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Summary. On the real line initially there are in�nite number of particles on the
positive half-line., each having one of K negative velocities v

(+)
1 , ..., v

(+)
K . Similarly,

there are in�nite number of antiparticles on the negative half-line, each having one of
L positive velocities v

(−)
1 , ..., v

(−)
L . Each particle moves with constant speed, initially

prescribed to it. When particle and antiparticle collide, they both disappear. It is
the only interaction in the system. We �nd explicitly the large time asymptotics of
β(t) - the coordinate of the last collision before t between particle and antiparticle.

Keywords: phase boundary dynamics, random walks in cones, piece-wise linear
dynamical systems, one instrument market.

1 Introduction

We consider one-dimensional dynamical model of the boundary between two
phases (particles and antiparticles, bears and bulls) where the boundary moves
due to reaction (annihilation, transaction) of pairs of particles of di�erent
phases.

Assume that at time t = 0 in�nite number of (+)-particles and (−)-
particles are situated correspondingly on R+ and R− and have one-point
correlation functions

f+(x, v) =

K∑
i=1

ρ
(+)
i (x)δ(v − v(+)

i ), f−(x, v) =

L∑
j=1

ρ
(−)
i (x)δ(v − v(−)j )

Moreover for any i, j

v
(+)
i < 0, v

(−)
j > 0

that is two phases move towards each other. Particles of the same phase do
not see each other and move freely with the velocities prescribed initially.

∗ Work of this author was supported by the Russian Foundation of Basic Research
(grants 09-01-00761 and 11-01-90421)
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The only interaction in the system is the following. When two particles of
di�erent phases �nd themselves at the same point they immediately disappear
(annihilate). It follows that the phases stay separated, and one might call any
point in-between them the phase boundary (for example it could be the point
of the last collision). Thus the boundary trajectory β(t) is a random piece-wise
constant function of time.

One of the possible interpretations is the simplest model of one instrument
(for example, a stock) market. Particle initially at x(0) ∈ R+ is the seller who
wants to sell his stock for the price x(0), which is higher than the existing
price β(0). There are K groups of sellers characterized by their activity to
move towards more realistic price. Similarly the (−)-particles are buyers who
would like to buy a stock for the price lower than β(t). When seller and buyer
meet each other, the transaction occurs and both leave the market.

The main result of the paper is the explicit formula for the asymptotic
velocity of the boundary as the function of 2(K+L) parameters - densities and
initial velocities. It appears to be continuous but at some hypersurface some
�rst derivatives in the parameters do not exist. This kind of phase transition
has very clear interpretation: the particles with smaller activities (velocities)
cease to participate in the boundary movement - they are always behind the
boundary, that is do not in�uence the market price β(t). In this paper we

consider only the case of constant densities ρ
(+)
i , ρ

(−)
i , that is the period of

very small volatility in the market. This simpli�cation allows us to get explicit
formulas. In [1] much simpler case K = L = 1 was considered, however with
non-constant densities and random dynamics.

Other one-dimensional models (hardly related to ours) of the boundary
movement see in [2, 3].

Main technical tool of the proof may seem surprising (and may be of its
own interest) - we reduce this in�nite particle problem to the study of a
special random walk of one particle in the orthant RN+ with N = KL. The
asymptotic behavior of this random walk is studied using the correspondence
between random walks in RN+ and dynamical systems introduced in [4].

2 Model and the main result

Initial conditions

At time t = 0 on the real axis there is a random con�guration of particles,
consisting of (+)-particles and (−)-particles. (+)-particles and (−)-particles
di�er also by the type: denote I+ = {1, 2, ...,K} the set of types of (+)-
particles, and I− = {1, 2, ..., L} - the set of types of (−)-particles. Let

0 < x1,k = x1,k(0) < ... < xj,k = xj,k(0) < ... (1)

be the initial con�guration of particles of type k ∈ I+, and
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.. < yj,i = yj,i(0) < ... < y1,i = y1,i(0) < 0 (2)

be the initial con�guration of particles of type i ∈ I−, where the second
index is the type of the particle in the con�guration. Thus all (+)-particles
are situated on R+ and all (−)-particles on R−. Distances between neighbor
particles of the same type are denoted by

xj,k − xj−1,k = u
(+)
j,k , k ∈ I+, j = 1, 2, ...

yj−1,i − yj,i = u
(−)
j,i , i ∈ I−, j = 1, 2, ... (3)

where we put x0,k = y0,i = 0. The random con�gurations corresponding to
the particles of di�erent types are assumed to be independent. The random
distances between neighbor particles of the same type are also assumed to
be independent, and moreover identically distributed, that is random vari-

ables u
(−)
j,i , u

(+)
j,k are independent and their distribution depends only on the

upper and second lower indices. Our technical assumption is that all these

distributions are absolutely continuous and have �nite means. Denote µ
(−)
i =

Eu
(−)
j,i , ρ

(−)
i =

(
µ
(−)
i

)−1
, i ∈ I− , µ

(+)
k = Eu

(+)
j,k , ρ

(+)
k =

(
µ
(+)
k

)−1
, k ∈ I+.

Dynamics

We assume that all (+)-particles of the type k ∈ I+ move in the left direction

with the same constant speed v
(+)
k , where v

(+)
1 < v

(+)
2 < ... < v

(+)
K < 0.

The (−)-particles of type i ∈ I− move in the right direction with the same

constant speed v
(−)
i , where v

(−)
1 > v

(−)
2 > ... > v

(−)
L > 0. If at some time t a

(+)-particle and a (−)-particle are at the same point (we call this a collision
or annihilation event), then both disappear. Collisions between particles of
di�erent phases is the only interaction, otherwise they do not see each other.
Thus, for example, at time t the j−th particle of type k ∈ I+ could be at the
point

xj,k(t) = xj,k(0) + v
(+)
k t

if it will not collide with some (−)-particle before time t. Absolute continuity

of the distributions of random variables u
(−)
j,i ,u

(+)
j,k guaranties that the events

when more than two particles collide, have zero probability.
We denote this in�nite particle process D(t).
We de�ne the boundary β(t) between plus and minus phases to be the

coordinate of the last collision which occured at some time t′ < t. For t = 0 we
put β(0) = 0. Thus the trajectories of the random process β(t) are piecewise
constant functions, we shall assume them continuous from the left.

Main result

For any pair (J−, J+) of subsets , J− ⊆ I−, J+ ⊆ I+, de�ne the numbers



4 Vadim Malyshev, Anatoli Manita, and Andrei Zamyatin

V (J−, J+) =

∑
i∈J− v

(−)
i ρ

(−)
i +

∑
k∈J+ v

(+)
k ρ

(+)
k∑

i∈J− ρ
(−)
i +

∑
k∈J+ ρ

(+)
k

, V = V (I−, I+) (4)

The following condition is assumed

{V (J−, J+) : J− 6= ∅, J+ 6= ∅ } ∩ {v(−)1 , ..., v
(−)
L , v

(+)
1 , ..., v

(+)
K } = ∅ . (5)

If the limit W = lim
t→∞

β(t)

t
exists a.e., we call it the asymptotic speed of the

boundary. Our main result is the explicit formula for W .

Theorem 1. The asymptotic velocity of the boundary exists and is equal to

W = V ({1, ..., L1}, {1, ...,K1})

where
L1 = max

{
l ∈ {1, . . . , L} : v(−)l > V ({1, ..., l}, I+)

}
, (6)

K1 = max
{
k ∈ {1, . . . ,K} : v(+)

k < V (I−, {1, ..., k})
}
. (7)

Note that the de�nition of L1 and K1 is not ambiguous because v
(−)
1 >

V ({1}, I+) and v(+)
1 < V (I−, {1}).

Now we will explain this result in more detail. As v
(+)
K < 0 < v

(−)
L , there

can be 3 possible orderings of the numbers v
(−)
L , v

(+)
K , V :

1. v
(+)
K < V < v

(−)
L . In this case

K1 = K, L1 = L, W = V

2. If v
(+)
K > V then V < 0 and K1 < K, L1 = L. Moreover

W = V ({1, ..., L}, {1, ...,K1}) = min
k∈I+

V ({1, ..., L}, {1, ..., k}) < V < 0

If v
(−)
L < V then V > 0 and K1 = K, L1 < L. Moreover

W = V ({1, ..., L1}, I+) = max
l∈I−

V ({1, ..., l}, I+) > V > 0

Another scaling

Normally the minimal di�erence between consecutive prices (a tick) is very
small. Moreover one customer can have many units of the commodity. That
is why it is natural to consider the scaled densities

ρ
(+),ε
j = ε−1ρ

(+)
j , ρ

(−),ε
j = ε−1ρ

(−)
j

for some �xed constants ρ
(+)
j , ρ

(−)
j . Then the phase boundary trajectory β(ε)(t)

will depend on ε. The results will look even more natural. Namely, it follows
from the main theorem, that for any t > 0 there exists the following limit in
probability

β(t) = lim
ε→0

β(ε)(t)

that is the limiting boundary trajectory.
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Example of phase transition

The case K = L = 1, that is when the activities of (+)-particles are the same
(and similarly for (−)-particles), is very simple. There is no phase transition
in this case. The boundary velocity

W =
v
(+)
1 ρ

(+)
1 + v

(−)
1 ρ

(−)
1

ρ
(+)
1 + ρ

(−)
1

(8)

depends analytically on the activities and densities. This is very easy to prove
because the n-th collision time is given by the simple formula

tn =
x
(+)
n (0)− x(−)n (0)

−v(+)
1 + v

(−)
1

(9)

and n-th collision point is given by

x(+)
n (0) + tnv

(+)
1 = x(−)n (0) + tnv

(−)
1 . (10)

More complicated situation was considered in [1]. There the movement of

(+)-particles has random jumps in both directions with constant drift v
(+)
1 6= 0

(and similarly for (−)-particles). In [1] the order of particles of the same type
can be changed with time. There are no such simple formulas as (9) and (10)
in this case. The result is however the same as in (8).

The phase transition appears already in case when K = 2, L = 1 and

moreover the (−)-particles stand still, that is v
(−)
1 = 0. Denote ρ

(−)
1 = ρ0,

v
(+)
i = vi, ρ

(+)
i = ρi, i = 1, 2. Consider the function

V1(v1, ρ1) =
ρ1v1
ρ0 + ρ1

.

It is the asymptotic speed of the boundary in the system where there is no
(+)-particles of type 2 at all.

Then the asymptotic velocity is the function

W = V (v1, v2, ρ1, ρ2) =
ρ1v1 + ρ2v2
ρ0 + ρ1 + ρ2

if v2 < V1 and

W = V1(v1, ρ1) =
ρ1v1
ρ0 + ρ1

if v2 > V1.We see that at the point v2 = V1 the functionW is not di�erentiable
in v2.
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3 Random walk in RN
+ and method of proof

Associated random walk

One can consider the phase boundary as a special kind of server where the
customers (particles) arrive in pairs and are immediately served. However the
situation is more involved than in standard queuing theory, because the server
moves, and correlation between its movement and arrivals is su�ciently com-
plicated. That is why this analogy does not help much. However we describe
the crucial correspondence between random walks in RN+ and the in�nite par-
ticle problem de�ned above, that allows to get the solution.

Denote b
(−)
i (t) (b

(+)
k (t)) the coordinate of the extreme right (left), and

still existing at time t, that is not annihilated at some time t′ < t, (−)-
particle of type i ∈ I− ((+)-particle of type k ∈ I+). De�ne the distances

di,k(t) = b
(+)
k (t)− b(−)i (t) ≥ 0, i ∈ I−, k ∈ I+. The trajectories of the random

processes b
(−)
i (t), b

(+)
k (t), di,k(t) are assumed left continuous. Consider the

random process D(t) = (di,k(t), (i, k) ∈ I) ∈ RN+ , where N = KL.
Denote D ∈ RN+ the state space of D(t). Note that the distances di,k(t),

for any t, satisfy the following conservation laws

di,k(t) + dn,m(t) = di,m(t) + dn,k(t)

where i 6= n and k 6= m. That is why the state space D can be given as the
set of non-negative solutions of the system of (L− 1)(K − 1) linear equations

d1,1 + dn,m = d1,m + dn,1

where n,m 6= 1. It follows that the dimension of D equals K+L−1. However
it is convenient to speak about random walk in RN+ , taking into account that
only subset of dimension K + L− 1 is visited by the random walk.

Now we describe the trajectories D(t) in more detail. The coordinates

di,k(t) decrease linearly with the speeds v
(−)
i − v(+)

k correspondingly until one
of the coordinates di,k(t) becomes zero. Let di,k(t0) = 0 at some time t0. This
means that (−)-particle of type i collided with (+)-particle of type k. Let
them have numbers j and l correspondingly. Then the components of D(t)
become:

di,k(t0 + 0) = u
(−)
j+1,i + u

(+)
l+1,k

di,m(t0 + 0)− di,m(t0) = u
(−)
j+1,i, m 6= k

dn,k(t0 + 0)− dn,k(t0) = u
(+)
l+1,k, n 6= i

and other components will not change at all, that is do not have jumps.
Note that the increments of the coordinates dn,m(t0 + 0) − dn,m(t0) at

the jump time do not depend on the history of the process before time t0,

as the random variables. u
(−)
j,i (u

(+)
j,k ) are independent and equally distributed
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for �xed type. It follows that D(t) is a Markov process. However that this
continuous time Markov process has singular transition probabilities (due to
partly deterministic movement). This fact however does not prevent us from
using the techniques from [4] where random walks in ZN+ were considered.

Ergodic case

We call the process D(t) ergodic, if there exists a neighborhood A of zero, such
that the mean value Eτx of the �rst hitting time τx of A from the point x is
�nite for any x ∈ D. In the ergodic case the correspondence between bound-
ary movement and random walks is completely described by the following
theorem.

Theorem 2. Two following two conditions are equivalent:

1) The process D(t) is ergodic; 2) v
(+)
K < V < v

(−)
L .

All other cases of boundary movement correspond to non-ergodic random
walks. Even more, we will see that in all other cases the process D(t) is
transient. Condition (5), which excludes the set of parameters of zero measure,
excludes in fact null recurrent cases.

To understand the corresponding random walk dynamics introduce a new
family of processes.

Faces

Let Λ ⊆ I = I− × I+. The face of RN+ associated with Λ is de�ned as

B(Λ) = {x ∈ RN+ : xi,k > 0, (i, k) ∈ Λ, xi,k = 0, (i, k) ∈ Λ} ⊆ RN+ (11)

If Λ = ∅, then B(Λ) = {0}. For shortness, instead of B(Λ) we will sometimes
write Λ. However, one should note that the inclusion like Λ ⊂Λ1 is ALWAYS
understood for subsets of I, not for the faces themselves.

De�ne the following set of �appropriate� faces

G =
{
Λ : Λ = J− × J+, J− ⊆ I−, J+ ⊆ I+

}
.

Lemma 1.

D =
⋃
Λ0∈G

(D ∩ Λ0).

This lemma explains why in the study of the process D(t) we can consider
only �appropriate� faces.
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Induced process

One can de�ne a family D(t; J−, J+) of in�nite particle processes, where J− ⊆
I−, J+ ⊆ I+. The process D(t; J−, J+) is the process D(t) with ρ

(+)
j = 0, j /∈

J+ and ρ
(−)
j = 0, j /∈ J−. All other parameters (that is the densities and

velocities) are the same as for D(t). Note that these processes are in general
de�ned on di�erent probability spaces. Obviously D(t; I−, I+)=D(t).

Similarly toD(t), the processesD(t; J−, J+) have associated random walks
D(t; J−, J+) in R

N1
+ with N1 = |J−||J+|. Usefulness of these processes is that

they describe all possible types of asymptotic behavior of the main process
D(t).

Consider a face Λ ∈ G, i.e., such face that its complement Λ = J− ×
J+ where J− ⊆ I− and J+ ⊆ I+. The process DΛ(t) = D(t; J−, J+) =
(dΛi,k(t), (i, k) ∈ Λ) will be called an induced process, associated with Λ.

The coordinates dΛi,k(t) are de�ned in the same way as di,k(t) = dΛi,k(t), where

Λ = {∅}. The state space of this process is DΛ = D(R|Λ|), where |Λ| =
|J−||J+|. Face Λ is called ergodic if the induced process DΛ(t) is ergodic.

Induced vectors

Introduce the plane

R(Λ) = {x ∈ RN : xi,k = 0, (i, k) ∈ Λ} ⊆ RN

Lemma 2. Let Λ be ergodic with Λ = J−×J+, and Dy(t) be the process D(t)
with the initial point y ∈ B(Λ). Then there exists vector vΛ ∈ R(Λ) such that
for any y ∈ B(Λ) t ≥ 0, such that y + vΛt ∈ B(Λ), we have as M →∞

DyM (tM)

M
→ y + vΛt

This vector vΛ will be called the induced vector for the ergodic face Λ.
We will see other properties of the induced vector below.

Non-ergodic faces

Let Λ be the face which is not ergodic (non-ergodic face). Ergodic face Λ1:
Λ1 ⊃ Λ will be called outgoing for Λ, if vΛ1

i,k > 0 for (i, k) ∈ Λ1 \ Λ. Let E(Λ)
be the set of outgoing faces for the non-ergodic face Λ.

Lemma 3. The set E(Λ) contains the minimal element Λ1 in the sense that
for any Λ2 ∈ E(Λ) we have Λ2 ⊇ Λ1.
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Dynamical system

We de�ne now the piece-wise constant vector �eld v(x) in D, consisting
of induced vectors, as follows: v(x) = vΛ if x belongs to ergodic face Λ, and
v(x) = vΛ1 if x belongs to non-ergodic face Λ, where Λ1 is the minimal element
of E(Λ). Let U t be the dynamical system corresponding to this vector �eld.

It follows that the trajectories Γx = Γx(t) of the dynamical system are
piecewise linear. Moreover, if the trajectory hits a non-ergodic face, it leaves
it immediately. It goes with constant speed along an ergodic face until it
reaches its boundary.

We call the ergodic face Λ = L �nal, if either L = ∅ or all coordinates of the
induced vector vL are positive. The central statement is that the dynamical
system hits the �nal face, stays on it forever and goes along it to in�nity, if
L 6= ∅.

The following theorem, together with theorem 2, is parallel to theorem 1.
That is in all 3 cases of theorem 1, theorems 2 and 3 describe the properties
of the corresponding random walks in the orthant.

Theorem 3.

1. If D(t) is ergodic then the origin is the �xed point of the dynamical system
U t. Moreover, all trajectories of the dynamical system U t hit 0.

2. Assume v
(+)
K > V . Then the process D(t) is transient and there exists a

unique ergodic �nal face L, such that vLi,k > 0 for (i, k) ∈ L. This face is

L(L,K1) = {(i, k) : i = 1, ..., L, k = K1 + 1, ...,K}

where K1 is de�ned by (7). Moreover, all trajectories of the dynamical
system U t hit L(L,K1) and stay there forever.

3. Assume v
(−)
L < V . Then the process D(t) is transient and there exists a

unique ergodic �nal face L, such that vLi,k > 0 for (i, k) ∈ L. This face is

L(L1,K) = {(i, k) : i = L1 + 1, ..., L, k = 1, ...,K}

where L1 is de�ned by (6). Moreover, all trajectories of the dynamical
system U t hit L(L1,K) and stay there forever.

4. For any initial point x the trajectory Γx(t) has �nite number of transitions
from one face to another, until it reaches {0} or one of the �nal faces.

Simple examples of random walks and dynamical systems

If K = L = 1 the process D(t) is a random process on R+. It is deterministic
on R+ \ {0} - it moves with constant velocity v(+) − v(−) towards the origin.
When it reaches 0 at time t, it jumps backwards

D(t+ 0) = η
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where η has the same distribution as u
(+)
1 + u

(−)
1 . The dynamical system

coincides with D(t) inside R+, and has the origin as its �xed point.

If L = 1,K = 2 and moreover v
(−)
1 = 0 then the state space of the process

is R2
+ = {(d11, d12)}. Inside the quarter plane the process is deterministic and

moves with velocity (v
(+)
1 , v

(+)
2 ). From any point x of the boundary d12 = 0

it jumps to the random point x + η1, and from any point of the boundary
d11 = 0 it jumps to the point x+ η2, where η1, η2 have the same distributions

as (u
(−)
j,1 , u

(−)
j,1 + u

(+)
j,2 ) and (u

(−)
j,1 + u

(+)
j,1 , u

(−)
j,1 ) correspondingly. The classi�ca-

tion results for random walks in Z2
+ can be easily transfered to this case; the

dynamical system is deterministic and has negative components of the veloc-
ity inside R2

+. When it hits one of the axes it moves along it. The velocity
is always negative along the �rst axis, however along second axis it can be
either negative or positive. This is the phase transition we described above.
Correspondingly the origin is the �xed point in the �rst case, and has positive
value of the vector �eld along the second axis, in the second case.
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