namely, r is increased by one with probability
vdt for time dt, and all coordinates immediately change correspondingly to formula (2). Thus, S(t) describes
replacements relative to some common motion, and is given by some random grammar, that is by the list of
possible local substitutions (5 substitution types), that is a subword of S to another subword. Any substitutions
of this list are independent and have different intensities (4 parameters). Here is the list:

1. 10 → 01 - fast driver moves to empty place in front of him, simultaneously creating additional free place
after him, with probability λ+

0 dt for time dt;

2. 120 → 021 - fast driver overtakes quiet driver with intensity λ+
1 dt;

3. 22 → 202, 21 → 201 - a cautious driver brakes, increasing the distance in front of him with probability
λ−
2 dt. Note that the length S increases here (extra empty cell appears), that causes the one-cell shift of

all cars behind. This is a non-local jump, in fact such rearrangement takes some time, but we assumed
that this time is on a shorter scale;

4. 200 → 020 - a quiet driver accelerates with probability λ+
2 dt (if he decides that in front of him there is

too much free place).

It is necessary to say that for exact formulation of results which we only shortly describe and to get various
qualitative types (phases) of movement, one needs to do various scalings of parameters t, N, λ, We shortly
describe only 3 phases.

1. If λ±
2 are small relative to other two parameters, then cars of type 2 move synchronously with common

velocity, and fast cars have additional relative velocity. If the number of fast drivers is small, then this
relative velocity is defined by the movement of one car among static obstacles and depends on the density
ρ2 of type 2 cars and density of holes ρ0, it is approximately equal to

vrel = λ+
0 ρ0 + 2λ+

1 ρ2

2. If λ−
2 is small with respect to other parameters (no non-local effects), and λ+

2 has the same order as λ+
0 , λ

+
1 ,

then the difference between types disappears. We have a process close to the so called TASEP - totally
asymmetric exclusion process. If

λ+
0 = λ+

1 , λ
−
2 = 0

then it coincides with TASEP (about TASEP see [12]).

3. If λ+
2 is small, and λ−

2 is large with respect to other two parameters, then the picture is different. Any
overtaking 120 → 021 immediately forces braking of the car 2 and, as a consequence, ALL following cars
slow down. For the cars closer to the end of the word the slow down will be very essential, if the flow is
sufficiently dense (few cells with zeros), as many type 2 cars will brake.

One can complicate the introduced dynamics, for example, to avoid discretization (see the end of this section),
introducing positive real numbers instead of zeroes - distances between consecutive cars. This demands essential
reformulation (see section 1.6), in particular for type 3 jumps, but rough qualitative effects will be the same.

1.4 Growth of a jam

If the incoming traffic flow to some fixed domain equals Jin, and outgoing flow is Jout < Jin, the number of
cars in this domain increases in time t on

t(Jin − Jout)

This is true, however, only if this domain is not situated on the road itself. For example, if the number of cars
in the jam on the road increases, the answer is different..The problem is that the domain itself can grow because
of the arriving cars. To make this more precise one should find an appropriate model.

Assume that the cars of the same length d move on one lane road with velocity v on the same distance d+

between consecutive cars. During some time t the movement has been stopped by some obstacle, for example
by red traffic light. Assume that any car stops on the distance d+0 < d+ from the previous car.
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Exersize 1 Prove that during time t → ∞ the jam (that is maximal length L(t) of the part of road, where all
cars stand still) before the obstacle will have the length asymptotically equal to

L(t) ∼t→∞ tv
d+ d+0
d+ − d+0

. (3)

It seems that this result depends only on the mean values and remains true even if overtaking is possible.
This was proved in [16] for independent movement of the cars (that is when the cars do not hinder each other),
moreover the car velocities can fluctuate but have the same values and equal v. The proof is absolutely not
trivial.

Local widenings and contractions of the road What occurs when a part of road with k lanes turns
to the part with l lanes. Let this occur at the point x = 0.

Case k < l. Assume that maximally allowed velocity equals vmax and the drivers are assumed to be
disciplined. All cars move along k-lane road with velocity v < vmax. And it is impossible to move faster due to
the fundamental relation

d+D+(v) = ρ−1

between density ρ of cars and their velocity. Then along l-lane road the cars could conserve the density and
move with the same speed, but ρ can change so that the cars will move with some greater speed v1. The time
gain is

L

v
−

L

v1

Case k > l. Here three different situations are possible.
Free flow If the flow is very sparse, then the cars arrive at the point 0 alone and will not notice the decrease

in the number of lanes.
Growing jam Denote Jk the incoming current and let Jl,max be maximally possible current along l-lane

road. If Jk > Jl,max, then the jam will grow, and the number of cars in this jam will grow as t(Jk − Jl,max),
more exactly as in formula (3).

Delay For the case Jk < Jl,max practical observations say that at point 0 jams of random lengths can
appear, which however will not grow too much. There are no corresponding stochastic models. To create such
model, it is useful to have a collection of models for shorter time phenomenon, Namely, when the standing cars
at the traffic lights start their movement. We shall describe some models of this type now.

1.5 Speeding up

In [9] the cars are points
... < xi(t) < xi−1(t) < ...

on the line. At initial time t = 0 the cars stand still and are described by Poisson point field with density
ρ < 1. The cars can have two velocities: 0 and 1, and overtaking is prohibited. Any incumbent car starts its
movement with speed 1, independently of the others, in exponential time with mean 1. It can occur that the
car with number i will reach the car i− 1 when it did not start its movement. Then the car i stops and resumes
its movement in exponential time after the moment when the car i− 1 starts movement. This rule acts at any
time. The model describes roughly how clusters of cars start to move.

The main result is that with probability 1 each car will stop finite number of times (if ρ < 1). Let ti be
the minimal time moment after which the car i does not stop anymore. Then for any i and k and any time
moments ti, ti−1, ..., ti−k the random variables

xi−1(ti−1)− xi(ti), xi−2(ti−2)− xi−1(ti−1), ..., xi−k(ti−k)− xi−k+1(ti−k+1)

will be independent and exponentially distributed. Otherwise speaking after leaving the jam, the cars will form
Poisson configuration with the same density ρ.

Assume now that at time 0 all cars are situated on the left half-axis. The distribution is again Poisson with
density ρ. Each point moves with velocity v > 0, if the distance to the next car from the right is not less than
some deff > 0, and stands still otherwise. Here it is evident that any particle will not stop starting from some

time moment. But in this model one can get more. Consider the following random variables: random time τ
(1)
k

when k-th point starts movement, random time τ
(2)
k when this point does not stop anymore, the distance xk

between points k and 1, starting from time moment τ
(2)
k .
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Problem 1 Find asymptotics of distributions of these random variables when k → ∞.

The connection with delay problem is evident. Let we have two lanes and on any lane the flow density be
ρ; the joint flow thus have density 2ρ. The cars from the first lane now want to squeeze into the second. The
squeezing algorithms can be quite different. For example, any car can squeeze independently of the others, if
its distances (along x-axis) to the cars from the second lane are not less than some d+.

1.6 Short and long range order with time dependent velocities

Here the cars are represented by points xi. To the car i a stationary random process wi(t) is assigned, which
defines time evolution of its velocity on empty road (that is when there are no obstacles in front of this car).
This process implicitly defines the activity of the driver at given time t. The processes wi(t) are mutually
independent and are defined only by the psychology of the individual driver. Assume that there are constants
0 < C1 < C2 < ∞ such that for all t, i

C1 < wi(t) < C2.

The flow is given by initial coordinates xi(0) of the cars, and their movement is defined as

xi(t) = xi(0) +

ˆ t

0

vi(s)ds,

where vi(t) is the velocity of i-th car, defined below. Moreover, we assume that the initial coordinates are such
that the distances d+i (0) are independent and, for example, are exponentially distributed with parameter ρ(0).

We shall say that the car i has an obstacle in front of itself at time t, if

xi(t− 0) = xi−1(t)

The process will be completely defined if for any t1, ..., tn, i1, ..., in we could define finite-dimensional distribution
of the vectors

(vi1(t1), ..., vin(tn))

where some ik can coincide. The following rules do this job:

1. (rule for free road) if none of the cars i1, ..., ik for k ≤ n does not have in front of itself an obstacle, then the
distribution of the vector vi1 (t1), ..., vik (tk) coincides with the distribution of the vector wi1 (t1), ..., wik (tk)
and is independent of the distribution of the vector vik+1

(tk+1), ..., vin(tn);

2. (rule for an obstacle) if the car i has obstacle in front of it at time t, then vi(t) = vi−1(t);

3. (rule for overtaking) if the car i has obstacle in front of it at time t, then it overtakes this obstacle with
some intensity λ, during the whole (random) time interval while wi(t) > vi−1(t). The meaning of this
condition is that the driver overtakes if his activity is higher.

Even for such simplest behavior of drivers and corresponding definition of the flow there are many problems.
We formulate some of them.

Let us call free phase the case when the intensity of overtaking equals infinity. Then for any cars i, j, their
velocities are independent and the covariance is zero, that is

Covij(t) = Evi(t)vj(t)− Evi(t)Evj(t) = 0

The complete order phase is when λ = 0. Then there is no overtaking at all and the cars move as a queue.

Problem 2 Assume that all wi(t) have the same distribution. Is it true that for small λ the movement will
resemble complete order phase, and the large λ will resemble free phase ? Does exist some third phase (cluster
phase) for intermediate values of λ ?

Possibly to get more interesting qualitative picture one has to define the same process with the lengths
di, d

+
i , and with additional indices corresponding to several lanes. Also the behavior of the driver can depend

not only on the car in front but also of the car just behind.
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1.7 About relation of stochastic approach with kinetic equations

For any particle xi on the real line there is a mark - velocity vi > 0. Then the flow of cars is defined by countable
subset {(xi, vi)} of the phase space R×R+. And the random flow, at a given time, is a probability measure µ
on the set of such configurations. Let n(A) = nµ(A) be the mean number of particles in bounded set A of the
phase space. If there exists a function f(x, v) such that for any A

n(A) =

ˆ

A

f(x, v)dxdv,

then f is called one-particle (correlation) function of the measure µ.
Although kinetic equations approach to transportation problems is known long ago [33] and was studied

a lot in physical papers [34, 35] we think that rigorous mathematical deduction of kinetic equations (that is
equations for f(t;x, v)) from dynamics of individual cars stays open. Here we give only short comments.

Let at time t = 0 be given a distribution µ with one-point function f(0, x, v). If particles move freely, that
is each particle moves with fixed velocity, different for different cars, then

f(t+ δ;x, v) = f(t;x− vδ, v).

Subtracting f(t;x, v) from both parts of this equality, dividing by δ and taking limit δ → 0, we get

∂f

∂t
+ v

∂f

∂x
= 0. (4)

This is the simplest kinetic equation without collisions. Its solution is of course

f(t;x, v) = f(0;x− vt, v). (5)

In general kinetic equations should contain collisional term. What is collision in traffic ? It could be
close approaching of cars, that is the reason for the drivers to change their behavior, for example to perform
overtaking. Also one can consider formation of a new compound particle - cluster of several cars with short
lifetime, which decays shortly on smaller clusters or separate cars. Moreover, there can be clusters on various
scales - such situation had never been formalized even in mathematical physics.

Another possible approach is to consider movement of fast cars in the media of slow cars. Let there exist two
types of cars with velocities v and v1 > v correspondingly. Slow cars move independently and their one-particle
function looks like (5). In the coordinate system moving with speed v, slow cars will become standing obstacles.
Rules of overtaking define velocity v1(x) of fast cars, in the new coordinate system, in the vicinity of separate
obstacle. This can give, under appropriate scaling, some kinetic picture. But as far as we know there were no
efforts to write down rigorously even such simple models.

There are however papers where Burgers equation is deduced from stochastic particle picture. However, the
corresponding particle process is far from one-dimensional car flow, see reviews on exclusion processes [31, 32].

2 Calculation of mean velocity on the road

We consider here simplest problems concerning diminishing of the road capacity because of random fixed
obstacles (accidents, repair work) and because of slow cars. Our goal is to show (solving completely some model
problems) that it is possible to get simple formulas which allow to understand main reasons why the mean speed
can decrease. Our main assumptions is the homogeneity of the road, exits and gates and other parameters.

2.1 Road as one-dimensional queuing network

The following model is taken from [8], p. 117. Let we have infinite road and two types of cars, given by points
of the real line, the points move in the right direction. First type (faster) cars move with constant speed v1,
cars of the second type (slow cars) have constant speed v1 > v2.

Assume that faster cars initially (at time t = 0) have Poisson configuration on R with density λ1. Slow cars
initially are at the points

x0 = 0 < x1 < ... < xn < ...,

where the distances xk − xk−1 are identically distributed with mean λ−1
2 (not necessarily exponentially). Slow

cars move completely independently - other cars do not influence them. Faster cars «interact» with any car
when their coordinates coincide. Namely, they can overtake slow cars. When a faster car catches up with a
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slow car, that is their coordinates coincide, then it follows slow car for some time, that is moves with the speed
v2. In exponential time with parameter µ the fast car overtakes the slow car and moves again with the speed
v1. If the slow car catches up the group of fast cars still following some slow car, then the overtaking occurs as
in a queue, in order how the fast cars follow the slow car.

Without loss of generality one can put v2 = 0, and the speed of fast cars put equal to v = v1 − v2. That
is why each slow car can be considered as a server, where the clients (fast cars) arrive and are waiting for the
service (overtaking), they are served with intensity µ.

Now the problem can be reduced to the linear queuing system which we shall describe. There is infinite
sequence

S0 → ... → Sk → Sk+1 → ...

of nodes (servers) of two types. Each server Sk is a M/M/1 type server with FIFO (first-in-first-out) discipline,
that is in the natural order. These servers correspond to slow cars, and clients correspond to fast cars. For
example S0 corresponds to the extreme left slow car. Second letter M means exponential service rate. First
letter M means Poisson arrival stream. Thus the clients to S0 arrive as a stationary Poisson stream with
intensity λ1v. From elementary queuing theory it has been known, firstly, that if λ1v < µ, then the stationary
regime will be established with the probabilities

Pn = (1 − r)rn, r =
λ1v

µ
.

that the length of the queue equals n. Secondly, (Burke theorem), that in the stationary regime the output flow
from M/M/1 will be Poisson with intensity equal to intensity of the input flow, which is λ1v in our case.

After the first node, the output flow, with random but the same for all clients time shift x1−x0

v , arrives to
node S1, where also stationary regime will be established.

Let us find mean velocity of fast cars on the interval (x0, xN ), N → ∞. We shall assume that the stationary
regime has already been installed. The time along this path is the sum from N overtaking and N paths between
slow cars. Mean overtaking time is

∞∑

n=0

(1 − r)rn
(n+ 1)

µ
=

1

(1− r)µ
=

1

µ− λ1v
,

and mean time to catch up the next slow car is
1

λ2v

Thus, the mean speed of fast cars is

vmean =
λ−1
2

(µ− λ1v)−1 + (λ2v)−1
.

In the next section we will consider more complicated situation with more general distributions.

2.2 Mean speed slow down due to repair works

On a long road the cars move with constant speed v, but encounter obstacles. The obstacles have small size
comparative to distances between them, and we assume the obstacles are just points. They can appear on
arbitrary part of the road (x, x + dx) ⊂ R during time interval (t, t + dt) ⊂ R with probability λdxdt. More
exactly, the pairs (coordinate and time moment of obstacle appearance) (xj , tj) ∈ R×R+ form Poisson random
filed Π on R × R+with intensity λ. Another equivalent definition is that for any time interval I ⊂ R there is
Poisson arrival stream with intensity λ|I|, moreover the arriving obstacle choose the point uniformly on the
interval I.

Assume that j−th obstacle stays on the road for some random time τj , after that it is cleared off from
the road. Random variables τj are assumed to be i.i.d. with distribution function Q(t) and independent from

Poisson random field Π. Assume finiteness of mQ = Eτj and m
(2)
Q = Eτ2j .

Further on we consider two cases. In the first case the bypass is prohibited and the car stands until the
obstacle will be deleted, after this the car immediately moves with speed v. In the second case, assume the new
car arrives to an obstacle and sees n cars, which have not yet bypassed this obstacle. The new car is allowed
to bypass the obstacle and these n cars simultaneously. This takes takes some random time which does not
depend on n. Denote ηm,i the random bypass time of m-th obstacle by i-th car. Random variables ηm,i are
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assumed to be i.i.d. with distribution function F (u). These assumptions are natural for small density of cars,
with small number of cars accumulating after the obstacle. Below we consider the case of greater load.

First of all we shall find the mean speed of the car. Under above assumptions the cars do not impede each
other, that is why it is sufficient to consider one car problem. Denote T (x) random time the car passes distance
x. We will find the limit of the ratio x

T (x) as x → ∞.

Let b = λmQ, and ζ be a random variable with density

h(t) = m−1
Q (1−Q(t)). (6)

Note that

Eζ =
1

mQ

∞̂

0

t(1−Q(t))dt =
1

mQ

∞̂

0

(1 −Q(t))d

(
t2

2

)
=

1

2mQ

∞̂

0

t2dQ(t) =
m

(2)
Q

2mQ
,

where m
(2)
Q is the second moment of Q(t).

Put α = min(η, ζ), where equality is in distribution. Moreover, the random variables η,ζ are considered
independent and η has distribution function F (u) . Put

a = Eα.

Theorem 1 With probability 1 as x → ∞

x

T (x)
→

v

1 + abv
. (7)

Proof. With no loss of generality assume that the car enters the road at the point x = 0 at time t = 0. Let
T0(x) be the idle time of the car. Then obviously T (x)− T0(x) = v−1x and

x

T (x)
=

x

T (x)− T0(x) + T0(x)
=

1

v−1 + x−1T0(x)

Thus it is sufficient to find the limit of the ratio T0(x)
x as x → ∞. We want to show that

T0(x) =

π(x)∑

i=1

αi, (8)

where αi are i.i.d. random variables distributed as α, π(x) is a random variable with Poisson distribution with
parameter bx. Random variables αi and π(x) are assumed to be independent. The meaning of this formula,
that the car on the distance x will meet π(x) obstacles and will loose random time αi i-th obstacle.

From (8) and strong law of large numbers it follows easily that T0(x)
x → ab a.e. as x → ∞.

Let us prove (8). Introduce marked Poisson point field Π1 on R×R+ with configuration (xj , tj , τj), that is
τj is the mark at the point (xj , t,j). The following assertion can be found in [5]:

Lemma 1 Marked point field Π1 is equivalent (in probability) to the Poisson field on R × R2
+ with intensity

λdxdtdQ(t).

On picture 1 the obstacles are presented as horizontal segments. The coordinates of the initial point define
place and time of its appearance (pair (xj , tj)). The length of the segment is the time of obstacle stay on the
road (mark τj).

Consider any straight line c1t + c2 and consider its intersection points with horizontal segments. Denote
{xi} the space coordinates of these points as it is shown on picture 1. The next lemma is proved [7].
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Lemma 2 Configuration {xi} is the Poisson process with intensity b = λmQ.

Picture 2 shows the trajectory of the car, which starts from point x = 0 at time t = 0. Denote xi the space
coordinates of the obstacles appearing during movement of this car, ti are the moments of their appearance,
si – the moments when the car meets the obstacles, ui – time moments when the car gets rid of them either
bypassing or because the obstacle disappear; αi = ui − si – car delay i-th obstacle.

From lemma 2 and from space-time homogeneity of Poisson field Π it follows that the points xi make up
Poisson process of intensity b.

The residual lifetime of an obstacle is its lifetime after the car catches it up. In other words, it is equal to
the car delay on this obstacle.

Lemma 3 The residual lifetime has the distribution with density h(s), where h(s) is defined by (6).

In fact, from the properties of Poisson point field it follows that the conditional distribution of residual
lifetime, under the condition that the full lifetime equals t, coincides with the uniform distribution on the
interval [0, t]. By lemma 2 the probability of obstacle appearance on the interval dx equals λmQdx+ o(dx), and
the probability of appearance of an obstacle with full lifetime t in the interval dx is equal to λtdQ(t)dx+ o(dx),
that follows from lemma 1. As

λtdQ(t)dx + o(dx)

λmQdx+ o(dx)
=

tdQ(t)

mQ

is the conditional probability of appearance of an obstacle with lifetime t, then the density of residual lifetime
is

∞̂

s

tdQ(t)

mQ

ds

t
= m−1

Q (1−Q(s))ds = h(s)ds.

Lemma is proved.
If bypassing is possible, the car will lose time equal to minimum of bypass time and residual lifetime of the

obstacle, that is αi = min(η, ζ). Theorem is proved.
Let us discuss the result. We have seen already the meaning of the constant a, the constant b characterizes

stationary density of obstacles in the space.
This result is rather exact for small density of cars, as there will not more than one car at the obstacle. For

large density of cars the bypass time will increase dependent on the mean length of the queue at this obstacle.

2.3 Mean speed slow down due to slow cars

The road here is the real line R. Flows are not too dense, thus the length of cars does not play role, and at
a given moment the position of the car is given by the point xi(t) ∈ R, where i is the index enumerating the
cars. Each car has predefined route: place and time of entrance xi,in, ti,in, and the exit coordinate xi,out. But
the exit time ti,out depends on the road capacity. We define mean velocity of the car i as

Vi =
xi,out − xi,in

ti,out − ti,in
.

There are two types of cars - fast and slow, any car moves with constant speed in the right direction. Fast cars
have speed v1, slow cars have speed v2, where v1 > v2 > 0. Put v = v1 − v2. Slow cars move along the road
without stops, and fast cars - until they reach a slow car. After this the fast car i moves with slow car j for
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some random time τi,j , and them bypasses it immediately getting speed v1. Main assumption is that random
variables τi,j are i.i.d. with distribution function F (s).

This distribution function may be found statistically by two ways - by direct sampling and by estimating
the density of obstacles, for example for one-lane road it can be the density of the opposite flow.

Arrivals of slow cars is given by the same Poisson point field Π with intensity λ, which was defined in the
previous section. We will need more notation. To any slow car j we assign random distance ρj which it should
pass, after that it will leave the road. Random variables ρi are assumed i.i.d. with distribution function G(r).
Moreover ρj does not depend on the random field Π. Assume existence of two first moments mG = Eρ1,

m
(2)
G = Eρ21.
Slow car does not meet obstacles and passes all its route with speed v2. Fast cars can be stopped by slow

cars. Consider two cases. In the first case the overtaking is prohibited and fast car follows the slow car until the
latter will leave the road, after that the fast car immediately gets its speed v1. In the second case the overtaking
is possible. More exactly, when i-th fast car catches up j-th slow car or a group of fast cars following j-th slow
car, it takes random time τi,j to bypass j-th slow car or all group of these cars. This time does not depend on
the size of the group. τi,j are assumed to be i.i.d. with distribution function F (u).

Put d = λmG

(
v−1
2 − v−1

1

)
. Introduce random variable β with distribution density g(x) = m−1

G (1 − G(x))
and put γ = min(v2τ1,1, β), where the equality is in distribution, and random variables τ1,1,β are assumed
independent. Note that

Eβ =
m

(2)
G

2mG
.

Put c = Eγ.

Theorem 2 With probability 1 as x → ∞

x

T (x)
→ v̄1 =

1 + dc

1 + dcv1v
−1
2

v1. (9)

Proof. Let us note that this case can be reduced to the case v2 = 0. Introduce new coordinate system moving
with the speed v2 relative to the initial system. Find the mean speed of fast cars in the new coordinate system
with the formula (7), substituting v = v1 − v2, b =

λmG

v2
, a = c

v2
:

1

(v1 − v2)−1 + λmc
v2
2

=
v1 − v2

1 + dcv1v
−1
2

.

Then the mean speed of a fast car relative to the initial coordinate system is

v̄1 =
v1 − v2

1 + dcv1v
−1
2

+ v2 =
1 + dc

1 + dcv1v
−1
2

v1.

3 Analysis of complex transport system

Graph is a natural tool to describe transport networks (for example, city streets), where the set V of vertices
represent crossroads (nodes or service stations), and the set L = {(i, j)} of edges represent segments of streets
without crosses. Let N be the number of vertices. We assume that there not more than one edge between two
vertices.

Mostly the following two classes of networks were studied. First class includes (by the name of the authors
and in the order of increasing generality) Jackson networks, BCMP and DB networks (see [8], [26]). Therein
the client (communication, car, job), after being served in some vertex, chooses randomly the next vertex. The
second class are the Kelly networks (see [8]), where each client has apriori fixed route. These classes have much
in common - close results and techniques. For example, they may have very useful multiplicativity property,
that is the stationary distribution has the so called product form. Here we consider only the first class of
networks.

3.1 Closed networks

If the cars do not come from without and do not leave outside, the network is called closed. Then the number
of cars in the network is conserved and we denote it by M . The movement of a car is defined as follows. The
car is waiting for some time on the cross i and is directed afterwards to some vertex j. The choice of j is defined
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by some stochastic matrix, we shall call it the routing matrix, P = {pij}i,j=1,...,N , where pij is the probability
that from vertex i the car will go (after service time) to vertex j (for example, to the right, left or straight on),
that is along the street (i, j).

Stochastic matrix P defines finite discrete time Markov chain with state space V = {1, ..., N}. We assume
this Markov chain irreducible. Then the system of linear equations

ρP = ρ, ρ = (ρ1, ..., ρN ) ⇐⇒

N∑

i=1

ρipij = ρj , j = 1, ..., N (10)

has a unique solution (up to a common factor). Normed solution gives its stationary distribution

πi =
ρi∑N
i=1 ρi

, i = 1, ..., N

For each vertex i ∈ V we define a function µi(ni) of the number ni of cars in i-th vertex, where µi(0) = 0 and
µi(ni) > 0 for ni > 0. This function characterizes capacity of this node and defines the intensity of output flow
from this vertex. Namely, the probability that from node i, during time period t, exactly one car will leave the
vertex is µi(ni)dt+o(dt), under the condition that in the node there are ni cars at time t. Using queuing theory
terminology we call µi(ni) the service intensity in vertex i.

The order in which the arriving clients are served is defined by service discipline (protocol). The simplest
possibility is FIFO - first come first served. If there are ni cars in the vertex i, then the first car in the queue
is served with intensity µi(ni).

More general service discipline is the resource sharing discipline, the resource here is the capacity of the
crossroad. This means that resource is divided in some proportion between cars in this crossroad. We assume
that that k-th car in i- th node is served with intensity µi,k(ni) ≤ µi(ni) so that

ni∑

k=1

µi,k(ni) = µi(ni).

For example, common resource can be divided equally between each car in the queue

µi,k(ni) =
µi(ni)

ni

If µi,1(ni) = µi(ni), then we get FIFO discipline. Thus, the intensities µi,k(ni) completely define service
discipline in the nodes.

Dynamics in the network is described by N−dimensional continuous time Markov chain ξ(t) = (ξi(t), i =
1, ..., N), where ξi(t) is the number of cars-at vertex i at time t. Thus, the state space SM is the set of all
vectors with nonnegative integer coordinates n̄ = (n1, ..., nN ), such that n1 + ...+ nN = M .

Let ei be a base vector, where i-th coordinate is 1, and the rest coordinates are 0. From state n̄ Markov
chain ξ(t) can jump to the state Ti,j n̄ = n̄− ei + ej, i 6= j, with intensity

α(n̄, Ti,jn̄) = µi(ni)pi,j , (11)

under the condition that ni 6= 0. The jump n̄ → Ti,j n̄ corresponds to the fact that after leaving cross i the car
arrives to cross j.

Note that Markov chain ξ(t) is uniquely defined by the routing matrix P and service intensities (µi(ni), i =
1, ..., N).

Let ρ = (ρ1, ..., ρN ) be the solution of equations (10), which we consider as a formal equation for intensities
ρi of input flows to the nodes (in the stationary regime these are equal to output intensities). Solving these
equations, we find ρi. Then the stationary distribution ν(n1, ..., nN ) of Markov chain ξ(t) looks like

ν(n1, ..., nN ) =
1

ZN,M

N∏

i=1

ρni

i

µi(1)µi(2)...µi(ni)
, (12)

where the normalizing factor (the canonical partition function)

ZN,M =
∑

n1+...+nN=M

N∏

i=1

ρni

i

µi(1)µi(2)...µi(ni)
,

This can be verified by direct substitution of (12) to Kolmogorov equations for stationary probabilities, see for
example [8].
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3.2 Open networks

Consider network consisting of N nodes. Contrary to close network, total number of cars is not fixed. Assume
that to node i arrives (from outside) Poisson flow with intensity λi, i ∈ {1, ..., N}.

The routing matrix P = {pij}i,j=1,...,N is assumed to be decomposable and

∀ i :

N∑

j=1

pij ≤ 1, ∃ i0 :

N∑

j=1

pi0j < 1. (13)

Similar to closed network, pi,j is the probability that a car from node i goes to node j. The difference is that
there is also probability

pi0 = 1−

N∑

j=1

pij .

for a car at node i to leave the network.
As for closed network, let µi(ni) be the service intensity at node i. Then the car at node i leaves the network

with intensity µi(ni)pi,0.
The dynamics of an open network is described with N -dimensional continuous time random vectors η(t) =

(ηi(t), i = 1, ..., N), where ηi(t) is the number of cars at node i at time t. Random process η(t) is a continuous
time Markov chain with state space S, where S is the set of N -dimensional vectors with non-negative integer
components n̄ = (n1, ..., nN ). From the state n̄ Markov chain ξ(t) can jump to one of the states Ti,j n̄ = n̄−ei+ej,
Ti,0n̄ = n̄− ei, Tin̄ = n̄+ ei with intensities

α(n̄, Ti,j n̄) = µi(ni)pi,j ,

α(n̄, Ti,0n̄) = µi(ni)pi,0, (14)

α(n̄, Tin̄) = λi,

under condition that Ti,j n̄, Ti,0n̄, Tin̄ ∈ S.
Thus, Markov chain η(t) is uniquely defined by the triplet (λ, µ, P ), where λ = (λ1, ..., λN ) is the vector of

intensities of input flows, µ = (µi(ni), i = 1, ..., N) – the vector of service intensities in the nodes and P is the
routing matrix.

Consider formal equation for input intensities to the nodes (in the stationary regime they are equal to output
intensities)

ρ = λ+ ρP ⇐⇒ ρi = λi +
N∑

k=1

ρkpki, ∀ i (15)

Under the condition (13) and the irreducibility of P , this equation has a unique solution which can be written
as follows

ρ = λ+

∞∑

n=1

λPn.

Consider now the case when the service intensities µi(ni) ≡ µi do not depend on the number of cars in
nodes. Define the loads in the nodes by the formula

ri =
ρi
µi

, i = 1, ..., N.

The following theorem can be found, for example in [8], [20], it is called Gordon-Newell.

Theorem 3 Markov chain η(t) is ergodic if and only if for all i = 1, ..., N we have ri < 1. Then the stationary
distribution is given by

σ(n1, ..., nN ) =

N∏

i=1

(1− ri)r
ni

i .

It easily follows from this theorem that the mean queue lengths in the stationary regime are-

mi =
ri

1− ri
.

If in some nodes i1, ..., ik the load is strictly larger than 1, then Markov chainη(t) is transient. Then the mean
queue lengths at nodes i1, ..., ik tend to infinity as t → ∞. A detailed analysis of open networks see in [19]. In
particular, it is shown that in the nodes with the load exceeding 1, mean queue lengths grow linearly with time.
There are also explicit formulas for the mean speed of growth.
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3.3 Algorithm to find the critical load in closed networks

This section is based on the paper [18]. Consider a sequence of closed networks JN , N = 1, 2, .... Network JN
consists of N nodes and M = M(N) cars. Service intensities at the nodes of network JN do not depend on the
queue length : µi,N (ni) ≡ µi,N . Let PN = {pi,j,N} be the routing matrix in the N -th network; PN is assumed
to be irreducible.

Let ρN = (ρ1,N , ..., ρN,N) be the vector with positive components satisfying equation

ρN = ρNPN . (16)

Relative loads in the nodes are defined as

ri,N = C−1
N ρi,Nτi,N ,

where τi,N = µ−1
i,N and CN = maxi=1,...,N ρi,Nτi,N . It is evident that ri,N ∈ [0, 1].

Correspondingly to (12) the stationary distribution of the number of cars ξi,N,M in the nodes of JN is equal
to

PN,M (ξi,N,M = ni, i = 1, ..., N) =
1

ZN,M

N∏

i=1

rni

i,N ,

where the normalizing factor (canonical partition function)

ZN,M =
∑

n1+...+nN=M

N∏

i=1

rni

i,N . (17)

Many important network characteristics can be expressed in terms of this partition function.

Exersize 2 Show that the mean number of cars in the i-the node in the stationary regime is

mi,N,M = Eξi,N,M =
ri,N
ZN,M

∂ZN,M

∂ri,N
(18)

We are interested in cases when N,M are large enough, more exactly N,M → ∞ and so that M
N → λ = const,

that is the number of cars per one node is constant. We shall see that λ defines existence or non-existence of
jams in the network.

To formulate results as general as possible, we shall assume weak convergence of relative loads ri,N . More
exactly, define sample measure on the interval [0, 1]

IN (A) =
1

N

∑

i:ri,N∈A

1,

where A is arbitrary Borel subset of [0, 1]. Assume that as N → ∞ the measures IN weakly converge to some
probability measure I on [0, 1].

Remark 1 It could be interesting to find concrete sequences of growing networks for which the limiting measure
I can be found explicitly. Some examples where measure I is one-point one can find in the bibliography to the
paper [18].

In terms of limiting measure I we shall find critical value λcr of the density, so that for λ < λcr mean lengths
of the queues are uniformly bounded. If λ ≥ λcr, then at the node with maximal value of load the mean length
of the queue tends to infinity, that means the existence of a jam at this node. Put

h(z) =

ˆ 1

0

r

1− zr
dI(r),

where z ∈ C \ [1,+∞). The function h(z) is strictly increasing on [0, 1). Put

λcr = lim
z→1−

h(z).

We shall assume that λcr > 0.
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Theorem 4 • If λ < λcr, then mean lengths of queues are uniformly bounded: there exists constant B,
such that mi,N < B, uniformly in N ≥ 1 and 1 ≤ i ≤ N .

• If λ ≥ λcr and i(N) satisfies condition ri(N),N = 1, then mi(N),N → ∞, as N → ∞, that is jams will be
in the nodes where the load is maximal.

For z ∈ C \ [1,+∞) put

SN (z) = −λ(1 + εN) ln z −
1

N

N∑

i=1

ln(1− zri,N ), (19)

S(z) = −λ ln z −

ˆ 1

0

ln(1− zr)dI(r),

where λ(1 + εN ) = M
N .

Introduce the generating function (the grand partition function)

ΞN (z) =
∞∑

M=0

zMZN,M =
N∏

i=1

1

1− zri
, |z| < 1.

By Cauchy formula and (19) we have the following expression for the partition function (17):

ZN,M =
1

2πi

ˆ

γ

ΞN (z)

zM+1
dz =

1

2πi

ˆ

γ

exp(NSN (z))

z
dz, (20)

where γ = {z ∈ C : |z| = σ < 1}. For the means, accordingly to (18), we have

mi,N =
1

2πiZN

ˆ

γ

ri,N
1− zri,N

exp(NSN (z)) dz. (21)

One can show that for the stationary distribution of queue lengths the following formula holds

PN,M(ξ1,N,M = n1, ..., ξK,N,M = nK) =
1

2πiZN

ˆ

γ

z−1
K∏

i=1

(1− zri,N )(zri,N )ni exp(NSN (z))dz. (22)

In the proof of theorems of this section, essential role is played by the steepest descent method (see, [27]),
more exactly, its generalization concerning the case when the function in the exponent depend on N . From
equation

∂SN(z)

∂z
= 0 (23)

we find steepest descent points. Let z0,N be the root of this equation lying in (0, 1).

Exersize 3 Show that all roots of equation (23) are real and positive. Always there exists unique root, which
belongs to the interval (0, 1).

Let z0-be the root of equation

h(z) =
λ

z
⇔

∂S(z)

∂z
= 0, (24)

lying in the interval (0, 1).

Exersize 4 • Prove that for all λ there exists limit limN→∞ z0,N = z0 = z0(λ) > 0.

• If λ < λcr, then z0(λ) is the root of equation (24); z0(λ) is strictly increasing in λ, z0(λ) ∈ (0, 1),
limλ→λcr−

z0(λ) = 1.

• If λ ≥ λcr, then z0 = 1.

In the next theorem we find the asymptotics of the partition function and limiting distribution for the
sequence of closed networks JN .

16



Theorem 5 Let λ < λcr, then

• As N → ∞ the partition function ZN and the free energy FN = 1
N lnZN have the following asymptotics

ZN ∼
exp(NSN (z0,N))

z0
√
2πNS′′(z0)

, FN =
1

N
lnZN ∼ S(z0).

• If for i = 1, ...,K there exist the limits ri = limN→∞ ri,N , then

lim
N→∞

mi,N =
z0ri

1− z0ri
,

lim
N→∞

PN,M (ξ1,N,M = n1, ..., ξK,N,M = nK) =

K∏

i=1

(1− z0ri)(z0ri)
ni .

Thus in the limit we get an open network consisting of independent queues.

Proof of theorems 4 and 5 We give more general result from which the theorems 4 and 5 follow. Let
Ud(v) = {z ∈ C : |z − v| < d}. Consider the contour γ = {z ∈ C : |z| = z0(λ)}.

Theorem 6 Let λ < λcr and f(θ, z), θ ∈ Θ, be a family of functions holomorphic in the ring {z ∈ C :
z0(λ) − δ0 < |z| < z0(λ) + δ0} for some δ0 > 0, uniformly bounded in this ring and such that for sufficiently
small ǫ > 0 there exists such δu > 0 and nonzero constant fu, such that |f(θ, z)/fu − 1| < ǫ for z ∈ U2δu(z0),
θ ∈ Θ.

Then, for N sufficiently large, uniformly in θ ∈ Θ

1

2πi

ˆ

γ

f(θ, z) exp(NSN (z))dz =
fu exp(NSN (z0,N ))√

2πNS′′(z0)
(1 + ζN ),

where |ζN | < 25ǫ.

Proof of this theorem is based on the saddle-point method, see [27]. Difference from the standard situation
is that the function in the exponent depends on N . Detailed proof one can find in the original paper [18].

Proof of theorem 5. Using theorem 6 we prove the first part of the theorem 5. Using (20) we have

ZN,M =
1

2πi

ˆ

γ

exp(NSN (z))

z
dz,

where γ = {z ∈ C : |z| = z0(λ)}. Putting f(θ, z) = z−1, fu = z−1
0 and using theorem 6, we get that for any

sufficiently small ǫ > 0 for sufficiently large N

ZN =
exp(NSN (z0,N))

z0
√
2πNS′′(z0)

(1 + ζN ), |ζN | < 25ǫ. (25)

The second part of theorem 5 can be proved similarly by using (21) for the mean queue length and (22) for
joint distribution of the queue lengths.

Exersize 5 Prove third part of the theorem 5, using theorem 6 and formulas (21), (22).

Proof of theorem 4. To prove the first part of theorem 4, consider the family of functions

f(θ, z) =
A

z
+

θ

1− zθ
, θ ∈ Θ = [0, 1], A > 0, fu =

A

z0
.

Fix small ǫ > 0 and choose σu = ǫ
8 , A = 16z0

(1−z0)ǫ
. By theorem 6 we have for sufficiently large N and all θ ∈ Θ

1

2πi

ˆ

γ

(
A

z
+

θ

1− zθ

)
exp(NSN (z)) dz =

A exp(NSN (z0,N ))

z0
√
2πNS′′(z0)

(1 + ζN ), |ζN | < 25ǫ.
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Dividing by ZN and applying (25) to the right-hand part of the resulting equality, we get for sufficiently large
N

A+
1

ZN

1

2πi

ˆ

γ

θ

1− zθ
exp(NSN (z)) dz = A (1 + ζ

′

N ), |ζ
′

N | < 30ǫ.

From last equality and formula (21) we have uniform boundedness of mi,N .
Prove the second part of theorem 4. For this we need the following monotonicity property: for any M2 ≥

M1 > 0 and any N ≥ 1 the inequality mi,M2,N ≥ mi,M1,N holds.
As z0(λ) is strictly increasing in λ, z0(λ) ∈ (0, 1) and limλ→λcr− z0(λ) = 1, then the function

z0(λ)

1− z0(λ)

is monotone increasing and tends to ∞, when λ ր λcr. That is why for any m > 0 there exists such λ′ =
λ′(m) < λcr, that

z0(λ
′)

1− z0(λ′)
= m+ 1.

Without loss of generality we can assume that i(N) ≡ 1 and r1,N = 1. If we put M ′(N) = [λ′N ], then by
theorem 5

lim
N→∞

m1,M ′(N),N =
z0(λ

′)

1− z0(λ′)
.

It follows that for sufficiently large N

m1,M ′(N),N >
z0(λ

′)

1− z0(λ′)
− 1 = m.

But M/N → λ ≥ λcr > λ′, that is why for sufficiently large N we have M(N) ≥ M ′(N). By monotonicity
m1,N = m1,M(N),N ≥ m1,M ′,N > m for sufficiently large N . This proves that m1,N → ∞.

Technical generalizations and mathematical problems We assumed above instantaneous displacement
between crosses. I.e. we did not take into account time spent along the streets. This can be easily overpassed
by introducing more extended graph. Namely, introduce additional vertices uij , corresponding to the street
between crosses i and j, and mean duration τij=µ−1

ij of movement along the streets. In the queuing terms
this means that the streets are considered as new service nodes with infinite number of servers and exponential
service time with mean τij=µ−1

ij .
Note that the results of section 3.1 can be generalized to the case, when the network contains nodes with

infinite number of servers. Let, for example, the network contain one such node (i = 0) and µ0,N (n) = nνN
is the service intensity in this node. Let ρN = (ρ0,N , ..., ρN,N) be the solution of equation (16). Then relative
loads can be defined by formula

ri,N =
µ0,N

ρ0,N

ρi,N
µi,N

,

so that r0,N = 1. According to (12), the stationary distribution of the queue lengths is

PN,M (ξi,N,M = ni, i = 1, ..., N) =
1

ẐN,M

1

(M −
∑M

i=1 ni)!

N∏

i=1

rni

i,N ,

where

ẐN,M =
∑

n1+...+nN≤M

1

(M −
∑M

i=1 ni)!

N∏

i=1

rni

i,N ,

and the grand partition function is

Ξ̂N (z) = ez
N∏

i=1

1

1− zri,N
.

Put
qi,N =

ri,N
pN

, w = zpN , pN = max
1≤i≤N

ri,N .
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Then

Ξ̂N (w) = ew/pN

N∏

i=1

1

1− wqi,N
.

Under assumption that pNN → α > 0 as N → ∞ we can find critical value of density λ with the formula

λcr = α−1 + lim
w→1−

1
ˆ

0

q

1− wq
dI(q),

where, as earlier, measure I is the weak limit of sampling measures for N → ∞

IN (A) =
1

N

∑

i:qi,N∈A

1,

where A is an arbitrary Borel subset of [0, 1].
In [21] for closed networks similar results are obtained for more general dependence of intensities of the

queue lengths.
The trick with the graph extension allows get rid of other restriction: that for given cross the mean duration

of red light is the same for all directions. It is necessary then, instead of vertex i, corresponding to this cross,
introduce several vertices (i, d), where d enumerates possible directions on cross i. This poses some restrictions
on the service times τi,d in the new vertices, like

∑

d

τi,d = τi.

We limited ourselves to the problem, when in the system at least one jam appear. It is interesting to find
number of jams and the mean number of cars standing in jams.

Relation with real life This model is convenient because all parameters can be statistically estimated.
Namely, statistical estimates of the parameters pij , µi look like (for example for constant µi)

pij ∼
Nij(T )∑
j Nij(T )

, µi =
1

T

∑

j

Nij(T ),

where Nij(T ) is the number of cars in the time interval [0, T ], choosing direction j on the cross i.
Practically interesting is the optimization of traffic lights, that can be achieved by choice of τi,d and by

traffic lights synchronization (that is totally ignored in any exponential model), and by changing matrix P by
helping the choice of route.
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