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ABSTRACT

We consider classical and fermionic Gibbsian fields on the lattice. The main result of the
present paper is the proof of convergence for infinite system of Langevin’s equations in
the case of weak interaction.

INTRODUCTION

Gibbsian random fields are defined and investigated usually either by means of the
thermodynamic limit transition from finite volume, or by means of Dobrushin—
Lanford—Ruelle equations (Dobrushin, 1968). The stochastic quantization met-
hod is based on the observation of the fact that G1bb>{¢u fields can bé obtained
also as the limiting distribution as time goes to infinity. qi the evolution of systems
of stochastic differential equations of special type, namely the Langevin equations
associated with the potential of the corresponding Gibbsian field.

This method was first introduced by physicists (Parisi and-Wu, 1981). It has
not received yet a generally accepted plysical interpretation, and at present it
is considered either as a theoretical or a computational mean’of investigation
and approximation of Gibbsian fields. In Langevin equations, time is sometiies
called the mechanical time, and it is supposed that the Monte-Carlo simulation of
Langevin’s equations is more simple than that of Gibbsian fields (Migdal, 198G).
We consider Gibbsian fields on the lattice. Convergence of evolution (ergodicity)
of Langevin’s equations in finite volume is a common fact from the theory of finite
dimensional Ito’s equations (Gikhman and Skorokhod, 197 2), which can be proved,
for instance, by the help of Liapunov’s functions. . :

The main result of the present paper is the proof of convergence for infinite system
of Langevin’s equations in the case of weak interaction. The class of Gibbsian fields
under consideration corresponds to the lattice P()~-models of Euclidean quantum
field theory. We consider Grassman fields (in particular, a perturbation of Dirac’s
field). For Grassman fields we had to carry over all basic definitions of the theory
of Ito’s equations to the case of Grassman variables in a form which is conv ouient
for us. We could not find appropriate formulations in the literature in spite of a
large number of papers on Ito’s equations on Clifford algebras. ‘
We prefer to give a more constructive definition of stochastic differential equations
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then the classical one. It is still not known whether a full analog of the L,-
definition is possible. Complete proofs will be published in (Ignatiuk et al., 1990).

1. THE CONVERGENCE OF THE METHOD OF STOCHASTIC
QUANTIZATION IN THE CLASSICAL CASE

With any finite subset A C Z¢ we associate a polynomial Iy depending on variables
€ ER, @ € A, such that

Zy = / exp{—Uxr} H d¢, < oo,

RIAI r€A

and consider on RI*! the Gibbsian measure pa with the potential Uy:

djiy = —e~<p{ Us} ] -

zEA

Definition 1. By the system of Langevin’s equatlongffm the measure i we call

the system of stochastic differential equations: on -
dfz,A=—-}3%%A(§(t Yt +dwy(t),  reA, (1)

H

where £, () = {€x.4, ¢ € A} and w,(t) are standart Wiener processes independent
for different = € A.

. ) . .
The measure yp is invariant for the corresponding system (1) of Langevin's equa-

tions. Let the limit im pip = p exists in the sense of the weak convergence of
ATZ

finite dimensional distributions. Asswne also that for any z € 2%, F, = 0('\/0&
does not depend on A if A is sufficiently large.

Definition 2. By the system of Langevin’s equations for the limiting measure y
we call the infinite system of stochastic differential equations:

where £(t) = {£,(t), » € 7%}, and w,(t), = € Z%, are standart Wiener processes.
In the sequel we will consider the case, when U, can be represented as a quadratic
part plus small perturbation.

Consider translation-invariant Gaussmn random field {¢£,, = € Z%} on the lattice
Z% with zero mean (€,) = 0, @ € 2%, and the spectral density

-1

fA) =123 a0 xe ol

yez?

with coefficients a,, y € 7% satisfying the following conditions:
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a) ay # 0 only for a finite number of y € 7° (we denote by @), the set of points
y € 7% for which a, # 0),

b)ay =a_y for all y € ¢, ' .
C)CLO-— 2 |CLy '>0

y#0
The measure pq corresponding to this Gaussian field can be obtained as thelimit

A 1 Z% in the sense of weak convergence of ﬁmte dimensional distributions of the
Gibbsian measures up 0, A = [=Na,Np)4 N Z¢ with the quadratic potential

Up = a2+ Y bbby

TEA TFyY; T,YEA
where a} = a, for y € A and al}, v, = af fory €A, c€ Zd,_l e|=1. -
The system of Langevin’s equations for p has the form:
(A€ (t) = =) aybeyy(t) dt + dws(t). (2)
- yeQ

Let the initial field £,(0), = € Z¢, be Gaussian and t1a11<;1at10u invariant with
(€:(0)) =0, z € 74, and

(O &) [< e, cy>0, 3)

for any = € Z°. By uo(0) we denote the corresponding Gaussian measure on de,
and by (-), the expectation corresponding to a measure p.

It is casy to see that the solution of the system (2) is a Gaussian process {€:(1),
T € Zd}, t € Ry, whose evolution is described by the first and the second moments
(€2(1)), (Ex(t)€y(s)), x,y € 7%, t,s € Ry. The proof of the convergence to the
invariant distribution pg in thls case is not difficult, because the moments can be
written in an explicit form.

Consider now a Gibssian modification pa, A C 7¢, of the Gaussian measure .

Let
dpp 1
——— D —— 4 —_— P T 5
o Zn exp{ € E €3 )}

TEA
where P(£) is a polynomial, which is bounded from below. The covariance of the
measure yo decreases exponentially:

| (62 buo IS Ce 8 Cly >0, z,yeZ’ (4)

This follows from the conditions on the coeflicients a,, y € 7°.

It is known (Malyshev and Minlos, 1985) that in this case for sufficiently small

e >0, € < g there exists the limit limd pa = e in the sense of weak convergence
ATZ

of finite dimensional distributions. Let us write the system of Langevin’s equations
for the measure p,:

dé(1) Z ay Epyy(t) dt — e p(E,(1)) dt + dw,(t), (5)

YEQ
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3

where p(£) = (1/2)dP(¢)/d¢, © € 7°.
The system (5) has a solution in the real Hilbert space H = 1(2%e II’L) with the

scalar product (f,¢)g = 3. f(z)g(z) e~ 1* (Rozovsky, 1983).
zeZ?

Let {£.(t), = € 7%}, t € Ry, be the solution of the system (5). By pu.(t) we

denote the probability measure on de, which corresponds to the solution £;(t),
z € 7%, at the time moment ¢ € R,. The following theorem is our main result for
the classical case.

-

THEOREM 1. Let € > 0 be sufficiently small. Then the measure p. is invariant
for the system (2). Moreover, if the measure  corresponding to the initial field
£.(0), = € 7%, is the Gibbsian modification of the Gaussian measure jio(0) with
the potentiale 3 Py(£,(0)), where Py(€) is a polynomial bounded from below such

that .
By(€) - ‘Q‘P(O >c

for all £ € R, then
pe(t) = pe  (t — o)

in the sense of the weak convergence of finite dimnensional distributions.

2. ITO’S CALCULUS ON GRASSMAN ALGEBRAS |

For any A C Z% and t € Ry we consider four Grassman algebras, namely the
Grassman algebra @} with generators

AL é(a,x), E(a,.v)7 (a,x) € {1,...,]\7} % A:
the Grassman algebra W with generators
1, @), w®I(), (a,z)€{l,...,N}xA,

the Grassman algebra W2 B with generators

1, w@I@), WD), (a,2)e{l,...,N}xA, t'€[0,t],
and the Grassman algebra W2 with generators
1, o904, w91, (a,z)e{l,...,N}, teRy, t>0

Denote
a}l =@} ew}; aj=alew}; @l =a;eWl.

All algebras over complex will be considered. For convenience, we use multiindices
p=(ut, .. w1k, we{l,...,N} x 2%, k€ 7., and write

L L O EITPRY LN S ¥
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THE) = TH(E) TR - wh(E) = W) e ().

We assume that {1,...,N} x Z% is completely ordered, and for any*multiindex

B= (Nla--wﬂk), << ,uk. Let M, denote the set of all mul.t,iindices

/‘=(ﬂ1 ..,,uk),kEZ+ :
Definition 3. By the Wiener quasistate on W2 we mean the Gaussian quasmtato
(}w on WA satisfying the following co11d1t10ns

(% (a, ”)(t) (ﬂ,y)(s)) (w(é"’)(t) w(,@,y)(s) )(w 4

and :
{@ B (1) w0 ) (5) )y = 80 62y min(t, s)

for any
(a,B)€{1,...,N}; =2,ye€A; ts€Ry.

PROPOSITION 1. For any w € W2 there exists w' € W2 such that

(ww') #0.

We shall consider only quasistates on @ = @} @ W2 of the following form:
H

UJ(): (’)0@('>wa !
where (-)q is a quasistate on @}. By o, we denote the set of all such quasistates
on @}, :

We consider on @4 the system of seminorms pPewl)y CE @Qo, w € opt

pew(€) = w(CE) |
This system of seminorms separates points of @A | i.c., the condition p¢,(€) =0
for all ¢ € @4, w € g, implies £ = 0. The locally convex topology on @4 with

respect to which all p¢ ., ( € @3 w € o,, are continuous and the operation of
addition is continuous, is a Hausdorff topology. By —@Z}; we denote the closure of
@2 with respect to this topology.

Consider the following Grassman algebras, namely:

AL | with the generators

1, @), o9, (a,x)e{l,..., N} xA; t€Ry;
A} with generators
1, E@O(1), €oN), () € {L,...,N} x A

and .A;\], t € Ry, with the generators

1, £lay, ey (a,z) e {l,...,N} x A, t€[0,1].
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Dcfinition 4. By the Grassinan Wiener process weinean the homomorphism
. A A
w: A, — @

such that _ :
w e ER(E) - (1),
w: E@I() 5 w®D(1), (a,2)€ {1,...,N}, teP,.

All other Grassman processes which we consider will be constricted fwm the
Grassman Wiener process. '

Now we shall define the stochastic integr als !
Ty
(T, Ty) = /T&“(t)w”(t)(lt,
T

T, . . o
Ttaey(T1, Tz) = /W(t)w"(t) diw (3)(¢), -

T '
, T2 . )
Jé‘;”r)(Tl, Ty) = /’w"‘(t)w"(t) dw(™®)(¢), ,

T

for all p,v € My, (a,2) € {1,...,N} x A, T, T; € Ry, T; < T, as limits of the
corresponding partial sums:

n—1
S (0, ytn) = Zw”(tj)wy(tj)(tj+l - t5),
n—1
Staey(toy . stn) = > @t () (@ D (t41) — @ @),
Jj=0

when the diameter of the partition Ty =t5 <t; <... < t, = T; tends to zcro.

It is easy to see that in the topology introduced above, all the limits of these
partial sums exist, as well as the limits of the various multiproducts.

Next we define the stochastic integrals:

T /O T
/u)(t) dt; /w(t) dw () (¢); /w(t) dw' ¥ (t);
Ty Ty 7

(a,2) € {1,..., N} x A, for elements w(t) € @ of the form

w(t) = Z ¢ H(t)w"(t), ¢ € C,

“91’6]\'11\
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by linearity. Finally, we define

T, Ty ’
Ew(t)dt =¢ | w(t)dt;
Jeonee

T,
[ewtvyam=i = ¢ [utm e
T

(a,z) € {1,...,N} x A for all £ € @.

We consider the superalgebra @' with the generators

=M

1’ Z(ayz), é’(a,z), 'JII-V(O, t), j(a,;,,)(o, .[.), jlu/ )(0, t),

(a,z
pve My, (a,z)€{l,...,N} xA, te&Ry;

the superalgebra @;\ ! with the generators

=nv

17 Z(a,z), E(O’I)a j,w(oat)’ j(a,x)(ovt)’ j'l“/ )(Oat)a

(a,x

and the superalgebra @3’1 with the generators ;

1, Z(a,z), £(a,x)’ 3’“’(:0,t'), 'jl“’ (O,tl), JHv (O,tls,

(Cl’,.‘l?) ((1,1!)

(,z) €{1,....N} x A, pu,vedy, tel0,t,

The following inclusion relations hold between the algebras introduced above:

G, call; @) ca’; @jcay’, teRy,

because
4

B0 = 10w =T, 0.0,
0

t

w(a’x)(t) = /1 dw(a’z)(s) = 2P (0,t),

a,)
0
(a,) € {1,...,N} x A,t € Ry.
We extend any quasistate from o, by continuity on @%:! and identify all elements
¢, € from @A such that w(n¢) = w(y, €) for all € @41 and all w € o,.
We shall consider on C?’l, t € Ry, the family of homomorphisms S} : @;‘\‘l —
— @ﬁrlr (1 € Ry) such that

Sle=¢,  SII(0,t) = 3"(0,t + 7),

~nv

1
Srj(alz)

1z

(O’t) = §(oz,ur:)(o7t + 'T), Slanv (0,t) = I (:O’f’ + 7).

T (1) “(o.x)
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forall € € @}, 7 € Ry, (e,z) € {1,...,N} x A, p,v € My, t e Ry, t>0.

Definition 5. By Grassman random process on @A ! we mean a homomorphism
¥ : @Y — @Mt such that

Vlaa= " : A} —» @', teRy,

.

and

ST\I}t = \I/t+7'

forallt,7 € Ry, t > 0. Let 9111\ denote the set of all random processes on @1,
We shall construct by induction superalgebras @™, @?’", @3’", t € Ry, for any
nely:

@0 —@h calMlc...caln

oo Y
M=@lcaMc...cam,

Q@ =@y cay’ c...caey”,

and sets of random processes A* on @dn n e Zy, as follows. We define conse
cutively for any n € Z, the stochastic integrals:

Ty

/ T[ER(t)e (1)) dey ’
T, !
T
/Mf"(t)é (1)1 dw = e,
Ty
T,
[uEroe ) ate ),
T

U e A 1 v € My; (a,2) €{1,...,N} x A; Ty, Ty € Ry, and various mul-
tiproducts of these integrals as for n = 1 and extend by continuity on @Qo’" all
quasistates from op.

Definition 6. By Grassman random process on @A™ we mean a homomorphisimn
. A amiAn
v AL — @
such that
A An
\II|A{\:\I/t A - @ te Ry,

and

S:\Ilt = ‘I’H-n

for all ,7 € Ry, t > 0, where S™, 7 € Ry, is the family of homomorphisins on
C‘A ", t € Ry, such that
ST |grm-1 = Sp7!
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for all 7, € Ry and

t t+7

s:/v@wwwws=/wﬁ%mwﬁw

t t+7
51| [rfereeo]aacae | = [ wleroe ] aaens)
0 . 0
for all (a,x) € {1,...,N} x A; W' € U _|; pi,v € My t,7 € Ry £ > 0, where
means either i or w.
By ?Zlﬁ we shall denote the set of random processes on @A:",
It is clear that

Ao c AV ... c A, neiy.

We shall consider the inductive limits:

@l - U@Qo" C @i,

(e ¢]
n

A An
@t ,00: U@f n;
n
A, ,f\An
b} —_— ‘Cn b -
@y = Jaop™;
n
A A
Al = Juh.
n

Now we shall define the notion of generalized random process on @4, For this
we introduce the following topology on ngo:

Let U ¢ A% n e Z, be given. We say that ¥,, — ¥ € AL as n — oo if for any
TeRy, ke Z,

sup [ (CWaEHO(t) ... EPF(8)EX (to) - £ (1))~

to,...,tx €[0T

—{CWEH(tg) ... E M (14)E™(to) ... £ (tx)) | O,

"l

as n — oQ. ° C:;Z - .
We denote by Ql'o\o the closure of 9120 with respect +2 this topology.

Definition 7. Elements of the set A2 will be called generalized random processes

S A0
on @4, or random processes on @2,

For ¥ € ig we define stochastic integrals by continuity:
T,
[eEwewa,

T
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- v
[wErwer @ awen,
py .

Ty

[vermer @ duene),

Ty
(a,z) € {1,...,N} x A.
Similarly as in the classical theory of stochastic integrals, we write

dQ(t) = & (8) dt + Ex(t) dw (™ (8) + Ea(t) deot PP (1) +

+dw T () €4 () + dwP V(1) E5()
if the equality

C(t) = C(0) + / 1(s) ds + / £2(s) dim =) (s) +

+ [ €3(s) dwPV (s) + [dT @) () Eu(s) + [ dwP V) (s)Es(s)
/ / [rer e

holds for any ¢ € Ry,.
The following property of Grassman stochastic integrals is the analogue of the
classical Ito’s formula. Let following two stochastic integrals be given:

() = n1(t) dt + n2(t) dw 5 (t) + n3(t) dwP¥ (1),

d¢'(t) = n(t) dt + dw ") i (t) + dw V) () (1)
then |

d(C(8)C' (1)) = (dC(0))¢' (1) + (1) dC'(8) + d(t) A (2),
where

dC(t) dC'(t) = bapr 6oy 12 (t) N3(2) — Sgar Sy 13(t) Ny(2).

The proof of Ito’s formula follows easily from the definition of stochastic integrals.
Consider the following system of stochastic differential equations:

d€ (1) =P, , (Z“”y)(t), EBD(), (B,y)e {1, 55N} x A) dt + dw (*7)(t),
-0y g

dE@D(t) = P, , (E(ﬁ,y)(t)’ EPVW), (B,y)e {1,...,N} x A) dt + dw!®(t),

E(a,r)(o) — Z(a,z), g(a,l‘)(o) — g(a,z)’ (a,’x) € {1"-_ » ,N} x A, (6)

where Pg .(+), Py z(+) are arbitrary polynomials of odd degree in variables

£ B)(p), EB(1), (B,y)e {1,...,N} x A. .

)
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Definition 8. By a solution of the system (6) we mean the random process
U e Ql’(}o such that

t
\I’E("")(t) — E(a,m) + /\I,'j)‘a,x (Z(ﬂ,y)(s), g(ﬁ,y)('_s.)> ds + @ (7)),
0

t
vgte () =gl + / UPos (EP9(3), €90(s)) ds + '™ (2)
0
holds for all t € Ry, (a,z) € {1,...,N} x A.

PROPOSITION 2. The system (6) has a solution for any finite A C Z° (| A |<
< 00).

3. GIBBSIAN QUASISTATES AND THE CORRESPONDING
LANGEVIN’S EQUATIONS

Let A C Z%, | A |< o0, be given.
A

Definition 9. A quasistate (-)4 on @p is called Gibbsian if there exists a potential
Ux € @} such that for any ¢ € @b

_ (eesp{=Ua))p
O = e (T

where (V)p = [V d€Fagra is the Berezin integral (Berezin, 1986) and i, is the
maximal multiindex.

We always assume that the potential Uy, is even. The Gibbsian quasistate with
the potential Uy will be denoted by (-)y,.

+

Definition 10. By the system of Langevin’s equations corresponding to the
Gibbsian quasistate with potential U, we mean the system of stochastic differential
equations:

- 1 OUA(¢) LT
[l = -2 A gy AF o)y,
dg (==)(t) NCIOR 4“:.',3"'. (t) -
1 aUA(t) e
deto)(t)y = -2 AN gy 4 gl (),
£o(1) 2 9L (@ () + dw'™(t)

where differentiation is the Berezin differentiation, d/0L, and 9/Jg stand for the
left and the right derivatives respectively, and Uy (t) is obtained from U, by chang-
ing the variables £ (%) ¢l@2) |y Elea)(t), glor)(gy, (a,2) € {1,...,N} x A, re-
spectively. .

Let ¥ € A% be a solution of the system (7), and let a quasistate () € o on
@2 be given. Then ¥ defines a quasistate on the Grassman algebra A% with
the generators € (%)(¢), E>0(@), t € Ry, (a,2) € {1,...,N} x A by the relation

(E*(t) E¥(t))a = (DEA) EY(Y)), p,v € M.
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The evolution of the ‘qua.sistate ()a on @2 is defined by:

(Ore={®), teRy, Eeca].

PROPOSITION 3. A Gibbsian quasistate on @} is invariant under the evolution
determined by a solution of the corresponding system of Langevin’s equations, i.e.,

(e =()a = (v,
for any t € R,..

We shall consider the case, when Uy is a small perturbation of a quadratic potential
Ur =Uj = UR +¢€Vy,

where

UR=2_ Y. ay’(z—yE@mebn,

o, z,yEA

Vy = ZP(z(a,z), 6(0,1)’ a€ {1,...,]\7});
TEA
}

P(Z(‘;*’), glor) e {1,...,N}) is a polynomial of even degree in variables
glan) glam) ge {1,...,N}. The coeficients axﬁ(y),/a,ﬂe {1,...,N}, ye 79,
satisfy the following conditions. Let A = [—Na, Nj ld”‘ Z¢ then

a) for any y € A and any «, g€ {1,... N}, ai/i(y)“b: a®B(y), where a®?(y) do
not depend on A,

aP(y) #£0,ify € Q, a*(y) =0, ify¢Q,

>

where Q C A and | Q |< oo,

~b) for any A € [, 7)? the eigenvalues of the matrix z:f(/\) with entries

@A) = Y a®*P(y)em OV aBe {1,...,N},
yez! ~

belong to the halfplane {2 € C | Rez > 0}.
It is known that for sufficiently small &€ > 0 and for any F € @%d there exists the
limit .

(Flug — (F)e

as A 127 (Malyshev, 1986). : R -

For any finite cube A ¢ Z¢ the system of Langevin’s equations corresponding to the
Gibbsian quasistate with potential Uy defines the evolution ( Yeen of a quasistate
on Q. ‘ |
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We define the evolution (-), . of the quasistate (-)e on @g as

<F)t e = h]lila <F>t,e,/; (8)

if this limit exists for any F € @Z It is easy to see that the quasistate (-}e on
@Zd is invariant under this evolution.

THEOREM 2. Let the initial quasistate (-)o.e x, A = [~Ny,Npy)?NZ%, at t = 0
be Gibbsian with the potential:

Z be’ﬂ(x_y)g(a,ﬂg(ﬁ,y) +5ZPO(Z(O’I)7 €(a,z), = {1,...,N}),
o, z,y €A

where Py (Z(a’r)

, flnn) qe {1,..., N}) is an even degree polynomial in variables

Z(G’I) glonr) qe {1,..., N}, and the coefficients by B (y) satisfy the conditions a),
b) for the coefficients aAﬂ(J) a,fe {1,...,N}, y € 2%, given above.

Then for sufficiently small 0 < ¢ < ¢, the 111111t (8) exists for any F' € @ UZ , te Ry
and

(F)ee = (Fle  (t— o0).
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