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Abstract. All physical laws are only approximation to reality in some range
of parameters. However, this does not mean that rigorous mathematics is con-
traindicated to physics. On the contrary, inconsistencies and controversy of
main physical laws give rise to dissatisfaction and urge inquiring minds to deeper
plunging into the essence of things.

Standard mathematical approach also should tend to the following ideal:
1) there should be axioms, the less the better. However, for some values

of parameters they should be as close as possible to the basics of theoretical
physics,

2) the range of corollaries and coordination with theoretical physics should
be as wide as possible.

We give a short mathematical introduction to the classical non-relativistic
point particle physics. The goals are – to teach very beginner to do elementary
calculations, to introduce him to most used terminology and to provide some
global view on this science. Obviously this introduction is not suitable for
deep concentration on some narrow part of particle mechanics. The necessary
prerequisites – basics of the real analysis, linear algebra and ordinary differential
equations.
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1. Particle in external field

1.1. Space-time

Classical non-relativistic physics and philosophy assume not only that there
exist space, topologically isomorphic to Rd, and time, topologically isomorphic
to R, but also that in R×Rd there is a distinguished class of coordinate systems.
One could describe this class as follows: there is some coordinate system (t, x)
where the physical laws look like as we know it from school. Together with this
system this class also includes coordinate systems (t′, x′) that can be obtained
from (t, x) by shift transformations x′ = x+ a, t′ = t+ s, orthogonal coordinate
transformations x′ = Ax and transformations

t′ = t, x′ = x− vt (1.1)

for any “velocity vector” v. These transformations generate the transformation
group called the Galilean transformations. These transformations conserve
space and time distances between points of R×Rd.

1.2. Main definitions

Everything below occurs in time R and space Rd, where not only the case
d = 3 is interesting. The main object is point particle, which at time t is
situated at some point x(t) = (x1(t), . . . , xd(t)) of the space Rd. It cannot
disappear and moves along its trajectory, that is a function x(t) on some time
interval I ⊂ R with values in Rd. We always assume x(t) to be continuous and
piece wise smooth.

If at time t the trajectory has corresponding derivatives, then the following
vectors are defined: velocity

v(t) = (v1(t), . . . , vd(t)) =
dx(t)

dt
=
(dx1(t)

dt
, . . . ,

dxd(t)

dt

)
and acceleration

a(t) = (a1(t), . . . , ad(t)) =
d2x(t)

dt2
=
(d2x1(t)

dt2
, . . . ,

d2xd(t)

dt2

)
Besides its trajectory, the particle has two other real parameters, which do not
change in time, – mass m > 0 and charge q ∈ R.

The particle dynamics, that is its trajectory, is defined by the system of d
Newton equations

m
d2x(t)

dt2
= F (1.2)

where the vector

F = F
(
t, x(t),

dx(t)

dt

)
= (F1, . . . , Fd)
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is called force, acting on the particle at the point x = x(t) at time t. The force
can depend on the time, on the space point, where the particle is at time t, and
on the particle velocity at time t.

This Newton law can be understood of course as the definition of the force. In
fact, if acceleration is intuitively well understood and is measurable in space-time
terms, the mass can be measured on the weights, with the force the situation
is more complicated. The force is often measured via the left part of (1.2).
Moreover, often the definition of the force is given as follows – “the force is what
creates the acceleration of the mass”. Obviously, for any trajectory one can find
the corresponding force. But there will not be tautology if the concrete function
F is chosen from different considerations. Anyway, the following linearity
property (called also superposition principle) holds: if two forces F1 and F2

act on the particle, then
F = F1 + F2

Existence and uniqueness of dynamics
To uniquely find the trajectory, say on the time interval [0,∞), besides

the force one should also know initial data x(0), v(0). These data uniquely
define the future of the particle. That is why the classical physics is said to be
deterministic. The state of the particle at time t is defined to be the pair
(x(t), v(t)), and the set R×Rd of such pairs is called the phase space.

Remark 1.1. Note that if the Newton equations for the trajectory x(t) were of
the first order

dx(t)

dt
= f(x(t))

with some “force” f(x), which “moves” the coordinate of the particle, then
determinism would have much stronger sense: only the initial coordinate of
the particle completely defines its future. This contradicts the following simple
observations: 1) if the force becomes zero, then the movement immediately
stops, 2) particles with different initial conditions would never collide, see much
more about this below. This follows from the uniqueness of solution.

Deterministic dynamics could be defined by the equations of the order higher
than 2, but the nature uses simpler possibility.

If F ≡ 0, then the movement is called free. Then the movement is rectilinear
with fixed velocity v(0)

x(t) = x(0) + v(0)t, v(t) = v(0).

If the force F is constant, then

x(t) = x(0) + v(0)t+ F
t2

2
, v(t) = v(0) + Ft
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If the force F (x) = ax, a > 0, then the equation is linear, can be easily integrated
and it is easy to see that the particle goes to infinity exponentially fast. If F (x) =
x1+ε, ε > 0 (in one dimension) then the phenomenon of vertical asymptote
of the trajectory or the explosion – the particle escapes to infinity for finite
time. It is easy to prove this because this equation is quadrature integrable, see
(1.5) a bit lower.

In general, mathematical analysis of the model starts with the questions
about existence and uniqueness of the dynamics, for given initial conditions. In
our case the dynamics is defined by the Newton equation (1.2). From the course
of ordinary differential equations it is known that, for the equation (1.2) with
continuous force, the existence and uniqueness take place at least locally, that
is for sufficiently small time interval. Then two problems can occur:

1) the particle reaches infinity for finite time. But if the force F (x) is smooth
and increases not faster than C|x| for some C > 0, then this cannot occur;

2) if the force has singularities. for example is equal to infinity at some point,
then the particle can reach this singularity for finite time.

Energy conservation law
The Newton law can be reformulated as follows: momentum p = mv of

the particle changes for small time ∆t as

∆p = F∆t

Assume that the force is continuous in a simply connected domain O and does
not depend on the velocity, then there exists real function

V (x, t) = −
∫
L

F (x, t)dx,

where L = L(x0, x) is any path (for example, piece wise smooth) from arbitrary
point x0 to x, of the domain O, so that

F (x, t) = −gradV (x, t) = −
( ∂V
∂x1

, . . . ,
∂V

∂xd

)
This function V is defined up to an additive constant and is called potential
energy (or potential in short) of the particle, and the force is called potential.
The graph of the potential energy is called energy surface or energy land-
scape. For example, in one-dimensional case the force is directed downwards
landscape, to energy holes.

Kinetic energy of the particle is defined as T = mv2

2 = p2

2m . The total
energyH = T+V , that is the sum of kinetic and potential energies, is conserved
if V does not depend on time. This conservation law is related to the fact that
Newton equations can be rewritten in the hamiltonian form (and H is also
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called the Hamiltonian)

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

(1.3)

Then
dH

dt
=
∑
i

(∂H
∂pi

dpi
dt

+
∂H

∂xi

dxi
dt

)
= 0

Note that the energy conservation holds for any function H(x, p). More general
assertion is for the case when the hamiltonian H(x, p, t) depends also on time

dH

dt
=
∂H

∂t

Work of the force F = (F1, . . . , Fd) (or the energy, transferred by this force)
on the part L of the trajectory between its end points y0.y1 is defined as

A =

∫
L

d∑
i=1

Fidxi =

∫
L

d∑
i=1

Fividt,

If the force is potential, then

A = V (y0)− V (y1) = T (y1)− T (y0).

Power of the force at time t (or the work per unit time) is defined as

W (t) =
dA

dt
= (F, v) =

d∑
i=1

Fivi

Then the work during time interval [0, t] is

A =

t∫
0

W (t)dt

Time reversal operation and non-intersection of trajectories Newton
equations have the following time symmetry property. For exact formulation
note that Newton equation with the force F (x), both in general form (1.2) and
in hamiltonian form (1.3), is invariant with respect to time sign change. Namely,
assume that the particle starts at time t = 0 with initial state (x0, v0) and at
time T its state becomes (xT , vT ). Then, if the initial state (with new time τ)
is (x′0, v

′
0) = (xT ,−vT ), the particle will move along the same trajectory in the

opposite direction, and in time τ = T will be in the state (x0,−v0).
It follows that if at any point of the phase space R2d the existence and

uniqueness hold, the trajectories in R2d do not intersect. More exactly, from
two different initial conditions at time t = 0 one cannot get to the same state
at the same time.



Mechanics of point particles 303

1.3. Simplest examples

Finite smooth potential Assume the potential V (x), x ∈ R, is smooth, h. as
finite support and inside the support V ′(x) = 0 in finite number of (critical)
points, and moreover all critical points are non-degenerate, that is V ′′(x) 6= 0.
Outside the support the particle moves as a free particle. All trajectories are
defined on (−∞,∞) and can be classified correspondingly to their large time
behavior. Introduce the following definitions.

Bounded trajectory (we will call it bound state) on (−∞,∞) is called
any trajectory x(t) such that for some C > 0, for any t on this interval |x(t)| < C.

Example is the particle between two maxima, at the points a < b, of the
potential U(x). Assume that initially a < x(0) < b, and moreover the initial
total energy H(0) is less than U(a) and U(b). Then, it follows from the energy
conservation law that the particle cannot leave the interval (a, b).

Scattering trajectory on the time interval I = (−∞,∞) is a trajectory
x(t) such that |x(t)| → ∞ as t→ ±∞.

We say that the particle moves from −∞, if on the time interval (−∞, t0)
it moves as a free particle, that is x(t) = vt, v > 0. If moreover, its kinetic

energy T0 = mv2

2 is greater than maxV (x), then it overcomes the potential
support and escapes to +∞. If it is less, then it will stop (will have zero

velocity) at the first point x1, where V (x1) becomes equal to mv2

2 . Moreover,
there are two possibilities: either, if V ′(x1) > 0, it will return to −∞ (scattering
trajectory), or it will be stuck in this unstable state, if V ′(x1) = 0 and x1 is a
local maximum of the potential (this case is called capture trajectory). We
see that the capture is a rare event – it can occur only for finite number of initial
conditions.

If the potential is not of finite support, the situation is more difficult. Tra-
jectory on the interval (−∞, t0) can be defined either as the limit of trajectories
on the intervals (−T, t0), T →∞, or using time symmetry property.

Collision with the wall The velocity can become discontinuous when the
particle reaches a surface where the potential equals infinity. This surface can
be a plane (wall) or a sphere (spherical hard body). Let the particle reaches the
smooth surface S at point x0 at time t0. Assume that at time t0−0 the velocity
equals v−. After collision the velocity (at time t + 0) becomes equal v+. The
collision is called elastic, if |v+| = |v−|, that is the kinetic energy is conserved.
Let S(v−) be the plane perpendicular to S and containing the velocity vector
v−. Elastic collision is called mirror (specular) reflection if v+ belongs to
S(v−) and the rule “the angle of incidence equals the angle of reflection” holds.
In this case the momentum increment equals 2m(v+, n), where n is the unit
vector, perpendicular to S, assuming that (v−, n) < 0. Then −2m(v+, n) is
called the transmitted momentum (transmitted to the particles of the wall).
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There are two approaches, if one wants to embed the situation to the particle
mechanics:

1) Assume that the wall in R3 = {(x = x1, x2, x3)} coincides with the plane
x1 = 0. Near this plane there is smooth external potential Vε(x) = 0 if x1 > ε
and Vε(x) = x1

ε if 0 < x1 < ε with support (0, ε). The reflection rules above
can be obtained in the limit ε→ 0.

2) when it comes to a real wall, the particle interacts with the particles of
the wall. Exact analysis of this situation uses statistical physics theory, is suf-
ficiently difficult and we omit it here. But on this way one can explain also
non-elastic collisions where either the kinetic energy of the particle decreases
(energy dissipation) or increases (energy pumping), see below about par-
ticle collisions.

Harmonic oscillator Let the particle initially be at the very bottom of the
potential close to the local minimum, say x0 = 0, and has sufficiently small
initial velocity. Then, as we already know, the particle will always stay at some
small neighborhood of the minimum, and it seems natural to use the quadratic
approximation of the potential (assuming V ′′(x0) 6= 0)

V (x) =
1

2
ω2

0(x− x0)2 =
1

2
ω2

0x
2

This potential is called harmonic oscillator potential. Obviously, all trajec-
tories are bounded. The Newton equation is linear for quadratic potentials, and
its solution in our case is

c1 cosω0t+ c2 sinω0t

where constants can be obtained from the initial conditions.
The Hamiltonian is

H =
p2

2m
+

1

2
ω2

0x
2

For fixed energy H = h we get that the trajectory is an ellipse in the phase
space R2 = {(x, v)}, defined by the equation

H

h
= h−1

(mv2

2
+

1

2
ω2

0x
2
)

= 1

Forced oscillations The oscillator under the external force is described by
the equation (we assume here unit mass)

d2x

dt2
= −ω2

0x+ f(t),

where for example f(t) = a cosωt. Then for ω 6= ω0 the general solution is the
sum:

c1 cosω0 + c2 sinω0t+
a

ω2
0 − ω2

cosωt
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of the general solution of homogeneous equation and particular solution of the
non homogeneous.

The closer the frequency ω of the external force to its proper frequency ω0,
the greater the oscillation amplitude (resonance phenomenon). If ω = ω0 > 0
the particular solution of the inhomogeneous equation is

a

2ω0
t sinω0t (1.4)

that is the amplitude grows linearly with time. In the case of general force
f = f(x, t) terms like (1.4) also appear (for example in celestial mechanics) and
are called secular terms.

Friction and dissipation In real life, due to “resistance of the medium”, or
energy dissipation, the amplitude cannot grow infinitely. The simplest possibil-
ity for such force is to take it proportional to the velocity of the particle and
directed oppositely to the velocity, that is F = −αv, α > 0.

Such force is often used as the friction force. In the simplest equation as

d2x

dt2
=
dv

dt
= −αv

the velocity decreases exponentially fast.

Exersize 1.1. Solve the equation

d2x

dt2
= −ω2

0x− α
dx

dt
+ a cosωt

describing harmonic oscillator under the action of both friction and external
perturbation force.

Integrability of one-dimensional problems Assume that the particle
initially (at time t = 0) is at the point x(0) > 0 and has velocity v(0) > 0. If it
moves in the potential V (x) = γ

x , γ > 0, then the force repulses it from zero and
its velocity increases to some value v(∞), that can be found from the energy
conservation law

1

2
mv2(∞) =

1

2
mv2(0) +

γ

x(0)

Moreover, one can get all trajectory from this law. In fact, at time t > 0

m
(v2(t)

2
− v2(0)

2

)
= U(x(0))− U(x(t)) =

γ

2x(0)
− γ

2x(t)
=⇒

=⇒ v(t) =
dx

dt
=

√
v2(0) +

γ

mx(0)
− γ

mx
=⇒
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=⇒ dt =
dx√

v2(0) + γ
mx(0) −

γ
mx

=

√
x(0)xdx√

(v2(0)x(0) + γ
m )x− γ

mx(0)
=⇒

t =
√
x(0)

x(t)∫
x(0)

√
xdx√

(v2(0)x(0) + γ
m )x− γ

mx(0)
(1.5)

1.4. Particle in the central potential

The potential is called central if it depends only on the distance of the
particle from some point (the centrum), one can take this point as the origin.
Consider particle in R3 with the Hamiltonian

H =
mv2

2
+ U(r)

and central potential U(r), r = |x| =
√
x2

1 + x2
2 + x2

3. Most interesting cases
are the potential of celestial mechanics and Coulomb potential, they look quite
similarly

U(r) = − c
r

(1.6)

We assume that c > 0, then the force

F (r) = −gradU = −c x

|x|3

attracts the particle to the origin.
It is immediate that the trajectory lies in the plane, containing two vectors

x(0) and v(0), as the vector F will always lie in this plane. We will assume
this plane to be the plane (x1, x2). That is why the vector product of any two
vectors A = (A1, A2) and B = (B1, B2) in this plane has one component, that
we will denote by

A×B = [A,B] = A1B2 −B1A2

Besides the energy conservation law there is conservation law of the angular
momentum L = [x, p] of the particle

dL

dt
= [v, p] + [x, F (x)] = 0

Using only these two laws one can study qualitative character of the particle
movement, without solving the Newton equations, although they are integrable
in quadratures.
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In polar coordinates (r, ϕ) the velocity of the vector x = (r cosϕ, r sinϕ) is
equal to the

v = (ṙ cosϕ− rϕ̇ sinϕ, ṙ sinϕ+ rϕ̇ cosϕ)

Then
L

m
= [x, v] = x1v2 − x2v1 = r cosϕṙ sinϕ+

+r2ϕ̇ cos2 ϕ− ṙ cosϕr sinϕ+ r2ϕ̇ sin2 ϕ = r2ϕ̇,

and
m

2
v2 =

m

2

((dr
dt

)2

+ r2
(dϕ
dt

)2)
It follows that

H =
m

2
v2 + U =

m

2

(dr
dt

)2

+ Ueff (1.7)

where

Ueff = U +
L2

2mr2

is called the effective potential energy. This gives the first order differential
equation H = const for the radius-vector r(t).

Firstly, it is useful to consider the case when v(0) is parallel to the vector
x(0) of the particle, that is the case L(0) = 0. Then the movement will be along
r(0). If v(0) = 0 or directed towards the centrum, then the velocity will always
increase and the particles will reach (fall onto, collide with) the centrum in finite
time. Let now the velocity be directed from the centrum. If H = H(0) < 0,
then the particle will once stop (when U(r(t)) = H) and turn backwards, finally
falling onto the centrum. If H = 0, then the particle will never stop and will
escape to infinity with the velocity tending to zero. If H > 0, then the particle
escapes to infinity with velocity tending to

v(∞) =
2

m
H 6= 0

We will see that somewhat similar situation takes place also for any v(0)
(that is when the initial kinetic momentum is not zero). But first of all, let us
show that the particle cannot collide with the centrum. For repulsive potential
(c < 0) this is clear. For the attracting potential it follows from (1.7) that

0 ≤
(dr
dt

)2

=
2

m
(H − Ueff ) (1.8)

On the one hand, (1.8) is non negative, but on the other hand, if the particle
comes close to the centrum, then (1.8) has the order −r−2 for small r.

Another conclusion is that the velocity stays always bounded, and the solu-
tion always exists and is unique on all time interval (−∞,∞).
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Scattering trajectories For H ≥ 0 any trajectory is a scattering trajectory.
In fact, let rcr be the unique root of the right-hand side of the equation

m

2

(dr
dt

)2

= H +
c

r
− L2

2mr2

This root defines the point of trajectory nearest to the origin, as for r < rcr
this right-hand part is negative, which is impossible. For r > rcr, (drdt )

2 is not
zero. This means that the trajectory either goes from infinity to this point, or
the contrary.

In particular, if U(x) > 0 (repulsive potential), then always H > 0, and
there cannot be bounded trajectories.

Bounded trajectories If the initial energy H < 0, then the particle cannot
be far from the centrum, because then the potential tends to zero and the kinetic
energy is always non-negative. Thus, for H < 0 all trajectories are bounded.
Moreover, r(t) is a periodic function, as there are exactly two points (exception
is the minimum of Ueff ) with zero velocity dr

dt . Due to equation

dϕ

dt
=

L

mr2

also the function ϕ(t) will be periodic. This means that the particle will really
rotate around the centrum. In the mentioned exceptional case of minimum of
Veff , the rotation will be along the circle with constant velocity. It is easy to
obtain these particular solutions – uniform movement along the circle in the
plane (x, y)

x(t) = r cos vt, y(t) = r sin vt

That is very easy to understand. The acceleration vector is

m
d2x

dt2
= −rv2 cos vt,

d2y

dt2
= −rv2 sin vt

That is why the projection of the acceleration vector on the radius-vector in this
point of the trajectory equals −rv2, and the projection on the perpendicular
direction is zero. It remains only to equate it to the constant force −gradU(r),
that is we get

v2 = m
gradU(r)

r
In all other cases the rotation will be along the ellipses. One can read more
about this and about more general central forces, for example, in [1, 2].

Remark 1.2. We saw that the particle has only three possibilities: fall on the
centrum, rotate around the centrum and go from infinity to infinity. The first
possibility (capture trajectories) can be only collision with the centrum, and
only if v(0) is proportional to x(0).
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Perturbation of the velocity on the closed orbit If the particle on the
bounded trajectories will get additional small velocity, then it will just change to
the close orbit. In fact, for bounded trajectories H < 0, and any small velocity
perturbation also will enjoy this property.

2. About N particle problem

2.1. Axioms

Classical mechanics of point particles is based on the following axioms. In
the system of N particles i = 1, . . . , N with masses mi and trajectories xi(t) =
(xi1(t), . . . , xid(t)), any particle i at time t acts on the particle j 6= i with force
Fij = Fij(xi, xj) depending only on the points xi, xj , where these particles are
situated at the same moment t. Otherwise speaking, the following equations
hold

mj
d2xj
dt2

=
∑
i:i 6=j

Fij (2.1)

The symmetry condition is assumed (one of the Newton’s law)

Fij(xi, xj) = −Fji(xj , xi) (2.2)

Often all forces Fij are assumed to be potential with some (central) potential
Vij(|xi − xj |), where real functions Vij = Vij(r) = Vji : R+ → R, (called
two particle interaction between particles i and j) depend only on the distance
rij = |xi − xj | between the particles i and j at the given moment. Then

Fij = −∇jVij = −dVij
dr

(rij)
dr

dxj
= −dVij

dr
(rij)

xj − xi
|xi − xj |

=⇒

Fj =
∑
i:i 6=j

Fij = −∇jU

where Fj is the total force on the particle j, and we introduced the potential
energy of the system

U =
1

2

∑
i 6=j

Vij =
∑
i<j

Vij (2.3)

Then for all k = 1, . . . , d and vectors xi = (xi1, . . . , xid), Fij = (Fij,1, . . . , Fij,d)

Fij,k = − ∂Vij
∂xj,k

= −dVij
dr

(|xi − xj |)
xj,k − xi,k
|xi − xj |

(2.4)

Then the symmetry condition (2.2) follows.
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Remark 2.1. 1) If there are also external forces Fi(x), acting on particles i, the
equations (2.1) are as follows

mj
d2xj
dt2

=
∑
i:i6=j

Fij + Fj(xj) (2.5)

2) In other sciences (for example in sociophysics) one can encounter equations
similar to (2.1), see [21], but the symmetry Fij = −Fji is not assumed.

3) This N -particle problem in Rd, which we are going to study, formally
is a particular case of one particle problem in RdN with very specific external
force, where each coordinate sees other coordinates as the sources of its own
time dependent external field.

2.1.1. What forces are more fundamental

One could restrict oneself to even more narrow class of forces. First of all,
to the following two.

Gravitation and electrostatics Let in R3 (at some fixed time moment) two
particles i = 1, 2, are the points xi, moreover they have masses mi and charges
qi. Then (in non-relativistic physics) particle 1 acts on the particle 2 with the
force

F2 = −G m1m2

|x1 − x2|3
(x2 − x1) + ε−1

0

q1q2

|x1 − x2|3
(x2 − x1)

The first of these forces is called gravitational force (universal gravitation law),
the second is the electrostatic force (Coulomb law).

These two forces act on different scales and rarely meet together. For exam-
ple, celestial mechanics uses only gravitational force, and in micro world (atoms
and molecules) most important is the electrostatic force. In the system SI the
constants and mass and charge of the electron are (C = coulomb, V = volt)

me = 10−31kg, qe = 10−19C, ε0 = 10−11Cm−1V −1, G = 10−10m3kg−1s−2

However, in physics many other forces are used. Example is Hooke’s law
(like in harmonic oscillator) with potential

U(x1 − x2) =
w2

2
(x1 − x2)2

and forces of Lennard – Jones type

c1
(x1 − x2)p

+
c2

(x1 − x2)q
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The latter are similar to the fundamental forces but the potential has a min-
imum. The reader often will not understand where these forces come from:
either they constitute fundamental laws or approximate experimental facts.

Thus there is a choice: 1) to obtain general results for wide classes of forces,
2) to develop axiomatic theory with minimal number of fundamental forces.
Celestial mechanics is a famous example of such theory. It is strange, however,
that Coulomb mechanics (with Coulomb force only) does not still exist.

The main problems however are the same as for one particle: to describe
bounded and scattering trajectories.

2.1.2. Existence, uniqueness and collisions

If all Vij are smooth (of course there are much weaker conditions) in a neigh-
borhood of the initial data ψ(0) = (x(0), v(0) then for some t1 the solution, for
this initial data, exists and is unique on [0, t1]. Then one can proceed recur-
rently. Namely, take ψ(t1) = (x(t1), v(t1) as new initial data, then we get a
solution in longer time interval [0, t2], 0 < t1 < t2. Continuing similarly, two
problem can appear:

1) for finite time we can escape to infinity. However, this is impossible if
all Vij are bounded from below. For example, if all forces Fij are smooth and
bounded, then the solution globally exists.

2) some of N particles can collide, that is for some t, i, j it can be that
xi(t) = xj(t). There are two types of such collisions:

a) if Vij(x) → −∞ as x → 0. Then if a collision occurred at time t0, the
solution cannot be continued for t > t0. Let B ∈ R2d be the set of initial
data for which such collisions occur. And it is interesting whether λ(B) = 0 or
λ(B) > 0, where λ is the Lebesgue measure on R2d. For example, in celestial
mechanics with N = 2 λ(B) = 0. We saw this in the example the particle falls
onto the centrum only for zero initial kinetic momentum. In case N > 2 this
problem was deeply investigated, see [2] and references therein.

b) if Vij(0) is finite. Here the solution can be continued and often such
collisions are not taken into account. However, the structure of such collisions
is important for many problems, for example, for deriving Euler equations from
particle mechanics, see below.

2.1.3. Conservation laws

Total mass M , energy H, momentum P , angular (kinetic) momentum L of
the system of N particles i = 1, . . . , N are defined as follows

M =
∑
i

mi, H =
∑
i

miv
2
i

2
+ U, P =

∑
i

mivi =
∑
i

pi, L =
∑
i

(xi × pi)
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Define also the center of mass X and its velocity

X =

∑
imiri
M

, V =
dX

dt

then the kinetic energy can be rewritten as

T =

N∑
i=1

miv
2
i

2
=

1

2
MV 2 +

1

2

∑
i

mi(vi − V )2

The conservation laws

dH

dt
= 0,

dP

dt
= 0,

dL

dt
= 0

are verified as follows. Energy conservation – as above for one particle. Mo-
mentum – also very simply

dP

dt
=

N∑
i,j:i 6=j

Fij = 0,

as Fij = −Fji. If there are also external fields Fi(x), exerted on particles i, then

dP

dt
=
∑
i

dpi
dt

=
∑
i

(F
(int)
i + F

(ext)
i ) =

∑
i

F
(ext)
i .

For the kinetic momentum conservation we have

dL

dt
=
∑
i

((vi×pi)+
∑
j

(xi×Fji)) =
∑
i 6=j

(xi×Fji) =
∑
i<j

((xi×Fji)+(xj×Fij)) =

=
∑
i<j

((xi − xj)× Fji) = R = 0

as the vectors xi − xj and F
(int)
ij are parallel, if there are no external forces. In

general case the torque (twisting moment) R of all forces, including external,
is defined as follows

R =
∑
i

Ri =
∑
i

(xi × F (ext)
i ) +

∑
i

∑
j:j 6=i

(xi × F (int)
ij ) =

=
1

2

∑
i 6=j

((xi − xj)× F (int)
ij ) +

∑
i

(xi × F (ext)
i ) =

∑
i

(xi × F (ext)
i )
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2.2. Two body problem

If the potential U(r) = U{|x1−x2|} has finite support, and two particles are
at sufficient distance from each other, then they move with constant velocities.
What occurs when they become closer than the radius of the potential ? It
appears that, under sufficiently general conditions, there is only one possibility:
after spending some time on the bounded distance from each other they separate
forever. This result of the scattering theory we shall prove here.

Another interesting observation is that, in many cases, the particle with
smaller velocity robs the energy from the particle with greater velocity, justify-
ing the observation “weaker takes the energy from the stronger”. This is evident
already from very simple example. If one particle stands still and another one
bumps into it, then the first one obtains non zero velocity, thus taking kinetic
power from the moving particle. Warming up close to the fire and the fric-
tion effect are based also on this fact. Let me mention also the following life
observation “if one will get more someone will have less”.

One dimensional case: energy redistribution Here we assume for sim-
plicity that the potential U(r) is smooth and that its support is the interval
[0, a], 0 < a <∞. In this case we have complete understanding and also typical
picture of dynamics. First of all, for any initial data the solution exists on all
time interval (−∞,∞). Assume that at time t = 0 the particles are sufficiently
far from each other, that is |x1(0) − x2(0)| > a, and have velocities u1 = v1(0)
and u2 = v2(0) correspondingly.

In this case we call the trajectory (x1(t), x2(t)) bounded, if there is a con-
stant C > 0 such that uniformly in t

|x1(t)− x2(t)| ≤ C

For example, such are the trajectories with v1(t) = v2(t), |x1(t)−x2(t)| = r > a.
The trajectory (x1(t), x2(t)) is called scattering trajectory, if the following

condition holds: the particles spend finite time on the distance not greater than
a from each other. It follows that vk(t) = wk for sufficiently large t, that is the
velocities stabilize.

There are also capture trajectories, but for smooth potential such ini-
tial conditions have Lebesgue measure zero in the phase space, and we do not
consider such cases. We saw this above in one dimensional case.

Lemma 2.1. There are no other trajectories.

Proof is contained in the following assertions.

Lemma 2.2. For any scattering trajectory we have

w1 − u1 =
2m2

m1 +m2
(u2 − u1) (2.6)
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w2 − u2 =
2m1

m1 +m2
(u1 − u2) (2.7)

Proof. From conservation of momentum and energy we have

m2u2 +m1u1 = m2w2 +m1w1

m2u
2
2 +m1u

2
1 = m2w

2
2 +m1w

2
1

One can rewrite this
m2(u2 − w2) = m1(w1 − u1) (2.8)

m2(w2
2 − u2

2) = m1(u2
1 − w2

1)

Making cancellations in the latter formula we get

w2 + u2 = u1 + w1

or
−w = w2 − w1 = u = u1 − u2 6= 0 (2.9)

as we consider scattering trajectory. So, the relative velocity v(t) = v1(t)−v2(t)
changes sign. Moreover, substituting

w2 = u1 + w1 − u2

to (2.8), we have

2u2 − u1 − w1 =
m1

m2
(w1 − u1)

or
2u2 − 2u1 + (−w1 + u1) =

m1

m2
(w1 − u1)

From this (2.6) follows, and (2.7) is symmetric. Lemma is proved. 2

The following theorem easily follows from this lemma.

Theorem 2.1.

1. Let u1 > u2 > 0 and x1(0) < x2(0). Then |w1| < u1. This means that the
particle with velocity u1 looses kinetic energy, and the second, with less
energy, increases its energy. Moreover, in this case always w2 > u2 > 0,
and w1 can change sign, dependently on the masses.

2. Let u1 > 0 be the velocity of the particle going from −∞, and u2 < 0 be
the velocity of the particle going from +∞. Here w1 < u1 always, but
|w1| < u1, holds iff

|u2|
u1

<
m2

m1
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The first assertion of the theorem follows from formula (2.6), as

−2u1 <
2m2

m1 +m2
(u2 − u1) < 0

The second assertion follows from the same formula (2.6). In fact,

|w1| =
∣∣∣u1 +

2m2

m1 +m2
(u2 − u1)

∣∣∣
and, as u2 < 0,

|w1|
u1

=
∣∣∣1− 2m2

m1 +m2

( |u2|
u1

+ 1
)∣∣∣

Thus it should be
2m2

m1 +m2

( |u2|
u1

+ 1
)
< 2

that gives the result.
Formulae of the lemma can be rewritten as follows

w1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2

and symmetrically for w2. Note that if m1 = m2, then w1 = u2, that is the
particles exchange their velocities.

Reduction to one particle case in any dimension Consider two particles
in R2 having masses m1,m2 and coordinates x1, x2 correspondingly. Consider
smooth finite central potential U(r), r = |x1 − x2|

Denote by

x1, x2, X =
m1x1 +m2x2

m1 +m2
, x = x1 − x2

the vectors of particle coordinates, the center of masses and the relative vector,
respectively, and also

v1, v2, V =
m1v1 +m2v2

m1 +m2
, v = v1 − v2

the corresponding velocities. Also denote the total mass M = m1 + m2, the
reduced mass µ = m1m2/M , and the momentae

p1 = m1v1, p2 = m2v2, P = p1 + p2 = MV, p =
m2p1 −m1p2

M
= µv

where p is the momentum of “virtual relative” particle. Inverse formulas

x1 = X +
m2

m1 +m2
x, x2 = X − m1

m1 +m2
x
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give explicit expressions for the velocities before (denoted by ui) and after (wi)
scattering

v1 = V +
m2

m1 +m2
v, v2 = V − m1

m1 +m2
v

w1 = V +
m2

m1 +m2
w, w2 = V − m1

m1 +m2
w

It remains to find w given v = v1 − v2. From energy conservation we get that
|v| = |w|.

It is easy to see that the Hamiltonian can be written as

H =
p2

1

2m1
+

p2
2

2m2
+ U(|x1 − x2|)

=
P 2

2M
+
p2

2µ
+ U(|x|)

This reduces the problem to that for the virtual particle with the Hamiltonian

H ′ =
p2

2µ
+ U(|x|),

which was considered earlier in Section 1.

2.3. Types of trajectories for N ≥ 3

We say that the trajectory is bounded if all N particles always remain in
some neighborhood of their center of mass. Most part of the great science
“Celestial mechanics” is devoted to the description of bounded trajectories,
see [2, 5, 6, 11,12].

Scattering theory describes other trajectory types. We call channel α any
partition of the set {1, . . . , N} of particles onto disjoint subsets (fragments)

{1, . . . , N} = J1 ∪ . . . ∪ Jk

If H is the Hamiltonian of the system, then the Hamiltonians H(α, Ji) are
defined as follows: we delete from H all terms except kinetic energies of the
particles from Ji and all interactions between particles in Ji. The channel
Hamiltonian

Hα =

k∑
i=1

H(α, Ji),

is defined as the total Hamiltonian from which all interaction of particles from
different fragments are deleted.
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About scattering theory Assume again that all Vij have finite support.
We say that the trajectory is a scattering trajectory for the pair of channels
α− = J−1 ∪ . . . ∪ J

−
k and α+ = J+

1 ∪ . . . ∪ J+
n if the following conditions hold:

1. For some constants (depending on the trajectory) t− < t+ the trajectory
of the system on the time interval (−∞, t−) is defined by the Hamiltonian Hα− .
Moreover, as t→ −∞ all |x(ti)| → ∞.

2. Similarly, the trajectory of the system on (t+,∞) is defined by the Hamil-
tonian Hα+

, and as t→∞ all |x(ti)| → ∞.
Hypothesis of asymptotic completeness in this case is the following assertion:

for almost any trajectory there exists a pair of channels (α−, α+), with respect to
which the trajectory is a scattering trajectory. “Almost any” means that the set
of initial conditions (x1(0), v1(0), . . . , xN (0), vN (0)), for which the corresponding
trajectory is not a scattering trajectory, has Lebesgue measure 0 in R2dN .

For N = 2 this is easy to prove by reduction to one particle problem, see
above. For N = 3 deep results were obtained by classics of celestial mechanics,
see references in [2]. In more general case and in a bit different terms (scattering
theory in Hilbert space) similar assertion was proved in [4].

3. Dynamics of sets, functions and measures

From now on, we consider the problems very different from those we consid-
ered earlier. For example, ergodicity problems.

Remind that the trajectories with initial conditions x(0) = x, v(0) = v (de-
noted here as ut(x, v)) of Hamiltonian dynamics on some set X ⊂ R2dN of the
phase space, do not intersect. That is, for any t, ut : X → ut(X) is one-to-one
mapping.

More generally, let ut : X → X be an arbitrary group of one-to-one transfor-
mations (diffeomorphisms) of some set X ⊂ R2dN . One can consider induced
(raised, uplifted, elevated) transformation groups on different sets of “higher
level”. For example, on the set of subsets of Σ(X), the set of real or complex
functions on X and on the set of all measures on X.

Note that any nonlinear dynamics, being raised for example on the set of
functions, becomes linear in infinite dimension. One can uplift the dynamics
“even higher”, for example on the set of differential forms or the set of operators
in some function space. Such elevation gives some insight on the connection
between classical and quantum physics, see references in [15].

3.1. Invariant tori

Consider the set Σ(L) of all subsets A ⊂ L, and for given ut define

U t(A) = {utψ : ψ ∈ A}
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Subset A ⊂ L is called invariant if U t(A) = A for any t. Structure of invariant
subsets is useful in the problems of integrable systems and ergodicity. One of
the strongest definitions of ergodicity is that all invariant subsets should have
Lebesgue measure 0 or 1. In linear case the structure of invariant subsets and
of the dynamics is the classical result, and we come to it now.

Consider the phase space

L = R2N =
{
ψ =

(
q
p

)
: q = (q1, . . . , qN )T , p = (p1, . . . , pN )T , qi, pi ∈ R

}
,

where T is the transposition (that is ψ is considered as the column vector),
Then L is a linear space with the standard scalar product

(ψ,ψ′)2 = (q, q′)2 + (p, p′)2 =

N∑
i=1

(qiq
′
i + pip

′
i)

and can be presented as the direct sum L = l
(q)
N ⊕ l

(p)
N of two orthogonal sub-

spaces, each of dimension N . Consider the quadratic Hamiltonian

H(ψ) =

N∑
k=1

p2
k

2
+ U(q), U(q) =

1

2
(q, V q) (3.1)

where matrix V , acting in RN , is assumed to be real and positive definite. This
defines hamiltonian system of linear differential equations

q̇k = pk, ṗk = −
N∑
l=1

Vklql, k = 1, . . . , N (3.2)

or
dψ

dt
= Aψ, A =

(
0 E
−V 0

)
For h > 0 the energy surface (of constant energy h)

Mh = {ψ ∈ L : H(ψ) = h}

is a smooth manifold (ellipsoid) in L of codimension 1.
Let v1, . . . , vN be the orthonormal eigenvectors of matrix V in RN , and the

corresponding eigenvalues are denoted by ω2
1 , . . . , ω

2
N . Define 2N -vectors in L:

Qk = (vk, 0)T , Pk = (0, vk)T , k = 1, . . . , N (3.3)

Denote by (q̃k, p̃k)T the coordinates of the vector ψ ∈ L in the basis Q1, P1, . . . ,
QN , PN , that is

ψ =

N∑
k=1

q̃kQk +

N∑
k=1

p̃kPk (3.4)
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Dynamics For any t > 0 one can show that

etA =

(
cos(t

√
V ) (

√
V )−1 sin(t

√
V )

−
√
V sin(t

√
V ) cos(t

√
V )

)
,

where
√
V is the positive square root of the matrix V . Then for any k = 1, . . . , N

and t > 0

etAQk = cos(ωkt)Qk − ωk sin(ωkt)Pk, (3.5)

etAPk =
sin(ωkt)

ωk
Qk + cos(ωkt)Pk. (3.6)

Using (3.5) and (3.6) we have for any ψ

ψ(t) = etAψ =

N∑
k=1

(
cos(ωkt)q̃k +

sin(ωkt)

ωk
p̃k

)
Qk+

+

N∑
k=1

(−ωk sin(ωkt)q̃k + cos(ωkt)p̃k)Pk

and it follows that

q̃k(t) = cos(ωkt)q̃k(0) +
sin(ωkt)

ωk
p̃k(0)

p̃k(t) = − ωk sin(ωkt)q̃k(0) + cos(ωkt)p̃k(0).

Action-angle variables From these formulas it is clear that any pair of func-
tions (q̃k(t), p̃k(t)), k = 1, . . . , N, corresponds to the dynamics of one dimen-
sional oscillator with unit mass, frequency ωk, coordinate q̃k(t) and momentum
p̃k(t). Then the dynamics etAψ is isomorphic (unitary equivalent) to the uni-
form movement on the torus with velocity (ω2

1 , . . . , ω
2
N ), that is to the dynamics

of N independent one-dimensional oscillators with energies r2
k/2, where

r2
k(ψ) = p̃2

k + ω2
kq̃

2
k = (ψ, Pk)2

2 + ω2
k(ψ,Qk)2

2 = (p, Pk)2
2 + ω2

k(q,Qk)2
2,

k = 1, . . . , N

are the so called action coordinates of the point ψ = (q, p). We assume that
rk(ψ) =

√
r2
k(ψ) > 0. It is easy to see that rk are integrals of the hamiltonian

dynamics, that is for all t > 0

r2
k(ψ) = r2

k(etAψ) (3.7)

Together with the action coordinates also angle coordinates are introduced, that
is the rotation angles of the corresponding oscillator on the ellipse in its phase
plane.

It is not difficult to prove the following assertions.
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Lemma 3.1.

1. For all r1 > 0, . . . , rN > 0 the set

T (r1, . . . , rN ) = {ψ ∈ L : rk(ψ) = rk, k = 1, . . . , N}

is invariant and diffeomorphic to the torus of dimension N − n, where n
is the number of zeros among r1, . . . , rN .

2. For any point ψ ∈ L, the closure of its orbit (trajectory) coincides with
the torus to which it belongs

{etAψ : t > 0} = T (r1(ψ), . . . , rN (ψ)),

3. Thus the torus is defined by the vector r̄ = (r1, r2, . . . , rN ). Vice versa,
any such vector with non-negative coordinates uniquely defines the torus.
This torus lies on the energy surface Mh iff

N∑
k=1

r2
k = 2h

3.2. Dynamics of functions

We define now the dynamics

(U tf)(x) = f(utx), x ∈ X, f ∈ FX

on the set FX of functions on X or on any invariant linear subspace of FX .

Remark 3.1. If the evolution ut is one-to-one then sometimes it could be useful
to define the evolution of functions differently:

(U tf)(x) = f(u−tx) (3.8)

3.2.1. Symplectic formalism

Consider the set of functions F=C∞(R2N ) on the phase space R2N =
((q1, p1), . . . , (qN , pN )). Define the bilinear map (Poisson bracket) F×F→ F

[f, g] = [f, g]q,p =
∑
K

( ∂f
∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(3.9)

For example,
[qk, pl] = δkl, [qk, ql] = [pk, pl] = 0 (3.10)

[qk, qlqm] = 0, [qk, qlpm] = δkmqk, [qk, plpm] = δklpm + δkmpl
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[pk, plpm] = 0, [pk, qlpm] = δklpm, [pk, qlqm] = δklqm + δkmql

It is easy to check that the mapping (3.9) is bilinear skew(anti)symmetric and
that the Jacobi identity holds

[e, [f, g]] + [f, [g, e]] + [g, [e, f ]] = 0

Thus, F becomes Lie algebra.
If the Hamiltonian H is given, then, in terms of Poisson brackets, the hamil-

tonian equations can be rewritten as follows

dqk
dt

=
∂H

∂pk
= [qk, H],

dpk
dt

= −∂H
∂qk

= [pk, H] (3.11)

More generally, evolution of any observable (that is of some function f =
f(qk(t), pk(t))) in the phase space is also defied by differential equation

df

dt
=
d(U tf)

dt
=
df(q(t), p(t))

dt
=
∑
K

( ∂f
∂qk

dqk
dt

+
∂f

∂pk

dpk
dt

)
=

=
∑
k

( ∂f
∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
= [f,H] (3.12)

If we introduce the linear operator Lf = [f,H] on the set of functions then the
dynamics can be formally written as

U tf = etLf

3.2.2. Canonical transformations

Besides Hamiltonian dynamics uplifted on FX one can consider various
transformation of this space and of its linear subspaces.

1) Linear transformations Lψ on linear functions on X which conserve sym-
plectic form (3.10). They are considered in algebra;

2) arbitrary (nonlinear) one-to-one transformation w : R2N → R2N of the
phase space, that is some change of variables

{(qk, pk)} → w{(qk, pk)} = {(Qk, Pk)} (3.13)

Using
(Wf)(ξ) = f(wξ)

this transformation can be raised to F, that defines the linear operator W : F→
F. Such w (or W ) is called canonical if it conserves Poisson brackets of any
two functions f, g on R2dN

[f, g]p,q = [f, g]Q,P (3.14)
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that it is an automorphism of the Lie algebra.
3) groups of linear transformations of the infinite dimensional linear sub-

spaces of FX, not necessarily induced by transformations defined in 2).
The important facts:
1) For any Hamiltonian H = H({(qk, pk)}) the hamiltonian equations (3.11)

look similarly in the new variablesQk, Pk with HamiltonianHw = Hw(Qk, Pk) =
H(q(Q,P ), p(Q,P )).

In fact, putting in (3.12) f = Qk, we write down the evolution of Qk as the
consequence of the evolution qi(t) and pi(t). Namely, we use (3.9), (3.12) and
(3.14) in the following equalities correspondingly

dQk
dt

= {Qk, H} = {Qk, Hw} =
∂Hw

∂Pk

and similarly for dPk

dt .
2) In particular, Hamiltonian dynamics ut defines canonical transformation

for any t.
Canonical transformations (that is the corresponding change of variables)

can simplify the equations and find invariants of the dynamics.
Examples
1) If some function G has the property {H,G} = 0 then G is an invariant of

the dynamics defined by the Hamiltonian H. A particular case is when particles
can be divided on two subsets I1, I2 ⊂ {1, . . . , N} such that I1 ∩ I2 = ∅ and
there exists function G(qi, pi : i ∈ I1) such that H = H(G(qi, pi : i ∈ I1); qj , pj :
j ∈ I2);

2) For harmonic oscillator with the Hamiltonian

H =
1

2
(p2 + ω2q2)

consider the canonical transformation

h =
1

2ω
(p2 + ω2q2), ψ = arctan

(ωq
p

)
with the inverse transformation

q =
f(h)

ω
sinψ, p = f(h) cosψ

Then the new Hamiltonian

H =
1

2
f2(h)

In these “action-angle” variables (note that h has the dimension of action, see
below) the hamiltonian equations are

dh

dt
= 0,

dψ

dt
= ω =⇒ h(t) = const, ψ(t) = ψ(0) + ωt
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3.3. Dynamics of measures

The induced transformation on the set MX of measures on X is defined as
follows

(U tµ)(A) = µ(U−tA), µ ∈MX

Intuitively it is the amount of mass which enters to the set A at time t. Further
on we consider hamiltonian dynamics in the phase space. Measure µ is called
invariant if for any A

(U tµ)(A) = µ(A)

Liouville theorem Liouville theorem says that Lebesgue measure is invariant
with respect to hamiltonian dynamics.

To prove this note first that if one-to-one smooth mapping U : X → Y =
U(X) of the domain X ⊂ Rn to other domain Y ⊂ Rn is such that the module
of its Jacobian is identically 1, then the Lebesgue measures λ of X and U(X)
are equal. In fact, one can use

λ(U(X)) =

∫
U(X)

dx

and change of variables from Ux to x.
Now consider our group U t of one-to-one mappings. Consider the Jacobian

J(t) for small t and its elements

Ikl(t) =
∂xk(t)

∂xl(0)

where
(x1, . . . , x2dN ) = (q1, . . . , qdN , p1, . . . , pdN )

For small t we have

pk(t) = pk(0)− ∂U

∂qi(0)
t, qk(t) = qk(0) +

∂U

∂pi(0)
t

Then, up to O(t2), the off-diagonal elements are linear in t, and the diagonal
elements Ikk(t) are

∂pk(t)

∂pk(0)
= 1− t ∂2U

∂pi(0)∂qi(0)
+O(t2),

∂qk(t)

∂qk(0)
= 1 + t

∂2U

∂pi(0)∂qi(0)
) +O(t2)

Thus the product of all diagonal terms does not contain terms linear in t, and
then

J(t) = 1 +O(t2) =⇒ dJ(t)

dt
= 0

whence J(t) ≡ 1.



324 V.A. Malyshev

Liouville measure on the energy surface Speaking roughly, it is defined
as the restriction of Lebesgue measure on Mh. More exactly, it is defined as

dMh

|∇H|

where dMh is the volume of small piece of Mh, |∇H| is the length of the energy
gradient vector in some point of this piece. Even better definition: consider the
volume of the domain {x : h− ε

2 < x < h+ ε
2}, divide it on ε and consider the

limit ε→ 0.

4. Famous equations

4.1. Euler – Lagrange equations

Lagrangian Newton equations

m
dvk
dt

= Fk = − ∂U
∂xk

, k = 1, . . . , N,

for N -particle system with potential energy U(x1, . . . , xN ) and kinetic energy
T (v1, . . . , vN ) can be rewritten as follows

d

dt

( ∂T
∂vk

)
= − ∂U

∂xk
=⇒ d

dt

( ∂L
∂vk

)
=

∂L

∂xk
(4.1)

where L = T − U is called the Lagrangian, and the equations are called
Euler – Lagrange equations. In terms of the total energy H = T + U

L = T − U = 2T −H = H − 2U

This shows that if the total energy is conserved, the change of Lagrangian is
defined by any of its terms

1

2
(L(t2)− L(t1)) = T (t2)− T (t1) = U(t1)− U(t2)

4.1.1. Legendre transform

Roughly speaking, two real functions on R are Legendre transforms of each
other if their derivatives are mutually inverse.

Consider smooth function F (x) on R having everywhere positive second
derivative. Then F ′(x) increases, and thus F (x) can be represented as the
function of y = F ′(x). That is there exists function x(y), inverse to y = F ′(x).
Variables x and y are called conjugate. Define now Legendre transform G
of F

G(y) = yx(y)− F (x(y))
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Then
G′(y) = x(y) + yx′(y)− F ′(x(y))x′(y) = x(y)

and so G′′(y) = dx
dy > 0. One can check that F is the Legendre transform of G.

Example. Let F (v) = H = mv2

2 +U be a Hamiltonian, where U is considered
as constant. Then conjugate variable to v will be the momentum p = F ′(v) =
mv and Legendre transform of the Hamiltonian H is the Lagrangian

G(p) = pv −H = T − U = L

Legendre transform can be defined also in multi-dimensional situation. In
case of the function F (x) : Rd → R, its Legendre transform is defined as the
real function

G(y) = (y, x)− F (x), x = (∇F )−1(y)

if ∇F is one-to-one map of some open set O ⊂ Rd onto other open set O′ ⊂ Rd.
Or, in terms of differentials

F = F (x1, . . . , xn), dF = u1dx1 + . . .+ undxn, uk =
∂f

∂xk

Then variables xk, uk are called conjugate. For any m ≤ n Legendre transform
of F (dependently on m) can be defined as

G = F −
m∑
k=1

ukxk, dG =

n∑
k=m+1

ukdxk +

m∑
k=1

(−xk)duk

4.2. Hamilton – Jacobi equation

4.2.1. Action

Action (its differential) was defined (for one particle of unit mass) by Mau-
pertuis as functional of the infinitesimally small) path

dW = vds = v2dt = 2Tdt = (T − U +H)dt = Ldt+Hdt

If the energy is conserved the path integral (up to H(t− t0))

S = S(x(s), 0 ≤ s ≤ t) =

t∫
t0

L(x(s), x′(s))ds,

over the trajectory x(t) is called action (according to Hamilton), where dash is
the time derivative. S can be considered also, more generally, as the functional



326 V.A. Malyshev

on the set of all sufficiently smooth curves x(s) on finite time interval [t0, t], and
its dimension is energy×time. If H is conserved then

W =

t∫
t0

2Tdt (4.2)

is also called short action, or Maupertuis – Lagrange action.

4.2.2. Hamilton principle

Consider the real trajectory x(s), of some hamiltonian system with la-
grangian L, on the interval [0, t], with initial data x(0), v(0), and also another
curve y(s) = x(s) + δ(s), defined on the same interval and close to x(s), that is
δ(s) = δx(s) is small uniformly in s together with necessary number of deriva-
tives. Consider the difference (variation)

δS = S(y(s), 0 ≤ s ≤ t)− S(x(s), 0 ≤ s ≤ t)

up to first order terms

δS =

t∫
0

(∂L(x(s), x′(s))

∂x
δ(s) +

∂L(x(s), x′(s))

∂x′
δ′(s)

)
ds =

=

t∫
0

(∂L
∂x
− d

ds

∂L

∂x′

)
δ(s)ds+

[ ∂L
∂x′

(s)δ(s)
]∣∣∣t

0
(4.3)

where we used integration by parts for the second term.
We get the following principle of least action of Hamilton (or principle

of stationary action). Namely, the variation equals zero for all δ(s) such that
δ(0) = δ(t) = 0, iff x(t) satisfies the Euler – Lagrange equations (4.1).

4.2.3. Direct derivation of H-J equations

If the action is considered only on real trajectories (that is satisfying Euler –
Lagrange equations), then one can consider the action not as the functional on
the paths, but as the real function of 4 variables, as for example:

1) initial and final time moments t0, t1, and initial coordinate and velocity
x0, v0;

2) t0, t1, and final coordinate and velocity x1 = x(t1), v1 = v(t1);
3) t0, t1, x0, x1.
Moreover, for given t0, x0 one can consider the action as the function of two

other variables. For example, for fixed t0 = 0, x0, the action will be uniquely
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defined function S(t, x) in a small neighborhood Ot1,x1 of the pair (t1, x1 =
x(t1)). One could prove this as follows. Let x(s) be the trajectory on [t0 = 0, t1],
with initial data x(0), x′(0) = v(0). Let x1 = x(t1). If we fix x(0) and change
only the initial velocity v(0)→ v(0)+δv then under some conditions, this defines
one-to-one map of small neighborhood Ov(0) of v(0) to some neighborhood Ox(t)

of x(t) = x1 + δx, for any t = t1 + δt, from some neighborhood of t1. Then from
(4.3) it follows, first of all, that in this neighborhood (further on, in all formulae
we keep only terms of the first order in δt and δx)

δS(t, x) =
∂S

∂t
δt+

∂S

∂x
δx (4.4)

And secondly, one can generalize (4.3) as follows.
We consider the real trajectory x(t) + δx(t) on [0, t], with δ(0) = 0, but with

initial velocity v(0)+δv, as a perturbation of the (also real) trajectory x(t) with
initial data x(0), v(0). Here δt = t− t1, and note that

δx = x(t)+δx(t)−x(t1) = x(t)+δx(t)−x(t1) = δx(t)+x′(t)δt = δx(t1)+x′(t)δt
(4.5)

Then

δS(t, x) =

t∫
0

L(x(t) + δ(x(t)))dt−
t1∫

0

L(x(t))dt =

=

t1∫
0

(L(x(t) + δ(x(t)))dt− L(x(t)))dt+

t∫
t1

L(x(t) + δ(x(t)))dt =

=

t1∫
0

(∂L
∂x
− d

dt

∂L

∂x′

)
δx(s)ds+

[ ∂L
∂x′

(s)δx(s)
]∣∣∣t1

0
+ Lδt =

=
∂L

∂x′
δx(t1) + Lδt = pδx(t1) + Lδt (4.6)

where the integral is zero because the perturbed trajectory is real. Remind that,
neglecting second order terms,

p(t) = p(t1), x′(t) = x′(t1)

But from (4.5) we get
δx(t1) = δx− x′(t)δt

Substituting this to the right hand part of (4.6) we get

δS = p(δx− x′δt) = (L− px′)δt+ pδx (4.7)
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Comparing this with (4.4), we get

∂S

∂x
= p (4.8)

∂S

∂t
= L− 2T = −H

This gives Hamilton – Jacobi equations

∂S

∂t
+H

(
x,
∂S

∂x
, t
)

= 0 (4.9)

for the function S(x, t). Initial data here is S(0, x) = 0.
The short action (4.2) then satisfies the equation

H
(
x,
∂W

∂x

)
= 0

Note that there is another derivation of the H-J equations – using generating
functions of canonical transforms, see [1, 7].

Example of S Consider free particle case. The H-J equation is then

∂S

∂t
+

1

2m

(∂S
∂x

)2

= 0

If we put
S(x, t) = f(x)− Et,

then substituting, we get for some constant C

f(x) =
√

2mEx− C =⇒ S(x, t) =
√

2mEx− Et− C

4.3. Liouville and BBGKY equations

4.3.1. Liouville equation

Let ρ(ψ, 0) be the initial probability density (with respect to Lebesgue mea-
sure) of the N particle system with Hamiltonian H on the phase space R2dN .
That is for any subset Λ ⊂ R2dN the probability that initially ψ ∈ Λ equals∫

Λ

ρ(ψ, 0)dλ,

where λ is the Lebesgue measure. Then, similarly to (3.12) and (3.8), Liouville
equation defines, as for any function on the phase space, the evolution of the
density ρ(ψ, t) on R2dN

dρ

dt
= [H, ρ] =

∂H

∂qi

∂ρ

∂pi
− vi

∂ρ

∂qi
(4.10)

see [20].
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4.3.2. Point fields

Contrary to the Liouville equation on R2dN equations of Boltzmann type
are defined on R2d. And here the more probability theory should be involved.
Here we give two different possibilities how point field can be defined.

Intuitively, this is finite (or countable) number of point particles i = 1, . . . , N ,
randomly thrown on R2d = {(q, p)}. Let the random variable ξi(t, A) = 1 if at
time t the particle i is in the set A ⊂ R2d, and ξi(t, A) = 0 otherwise. Random
field theory says that the point field is defined by the system of probabilities

P (ξi1(t, A1) = 1, . . . , ξin(t, An) = 1)

for any finite arrays of the particles I = i1, . . . , in and of disjoint subsets
A1, . . . , An. If there are functions fI(t, x1, . . . , xn) such that

P (ξi1(t, A1) = 1, . . . , ξin(t, An) = 1) =

∫
A1

. . .

∫
An

fI(t, x1, . . . , xn)dx1 . . . dxn

then fI are called n-particle correlation functions.
If the particles are identical, then the number of particles can be finite or

countable. We define random point field on some space X. For example, one
can consider X = R2d. Then it is defined by the system of random variables
ξ(A) – random number of particles in A ⊂ X. This system is given by the
probabilities

P (ξ(A1) = k1, . . . , ξ(An) = kn)

for any n = 1, 2, . . ., any subsets A1, . . . , An and any integers k1, . . . , kn =
0, 1, 2, . . ..

For example for X = R2d one particle correlation function f(t, q, p) can be
understood in various ways. For example, f(t, q, p)dqdp gives the probability
that at time t there is a particle in the volume dqdp, up to higher order terms.
Also, it defines n(t, A), the mean number of particles in the set A at time t is
equal to

n(t, A) =

∫
A

f(t, q, p)dqdp

4.3.3. Simplest linear Boltzmann equation

Here we consider one-particle correlation function f(t, x, p) for the simplest
system of particles. Assume also that the masses of all particles are the same
and equal to m, that is the particles are identical. For free particles it is easy
to see that

f(t+ δ;x, p) = f
(
t;x− p

m
δ, p
)

(4.11)
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Subtracting f(t;x, p) from both sides of this equality, dividing by δ and taking
the limit δ → 0, we get the equation

∂f

∂t
+

p

m

∂f

∂x
=
∂f

∂t
+

d∑
i=1

vi
∂f

∂xi
= 0

The unique solution of the Cauchy problem for this equation, for initial f(0, x, p),
is

f(t, x, p) = f
(

0, x− p

m
t, p
)

If there is also external force F (x), the same for all particles, then the equation
in dimension 1 will be

f
(
t+ δ;x,

p

m

)
= f

(
t;x− p

m
δ,
p

m
− F

m
δ
)

+O(δ2)

∂f

∂t
+

p

m

∂f

∂x
+
F

m

∂f

∂v
= 0

In dimension d > 1 it will look as

∂f

∂t
+
∑
i

(pi
m

∂f

∂xi
+
Fi
m

∂f

∂vi

)
= 0 (4.12)

or, if F is a potential force with Hamiltonian H,

∂f

∂t
= −∂H

∂p

∂f

∂x
+
∂H

∂x

∂f

∂p
= [H, f ]

We see that in this case we get the closed equation for one-particle correlation
function. In general it is not possible and one should consider the system of
equation for n-particle correlation functions, for all n. That we do below.

4.3.4. BBGKY hierarchy

Assume that N <∞ particles are enumerated and ρ(q1, p1, . . . , qN , pN , t) is
the density that particles i are in the points qi, pi of the phase space respectively.
Then, for example,

f1(q1, p1, t) =

∫
ρ(q1, p1, . . . , qN , pN , t)dq2dp2 . . . dqNdpN

is called one-particle correlation function for the particle 1. It gives the density
that particle 1 is at the point (q1, p1) of the phase space. Similarly, one can
define two-particle correla�tion functions

f1k(q1, p1, qk, pk, t) =
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=

∫
ρ(q1, p1, . . . , qN , pN , t)dq2dp2 . . . dqk−1dpk−1dqk+1dpk+1 . . . dqNdpN

for a pair of particles 1, k, and so on – the n-particle correlation functions for
any n ≤ N .

These correlation functions satisfy the system of equations, called Bogolyu-
bov – Born – Green – Kirkwood – Yvon hierarchy, that readily follows by integrat-
ing the Liouville equation (4.10). For example, integrating as above we get

df1(p1, q1, t)

dt
=
∂H

∂q1

∂f1

∂p1
− v1

∂f1

∂q1
+

N∑
k=2

∫
∂H

∂q1

∂f1,k

∂p1
dqkdpk (4.13)

In fact, for the integration of the left part it is clear. To integrate the right-hand
part, using its linearity with respect to H, we subdivide the Hamiltonian on two
parts H = H1 +H ′, where

H ′ =
N∑
k=2

p2
k

2mk
+

N∑
i,j=2

Uij , H1 =
p2

1

2m1
+

N∑
j=2

U1j

Note that H ′ corresponds to the closed hamiltonian system of N − 1 particles
2, . . . , N , and thus the integration of

N∑
k=2

(∂H ′
∂qk

∂fk
∂pk
− vk

∂fk
∂qk

)
gives zero. Moreover, H1 does not contain pk, k > 1, and can be considered
as the external force, with which particles 2, . . . , N act on the particle 1. This
proves (4.13).

If there is interaction then the right hand side will be non-zero, and is often
called “collisional” term

∂f

∂t
+

p

m

∂f

∂x
+
F

m

∂f

∂p
=
(∂f
∂t

)
coll

4.3.5. Dynamics in the thermodynamic limit

All equations considered above were for arbitrary but fixed N < ∞. Now
we say some words about the asymptotics N → ∞. Often, other parameters
are taken also as functions of N . The choice of these functions is called scaling
(choice of the parameter scale).

The first most known limit is the thermodynamic limit where the number of
particles becomes countable. It is of main interest in mathematical statistical
physics, with a lot of excellent results in equilibrium situation, that is studying
the invariant measures. Another useful limit is the ultralocal where the number
of particles becomes continuum, see below.
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First results in this direction and reviews see in [17–19,23–28].
To get intuitive understanding of the thermodynamic limit of dynamics let

us first consider the simplest system of particles in Rd. Assume that initially,
at time 0, there are countable number of particles with coordinates xi = xi(0).
Moreover, particles have velocities vi(0). It is natural to define the dynamics of
this system as

xi(t) = xi(0) + vi(0)t

However, if the particles interact, there is a problem with the existence of this
dynamics, even if the two-particle interaction potential V (r) is smooth and has
finite support. Fix one particle and consider its trajectory x(t). It appears that
this trajectory can be influenced by infinite number of particles. Intuitively
it seems clear that the greater distance between two particles the less they
influence each other. However, this has been proved in rare situations. Very
important is the remark about cluster structure of the dynamics. This means
that there can be situations when infinite number of particles is subdivided into
finite number of groups, called clusters, so that for a short time each cluster
moves independently of other particles. There are few results in this direction,
some references see in [22].

The same problem exists also for finite but very large particle systems “in
finite volume”. This means that we consider N particles in the cube Λ =
Λ(N) ⊂ R3 with centre at 0, let |Λ| be its volume. Normally, the asymptotics
(scaling)

0 < N |Λ(N)|−1 = λN → λ = const <∞

is considered. Particles move inside this cube with the same interaction V (r),
but on its boundary there is, for example, mirror reflection. Fix now the initial
particle coordinates and velocities as xk(0), vk(0). Denote the trajectories of

particles in the cube as x
(N)
k (t) this particle is initially in the cube, that is if all

xk(0) ∈ Λ(N) and have the same velocities vk(0). Then the problem is to prove
convergence for any k and any fixed t as N →∞

xk(t)→ x(t)

There are of course other scalings, for example, the Boltzmann – Grad scal-
ing, see [25].

4.4. Ultralocal limit and Euler equation

Contrary to Liouville, BBGKY and Boltzmann equations, the Euler equation
is defined in the coordinate space Rd. Here we want to show that to deduce
Euler equation from newtonian dynamics the following regularity property plays
most important role.

Regular continuum system MT of point particles is the set of subsets Λt ∈ Rd

enumerated by the time moments t ∈ [0, T ), 0 < T ≤ ∞. Moreover, Λ0 is
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assumed to be the closure of some open connected subset of Rd with piece-wise
smooth boundary ∂Λ0. Each point of this domain is considered as a “material
particle” of infinitely small mass. The dynamics is defined by the system of one-
to-one mappings (diffeomorphisms) Ut = U0,t : Λ0 → Λt, t ∈ [0, T ). All these
mappings are assumed to be sufficiently smooth in x and piece-wise smooth in
t, and U0(x) is the identity map. Thus, each point (particle) x ∈ Λ0 has its own
trajectory in Rd: y(t, x) = Ut(x), where y(0, x) = x is the initial coordinate of
this particle. It follows from the definition, that the particles never collide, that
is y(t, x) 6= y(t, x′) for any t and x 6= x′.

MT is called a system without interaction, if y(t, x) are the solutions of the
following equations

d2y(t, x)

dt2
= Fx(y(t, x)), y(0, x) = x,

dy(0, x)

dt
= v(x) (4.14)

for some given functions: initial velocity v(x) and external forces Fx(y), possibly
different for different particles. Further on we assume that Fx(y) = F (y) does
not depend on x. It is always assumed that v(x) and m(x) are sufficiently
smooth in x ∈ Λ0, and F (y) is smooth or piece-wise smooth in y. Moreover, it is
always assumed that any equation (4.14) has a unique solution on all considered
interval [0, T ).

In the Euler approach the central object is the field u(t, y), y ∈ Λt, t ∈ [0,T).
It is defined as the velocity of the particle which is at the point y at time t.
For this it is necessary that this particle should be unique, and this is exactly
the regularity property. Otherwise speaking, for any t, y ∈ Λt, there is exactly
ONE POINT x ∈ Λ0 such that

u(t, y) = u(t, y(x)) =
dy(t, x)

dt

Then it is easy to see, for non-interacting particle systems, that the so defined
field of velocities, satisfies the Euler equations

∂u(t, y)

∂t
+
∑
α

∂u(t, y)

∂yα
uα(t, y) = F (y) (4.15)

In fact, the acceleration of the particle having trajectory y(t, x) is equal to

dui(t, y(t, x))

dt
=
∂ui(t, y(t, x))

∂t
+
∑ ∂ui(t, y(t, x))

∂yj
uj(t, y(t, x)) (4.16)

and equals to the force F (y(t, x)).
We give now the simplest example of regular system. Let Λà = [0, 1] ⊂ R.

Assume also that
1) the initial velocity function dy(0,x)

dt = v(x) is a non decreasing function on
[0, 1],
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2) the force F (y) is non-decreasing function on R+.
Then this system is evidently regular on [0,∞) – particles cannot collide.

Many other examples of non interacting systems see in [29]. Obviously, the
conception of continuum media as consisting of the continuum number of
particles of infinitely small mass, is well known in mathematics, see for example
[31] p. 56.

But seemingly the first deduction of complete system of Euler equations
for interacting particle system appeared in [30]. This system corresponds to
one-dimensional Chaplygin gas. In this paper also the convergence of some N -
particle system, as N →∞ and some scaling (that we call ultralocal limit). to
these Euler equations was proved.

5. Short guide to literature

This is just for first orientation in this great science.

Everything [1–3]

N-body problems [8, 9, 11,12]̧

Scattering [4, 10],

Celestial mechanics [5, 6]

Canonical transformations [32,33]

H-J [7]

Infinite systems [17–19,22,25–28]

Convergence to equilibrium [15]

Continuum mechanics [13,14,16,29–31]

Kinetic [20,24]
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