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Abstract. One-way road traffic model with a local control is considered.
For given density of transportation units we discover phase transitions in
the control parameter space when there exists or not safe transportation.
Also we discuss possible densities and instability in several road networks
with crosses, if no control is imposed.

1 Introduction

Theoretical modelling and computer simulation of transportation systems is a
very popular field, see very impressive review [3]. There are two main directions
in this research - macro and micro models. Macro approach does not distinguish
individual transportation units and uses analogy with the notion of flow in hydro-
dynamics, see [2]. Stochastic micro models are most popular and use almost all
types of stochastic processes: mean field, queueing type and local interaction
models. We consider here deterministic transportation flows. Although not as
popular as stochastic traffic, there is also a big activity in this field, see [1,4–8].

In Sect. 2 we do not pursue maximal generality but rather consider the sim-
plest flow, that is the following one-way road traffic model. Namely, at any time
t ≥ 0 there are many (even infinite number) of point particles (may be called also
cars, units etc.) with coordinates zk(t) on the real line, enumerated as follows

... < zN (t) < ... < z1(t) < z0(t) (1)

For this infinite chain of cars we try to find control mechanism which garanties
that the distance between any pair of neighbouring cars is greater or equal (on
all time interval (0,∞)) to some fixed number d, called safe distance, but at
the same time is not too far from it (then we say that the density of cars is
admissible).

This control mechanism is assumed to be local - any car has information only
about the previous car. Moreover, this mechanism is of physical nature, like forces
between molecules in crystals but our “forces” are not symmetric. The safety
(stability) conditions appear to be similar to the dynamical phase transition in
the model of the molecular chain rapture under the action of external force.
However here we do not need the double scaling limit, used in [9].
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In Sect. 3 we consider idealistic models of transportation network as the col-
lection of roads with crosses (intersections). Along each road the units (cars)
move deterministically. We get admissible density of units on the given trans-
portation network and show the dependence of this density on the number and
multiplicity of crosses and number of cycles in the network.

2 Local Flow Control

In this section we consider the simplest flow (1), where it is assumed that the
rightmost unit moves “as it wants”. More exactly, the trajectory z0(t) is only
assumed to be sufficiently smooth with positive velocity v0(t) = ż0(t) and natural
upper bounds on the velocity and acceleration

sup
t>0

v0(t) � vmax, sup
t>0

|z̈0(t)| � amax (2)

We would like to organize such traffic so that for any t and k the distances
rk(t) = zk−1(t) − zk(t) were greater or equal to some number d > 0, which is
chosen to avoid collisions and keep maximal possible density of traffic. Moreover,
the organization should use only (maximally) local control. More exactly, the k-
th driver at any time t knows only its own coordinate and velocity and the
coordinate zk−1(t) of the previous car. Thus, for any k ≥ 1 the trajectory zk(t)
is uniquely defined by the trajectory zk−1(t) of the previous particle.

Using physical terminology one could say that if, for example, rk(t) becomes
larger than d, then some positive force Fk increases acceleration of the particle
k. We will see that, besides Fk, for such stability, also friction force −αvk(t),
which, on the contrary, restrains the growth of the velocity vk(t), is necessary.
The constant α > 0 should be chosen appropriately.

Thus the trajectories are uniquely defined by the system of equations for
k ≥ 1

z
′′
k (t) = Fk(t) − α

dzk

dt
= ω2(zk−1(t) − zk(t) − d) − α

dzk

dt
(3)

where Fk is taken to be simplest possible

Fk(t) = ω2(zk−1(t) − zk(t) − d)

Stability Conditions. For given α, ω, d, z0(t) and initial conditions the trajectories
are uniquely defined and we can denote

I = inf
k�1

inf
t�0

rk(t), S = sup
k�1

sup
t�0

rk(t)

Put also
d∗ = d∗(vmax, amax) =

1
ω2

(amax + αvmax)

Consider firstly the simplest initial conditions

zk(0) = −kd,
dzk

dt
(0) = v, k ≥ 0 (4)
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Theorem 1. Assume (4) and α > 2ω > 0. Then for any chosen “safe distance”
parameter d > d∗ in the Eq. (3) the following bounds hold

I > (d − d∗) > 0, S < 2d.

Now consider more general initial conditions satisfying

z0(0) = 0, z′
0(0) = v, 0 < a � rk(0) � b, |drk

dt
(0)| � c, (5)

for any k > 0 and some non-negative a, b. Denote also

D∗ = max{A, d∗},

where

A =
αa

′
+ 2c

2γ
, γ =

√
α2

4
− ω2, a

′
= max{|a − d|, |b − d|}.

Theorem 2. If α > 2ω, αa−2c
α−2γ > a+b

2 , a+b
2 < d∗ < αa−2c

α−2γ then for any initial
conditions (5) and any smooth function z0(t), satisfying (2), there exists open
subset D ⊂ R such that for any choosen “safe distance” parameter d ∈ D in the
Eq. (3), the following bounds hold

I ≥ (d − D∗) > 0, S ≤ d + D∗.

The proof of both theorems is based on the analysis of the chain of equations
for xk = rk − d, k > 0

x
′′
k(t) + αx

′
k(t) + ω2xk(t) = ω2xk−1(t), k = 1, 2, ...

where
x0(t) =

1
ω2

(z
′′
0 (t) + αz

′
0(t))

Density and Currents. Let n(t, I) be the number of units on the interval I ⊂ R at
time t and n(T, x) be the number of units passing the point x in the time interval
(0, T ). Then the density and the current through some point x are defined as
follows (|I| is the length of I)

μ(t) = lim
|I|→∞

n(t, I)
|I|

J(x) = lim
T→∞

n(T, x)
T

if these limits exist. For fixed N define also mean length of the chain of cars
0, 1, ..., N

LN (t) =
z0(t) − zN (t)

N
.
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Theorem 3. Under the conditions of Theorem 2 assume also that the initial
conditions are such that the following finite limits exist

lim
N→∞

LN (0) = L(0), lim
N→∞

L̇N (0) = L̇(0),

Then for any t there exist

lim
N→∞

LN (t) = L(t),

and moreover
L(t) = L(0) +

1
α

(1 − e−αt)
dL

dt
(0)

Note that if moreover dzk(0)
dt are uniformly bounded then dL

dt (0) = 0, that is
the mean length does not change with time.

Instability. First reason for the instability is the absence of dissipation.

Theorem 4. Let α = 0, then for the initial conditions (4) for k > 0 and for
z0(t) = tv + sin ω′t, v > 0, ω′ �= 0 and k � 2 we have

inf
t�0

rk(t) = −∞

It is sufficiently easy to explain by the resonance effect: x1(t) is the harmonic
movement with frequencies ω, ω′, and the proper frequency of x2 is ω.

Assume again (4). We will prove instability (even for rather simple behaviour
of the leading unit z0(t)) when k and t tend simultaneously to ∞ so that t =
μk, k → ∞ for some constant μ > 0. The following theorem consists of two
parts: the first one exhibits the possible zero density, the second one exhibits the
possibility of collisions.

Theorem 5. Let dz0
dt (t) = v for all t � 0. Then

1. for any α > 0 there exists ω > 0 and constants q+ > 1, μ+ > 0, c+ > 0,
so that for any d > 0

rk(t) ∼ c+√
k

qk
+

as t = μ+k, k → ∞;
2. for any α > 0 there exists ω > 0 and constants q− > 1, μ− > 0, c− < 0,

so that for any d > 0
rk(t) ∼ c−√

k
qk
−

as t = μ−k, k → ∞.
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3 Transport in Networks Without Control

Transportation without control means that any unit moves with its own velocity
and does not know anything about the movement of other units. In other words
the functions zk(t) are fixed. We will consider only the case when

zk(t) = ck + vkt

for some constants vk > 0 and

... < ck−1 < ck = zk(0) < ...

The transportation network is defined to be safe if at any time moment t the
distance between any two units is greater or equal to some fixed number d > 0
called safety distance. It is clear that for the safe network all vk should be equal
to some v > 0, their joint constant velocity. It is also clear that μ(t) ≥ d−1 and
this density is attained in the case when

zi(t) = zi(0) + vt, zi−1(0) − zi(0) = d =⇒ zi−1(t) − zi(t) = d

It is easy to see that in our case at time t any density μ(t) is admissible iff

μ(t) ≤ d−1

The network (of roads) is defined here as the one-dimensional topological
space, which is the disjoint union of some number of real lines (roads) k =
1, ...,M ≤ ∞ with coordinates zk. It is assumed that any pair of real lines has
finite number of identified points (crosses). Consider the graph G, which vertices
are these identified points (intersections of the real lines) and the edges are all
segments of the roads in-between the vertices. That is we delete all infinite
intervals of the roads. The metrics is defined as usual: the distance ρ(xk, xl)
between two points xk and xl on the network is the minimal length of paths
between these two points.

On any road k the transportation units are labeled as (k, i), where k is the
road along which it moves and i is its order on this road. Here the sequences are
assumed to be infinite to both sides

... < zk,i(t) < zk,i−1(t) < ...

and we again consider networks where the velocities and safe distance are the
same for all roads

Proposition 1.

1. Assume there are M < ∞ roads with only one common cross. In this case
the graph G consists of one vertex only. Then at time t any density μ(t) is
admissible iff

μ(t) ≤ (Md)−1 (6)
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2. Assume there are M roads and let L be maximal multiplicity of their inter-
sections. Assume also that the graph G has no cycles. Then at time t any
density μ(t) is admissible iff

μ(t) ≤ (Ld)−1

3. Consider 4 roads A,B,C,D with 4 different crosses 1 = A ∩ B, 2 = B ∩
C, 3 = C ∩ D, 4 = D ∩ A, Then the graph G is a quadruple and has 4 edges
12, 23, 34, 41. Then the admissible densities are

μ(t) ≤ 3
8
(d)−1

Note that if the number of cycles grows then the coefficient in front of d−1

decreases very quickly. It would be interesting to calculate it explicitely.
There is another reason showing that such transportation network is not only

of small density but also is strongly unstable. Namely, consider the case when
each road k = 1, ...,M has its own safe distance dk and its own velocity vk, Thus

zk,i(t) = zk,i(0) + vkt, zk,i−1(0) − zk,i(0) = dk =⇒ zk,i−1(t) − zk,i(t) = dk

Then the corresponding currents are Jk = vkd−1
k . The following proposition

shows extreme instability of the simplest network.

Proposition 2. Consider two roads with one cross. Call the transportation sta-
ble if distances between any two units are greater or equal to some D0 > 0
uniformly in t. Then:

If J1
J2

is not rational, then such transportation cannot be stable.
If J1

J2
= n1

n2
for some integers n1, n2 such that (n1, n2) = 1. Then stable

transportation exists iff
n1

d1
+

n2

d2
<

1
D0

Remark 1 (Control types). To avoid instability of Proposition 2 some control is
necessary. There are two possibilities for the control. The first one we considered
in Sect. 2 - local internal control, that is depending only on distances between
cars. Second type is the control which forces velocities of cars to change in certain
points of the network. The mostly used such control is the organization of traffic
lights where the cars should stand still for some time. Other control types are
also known, see [1,4–8], and it could be interesting to find general classification
of control types.

References

1. Blank, M.: Ergodic properties of a simple deterministic traffic flow model. J. Stat.
Phys. 111, 903–930 (2003)

2. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. Elsevier, N.Y. (1971)

2malyshev@mail.ru



Stability and Admissible Densities in Transportation Flow Models 295

3. Helbing, D.: Traffic and related self-driven many particle systems. Rev. Mod. Phys.
73, 1067–1141 (2001)

4. Feintuch, A., Francis, B.: Infinite chains of kinematic points. Automatica 48,
901–908 (2012)

5. Hui, Q., Berg, J.M.: Semistability theory for spatially distributed systems. In: Pro-
ceedings of the IEEE Conference on Decision and Control, January 2009

6. Jovanovic, M.R., Bamieh, B.: On the Ill-Posedness of certain vehicular platoon
control problems. IEEE Trans. Autom. Control 50(9), 1307–1321 (2005)

7. Melzer, S.M., Kuo, B.C.: Optimal regulation of systems described by a countably
infinite number of objects. Automatica 7, 359–366 (1971). Pergamon Press

8. Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans.
Autom. Control 41(3), 349–357 (1996)

9. Malyshev, V.A., Musychka, S.A.: Dynamical phase transition in the simplest mole-
cular chain model. Theoret. Math. Phys. 179(1), 123–133 (2014)

2malyshev@mail.ru


