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Abstract. Multiparticle systems on complicated metric graphs might have
many applications in physics, biology and social life. But the corresponding
science still does not exist. Here we start it with simplest examples where there
is quadratic interaction between neighboring particles and deterministic exter-
nal forces. In this introduction we consider stable configurations and stable
flows on one and two edge graphs. Moreover, distribution of mean (as in virial
theorem) kinetic and potential energies along the graph is considered.
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1. Introduction

Mathematician, who besides pure mathematical problems, wants to do some-
thing else, might ask the question — could mathematics give some ideas why our
life is so short.

More exact question could be like this: can mathematics provide some kind
of broad view on bio organism using small number of axioms at the upper level
but many examples on the lower.

Immediately mathematician sees that the amount of information concerning
physics, chemistry and biology of bio organisms is already immense but is still
growing faster and faster. Moreover, even the existence of long molecules and
solids does not have rigorous proofs neither in classical (assuming only Newton
equation with Coulomb force), nor in quantum mathematical physics. This
suggests the answer to this question — obviously NOT.

However, some of us can remember that “toy models” were popular in math-
ematical statistical physics in second half of last century. So, we could try to find
toy models of our own health, in particular due to harmful external influence.

The components of such toy models are the following:

1) we consider large systems of point particles such that their micro behavior
gives rise to macro effects which everyone knows when feels his own body;

2) this system, as a whole, can be imagined as “body”, and edges (or subsets
of edges) are the parts of this body. For sufficiently large graphs one can imagine
even more complicated hierarchy;

3) for such system there are different static and dynamical problems. For
example, stable state (no dynamics) is the minimum of the potential energy. It
is important to understand what (potential and kinetic) energy distribution can
be over living “body”. If the initial conditions are not stable, or if external forces
are time-dependent, then potential and kinetic energy can be quite differently
distributed over the “body”. It is obvious that any part of the body should
have sufficient energy to survive;

4) if our graph has cycles, then stationary flows (like electric current for
Coulomb forces) along some or all cycles are possible;

5) in the first model the particles move in their local potential wells which are
formed by neighboring particles. Next development of the model is to introduce
external media and flows in this media. Moreover, this interaction allows, for
any edge, departure and arrival of particles. Departure can be in cases when
dynamical situation leads to collisions or too close rapprochement of neighboring
particles. On the contrary, arrival can occur if neighboring particles on the edge
become too far apart from each other;

6) growth of graph becomes also possible if we consider the edge not as
the segment of fixed length, but of the length which is defined as the sum of
distances between neighboring edges. Then the breaks and growth of edges and
even appearance of new edges is possible.
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Now we start rigorous definitions.

Static metric graph In this case we consider many-particle systems on met-
ric graphs, where (static) metric graph G is a graph with metrics, where each
edge is metrically isomorphic to a segment of the real line, and the distance
between two points is the minimal length of path between these points.

On each edge [ there is large system of identical particles. Potential energy
of such system is the sum
U= Z u(pij)
(4,4)

over pairs i, j of particles, for which there exists a path between ¢ and j such
that does not pass over any other particle. And p;; is the minimal length of such
path. In this paper we start with the case when the interaction is quadratic,
that is )

Wij o

o Pij:

Moreover, external forces can act on some or all particles.

U(Pij) =

Dynamic graph Here abstract graph G is fixed. We assume it connected
and not more than one edge between any two vertices. Vertices of graph may
be called point particles and numerated as ¢ = 1,...,N. Existence of edge
[ = (i.7) between vertices means that these two “particles” interact. Each edge
has variable length ¢; = ¢;; > 0. Dynamics of these lengths is defined by Newton

equations
Pq
— =F@+ Y Fin(a am),
mim#l

where the summation is over all edges m such that have common vertex with
edge I. And Fj, F},, are forces — real functions of one and two variables corre-
spondingly.

In this introduction we consider only static graphs and give an introduction
to the statics of such systems for three simplest graphs — segment, circle and
graph with 2 edges. The first interesting topics — ground states of such systems.

Ground states with different interactions, but without external force, for
classical finite and infinite particle systems were intensively studied during last
30 years, see for example [1-6]. Main results in these papers concern period-
icity of the ground states. In the papers [7-14] mostly Coulomb systems were
considered.

Other question in our paper: 1) flow of particles along the cycle; 2) energy
distribution on parts of the graph.
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2. Stationary flow of point particles

Periodic equilibrium configurations Let S = S be circle of length L, or
segment [0, L] with identified end points. Consider N point particles 0,1, ...,
N — 1 with coordinates

O=axp<m <...<xN_1 <L (21)
or infinite periodic sequence (with period L) on the real axis R

o<z <0=zy<r1<...<zy1<zy=L<zNyy <...

where xp1ny = xx + L for any k. We assume formal potential energy

w
U = ? Z(sck — Tk—1 —a)2

keZ

with ¢ = L/N, and moreover there are the following external forces:
1. constant force f > 0 on the particle 0, or on any particle iN,i € Z;
2. constant forces —p < 0 (that is ¢ > 0) on any particle.

Define ¢, as
L €k

R _|_ _—
N N2
Then: the sequence gy, is also periodic, —LN < ¢ for any k, and

> e =0. (2.2)
k=1

Configuration is called equilibrium, if the force, acting on any particle, is zero.

Ap =2 — Tp—1 =

Theorem 2.1. There exists fixed (equilibrium) configuration, satisfying condi-
tion (2.1), iff the following two conditions hold:

1) ¢ =f/N,
I 1
2%2L ~ N(1—1/N)’
This configuration is unique and is defined by
fN(N -1) fN(N -1)
_ ey =2

2)

L= 2w? ’ 22 ’
N
Ekzsl—l—(k:—l)f—Q, k=1,...,N—1.
w
If moreover
/ _C
2w2L ~ N2

for some fixed constant C' > 0, then, in such scaling, €, = O(1) uniformly in
k=1,...,N.
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Proof. The condition that the total force on particles k = 1,..., N — 1 is zero
can be written as follows

€k Ek ©N?
Q(Nglfm):@®€k+1*€k:7 (23)
and on the particle 0 (or N)
€ € N2
f+w2(N—12—N—]\;)=<,0<:>51—€N=F(—f+§0)- (2.4)
Summation of (2.4) and all (2.3) gives
(N—l)gp—f—l—go:(){:)tp:%. (2.5)

Thus, condition 1) of the Theorem is a necessary condition.
And we can rewrite conditions (2.3) and (2.4) as

IN FN(N —1)
SRl TER =S5 E1TEN =TT
Then
N N(N -1
€k:<€1+(k_1)f72, ]{,':2,...7]\]—17 €N:€1+L2).
w w

Substituting to (2.2)

we get
N-1 N
IN SN(N-1) N _

k=2
fN(N —1)
:N(51+72w2 )=0
or
= 7fN(N -1
2w?
and then
CN(N-1)
EN = 52 .
Alsoforallk=1,...,N —1
N
erp=¢1+ (k— 1)‘];—2
Note that
xk>xk,1<:>€—k>—£<:>€—1:—w>—£<:>
N2 N N2 2w2N?2 N
/ L / 1

—

22 SNA-1N) = 22L S NA—1/N)’ (2:6)

That is for fixed L, the parameters f,w should be scaled (with respect to N) so
that f/(2w?L) < 1/N hold.
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Stationary flow Now we want to prove that there exists stationary periodic
flow of particles as
zr(t) = z(0) + vt,

where v > 0 and z;(0) = xj, defined in the Theorem. That is the particles
move with the same velocity v > 0. This flow is driven by the constant force
f > 0 acting only on the particle 0 and by some dissipative force which acts
on any particle and depends only on its velocity. Such dissipative forces —g(v),
where g(v) is positive smooth increasing function) (often used is g(v) = av with
some « > 0). Assume that we fixed this function g. Then there exists unique
v > 0 such that g(v) = ¢ = f/N.

This construction is resembles the famous Drude’s model of electric current
(one can find it in any text book on electricity) where particles move without
interaction under the influence of external constant force and dissipative force,
acting on all particles. Here however the particles move due to the driven force
acting on only one particles.

Even more realistic model with Coulomb interaction forces see in [12].

3. Static equilibrium

Here we give 5 examples of 1-dimensional stable equilibrium configurations.

External force on one particle Consider N 41 particles:=0,1,..., N on
R with coordinates x;. Potential energy is assumed to be

= —fxg+ @x% + 4 Z —zi_1 —a). (3.1)

That is there is constant force f which acts only on particle 0. Moreover, particle
N is assumed to be tightly fixed, that is xnx = L > 0. We see from (3.1) that
particle 0 is attached to 0 € R by harmonic force.

Theorem 3.1. For any parameters f, L > 0,wg,w; > 0 equilibrium configura-
tion exists and is unique. Two cases are possible:
1) If f < wiL + wia then

W2(L — Na) + Nf
w? + wiN

Ty = ;

WL +wia— f

T =g+ k=1,...,N —1.

w%er(Q)N ’
It follows that T < 1 < --- < xy = L.
2)If f > wiL +w?a thenzg =21 =--- =N = L.

In all cases this equilibrium is stable, that is the minimum of U.
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Note that a “natural order” 0 < xg < 21 < -+ < any = L holds iff

L
w%(a— N) < f <wiL +wia.

Now consider the case when xy is not fixed but the potential energy is

U

Wi o wh 2 Wi . 2
——faco—i—?aco—i—?(x]v—lz) +72(x¢—$i,1—a) .
i=1

Theorem 3.2. For any parameters equilibrium configuration exists and is
unique. It is given by

vy — w? (L—&—N(f/w%—a)) —l—w%wazf
2w? + Nw? ’

WiL +2w?a — f

k, k=1,...,N.
2w? + Nw? ’ Y
There can be 3 types of equilibrium configurations:

To < < <y = f<wWil+2w?a

2 2 ,—2
wia(N + 2wiwy ) 9 5
To=x1=--=xNy =L+ 2w%_|_ng <:>f:wOL+2w1a

m0>x1>~-->:vN>L<:>f>ng+2w%a
Notethat 0 < zg <21 < - <axy < Liff L > aN and
2
wi(L —aN) 9
———= < f<wi(L —aN).
N + wiwy? s f=wl )

Forces on both extreme points Here we assume that force f acts on par-

ticle 0, and the force —f acts on the particle N. That is the potential energy
is
U= w—gx(z) + w—g(acN —L)* + w—% i(:pZ —zi_1 —a)? — fro+ fry.
2 2 2 P
Theorem 3.3.

1) For any parameters equilibrium configuration exists, is unique and the
coordinates are given by

W (DN a)
2w? + Nw? ’

Zo

2 2
WOL+2(U1(1 2’
T — Tkp—1 = k=1,...,N —1.
k k—1 2% N% 9 ’ ’
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2) 3 types of configuration are possible:
WL + 2wia
x0<x1<---<xN<:>f<f,

2 2
wiL + 2wia
':xN@f:%,
WL + 2wia
x0>x1>-~->xN<:>f>f.

Note that condition 0 < 29 < 1 < --- < zxy < L holds iff

27 2L + 2w?
0§x0<x1<~--<xN§L<:>wfa—w17_f w.

Force on all particles Here we assume that constant force f acts on each

particle.
Theorem 3.4. Assume that xny = L and the potential energy is

w? w? &
U= 70:5(2)—1—712(:@—xi,l—a)g—f(xo—i—xl—&—...—i—xN,l)
i=1

where f > 0. Then:
1) for any given parameters stable equilibrium exists and is unique;

2) condition 0 < zg < 1 < -+ < xy = L holds iff
B 2wi(L — aN) - 2w? (WiL + aw?)
N(N+1) — N(2w? + wg(N — 1))

and the coordinates are given by

oo = WII A+ NN +1)f/(2w7) — Na)
0 w%er(Q)N

 fk WL+ NN +1)f/(2w])) + aw?
xk_xk—l__?'i_ w%+w8N 5

1
k=1,...,N—1

Note that under scaling a = agN !, f = foN~1, w? = w}N we will have
2w? (ng + aow%)

Qw%(L — ao)
o Y« .
< Jo 2w? + wi(1— N-1)

0< < << =L <—
<z < T1 TN L+ N1
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Theorem 3.5. Assume that the potential energy is

wa wa w?
U = 70$8+70(IN*L)2+71;($17$171 704)27f(.’£0+$1+...+1']\]).
Then:

1) For any given parameters stable equilibrium exists and is unique. Coor-

dinates are given by:

WL+ N(N+1)f/(2w}) — Na) + wiwy > f(N + 1)

2w? + Nw? ’
L WA(L+N(N +1)f/(2w})) + f(N + 1) + 2w?a
T — Tp—1 = — 9 + 2 2 9
wy 2wi + Nwg

k=1,...,N.
2) Condition ¢ < x1 < -+ < xy holds iff

2w? (W3 L + 2wia)
(N —-1)(2w? + Nwi)’

If] <

3) Condition 0 < xg < x1 < --- < xy < L holds iff L > Na and

—2w?wi(L — Na)
(2w? + Nw?) (N +1)

w?wi(L — Na)
(2w? + Nw2) (N +1)°

<fs

Under the scaling a = agN =, f = foN—1, w? = w}N we will have
0<zrg<m < - <zazy <L+

22w (L — ag) 202w (L — ag)

_ < <
Qw? +wd)(1+ N-1) — fo< (2uw? + wd) (1 + N-1)’

L > ap.

Example of regular continuum system of particles Here we assume that
the reader knows the main definitions in the paper [16]. Assume that we are
in the situation of Theorem 3.4. We assume further on that wy = 0,a = L/N.
The potential energy is the sum of two terms interaction energy and external
field energy:
w? &
U=Unt+Uet = ?1 Z(Iv —zi1—a)® = flmo+z+...+an_1).
i=1

We want to show that the scaling limits of U for the configuration z, = ka, k =

1,....N—1
fil

lim U= lim Ugy = ———,
—00 2

N—o0
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and for the equilibrium configuration

lim U = hm Ueot + hm Uint = —fl—
N—o0 2
are equal.
By Theorem 3.4 the condition f < aw? /N = Lw?/N? should hold. Put
f = é7 w% = U}lN,

where f; < Lw;. And, by the same Theorem, as N — oo,
N(N+1)f N i

2w? 2wy’
[ ftE L L hHk —2
g = pa=ll 2o N
T — Th—1 w1+ +N N w1N2+O( ),
k(k+1
iﬂk:—M—Fka‘FIo
wi

Potential energy of the configuration zx = ka, k=1,...,N — 1 is

N(N =1) L
2 T

Potential energy of the equilibrium configuration is
9 N N-1
A fk (k + 1) _
U—szﬂ(w%) Z( Fhat )=

302 L/ FE\? KL 2k N(N -1
52 (&) *Z%‘fa( s
k=1

Uo = —fa

2

302 o (fR\? 3f2 1 = k2 3f2 (! 2
'y ik :sziﬁi/ 2 — I
2 w7 2wy N = N2 2wy Jo 2wy
It follows that
KL
5
Now for given N and given configuration X, denote by Un(a,b, X), where 0 <
a < b < L, the potential energy of all particles zj such that zj € (a,b). The
potential energy of the particle k is defined as

U— —

w? w?

Uy = Zl(ftk — 251 —a)? + Zl(érkﬂ —xp —a)? — fop =
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f(k+1)>2_f(_JW+ka+mo) =

_wi (fk) Lt (
4 \w? 4 w? w?
ft hLk  3f7 ¥ -3
=— - SR L o(NTR).
2N~ N7 T e T

Then there exists
1
= lim — i ; Az, X Az, X
w(e) = lim = Hm (Uine,n (2,2 + Az, X) + Ueor,n (2,2 + Az, X))
correspondingly for the configuration x; = ka,k = 1,..., N — 1 and for the
equilibrium configuration.
For the configuration X = {xx = ka,k =1,..., N — 1} we have

Uint,v(z, 2+ Az, X) =0

fix= kL

and
Uext,N(I,‘T—'—AZL’,X) = N W?

where the sum is over k such that x < %L <z + Az. So

f Tz+Ax
_J1 ydy

Nli_r}noo Uest. N(z, 2+ Az, X) = T
and
u(x) = —%x.
For the equilibrium configuration X we have
BF R LR
Uin 5 A 7)( = — 72 — . ~r
(@ e+ AnX) =5 ") N5 T 2uy N 2 N2
where the sum is over k such that x < kL/N < x4 Ax, because of xy — x_1 ~
L/N, as N — o0. So
f12 z+Az )
1' in 9 A 7X == d
and
b

1
lim — li in x4 Az, X) = )
A Ap . Uinen (@2 4 Az, X) = 77

Similarly one can show
2.2 2
it f1 _ fi

hm Uezt,N(xﬂ z + A"IJ, X) = L3w1 L 2'(1)1 '

. 1
lim —
Az—0 Ax N—oo

Hence, for the equilibrium configuration X we have
_ 3fta? ho ft

) = e T 2w
— _fiL)2.

Note that in both cases the integral fOL u(x)dx
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Two edges Here we consider graph with two edges and common vertex which
we denote 0. On the first edge of length L, there are IV; particles with coordi-
nates

0§$1<...<$N1,1<$N15L1, (32)

and on the second edge of length Lo there are N, particles with coordinates
O§y1<...<yNZEL2. (33)

It is important that coordinates xy, and yn, are tightly fixed and cannot move.
Potential energy is given by

w% ! a9 2 w% ! a1 2 w(2) ap 2
=5 o)+ 5 ) )
1= 1=

where all parameters a;,w; > 0 and b = N/M, ¢ = N1 /N < 1 are of order 1,

but M, N1, No, N = N1 + N are sufficiently large but of the same order.
Put

_ Li+ L —ajchb—as (1 —c)b—agM~1!

3.4
M1+ bwi (wi e+ wy * (1 —¢)) 3.4

To

Theorem 3.6. 1) For fixed parameters a;,w;, b, c there exists equilibrium state,
satisfying conditions (3.2) and (3.3), iff the following two inequalities hold:

2 2
wOTO WOTO
3 +a1>0, 72+a2>0.
wi w3

In this case equilibrium state is unique and is defined by

wir 1
00 + a1>

Tk 1_$k:< r
+ w% M’

L= (wéfo o)
Yir1 — Y = w? 2) 0
foralk=1,...,Ny—1landl=1,...,Ny— 1.
2) This equilibrium state defines also the unique minimum of U, which is
equal to

W3(Ly + Ly —ajchb —ag (1 —¢)b—agM~1)?

Ve M) = (@ (% + oy (1 — ) + (b))

Remark 3.1. To get macroscopic (of the order 1) values for U one should scale
also all frequencies as w? ~ ¢; M. Then we will get finite “thermodynamic limit”
of U as M — oo.



Introduction to micro life of graphs. I. 171

4. Proofs

Proof of Theorem 3.1 We get linear system of N equations for the forces
F}, acting on the particles k = 1,2,..., N, using the fact that the total force on
each of the particles k =0,1,..., N — 1 equals zero:

Fy = —wizg +wi(ry —xg—a)+ f=0, (4.1)
Fp=w? (g1 —op —a) —wi(zp —ap_1 —a) =0, k=1,...,N—1, (42)
where the coordinates satisfy the conditions: zy < L,k =1,...,N — 1 and

N = L.
From equation (4.2) it follows that the difference x — x4—1 does not depend
onk=1,...,N. Put r =z —xr_1 — a. Then

xp=x0 + k(r+a), k=1,...,N.

Using the condition x = L we get one more equation:

SUN:$0+N(T+&):L<:>T+QZ%
Finally we get system of two linear equations for two unknowns xg, 7:
—wizg +wir+f=0 (4.3)
zo+ N(r+a) = L. (4.4)

Multiplying second equation on w3 and adding both equations we can find r

Wil — f —wiNa

(W +WAN)r +wiNa+ f =wil <=1 =

w%er(Q)N
Then
2 2 2 2
wiL — f —wiNa wsL + awi —
Tp—Tpo1 =7 +a= " 2f 20 == 5 21 f
wi +wgN wi +wgN

From equation (4.3)

2

_xo—a)—&-f:O(:)—(wg—i-%)xo-l-w%(%—a)+f:0

N

L
—ngo + wf (
we get

W (L —Na)+Nf
To = 2 2
wi + wgN

Thus, the solution of the system (4.1), (4.2) is

WL +aw?—f (W} +wik)L —wi(N—k)a+ (N —k)f

= k = 4.5
Tk =T E w? +wiN w? + waN (45)
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where k=1,...,N — 1.
According to (4.5) the condition that zp < L for k=1,..., N — 1 is equiv-
alent to the condition f < w2L + w?a. For f < w3L + w?a we get the condition

To<r1 <--<zxy_1<xy=0L.

For f = w2 L+w?}a we get the solution zy, = L,k = 0,1,..., N. For f > w3L+wia
the solution (4.5) does not have sense as by (4.5) we have

To>x1 > >rN_1>aNy =L,

what is impossible if we assume that the particles cannot jump through fixed
particle zy = L. Thus, for f > w?L+w?a we get the equilibrium as zj, = L, k =
0,1,...,N.

Note that the uniqueness of equilibrium configuration for f < w2L + wia
follows from uniqueness of solution of the linear system (4.3), (4.4).

As the equilibrium configuration is unique and the potential energy U is
bounded from below (and unbounded from above) quadratic function, then this
point is the unique minimum of U.

Proof of Theorem 3.2 We have the following system of equations for the
forces F}, acting on the particles k =1,2,..., N:

Fy = —wizg +wi(xy —x0 —a) + f =0, (4.6)
Fp=wi(wp —ap —a) —wi(zp —xp 1 —a)=0, k=1,...,N—1 (4.7)
Fny = —wi(eny — L) —wi(zy —axn_1 —a) = 0. (4.8)

From (4.7) it follows that the difference xy — xx_1 does not depend on k. Put
r=x, — Tr—1 — a. Then

xp=x0+k(r+a), k=1,...,N.

Substituting zy = 2o + N(r +a) and r = zxy — xy_1 — a to equation (4.8) we
get system of two equations with respect to zg, r:
—wiazo +wir + f =0, (4.9)
—wizy — (W 4+ Nwd)r —wiNa +wiL = 0. (4.10)
Subtracting second equation from the first we get, we find r:

w2(L — Na)— f

2 2
wOL—I—lea i
T —Tgp_1=T+a=—F5—-"—"55— k=1,....N 4.11
k k—1 r a 2 % N 8 ) ) ’ ( )
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and x¢ we find from equation (4.9)

w%r—i—f:w%(L—Na)—ka—&—w%wo_zf
wi 2w? + Nw? '

o =

Finally also for other coordinates in equilibrium
WAL + 2wia — f
2w? + Nw?
(@R BRI+ (N = B)f +wdu®f — wd(N = B+ kla
2w? + Nw?
(W? + Nwd)L + wiwy 2 f + Nwia
2w? + Nw3 '

T =20+ k

i

Accordingly to (4.11), we get the following equivalences
T < X1 <...<J:N<:>f<w§L+2wfa;
To = T1 :...:zN<:>f:w(2)L+2wfa;
To > T >...>xN(:>f>w(2)L+2w%a;

(W? + NR)L + wiwi 2 f + Nwia

<L <L < w}(L — Na);

ry < L < 207 T Nu? <L f<wj( a);
?(L—Na)+ N 2wy 2 2(L—N

:c020<:>w1( a)2+ f;rwlwo f20<:>fz—wl(72_a2).
2wi + Nwg N + wiw

It follows that the condition, 0 < zg < 1 < ... < zx < L is equivalent to

2
wi (L — Na) 9
———————— < f<wi(L—Na

as from f < w2(L — Na) it follows that f < w3L + 2wia.
As in Theorem 3.1 this equilibrium configuration is unique and stable.

Proof of Theorem 3.3 The system of equations is

Fy = —wizg +wi(ry —x9—a)+ f=0,
Fp =wi(xper — o —a) —wi(zpy —xp_1 —a) =0, k=1,...,N—1,
FN:—w(Q)(zN—L)—w%(zN—zN_l —a)—f=0.

Also xp — xp_1 does not depend on k, and we put

gk =x0+k(r+a), k=1,...,N
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where r = x, — Tp_1 — a.
Substituting xnx = xg + N(r +a),r = zy — xny_1 — a to equation Fy = 0,
we get the system of two equations w.r.t. zq, :

fwg:ro +wir+f=0,
—wirg — (Wi + Nwd)r —wgNa+wiL — f =0,
from where we get

7A_w%(L—Na)—Qf . _wi(L—Na)+Nf
T 2+ N2 YT 2w + N2

It follows xg > 0 <=w} (L — Na) + Nf >0 <=f > w?(a — L/N). And then

WaL + 2wia — 2f

— Tp-1 = = k=1,...,N
Tk Ieor =T 2w? + Nw3 ' vl
and
WaL + 2wia — 2f
= k=2 L =
Tk =0t 2w? + Nw3
(W} kW)L + (N —2k)f —wi(N — k)a + kwia
B 2w? + Nw3 :
Thus,

x0<1:1<...<xN<:>2f<w(2)L—|—2wfa.

In particular,
(w} + Nw})L — Nf + Nwia

N = 2w% +Nw(2) ’
(w? + Nw})L — Nf + Nw?a 5 L
<L L= f> ( — —) .
N = 2w? + Nw? = fzuwila= )
Finally
9 L w3l + 2wia
O§x0<x1<...<xN§L<:>w1(a—N)a§f<f.
Proof of Theorem 3.4 The system of equations is
Fy = —wizg +wi(zy — 20 —a) + f =0, (4.12)

Fp=wi(zpy —ap—a) —wi(op —ap1—a)+f=0, k=1,...,N -1, (4.13)

where the coordinates xj should also satisfy the conditions: z, < L,k =
1,...,N—1and zy = L.
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Put 7, = xp — xx—1 — a. Then the system (4.12) and (4.13) can be rewritten

as:
2
Wi T
le_ig 020’ Tk:—iQ—FT’k_h k:2,,N
wi wi wi
Then
wyT
rk:—%kJr 00 k=1,...,N.
wi wi
Using the last formula we write xx,k=1,..., N — 1 in terms of zg :

k k
xk:xo—|—Z(a:k—mk_1—a)+ka=x0+2rl+ka:
1=1 1=1

k
f Wiz w%xo f k(k+1)
- g ka — k( )—77.
x0+;< e + e + ka =29+ e +a e 5
Then,
Wiz k(k+1
xk:xo—i—k( 020+a)—(72)f,
wy 2wy
Wiz
Tp—Th1=Th+a= _iQk;Jr 02 +a (4.14)
wi wi

From the condition zy = L we get the equation for xg

2 N(N+1
x0+N(wO§O+a>_(7+2)'fl:L<l:>
w 2wy

1

o — w%(L+N(N+1)f/(2w%) —Na)
w? +waN

It is easy to see that
2w3(L — Na)

> ()<= 2( L S — ) — >

Then by (4.14) we have
f W3 (L+ N(N+1)f/(2w?)) + aw?
i al ( )//2uh)) +a L k=1,...,N—1.

T = Tp—1 = — 5 + 3 3
wi wi +wgN

Assume that f > 0. Then the condition zg < x1 < ... < zy_1 < L is equivalent

to
fk 2L+NN+17‘ 2w2)) + aw?
2 wO( ( % )(2)/7‘(7 wl)) aw >0, Vk—17...;N<:>
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WA(L+N(N +1)f/(2w?)) + aw?

w? + wgN
Thus for f > 0 the condition 0 < xp < z1 < ...
to
2wi(L — Na)
_— <
N(N+1) — !

IN
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2w? (w%L + aw%)

— f<

2w? (w%L + aw%)

N(2w? +wi(N —1))
If f <0 the condition xy > x;_1 forany k=1,...,

2 2 2
w7 wi + wgN

fk N W3(L+ N(N +1)f/(2w?)) + aw?

2 2 2
wy wi +wgN

And in general, for f < 0 the condition 0 < xg < z1 < ...

equivalent to

w?(L — Na)
NN +1)

f N WA(L+ N(N +1)f/(2w})) + aw?

<f<

2w3(

SO0Vk=1,...,

w? N(Q2w? 4+ wi(N -1))

< xy_1 < xny = L is equivalent

N is equivalent to
N <=

WAL + aw?)

>0 f<—

2w (WEL + aw?)
wWAN(N —1) — 2w}’

Proof of Theorem 3.5 The equations are

WEN(N = 1) — 2w?’

<xy_1<xzy=0Lis

Fo = —wiro +wi(ry —x9—a)+ f =0, (4.15)
F=wi(rp —ap—a) —wi(ap —op 1 —a)+f=0,k=1,...,N -1, (4.16)
Fn = —wi(zny — L) —wiry + f = 0. (4.17)
Putting 7, = x — xx—1 — a and as Theorem 3.4, from equations (4.15), (4.16)
we find " "
rk:_L+W0mO = Tk — Tk— 1——L+w0m0 +a, (4.18)
wf wi { w}
2 k(k+1
Tk :$0+I€(wo:§o +a) - %‘( * )
wi wy 2
for k =1,..., N. Substituting
w? N(N +1 Wi
N—$0+N( OﬁEO_‘r_a)_(iQ)f7 TN:_% + 020
w? 2wy wy wy
o (4.17), we can get xg :
WL+ N(N+1)f/(2w?) — Na) + wiwy > f(N + 1)
g = . (419)

2w? + Nw?
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According to (4.18) we have

[k wizo
Tk —Tp—1=—"75 + 5 ta=
wi wi

2(L+N(N+1 2w? N +1) +2w?
|k NN DO N e
Wi 2wi + Nwg
For f > 0 the condition xzy > xp_; for any k = 1,..., N is equivalent to
WL+ N(N+1)f/(2w})) + f(N +1)+2wia _ fk
2w? + Nw? w

>—=Vk=1,...,N <
1

WL+ NN +1)f/2w}) + f(N+1) +2wia _ fN
3 3 >
2wi + Nwg w7
2w? (w%L + 2aw%)
(N —1)(2w? + wiN)’

For f < 0 the condition xp > xp_q for any £k =1,..., N is equivalent to

f<

(2 2\) _ _ 2
wO(L+N(N+1)f/2(2w1))2 F(N+1) 2w1a<—f—EVk:1,...,N<:>
2wi + Nwg w3

—wi(L+ N(N+1)f/(2w?)) — f(N +1) — 2wia f
5 5 < ——5 &
2wi + Nwg w3
2w? (W3L + 2aw})
(N —1)(2w? + wiN)’

,f<

And then

2w? (W3 L + 2aw?)
(N —1)(2w? + wiN)’

o< a1 <...<zN <= |f|l<

From (4.19), (4.20) we have

N(N +1)f/2 4+ wiwy?f(N + 1) + w?(L + Na) + NwiL

N =

2w? + Nw?
Then ) 2(L Na)
wiwW — a
<L f< 170 )
N = U (2w? + Nw?) (N + 1)
By (4.19)

—2wiwd(L — Na)

>0 > .
20 G N (V)
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Denote

2w? (Wi L + 2aw?)
(N —1)(2w? + wiN)’
B W?wi(L — Na)
 (2wi+ Nwd) (N +1)

A=

Note that 0 < 2B < A is equivalent to

f Wwi(L — Na) 2w? (W3 L + 2aw?)
S @A NN AT D@ TSN

As 2B < A, the condition 0 < zp < 1 < ... < xy < L is equivalent to the
condition that —2B < f < B and B > 0.

Proof of Theorem 3.6 We get the following system of equations from the
condition that forces on each particle equal zero:

ay a
W%(karl_xk;_M) —w%(xk—xk,l—ﬂ) =0, k=2,...,N; — 1,

a a
W%(xz—l‘l—ﬂl) —w§<x1+y1—Mo) =0,

a a
w%(y2—y1—ﬁ2>—wg(w1+y1—ﬂo> =0,

a a .
w%(%ﬂ*yi*i)*w§<yi*yi_1fﬂ2) =0,1=2,...,Ny— 1.

M
Denote o
Rk:karl_xk—M, E=1,...,N; —1,
a
Ro=$1+y1—M0,
a .
Qizyiﬂ—yi—ﬁz, i=1,...,Ny— 1.
Then ,
R
Rl:.,_:R]\h_l:onO7
wi
wiR
Ql:"‘:Qsz].: 020’
W)
and it follows
2 2
a1 wiRo wi(xr+1y1 —ag/M)  ay
$k+1—$k—M= w% <:>xk+1:x1+( w% +M k,
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2 2
ag _ wyRo wi(z1+y1 —ao/M) | az) .
Yirr =Yi— 7, = 2 == Yir1 = Y1t ( 3 +a7 )

By conditions (3.2) and (3.3) it should be

2R 2
xk+1>xk<:>w2)20+;/‘1[ >O<:>R0>—%,
1 0
WiR a wia
Ykl > Yk = 2}204”\; >0<:>R0>—w§]\;
2 0
and then a0 . w%al w%ag
o1+ = g7 > —min( G ).
0 0
The potential energy is then
U— woR3(N2 —1)  w2R3 . WyR3(Ny — 1)
N 23 2 2% N
2 1
2
Wy 2 Ng -1 N1 —1 ( ap )2
= — 1 _ —
5 (w0< 2 + 2 + r1+ Vi
wZN _ _
= —02 (w% (w1 2e+ wsy 2(1 — c)) + N_l)
ap 2
X (.CL‘]_ + 1y — M) .
Finally, from equations
2 —ag/M
INl x1+<w0($1 +Z)12 aO/ ) +§L\2> CN:Ll,
1
wi(z1 +y1 — ag/M a
yNQ_y1+< 0(1 :Zj% 0/ )+J\;>(1—C)N—L27

we have

ag L1+L27(1161)7(12(170)1)7&0]\471
T1+Yr— o =

M 1+ bMw? (wi?c+w;%(1 —c))

and it should be

Ly+ Ly —ajchb—az (1 —c)b—agM~?!
1+ bMw3 (wic+wy?(1—c))

. w%al w%ag
> —min{ —5-—, —5 ,
wiM " wgM

and the potential energy is easily calculated.
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5. Distribution of kinetic and potential energies

5.1. Necessary definitions

Here we give well-known definitions (more general than necessary) for better
understanding the results below.

We consider systems with Ny particles in R¢, denote N = dNy the number
of coordinates z; = ¢; € R,i = 1,..., N, velocities v;, masses m; > 0 and
momenta p; = muv;,v; = Z;, of these particles. The dynamics (trajectories)
x;(t),0 <t < o0, is defined by the Hamiltonian H = T + U, with kinetic T and
potential U energies

2

m;v;
T:Z 2 9 U:Uo(mly"'a'rN)—i_erta
i=1

where

Uezt = Uezt(tyl'la cee axN) = 7Zfl(t)xl

The equations are
d*z; ou Uy
m; - = — = — + fi(t
! dt2 6@ 6@ fZ( )
with initial conditions x;(0), v;(0). Here Uy corresponds to interaction between
particles and f;(t) are external forces.
Time averages of the energies are defined as the limits (if they exist)

(T) = lim ! tT(s)ds, (U) = lim E 75U(s)ds.

t—oo 0 t—oo t 0

General virial theorem It is the following equality:

N

(T) == ((fi.r)) (5.1)

i=1
where f; is the force on the i-th coordinate, r; - its coordinate vector.

Proof. Let

Then N
Gt = Z(f“ 7’1') + 2T.

=1
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If all p; and r; stay uniformly bounded then virial theorem follows as
I 1
0

Virial theorem for quadratic potential For general quadratic potential

energy
1

—(z,V

5 (x, V),

where x € RN, V = (v;;) is positive definite symmetric (N x N)-matrix. Then

the force F; on particle 4

Ulz) =

F,=-V, Uz Zv”xj
Then
N
Z sz”x z;j=—(Va,z) = -2U(x).
i=1 =1 j=1
Put
N
G= Z m;v;x;.
i=1
Then

N N N
=Y m + > mgw; =2T + Y F; = 2T — 2U (5.2)
i=1 i=1 i=1
and for the averages

2((T) ~ () = () = Jim OO _

t—o0

as G(t) is uniformly bounded. To see this note first that the kinetic and potential
energies are positive and due to energy conservation are uniformly bounded.
Then the system stays in bounded volume.

It follows that kinetic and potential energies are equal

(T) = (V). (5.3)

Now assume also time-dependent external forces. For example, a harmonic force
fi(t) = sinw;t on particle i. Then the potential energy is

U(z) = =(z,Vz) Z fizs.
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Similarly to (5.2) we get
(Ge) =2((T) = (U)).

Let vq,...,vN be eigenvalues of V. They are positive and assume that for all ¢, j

Then (G) = 0 due to boundedness of G(t) and (T') = (U).

More interesting is analogs of virial theorem for local parts of a large system
of particles. For example, in biological organism (or even in social organism) one
part of the system can move more intensively (large < T' >, small < U >) and
another part could be the contrary. We consider here simple system and try to
understand when could this be. For calculations we will use explicit calculations
— direct but cumbersome. Our example is the following.

5.2. Simplest system under periodic boundary force

Consider the chain of NV + 1 particles with coordinates zg = 0,x1,...,ZxN.
We assume that particle 0 is fixed at 0 and on the particle N acts periodic force
f(t) = esinwt. Potential energy of the system is

2 N
Uz) = % Z(xz — Tij—1 — a)2 — xycsinwt
=1

and the equations are
iy = —wi(zg — Tp—1 — a) + Wi (Tp41 — 2k — Q)
= Wi (Thg1 — 2ok + 2p—1), k=1,...,N—1,
iy = —wi(zy —xN_1 —a)+ csinwt
with initial conditions x(0) = ka, v;(0) = 0.

After change
g =2 —ka, k=0,1,...,N

the equations will be
fjk = w%(qk+1 - 2(]k +Qk—1), k= 17 .. '7N - 17

Gn = —wi(gn — qn-1) + csinwt.

In the matrix form they can be rewritten as

j=—-Vq+csinwtey, en=(n,...,0nn)=(0,...,0,1),
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where V' is the following tridiagonal matrix N x NV

2 2
L
V= —wi] 2w —wy
2
Wi Wi

In the last row there is w?, all the rest are 2w?.

Spectrum of matrix V' Denote A, the eigenvalues of V' and let {hy, k =
1,..., N} be the corresponding eigenvectors Vhy, = A\ hy with coordinates hy, =
(h?,j=1,...,N).

Lemma 5.1. The eigenvalues and eigenvectors of V' are

9 wk
= —_— =1,...
Ak = 2wy (cos <N+1/2> +1), k ..., N

. [ §(N—k+1/2)m
<j>_sm(J N+1/2 )

hy; , j=1,...,N.
: (N—k+1/2)m
sin (7N+1/2 )
As all eigenvalues are positive, we can denote them as \, = v, k=1,..., N,

where it will be convenient to assume all v also positive. Denote by gi the
normalized eigenvectors

g i
= ——,
v/ (hig, hi)

which form an orthonormal basis.
The energy of the system then is

H@@) = U #) + T () = f()gn-

where w = (qla"'an7p17"'7pN) and

k=1,...,N,

SN

N
V@) =5 Y Viga =@V, TEE) =2 = mp)

1<j,ISN Jj=1

are internal potential and kinetic energy of the system. Then the dynamics
satisfies the following system of equations:

qj :_ZVJ‘,ZQI‘Ff(t)(Sj,N, j=1,...,N,
l
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where §; n is the Kronecker symbol. Let us rewrite this in Hamiltonian form:

{(jj Dy,
> Viaa + f(t)d; N,

and in vector notation:

b= Aot + f(t)gn, (5.4)

0 E
v (5 0)

is (2N x 2N)-matrix, F is the unit (N x N)-matrix, and

where

7’]\7:(0,...,0,61\[)TGRQN7 eN:(él,N,...,éN,N).

It is well-known that the solution of (5.4) is:

W(#) = eAotyp(0) + /O ¢A0(=2) £ (5)rnds (5.5)

with
Aot _ ( cos(VVt) (vVV)~Lsin(v/Vt) )
| —V/Vsin(v/Vt) cos(V V1) ’

where matrix sine and cosine are defined, similar to matrix exponent by corre-
sponding series. Then we can write down the solution as:

q(t) = cos( \/>t) (0) + (f)_lsin(\FVt)p(O)
/ F(8)(VT) L sin(vV (¢ — s))ends, (5.6)

p(t) = —VV sin(vVt)q(0) +cos(VVi)p / f(s) cos( —s))ends. (5.7)

Let us expand the vectors ey, ¢(0), p(0) in the basis of eigenvectors of V:

N N

N
en =Y (gks en) gk, = (96:a(0)gk,  p(0) = (gk,(0))g-

k=1 k=1 k=1

Then, as
1
VV) gk = —gr,
Vi

sin(VVt)gr = gr sin(vpt),
cos(VVt)gr, = gi cos(vgt),
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we have
N
sin(vg(t — s))
(t) l € f kids
q ; Jk, EN / r
+ (k. q(0)) cos(vit) + (gk,p(O))SinZkt)] Gk (5.8)
N
p(t) = Zl (9k, en / f(8) cos(vg(t — 8))ds
k=1
— (9K, q(0))vg sin(vit) + (gx, p(0)) COS(VIJ)] G- (5.9)

‘We have to find functions

t)=v, / f(s)sin(vg(t — s))ds,

t) = /0 f(s) cos(vg(t — s))ds.

Since f(t) = csinwt, for w # vy we have

. . w sin(wt)  sin(vgt)
Gr(t) = R ( P ) , (5.10)
Pr(t) = ﬁ (cos(wt) — cos(vit)) .

Further on we consider zero initial conditions, then coordinates and momenta
of particle j are:

N
q;(t) =Y (gr: en)(gr: €5)dn (1), (5.11)

>
Il
—

N
pi(t) = (gkr en) (gk: €5)k (8)-

>
Il
—

5.3. Kinetic energy

Now we can find kinetic energy of particle j:

N N
Z (k. en)(gx, €5) (g1, en) (g1, €5) Dk (t)Pi(t),
k=1 1=1

[\3\)—‘
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where o
Pr(t) = —— (cos(wt) —cos(vxt)), k=1,...,N,
Vi —w
v =2w? (cos(ﬂik) + 1) k=1 N
k 1 N+i/2 ) ..., N,
(k- €5) = W1 on () k,j=1,....N.
Vi hie) /(i hie) sin (%)

Note also that

sin (j(N— k+ 1/2)7r> _

N +1/2

(gk,€5) =

Then

(R, hy) = sin™2 __km isin2 kT
o R N+1/2) & N+1/2)°

Now we want to find the mean kinetic energy of the particle j

Theorem 5.1. If w # vy, for any k then (for zero initial conditions)

N 2 1 X we  \2
Z (9k,en) gkvej) + 1 Z (gksen) gkvej)z (22)
k=1 Vi~ k=1 Ve TV

(5.13)

»Jk\'—‘

Proof. By (5.9),

N
= (gr en) (g €5)pr(t),
k=1

where
we

Pr(t) = Ak (cos(wt) — cos(vit)) , Ay = —5—,
Vi —w

then we can show that

=D > gk en) gk €5) (g en) (g e5) Pr(Dpe(D)),
k=11=1
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where

o A2 k=1,
(Pr ()P () = {;AkAl k#1.

In fact, for w # vy

(Bi (1)) = Ai{(cos(wt) — cos(vit))?) = AR ((cos?(wt)) + (cos? (vt)))

and for k #£ [
(Dr(O)pu(t)) = ApAr{(cos(wt) — cos(vt))(cos(wt) — cos(t)))
= A A {cos®(wt)) = A’;Al.
Then
2 1 N
52 g en)*(gk, €5)° AR+
k=1

N
1
T Z(gkv en) (g, en) (g, €) (g1, €5) A Al =

k£l
1 N
ZZ gk:aeN gkvej) Ai—’—
k=1
1 N
+7 > (gren) (g, en) (gr: €) (g0, ;) Ap A =
ki=1
1 1 (& ’
iz g en)? (g, €5)* AF + 1 <Z(gkaeN)(9k7€j)Ak> :
k=1 k=1

Theorem 5.2. Assume that w? > 4w?. Then there exist limits

lim (Ty) =0, lim (Ty) =K > 0.

N—oc0 N—o00

Proof. By (5.13),

NH

k=1

=

N
(z grren)’
k=1

psM—'

N 2 | X
(; gk, €N) gk,el)yk 2> +ZZ gren)?(grser)? <1/,§

2 N 2
c
e ()
k:l Vg — W

187

= A7
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According to (5.12),
1

(g, e1) = m;

: km
(71)]\771 Sin (m)

(gkaeN):
(hk7hk) sin (ﬁ%)
Then
1 (Y 1 Sin(1+1}7(T2N)) we :
(T =7 Z(h he) wn (—kr ) U2 — w2
k=1 \ ko Tk Sm(N+1/2) 2
N 2 km 2
1 1 St (1 1 QN)
+33 _ TLEN) (ch 2> , (5.14)
4= (ks hie)? gin2 (N_Irlr/g) Vi —w
2
: 2 km
1 (& 1 sm (1+1/(2N)) we
(Iv) =4 z(h he) w2 (_kn ) U2 — w?
k=1 \''ko k) sin <N+1/2> k
4 km
+1§: L () [ we >2 (5.15)
4 2 ., x 2 _ 2] :
4~ (e, b)) sm4(N_’f_1/2) Vi —W
where N
2 — 942 ) ~1,....N
Vi Wy | cos N+1/2 + ) k ) s 4V,
N .
_ km jkm
hy, hy) = sin™? | ——— sin? | k=1,...,N.
(i ) = sin <N+1/2>;m (35575) k=t

Note that as N — oo

N . N .
km . 9 Jjkm km . o [ Jkm
i 1sm <N+1/2) NZsm N

j= j=1
km
—>/ sin® udu
0
i k
= k:/ sin? udu = —ﬂ-.
0 2
It follows
ol ik N
2 JRT o
Zsm (N+1/2> 5 N — oo. (5.16)
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Consider the first term in (5.14)

o km
N sSin (1+1/(2N)) we

1
k=1 (hkv hk) sin (Niq/z) Vl% —w?

I =

N in (kT
Lty ) 7

N+1/2

Since . )

N . LN WA S N -3

Sm(1+1/(2N)> (=) oy FOWT) (5.17)
we have

N
1 il km km we
1~ 8 ﬁ;]v( )NSIH(N)2wf(cos(7rk/N)+1)_w2

Firstly, we sum up separately in even and odd k. That is, we can write

S = Sl + 527
where
G _ 1 [sz o %km . (2kn we
= 5= — ——ssin | ——
1 2r £« N N N ) 2w? (cos (2rk/N) + 1) — w?’
s 1 [sz 2r 2k +O)m . ((2k+ )7 we
=5 ~ sin .

N =N N ’ N 2w? (cos ((2k + 1)m/N) + 1) — w?

As N =

S 1/7r usinudu
! T Jo 2w?(cosu+1)—w?’
usinu du

S —>1/F
> r )y 2w (cosu+ 1) —w?

Then, Iy — 0. Thus the first term in (5.14) tends to 0.
Consider now the first term in (5.15)

s 2 km
I = EN: 1 s (1+1/(2N)) we
T = (hi, hi)

2 2
2 km Vi — W
sin <N+1/2) k




190 V.A. Malyshev and A.A. Zamyatin

N 2 km
Z s (1+1/(2N)) we

- N .9 jkm V2 —w? :
k=1 2 _j—1 Sin (N+1/2) k

According to (5.16) and (5.17)

N 2
I lel km we
T a = NA\N ) 20 (cos (k/N) + 1) — w?

as N — oo. Thus
5 C / T u? du
> r )y 2wk (cosut1) —w?
The integral is not 0, as the integrand has constant sign.
It is not difficult to show that the second terms in (5.14) and in (5.15) tend
to 0. Finally, we get

(T = = /7r udu 2 (Ty) =0
N 42 \ Jy 2w? (cosu+1) —w? ) ’ ! '

5.4. Potential energy

We define potential energy of the particle j

2
“i

{U;) =~ (g5 — ¢5-1)%) + (g1 — 03)*))

for j =2,...,N—1. Here 1/4 appears because we take only half of the interaction
energy of the particle j with its neighbors.
For j =1, N we have:
2
“1

w w2
L)+ e - ar)?),

() = :

(Un) = %%«QN —qn-1)%) — c(gn sinwt).

Theorem 5.3. Assume that w? > 4w?. Then the following limits exist

lim <U1> = 0,

N —oc0

. 1 /w [T cu? du 2
lim (Uy) = = (2
Ngnoo< N) 2 < T /0 2w? (cosu + 1) — wQ)

1 (7 cu? du
- — 5 5 >0
47 Jy 2wi(cosu+1) —w
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Proof. Using
N
= (gr-en)(gns €5)dn(t)
k=1

where

cw (sin(wt) sin(ukt))

v —w? w Vi

w? o
() = D (gksen) (g, en) gk e1) (g1, €1) (@8 @n(t)+

5 N
—&-% > gk en) (g en) ((grs €2) = (grr 1)) (g1, €2) — (g0 1)) (dr (8@ (1)),

k=1
where 2
R T
(Ge(t)a(t)) =
ArAy k#1
2w? '

In fact, in more details

(@i (1) = A§<<Sm(wt) - Sin(ykt))2>

w Vi

= Ak( ! (sin®(wt)) + Vlz(sinz(vkt»)

o Ry
and for k # [
e (Balt) = AkAl<(Sianwt) 3 sini:kt)) (sinfjwt) _ Siniluzt))>
= Aoifl (sin®(wt)) = é’:;ll

Finally we get
N
Z gk, en)(gi, en)(gr, €1)(gi, e1) A A+
k=1

% S 2 A7
— Z gkveN gk761) 7§+
=1 Vi
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2
1

N
gkveN ) (g1, en)((grs €2) — (gr, 1)) (g1, e2) — (g1, e2)) ArAi+

(V]

W1 z 2Ai
?Z: gkaeN gk‘762)_(gk761)) 7}%_

N 2 w2 A2
1 2 24k
(; gk7€N gk‘)el)Ak> + I Z (gk7eN) (g]ﬁel) Tg—i_

k=1

+87J22 (Z(gk’ef\’>((gk7@2> - (gk,el))Ak> +

k=1
2 N 2
w A
+§1 Z (gx: en)*((gr, €2) — (gk’el))27§-
k=1 2

Now we can prove that (U;) — 0 as N — oo, similarly to the proof of the fact
that (T1) — 0 in the Theorem 5.2.
Now we find

N 2
()= va(0) (fngvew gmezv)—(gk,eN_l))V%C‘”wZ) "
k=1
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N 2
Ccw

+5 > (grren)* ((grs en) = (grs en—1))? (2w2)> )

k=1

v (Vi —

w\}—*

and using (5.12), we find
{(an(t) —an-1(1))?) =

N sin (—ET
- 27512 (Z (hlwlhk) Sin5 1<+1/1ch))) x

k=1 N+1/2

(o () o () )

g1 rathan) (e r5tfan) ¢ ()’

2 . -
=1 (h, hi) sin (Nil/Q)

Denote by J; and Js correspondingly the first and second terms in the last
expressions.
Using formulas (5.16), (5.17) we get that as N — oo,

N 2
2 T 2 cw
J1 w22 <Z N (km/N) 2w? (cos (mk/N) +1) — w2> -

k=1

1 [ cu? du 2
—2| = 5 5] -
7w Jo 2wi(cosu+1)—w

Similarly to Theorem 5.2 one can show that Jo, — 0.
We should find also the mean value

N

(g sinwt) = Z(gk,eN)2<cjk( ) sin wt)
k=1

N)\»—l

N
§ gkyeN 2 =
— W
k=1

XN: sin (1+1/(2N ) c

(hi, hi) 2( kr v —w?’
k:l ’ sin® ( 54572 &

1
2

Then quite similarly as for J; we get that, as N — oo,

2m c
{an sinwt) ~ 5= Z ( ) 2w? (cos (mk/N) + 1) — w?
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c [T u? du
- 3 2
dr Jy 2wi(cosu+1) —w

and finally

1 /w [T cu? du 2 1 [T cu? du
{Un) = 5 — 2 T in 2
2\ 7 Jy 2wi(cosu+1)—w? dr o 2wi (cosu+ 1) — w?

as N — oo.

5.5. Conservation of initial order of particles (no collisions)

Assume that initial conditions are ¢;(0) = 0 <= z,;(0) = ja,v;(0) = 0.

If w? > 4w? (in particular, no resonance), then we will show that, if the
constant c¢ is sufficiently small with respect to a, for any ¢ the initial order will
not change, that is there will not be collisions of particles, that is

xl(t) < {EQ(t) <... < l‘N(t).
By (5.10)

cw 1 1
() < ——— [ =+ = | = chy.
001 < 527 (545 ) = b

As w? > 4w? the constants by > 0, as v < 4w?. Then using (5.11) we get

N
la; (D) < Y (ks en) gk, ;)b
k=1
By (5.12)
. IS . jk
1 Sl (N]\j-kl/Z) Sin (NJ-H/2)’
|(gkaeN)(gk’€J)| (h h ) . 9 P
ky Ik Sin (N+1/2>

1 Jsin ()|
= (s i) sin2< ki ) '

Further, using (5.16), (5.17), we get

N 1 1
b —_ + — 5.18
o z 59> () (518)

2 2

for some constant B > 0. Since w? — v > w? — 4w} > 0, we have

1 1
<Z—— 0, Now
sz:w2 = Nw? —4w? ’ >
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Finally, from vy > vy > ... > vy, where

it follows

Note that

Hence, vy' = O(N) and
N
S o).

=1k
So the right hand side of the inequality (5.18) is equal to O(1) as N — oo.
It follows that one can choose parameters ¢ and a so that for all NV

a .
lg; ()] < 3 = 1,...,N.
Another case was considered in [15], where frequencies and constant a are
scaled so that this property (called regularity in [16]) holds for all N.

6. Conclusion

In all examples of ground states above, it can be easily proved that for the
system of equations

d?xy(t)

W:Fk_akvk(t)a k:0a17"'aNa (61)

where vy, = dxg/dt and ap > « for some a > 0, the following statement holds:
for any initial conditions x4 (0), v4(0) the solution converges to the corresponding
minimum of potential energy. The proof is exactly the same as in ( [10]) for
Coulomb systems. More difficult is the question whether it is true when some
o = 0.

One of the next problems is the following. Assume that we define the system
to be “healthy” if the configuration is close to the ground state in [;-metrics
that is if for some ¢ > 0 and all k& we have |zy(t) — a| < e. The question is
the following: is this domain invariant w.r.t. dynamics (6.1), or some differences
|xg (t) — 2k—1(t)| between nearest neighbors can become too small (or even col-
lide) or can become “too big”. Obviously, it is for the scaled parameters for
which the ground state satisfies condition zg < 1 < ... < xnN.
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