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SOME RESULTS AND PROBLEMS IN THE STUDY OF
INFINITE-PARTICLE HAMILTONIANS

V.A. MALYSHEY — R.A. MINLOS

These lectures present a general approach and some recent results in
the study of the structure of Hamiltonians of infinite systems of particles.
We do not concern the problem in full extent and in particular we do not
concern earlier work of Glimm, Jaffe, Spencer, and others on the
subject.

Physical folklore tells us that most physical systems can be well de-
scribed in terms of quasiparticles and their scattering. Many examples are
elaborated in this direction from quantum field theory and statistical
mechanics for zero and non-zero temperatures. One of the questions which
arise in this connection is the following: given an operator H in some
Hilbert space s, what additional mathematical structure on H must
we impose in order to get something like a quasiparticle structure for it?
Surely this structure must generalize that of the finite particle Schrodinger
operator

0.1) H=-24A+ 2 Vix; - x,)

1<i<j<n
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to the infinite particle case. We give this definition for some cases and de-
scribe different possibities for its extension.

1. INTRODUCTION

Let a physical system near equilibrium be given. The physical Hilbert
space o and the Hamiltonian H can be constructed in the following way.

Let A be the C*-algebra of observables, 1€ %, o, tER 1 bea
strongly continuous group of automorphisms of A, w be an invariant
(with respect to «,) state on A. Let us consider the GNS representation
m of A with respect to w in the algebra of linear operators in some
Hilbert space s . This representation can be constructed by using a map-
ping 7 of %A into # such that

(m(4),7(B)), = w(A*B), A,BE.

Then there exists a self-adjoint operator H in # such that for any
A€eU, teR!,

exp {itH}m(A) = m(c,A)
and the vector £ = ;(l) € A is the zero eigenvector for H (vacuum).

Let now also be given a representation o« , g€ G of some 'sym-
metry”” group G into the group of automorphisms of A, and suppose
that G contains the time translations (R or Z). For lattice systems
we take Z” X R or Z**1 for G. Then there are unitary operators
Ug, g€ G in # suchthat forany 4 €U,

Um(4) = (e, d), g€G.
The vacuum vector £ is invariant with respect to Ug (see e:g. [1D.

So we have a vacuum state and now ask what a one-particle state
(particle or quasiparticle) is. It is generally understood that such a state has
as its support a subspace of # which is irreducible with respect to G
(called one-particle space). However, we think that this definition must
not be taken too literally. We now give a more exact definition for lattice
systems at zero temperatures.
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Let # be the orthogonal complement to £2. We consider the group
G=2"SG of space translations and the decomposition of . into the
direct integral

(1.1) # =0 [ #FK)duk)
SU

of Hilbert spaces #(k), where k, the momentum of the system in ques-
tion, is a character of Z” which belongs to the »-dimensional torus S?,
and u is some measure on S”. By the decomposition (1.1) we can write
H and Ug, g€ Z?, in the form

U, = ) Sf; U, (k) dp(k)

H =& [ H(k)du(k)
Sv

and
U ()f = e"®&Bf,  fe #(k), ge 2.

By a particle (or quasiparticle) with momentum k and energy A(k) we
mean an eigenvector Y(k)€ # (k) of H(k) such that

H(k) Y (k) = NK) Y (k).

The notions of elementary particle, bound state, quasiparticle, etc. are im-
portant in physics but we shall not discuss them here.

Let now A be a connected open domain in S” such that for any
k€ A there exists a Y(k) with energy A(k). Let (k) be analytic or
continuous in k& in some sense and A be maximal with respect to all
these properties. Then we call the subspace

EA) = & [ E(k)du(k) S #
A

a one-particle subspace where FE(k) is the one-dimensional subspace of
# (k) spanned by (k). l.e. E(A) corresponds to the same particle
with different momentae k& A. E(A) is invariant with respect to H
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and cyclic with respect to Ug, g€ Z”. The spectrum of H in E(A) is
{A(k), ke A).

There are at least two meanings of the words: n-particle subspace.
First of all these are in and out subspaces in the Haag — Ruelle theory.
For some results about the Haag — Ruelle theory for quantum lattice
systems see [5].

The second point of view is more formal and is connected with the
notion of clustering operator which will be defined in Section 2 of the
present paper. The plan of this paper is the following:

In Section 2 we define the notion of clustering operator in an exact
way and formulate our main results about them.

In Section 3 we sketch how the study of the Hamiltonian can be re-
duced to that of the transfer matrix for some Gibbs random field.

In Section 4 we formulate some results about the transfer matrix is
the clustering operator.

In Section 5 we introduce complex Gibbs fields and consider some
examples of them (one of them is connected with ®-vacua).

2. CLUSTERING OPERATORS

Clustering operators are a natural generalization of the N-body
Schrodinger operators in quantum mechanics. Here we consider the lattice
version of them only.

Let %n = QSH(Z") be the set of all subsets of Z” with #n ele-
ments,

B=8ZM- U 3,2

One can consider the set of functions fx)= f(zl, L, xY)e 12 (ZV) =
=1,(8,), x€Z”. The antisymmetric tensor product of n copies of
[,(B,) can be easily identified with [,(8,) and the antisymmetric
Fock space over 12 (Z¥) with 12(%). An operator A in 12(%):
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Q1) ANM= 2 ap AT,
TES ’

Te B, f€1,(B), is called clustering if:
1. A commutes with the translations U,, t€ Z”:
(2.2) UnNMh=AT~-1, TeB, fel,(B).

2.a, . =1, a, .=a ¢=O, T+¢ andfor T,T # ¢ one has

¢, ¢ o, T T,
23)  app= 2 4 W Ty, Ty)
’ k=1,2,... (7., ):Ur;=(T,T"

TN = ¢, i#j

where 7, = (T}, T,f)e %~X 8, 1Ur,=(T,VT,, Ti U Té) and the
same for intersections, ¢ = (¢, ¢). The summation in (2.3) is taken over
all (non-ordered) partitions (T, 7T') = WUV UT, 1,01 = $ if
i#j. It is assumed that the “cluster functions” w(ry, ..., 1) are
symmetric with respect to permutations and satisfy the following condi-
tions:

(1) Forall k=1,2,... andforany s,,...,s, €27,
(2.4) W (T +5,, Ty +5,,.. ., T +85)=w (T,...,7)

where 7+ s=(T+s,T'+5) if 7=(T,T'). Although the w; in(1.3)
depend in fact only on the collections with 7,N T, = ¢, i#j, one can
assume that they are defined for all collections (7, ..., 7).

(2) There exist B, 0<f<1 (clustering parameter) and M >0
such that forany k= 1,2,...

(2.5) lw, 7y, T <MEB) '

where d_ is defined in the following way.
Yo={tez"* 1. r=(!,...,17,0), ezl i=1,... v}
Y, ={(teZ"* =L, ... ," k), ezl i=1,... v}

Forany t€Z'*! (te Y,) we set
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t(k) =1+ ke e,,;=0,...,0,1)ez"*1

v+ 12

In a similar way we can define T(k) forany Tc Z**!,

Then dp, BCZ'*!, is defined to be the minimum length of the
trees the vertices of which are the points of B. The length of a tree is
the sum of the lengths of its lines, and the length of a line is taken in the
metric

v+ 1 .
plty, )= 2 |1l — 1]
i=1
t].=(t].1,...,t]?’+1)EZ"+1 i=1,2.
We define
d =d

T TUT'(1)
where 7= (T,T"), TX {0}, T'x {0} C Yo, (T"x {0H) c Y,.

By the N-particle clustering operator we mean the restriction of the
clustering operator onto L8 N), and the (< N)-particle clustering op-
erator is the restriction of the clustering operator onto < ’iN 1,(8,)C
C 12(%).

Remark 1. Let us consider the lattice Schrédinger operator

N

A= 2 (=A+m>)+ 2 Vix.—x)
i=1 ! 1<i<j<N v

where A, is the lattice Laplacian in the variable x,€Z', m>0, V

has exponential decay. It is easy to verify that exp{—t4}, t>0, is

clustering.

Remark 2. One can call the symbol of A the clustering operator
Ao which has the only non-zero matrix elements for |T|= |T'] which
are equal to (aO)T’T, = 2‘*’|T|(7'1’ . ,TlTI) where the sum is taken
overall 7,= ({t},{t'}), teT, t'eT'.

Remark 3. The set of all clustering operators is closed under multipli-
cation. It is also an algebra in some sense (see II 2D.
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Our main result is the following theorem [2]. Let a self-adjoint clus-
tering operator A be given such that for each k= 1,2,... and any
Liseeoslys its symbol satisfies the following lower bound

2.6)  A,> LBV

where N is the operator 'number particle’”: Nf= Nf, fel,(By), N=
=0,1,2,..., and L,C>(Q are constants.

Then for each N> 1 there existsa $; = ,(N,M,C,L) such that
for 0<B<p, there are N+1 mutually orthogonal subspaces
nfﬁ L(8,) DA, H sy, Ky which are invariant with re-
spectto A and U, andfor 1<s<N we have

kB NxI? < (Ax,x) < kB0 lIxll?,  x€ A

2.7
| (Ax, )] <k, B+ 1)1, xeHy,,

where k;= k;(N,M,C, L) are constants, i= 1,2.

Moreover, #,, 1<s<N, lies in the vicinity of /,(B) i.e:

1

(2.8) le—PSXII<Gl32IIXII, XEH

where Ps is the projection onto 12($s), G=G(N,M,C,L) isa constant.
For each k= 1,...,N there exists a unitary operator V,: #', > [,(8,)
such that

-1 _
W VWl e Vi = U, |1, (m,)
(2) the operator 4, = V(4| 4 )V

in 1,(8,) is clustering with clustering parameter AB)~>0 as g-~0.
Now we list some problems about clustering operators.

1. Many results for the N-particle Schrodinger operator ought to be
transferred to clustering operators: Faddeev — Jakubovsky equations,
bound states, resonances, asymptotic completeness, and so on.

2. What is the structure of the resolvent for a general clustering
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operator? We conjecture that for each v > 0, outside a v-neighbourhood
of 0 this structure can be reduced in some sense to the study of an
(< N(y))-particle clustering operator.

3. Asymptotic completeness of Haag — Ruelle scattering theory
for clustering operators.

4. It can be shown that the set of all (< N)-particle clustering oper-
ators generate, for N fixed, a =-algebra B, of type I. What is the struc-
ture of lim inf B v | Probably, it is not of type I.

3. REDUCTION TO MARKOV FIELDS

The only proof known up to now of the fact that the exponent of
the Hamiltonian H is clustering, consists first of all in a reduction proce-
dure to Markov fields. This reduction is made in several steps.

Let us suppose first of all that the space of the states of some quan-
tum system is the Hilbert space # = L,(X, un), where (X, u) isa measur-
able space with nonnegative measure u. The Hamiltonian of the quantum
system is such that the semigroup of operators exp (—tH), t> 0, is de-
fined by the nonnegative kernel G(x 19%55 1)

exp {— tH}(xl,x2)=G(xl,x2;t)> 0, X,,%, €X, t>0.

Let us suppose that the vacuum £ (see Section 1) is unique and that its
eigenvalue )\0 is the minimum of the spectrum o(H) of H, ie. Q=
= Yo(x) is the unique ground state of the system. Then we can define
the stationary Markov process {x,, teR'}, x, € X. Its conditional
probability density is equal to

G mxly=e Y ®)6E, ;DY ),
and the one-dimensional stationary density is
(3.2) m(x) = |, (x)|2.

(We do not discuss when (3.1) aad (3.2) exist.) Under some general assump- ﬁ
tions (e.g. if ?\0 is an isolated eigenvalue) it can be shown that the process :
x, is the limit of the Markov processes {xtT, [t|<T}, T>0 as T oo,
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The finite-dimensional distributions of xtT are given by the densities

T —
T Xo, X1, ..., X =
NS U tn+1( 0°>71 ’ n+1)
(3.3) n
— 7-1 .
=L tynty s {)YG(XHl’xi’ L 1)
where —T=t0<t1<...<tn+1=T, and Z,o ..... e | is the norma-

lization constant. The limit as T - o is understood as a weak limit of
finite-dimensional distributions.

The generator H of this limit Markov process X, is an operator
in L,(X,mdu) and is given by

G4 HNE) = Yy OIEH - N EX Y5 N1 X).

It is unitarily equivalent to the operator Hy — \yE acting in L, (X, du).
So we are reduced to the study of the spectrum of P, = exp {— tH} given
by

35  (PHY)= Xf Fe)m, (x | p)du(x).

The most important case is
H=H,+V

where H, is the generator of a stationary Markov process {xto, te R}

with valuesin X, and V isthe multiplication by the function
(FNx) = V)fx), x€X, feL,(X,w.

Then the measure » corresponding to the process x, islocally absolutely
continuous with respect to the measure v, corresponding to xto. To be
more precise, for any Tl, T2, T1 < Tz, the processes x, and xt0 gen-

erate the same ¢-algebra %T r. and the restriction of » onto 23T T
1’42 o2

is absolutely continuous with respect to Yo |9 . Moreover, for u-
T,.T,

X, X
172 for x, =

almost all X, X, € X, the conditional distributions Vo1 T
1012 1

=X, xT2 = x, are given by




dvi1*2 T,
— 2 7% 1%2 -1 _
X xy (ZTl,Tz) €Xp { Tfl V[x(T)]dT}

where Z;:xf,z is again the normalization constant. In this situation xtO is
often called “free process’ and x, its Gibbs modification (defined by the
interaction V).

Example. Consider the so-called (v + 1)-dimensional Ising model
with continuous time. First it can be considered as the quantum »-dimen-
sional model with Hamiltonian in volume A

= Sx + z Z’
H, =8 tg : t 6, t,t%’A S¢S
(t—t'1=1
where S*,S5% are Pauli matrices, B,,B, are constants. All details about
its reduction to a Markov field can be found in [9].

The same can be done for the Heisenberg ferromagnet.

4. THE TRANSFER-MATRIX AND ITS CLUSTER PROPERTIES

Instead of the Ising model with continuous time we shall consider the
Ising model with discrete time. I.e. we consider the random field o,
0,=+*1 on the lattice Z”, t=(¢9,...,¢""1), which is the limit for
A7 Z? of the fields in volume A with probabilities

pp(o,, t€ AN =2Z"" exp (B Zotlotz)

where the sum is taken over all pairs (t;, 1)), t; €A, le, — t,1= 1. The

random variables o, are defined on the probability space £ = (- 1, 1)? ’
the underlying measure u of which is the limit Gibbs distribution. We con-

sider as our physical Hilbert space L,(82, 1) where 2, =(1, l)ZV_l
is the set of configurations for the time-slice ¢® = 0 with the restriction of
# on it. Evidently,

@D Aop= Il o, Ten@E ")

forms a (non-orthogonal) basisin L ) (QO , M.
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One can define the elements of matrix £ = % 1 1n this basis as fol-
lows:

4.2) (oT1 , ﬂ'oTz )Lz(no,u) = ("T‘l Or; )

where (-) is the expectation with respect to u and T 5 is the shift of
T, by the vector (1,0,...,0)€ Z”. We shall define now another basis
[71, (81, [3]:

(ot — P, o,)

0, = 7—p——
t e, - Po,l’

where P, is the orthogonal projection in L,(2,, 1) onto the subspace
generated by o, with T lyingtotherightof ¢, t& T.

Assuming 8 small, the following facts can be proved.

1. {6, T€ B} iscomplete. We have
@3)  Gr, For)p agm = 7 7, 0= Swlr)wry) . .. o)

where all notations are the same as in Section 2 but w(7) is a semiin-
variant of the random variables 6t, teT, U Té. Due to orthogonality,
all w(r)=0, r=(T,,T,) if either T)=¢ or T, =¢.

2. Then our main bound is

44)  lo@I<E@TIT, =T, T).
The proof consists in the proof of an estimate similar to (4.4) for an
arbitrary semiinvariant (oT1 , aT2 ey oTk ) T,€eB(Z"), i=1,...,k,

k=1,2,...; see [3], [4]. Then using this estimate and some auxiliary
arguments we prove (4.4). Unfortunately, this proof is very elaborate; a
simplification would be of great interest.
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5. GIBBS QUASISTATES ON A LATTICE

In some physical systems the kernel G(x,,x,;t) is not positive and
therefore we cannot get a stochastic process. Nevertheless we shall not re-
strict ourselves to countably additive measures but shall consider only fi-
nitely additive ones, and then much of the theory of Gibbs states can be
carried over to this case. Such “complex” Gibbs fields appear in many
examples:

1. If one wants to study ground states of quantum spin systems,
the semigroup exp {— tH} can be described by a nonpositive kernel. Here
finitely additive measure appear naturally.

2. Resonances in spin systems can probably be described as complex
eigenvalues of non-self-adjoint Hamiltonians. Here also the techniques of
complex Gibbs fields seem to be applicable.

3. Much of high-temperature expansions can be generalized to the
complex case (see below). There are some results also from low-tempera-
ture expansions [10].

4. Some interesting spin systems have a dual system (of Kramers —
Wannier type) with complex potential.

5. Here we shall restrict ourselves only to classical spin systems
mostly with compact spin space.

Definition of quasistates. Let the spin take its value at each point
t€Z¥ in a compact spin space S with Borel oc-algebra. For each finite
ACZ”, S* has standard topology and o-algebra. Let % A be the al-

gebra of complex continuous functions on S4; A0 = U A,
ACZV A<
be the algebra of local observables.

The quasistate of A% is a linear functional ¢ on A% such that
its restriction to any U A Is continuous and (1 A) = 1. This means
a consistent family of countably additive complex measures K, on SA
such that u, (§%)= 1.

Generally speaking, a quasistate cannot be obtained as a restriction
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of some countably additive measure on sZ" (i.e. Kolmogorov’s theorem
is not true). l.e. a quasistate cannot in general be continued to a con-
tinuous linear functional on the C*-algebra A =AY of quasilocal ob-
servables.

Simple examples of quasistates.

1. Independent quasistates. Let u be some complex measure on
S, u(S)=1. Then u, can be defined as a Cartesian product of u. The
quasistate obtained in this way can be called independent.

2. Markov one-dimensional quasistates. Let K(x,A), x€S, A a
Borel subset of S be a complex function such that for any given x € S,
K(x,A) isa complex measure on S and for any Borel 4 €S, K(x,A4)
is a measurable functionon S. Let also

| K(x, A)| < const,

and suppose that there exists an invariant complex measure u,
wA) = Sf K(x, A)du(x),

such that u(S)= 1. Then we can define measures of cylindrical sets in
SZ' eg.

u(... X SX AXBXS..)= [ K(x, B)du(x).
A

So we obtain a quasistate which it is natural to call Markov quasistate.

3. Gaussian quasistates. Generalizing somewhat the definition of
quasistate (to permit noncompact S) we can define a “Gaussian quasi-
state” on R® by a “covariance” A + iB, where A and B are real co-
variances and A is positive definite.

Gibbs modifications of quasistates. A family of local functions
P = {<I>A , ACZ"), fIJA €eA,, <I>A = 0, where diam A4 > d > 0, is called
a potential. Let some quasistate {:-) be given. We shall define the Gibbs
modification of the quasistate (-) in avolume A:
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(F)p g0 =2y (Fexp{- 2 @, - o, })

A®.® A ASA 1 acaga
N7
Z,=(exp{~ 2 &, - 2 o))
4<€A ACa A

and <I>1:1 is a family of functions which are not equal to zero unless
ACO,A={teA: p(t,Z"\ AN) < d}
(these boundary conditions “can be defined in a vast number of ways”).

The limit Gibbs modification of (-) by @ isa weak limit point of
the sequence (-) oo 8 AMZ * and @, is arbitrarily chosen for
each A. Notice that the set of quasistates is compact in the weak topology
(convergence on any A).

High-temperature expansions. Let now <(-), be an independent
quasistate and B® 4 be its potential. We shall consider the limit Gibbs
modification of this quasistate:

<Fexp{—BAZ ®,} >0

(FY= Tim (F), 4 o= lim £a
rrz rrzt <exp {'ﬁAgA 2} )

(we put <I>/:1 = 0).

We show that this limit exists for 8 sufficiently small and obtain
(F) as aseries in $. Many cluster expansions (if not all) are applicable.
We give the most direct one. We have

<F)A,q>_,0_
7 (- n }
S SERL 3 3 R, e, .., 0, |
nonlo4cA T Ta,CA 4y A, n
where (F,®, ,...,®, )g is the semiinvariant. This notion was de-
1 n

fined in [4] for an arbitrary virtual field and it is applicable here. The fol-
lowing estimate was proved in [4]:

X JHRN

n)gl< sup | FIC"n !n,! . ..n !
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where m is the number of groups of identical A]., j=1,...,n, n; is
the number of elements in these groups. Moreover, this semiinvariant
is equal to O if the collection I'=(4,4,,...,4,), A is the ’sup-
port” of F, is not connected (see [4t). It follows that the limit
exists and

5

=S 5 S, ...,
n: Al An 1

n

(it follows also that Z, #0 for B uniformly sufficiently small in A).

Below we give an example where the Gibbs modification is not
unique even in the high-temperature region. This uniqueness takes place
of course if (- )0 is a state and B,®, and <I>/'4 are real. In fact, in this
case an arbitrary limit point is a Gibbs state in the sense of DLR [1].
But then it is the limit point for some sequence of Gibbs states in finite
volumes A with boundary conditions given by some configurations in
Z¥\D. l.e. the field 'fI>(:1 is of order B and from this the uniqueness
follows.

The above mentioned example is the two-dimensional gauge
field with complex boundary conditions.* Let (- )0 be the field defined
on the edges ¢ of the two-dimensional lattice Z2; ¢, takes its values in
the unit circle S?.

Let (- )0 be the state corresponding to the independent random field
¢, with measure 31; ds on each edge. Let 3 be any set of four edges

which belong to the boundary of a unit square. Let us denote
Yo =9, * @, —¢, —, (modlm

where ¢,,¢, are the left and upper edges of the square O, t;,¢, areits
right and lower edges. Let ¥~ be an arbitrary real functionon S!.

*One of the authors thanks K. Gawendzki for this example and its relation to ©-
vacuums.
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Let us consider a state in a square

<Fexp{—DCZ'A V(tpn)})()
(Fp , o= .
P (e {= 2 v wnl}),

This model admits an exact solution, and it is not difficult to prove the
uniqueness of DLR states for such models.

Let us consider now the boundary terms on the edges of the boundary
of A, equalto i®p, on each edge ¢ belonging to the boundary 9,A
of A. We denote by ¢, the value of the angle on St ¢, €[0,27], © is
an integer.

The new quasistate is

<Fexp {-— DCZ; Y (p,) —i© te%;/\ (* ‘Pt)} >0

A, v ,0
ZA

where we take the + sign on the left and upper sides of the square A, the
sign — on the other sides. We shall prove that

lim (F)A,

e (F)v,@
ArZY

v,

exists and defines a quasistate. For different © these qausistates are dif-
ferent in general. We use Green'’s formula

2 e)= 2 g,
OCA

te BOA
and take for simplicity F= F(p, ) for some fixed square Oy - We get
0

<Fexp {- DCZA [V (p,) + i@*Pn]})o

A, v,0
ZA

A change of variables (the same in the denominator and the numerator)
gives
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We suppose that the denominator is not 0. So (F)

2n
[ F(p)e= ¥ W -i®¢q,
0

Py o=

[ e V(w)—iG«pd‘p
0

y o LUrivially exists

and is in general different for different ©.

It may be of interest to describe those lattices for which such quasi-

states (®-vacua) can be defined, and to calculate the spectrum of the
transfer matrix.

In a similar way one can define quasistates for fields with continuous

time. For this it is sufficient to consider algebras «u A forany A=
= {tl ety 1, L,€ER 1 with a consistent family of continuous states.

Complex Markov chains with continuous time are the first examples.

It is interesting to develop a general theory for such quasistates and for
generalized complex fields, too.
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