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Abstract. Multiparticle systems on complicated metric graphs might have
many applications in physics, biology and social life. But the corresponding
science still does not exist. Here we start it with simplest examples where there
is quadratic interaction between neighboring particles and deterministic exter-
nal forces. In this introduction we consider stable configurations and stable
flows on one and two edge graphs. Moreover, distribution of mean (as in virial
theorem) kinetic and potential energies along the graph is considered.
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1. Introduction

Mathematician, who besides pure mathematical problems, wants to do some-
thing else, might ask the question – could mathematics give some ideas why our
life is so short.

More exact question could be like this: can mathematics provide some kind
of broad view on bio organism using small number of axioms at the upper level
but many examples on the lower.

Immediately mathematician sees that the amount of information concerning
physics, chemistry and biology of bio organisms is already immense but is still
growing faster and faster. Moreover, even the existence of long molecules and
solids does not have rigorous proofs neither in classical (assuming only Newton
equation with Coulomb force), nor in quantum mathematical physics. This
suggests the answer to this question – obviously NOT.

However, some of us can remember that “toy models” were popular in math-
ematical statistical physics in second half of last century. So, we could try to find
toy models of our own health, in particular due to harmful external influence.

The components of such toy models are the following:
1) we consider large systems of point particles such that their micro behavior

gives rise to macro effects which everyone knows when feels his own body;
2) this system, as a whole, can be imagined as “body”, and edges (or subsets

of edges) are the parts of this body. For sufficiently large graphs one can imagine
even more complicated hierarchy;

3) for such system there are different static and dynamical problems. For
example, stable state (no dynamics) is the minimum of the potential energy. It
is important to understand what (potential and kinetic) energy distribution can
be over living “body”. If the initial conditions are not stable, or if external forces
are time-dependent, then potential and kinetic energy can be quite differently
distributed over the “body”. It is obvious that any part of the body should
have sufficient energy to survive;

4) if our graph has cycles, then stationary flows (like electric current for
Coulomb forces) along some or all cycles are possible;

5) in the first model the particles move in their local potential wells which are
formed by neighboring particles. Next development of the model is to introduce
external media and flows in this media. Moreover, this interaction allows, for
any edge, departure and arrival of particles. Departure can be in cases when
dynamical situation leads to collisions or too close rapprochement of neighboring
particles. On the contrary, arrival can occur if neighboring particles on the edge
become too far apart from each other;

6) growth of graph becomes also possible if we consider the edge not as
the segment of fixed length, but of the length which is defined as the sum of
distances between neighboring edges. Then the breaks and growth of edges and
even appearance of new edges is possible.
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Now we start rigorous definitions.

Static metric graph In this case we consider many-particle systems on met-
ric graphs, where (static) metric graph G is a graph with metrics, where each
edge is metrically isomorphic to a segment of the real line, and the distance
between two points is the minimal length of path between these points.

On each edge l there is large system of identical particles. Potential energy
of such system is the sum

U =
∑
(i,j)

u(ρij)

over pairs i, j of particles, for which there exists a path between i and j such
that does not pass over any other particle. And ρij is the minimal length of such
path. In this paper we start with the case when the interaction is quadratic,
that is

u(ρij) =
ω2
ij

2
ρ2
ij .

Moreover, external forces can act on some or all particles.

Dynamic graph Here abstract graph G is fixed. We assume it connected
and not more than one edge between any two vertices. Vertices of graph may
be called point particles and numerated as i = 1, . . . , N . Existence of edge
l = (i.j) between vertices means that these two “particles” interact. Each edge
has variable length ql = qij > 0. Dynamics of these lengths is defined by Newton
equations

d2ql
dt2

= Fl(ql) +
∑

m:m 6=l

Flm(ql, qm),

where the summation is over all edges m such that have common vertex with
edge l. And Fl, Flm are forces – real functions of one and two variables corre-
spondingly.

In this introduction we consider only static graphs and give an introduction
to the statics of such systems for three simplest graphs – segment, circle and
graph with 2 edges. The first interesting topics – ground states of such systems.

Ground states with different interactions, but without external force, for
classical finite and infinite particle systems were intensively studied during last
30 years, see for example [1–6]. Main results in these papers concern period-
icity of the ground states. In the papers [7–14] mostly Coulomb systems were
considered.

Other question in our paper: 1) flow of particles along the cycle; 2) energy
distribution on parts of the graph.
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2. Stationary flow of point particles

Periodic equilibrium configurations Let S = SL be circle of length L, or
segment [0, L] with identified end points. Consider N point particles 0, 1, . . . ,
N − 1 with coordinates

0 = x0 < x1 < . . . < xN−1 < L (2.1)

or infinite periodic sequence (with period L) on the real axis R

. . . < x−1 < 0 = x0 < x1 < . . . < xN−1 < xN = L < xN+1 < . . .

where xk+N = xk + L for any k. We assume formal potential energy

U =
ω2

2

∑
k∈Z

(xk − xk−1 − a)2

with a = L/N , and moreover there are the following external forces:
1. constant force f > 0 on the particle 0, or on any particle iN, i ∈ Z,;
2. constant forces −ϕ < 0 (that is ϕ > 0) on any particle.
Define εk as

∆k = xk − xk−1 =
L

N
+

εk
N2

.

Then: the sequence εk is also periodic, −LN < εk for any k, and

N∑
k=1

εk = 0. (2.2)

Configuration is called equilibrium, if the force, acting on any particle, is zero.

Theorem 2.1. There exists fixed (equilibrium) configuration, satisfying condi-
tion (2.1), iff the following two conditions hold:

1) ϕ = f/N,

2)
f

2ω2L
<

1

N(1− 1/N)
.

This configuration is unique and is defined by

ε1 = −fN(N − 1)

2ω2
, εN =

fN(N − 1)

2ω2
,

εk = ε1 + (k − 1)
fN

ω2
, k = 1, . . . , N − 1.

If moreover
f

2ω2L
<

C

N2

for some fixed constant C > 0, then, in such scaling, εk = O(1) uniformly in
k = 1, . . . , N .
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Proof. The condition that the total force on particles k = 1, . . . , N − 1 is zero
can be written as follows

ω2
(εk+1

N2
− εk
N2

)
= ϕ⇐⇒ εk+1 − εk =

ϕN2

ω2
(2.3)

and on the particle 0 (or N)

f + ω2
( ε1

N2
− εN
N2

)
= ϕ⇐⇒ ε1 − εN =

N2

ω2
(−f + ϕ). (2.4)

Summation of (2.4) and all (2.3) gives

(N − 1)ϕ− f + ϕ = 0⇐⇒ ϕ =
f

N
. (2.5)

Thus, condition 1) of the Theorem is a necessary condition.
And we can rewrite conditions (2.3) and (2.4) as

εk+1 − εk =
fN

ω2
, ε1 − εN = −fN(N − 1)

ω2
.

Then

εk = ε1 + (k − 1)
fN

ω2
, k = 2, . . . , N − 1, εN = ε1 +

fN(N − 1)

ω2
.

Substituting to (2.2) we get

Nε1 +
fN

ω2

N−1∑
k=2

(k − 1) +
fN(N − 1)

ω2
= Nε1 +

fN

ω2

N∑
k=2

(k − 1) =

= N(ε1 +
fN(N − 1)

2ω2
) = 0

or

ε1 = −fN(N − 1)

2ω2

and then

εN =
fN(N − 1)

2ω2
.

Also for all k = 1, . . . , N − 1

εk = ε1 + (k − 1)
fN

ω2
.

Note that

xk > xk−1 ⇐⇒
εk
N2

> − L
N
⇐⇒ ε1

N2
= −fN(N − 1)

2ω2N2
> − L

N
⇐⇒

⇐⇒ f

2ω2
<

L

N(1− 1/N)
⇐⇒ f

2ω2L
<

1

N(1− 1/N)
. (2.6)

That is for fixed L, the parameters f, ω should be scaled (with respect to N) so
that f/(2ω2L) < 1/N hold.
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Stationary flow Now we want to prove that there exists stationary periodic
flow of particles as

xk(t) = xk(0) + vt,

where v > 0 and xk(0) = xk, defined in the Theorem. That is the particles
move with the same velocity v > 0. This flow is driven by the constant force
f > 0 acting only on the particle 0 and by some dissipative force which acts
on any particle and depends only on its velocity. Such dissipative forces −g(v),
where g(v) is positive smooth increasing function) (often used is g(v) = αv with
some α > 0). Assume that we fixed this function g. Then there exists unique
v > 0 such that g(v) = ϕ = f/N .

This construction is resembles the famous Drude’s model of electric current
(one can find it in any text book on electricity) where particles move without
interaction under the influence of external constant force and dissipative force,
acting on all particles. Here however the particles move due to the driven force
acting on only one particles.

Even more realistic model with Coulomb interaction forces see in [12].

3. Static equilibrium

Here we give 5 examples of 1-dimensional stable equilibrium configurations.

External force on one particle Consider N + 1 particles i = 0, 1, . . . , N on
R with coordinates xi. Potential energy is assumed to be

U = −fx0 +
ω2

0

2
x2

0 +
ω2

1

2

N∑
i=1

(xi − xi−1 − a)2. (3.1)

That is there is constant force f which acts only on particle 0. Moreover, particle
N is assumed to be tightly fixed, that is xN ≡ L > 0. We see from (3.1) that
particle 0 is attached to 0 ∈ R by harmonic force.

Theorem 3.1. For any parameters f, L > 0, ω0, ω1 > 0 equilibrium configura-
tion exists and is unique. Two cases are possible:

1) If f < ω2
0L+ ω2

1a then

x0 =
ω2

1(L−Na) +Nf

ω2
1 + ω2

0N
,

xk = x0 +
ω2

0L+ ω2
1a− f

ω2
1 + ω2

0N
k, k = 1, . . . , N − 1.

It follows that x0 < x1 < · · · < xN = L.
2) If f ≥ ω2

0L+ ω2
1a then x0 = x1 = · · · = xN = L.

In all cases this equilibrium is stable, that is the minimum of U .



Introduction to micro life of graphs. I. 165

Note that a “natural order” 0 ≤ x0 < x1 < · · · < xN = L holds iff

ω2
1

(
a− L

N

)
≤ f < ω2

0L+ ω2
1a.

Now consider the case when xN is not fixed but the potential energy is

U = −fx0 +
ω2

0

2
x2

0 +
ω2

0

2
(xN − L)2 +

ω2
1

2

N∑
i=1

(xi − xi−1 − a)2.

Theorem 3.2. For any parameters equilibrium configuration exists and is
unique. It is given by

x0 =
ω2

1

(
L+N(f/ω2

1 − a)
)

+ ω2
1ω
−2
0 f

2ω2
1 +Nω2

0

,

xk = x0 +
ω2

0L+ 2ω2
1a− f

2ω2
1 +Nω2

0

k, k = 1, . . . , N.

There can be 3 types of equilibrium configurations:

x0 < x1 < · · · < xN ⇐⇒ f < ω2
0L+ 2ω2

1a

x0 = x1 = · · · = xN = L+
ω2

1a(N + 2ω2
1ω
−2
0 )

2ω2
1 +Nω2

0

⇐⇒ f = ω2
0L+ 2ω2

1a

x0 > x1 > · · · > xN > L⇐⇒ f > ω2
0L+ 2ω2

1a

Note that 0 ≤ x0 < x1 < · · · < xN ≤ L iff L ≥ aN and

−ω
2
1(L− aN)

N + ω2
1ω
−2
0

≤ f ≤ ω2
0(L− aN).

Forces on both extreme points Here we assume that force f acts on par-
ticle 0, and the force −f acts on the particle N. That is the potential energy
is

U =
ω2

0

2
x2

0 +
ω2

0

2
(xN − L)2 +

ω2
1

2

N∑
i=1

(xi − xi−1 − a)2 − fx0 + fxN .

Theorem 3.3.

1) For any parameters equilibrium configuration exists, is unique and the
coordinates are given by

x0 =
ω2

1

(
L+N(f/ω2

1 − a)
)

2ω2
1 +Nω2

0

,

xk − xk−1 =
ω2

0L+ 2ω2
1a− 2f

2ω2
1 +Nω2

0

, k = 1, . . . , N − 1.
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2) 3 types of configuration are possible:

x0 < x1 < · · · < xN ⇐⇒ f <
ω2

0L+ 2ω2
1a

2
,

x0 = x1 = · · · = xN ⇐⇒ f =
ω2

0L+ 2ω2
1a

2
,

x0 > x1 > · · · > xN ⇐⇒ f >
ω2

0L+ 2ω2
1a

2
.

Note that condition 0 ≤ x0 < x1 < · · · < xN ≤ L holds iff

0 ≤ x0 < x1 < · · · < xN ≤ L⇐⇒ ω2
1a−

ω2
1L

N
≤ f < ω2

0L+ 2ω2
1a

2
.

Force on all particles Here we assume that constant force f acts on each
particle.

Theorem 3.4. Assume that xN ≡ L and the potential energy is

U =
ω2

0

2
x2

0 +
ω2

1

2

N∑
i=1

(xi − xi−1 − a)2 − f(x0 + x1 + . . .+ xN−1)

where f > 0. Then:
1) for any given parameters stable equilibrium exists and is unique;
2) condition 0 ≤ x0 < x1 < · · · < xN = L holds iff

−2ω2
1(L− aN)

N(N + 1)
≤ f <

2ω2
1

(
ω2

0L+ aω2
1

)
N(2ω2

1 + ω2
0(N − 1))

and the coordinates are given by

x0 =
ω2

1(L+N(N + 1)f/(2ω2
1)−Na)

ω2
1 + ω2

0N

xk − xk−1 = −fk
ω2

1

+
ω2

0

(
L+N(N + 1)f/(2ω2

1)
)

+ aω2
1

ω2
1 + ω2

0N
,

k = 1, . . . , N − 1

Note that under scaling a = a0N
−1, f = f0N

−1, ω2
1 = w2

1N we will have

0 ≤ x0 < x1 < · · · < xN = L⇐⇒ −2w2
1(L− a0)

1 +N−1
≤ f0 <

2w2
1

(
ω2

0L+ a0w
2
1

)
2w2

1 + ω2
0(1−N−1)

.
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Theorem 3.5. Assume that the potential energy is

U =
ω2

0

2
x2

0 +
ω2

0

2
(xN − L)2 +

ω2
1

2

N∑
i=1

(xi − xi−1 − a)2 − f(x0 + x1 + . . .+ xN ).

Then:
1) For any given parameters stable equilibrium exists and is unique. Coor-

dinates are given by:

x0 =
ω2

1(L+N(N + 1)f/(2ω2
1)−Na) + ω2

1ω
−2
0 f(N + 1)

2ω2
1 +Nω2

0

,

xk − xk−1 = −fk
ω2

1

+
ω2

0(L+N(N + 1)f/(2ω2
1)) + f(N + 1) + 2ω2

1a

2ω2
1 +Nω2

0

,

k = 1, . . . , N.

2) Condition x0 < x1 < · · · < xN holds iff

|f | <
2ω2

1

(
ω2

0L+ 2ω2
1a
)

(N − 1) (2ω2
1 +Nω2

0)
.

3) Condition 0 ≤ x0 < x1 < · · · < xN ≤ L holds iff L ≥ Na and

−2ω2
1ω

2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
≤ f ≤ ω2

1ω
2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
.

Under the scaling a = a0N
−1, f = f0N

−1, ω2
1 = w2

1N we will have

0 ≤ x0 < x1 < · · · < xN ≤ L⇐⇒

− 2w2
1ω

2
0(L− a0)

(2w2
1 + ω2

0) (1 +N−1)
≤ f0 ≤

2w2
1ω

2
0(L− a0)

(2w2
1 + ω2

0) (1 +N−1)
, L > a0.

Example of regular continuum system of particles Here we assume that
the reader knows the main definitions in the paper [16]. Assume that we are
in the situation of Theorem 3.4. We assume further on that ω0 = 0, a = L/N .
The potential energy is the sum of two terms interaction energy and external
field energy:

U = Uint + Uext =
ω2

1

2

N∑
i=1

(xi − xi−1 − a)2 − f(x0 + x1 + . . .+ xN−1).

We want to show that the scaling limits of U for the configuration xk = ka, k =
1, . . . , N − 1

lim
N→∞

U = lim
N→∞

Uext = −f1L

2
,
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and for the equilibrium configuration

lim
N→∞

U = lim
N→∞

Uext + lim
N→∞

Uint = −f1L

2

are equal.
By Theorem 3.4 the condition f < aω2

1/N = Lω2
1/N

2 should hold. Put

f =
f1

N
, ω2

1 = w1N,

where f1 < Lw1. And, by the same Theorem, as N →∞,

x0 =
N(N + 1)f

2ω2
1

∼ f1

2w1
,

xk − xk−1 = −fk
ω2

1

+ a = −fk
ω2

1

+
L

N
=
L

N
− f1k

w1N2
+ o(N−2),

xk = −fk(k + 1)

ω2
1

+ ka+ x0.

Potential energy of the configuration xk = ka, k = 1, . . . , N − 1 is

U0 = −faN(N − 1)

2
∼ −f1L

2
.

Potential energy of the equilibrium configuration is

U =
ω2

1

2

N∑
k=1

(
fk

ω2
1

)2

− f
N−1∑
k=1

(
−fk(k + 1)

ω2
1

+ ka+ x0

)
=

=
3ω2

1

2

N∑
k=1

(
fk

ω2
1

)2

+

N∑
k=1

f2k

ω2
1

− faN(N − 1)

2
− fNx0.

Then, as N →∞,

3ω2
1

2

N∑
k=1

(
fk

ω2
1

)2

=
3f2

1

2w1

1

N

N∑
k=1

k2

N2
→ 3f2

1

2w1

∫ 1

0

x2dx =
f2

1

2w1
.

It follows that

U → −f1L

2
.

Now for given N and given configuration X, denote by UN (a, b,X), where 0 ≤
a < b ≤ L, the potential energy of all particles xk such that xk ∈ (a, b). The
potential energy of the particle k is defined as

Uk =
ω2

1

4
(xk − xk−1 − a)2 +

ω2
1

4
(xk+1 − xk − a)2 − fxk =
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=
ω2

1

4

(
fk

ω2
1

)2

+
ω2

1

4

(
f(k + 1)

ω2
1

)2

− f
(
−fk(k + 1)

ω2
1

+ ka+ x0

)
=

= − f2
1

2w1N
− f1Lk

N2
+

3f2
1

2w1

k2

N3
+ o(N−3).

Then there exists

u(x) = lim
∆x→0

1

∆x
lim
N→∞

(Uint,N (x, x+ ∆x,X) + Uext,N (x, x+ ∆x,X))

correspondingly for the configuration xk = ka, k = 1, . . . , N − 1 and for the
equilibrium configuration.

For the configuration X = {xk = ka, k = 1, . . . , N − 1} we have

Uint,N (x, x+ ∆x,X) = 0

and

Uext,N (x, x+ ∆x,X) = −f1

N

∑ kL

N
,

where the sum is over k such that x ≤ kL
N ≤ x+ ∆x. So

lim
N→∞

Uext,N (x, x+ ∆x,X) = −f1

L

∫ x+∆x

x

ydy

and

u(x) = −f1

L
x.

For the equilibrium configuration X we have

Uint,N (x, x+ ∆x,X) =
f2

1

2w1

∑ k2

N3
=

f2
1

2L3w1

L

N

∑ k2L2

N2

where the sum is over k such that x ≤ kL/N ≤ x+ ∆x, because of xk−xk−1 ∼
L/N, as N →∞. So

lim
N→∞

Uint,N (x, x+ ∆x,X) =
f2

1

2L3w1

∫ x+∆x

x

y2dy

and

lim
∆x→0

1

∆x
lim
N→∞

Uint,N (x, x+ ∆x,X) =
f2

1x
2

2L3w1
.

Similarly one can show

lim
∆x→0

1

∆x
lim
N→∞

Uext,N (x, x+ ∆x,X) =
f2

1x
2

L3w1
− f1

L
x− f2

1

2w1
.

Hence, for the equilibrium configuration X we have

u(x) =
3f2

1x
2

2L3w1
− f1

L
x− f2

1

2w1
.

Note that in both cases the integral
∫ L

0
u(x)dx = −f1L/2.
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Two edges Here we consider graph with two edges and common vertex which
we denote 0. On the first edge of length L1 there are N1 particles with coordi-
nates

0 ≤ x1 < . . . < xN1−1 < xN1
≡ L1, (3.2)

and on the second edge of length L2 there are N2 particles with coordinates

0 ≤ y1 < . . . < yN2 ≡ L2. (3.3)

It is important that coordinates xN1 and yN2 are tightly fixed and cannot move.
Potential energy is given by

U =
ω2

2

2

N2−1∑
i=1

(
yi+1−yi−

a2

M

)2

+
ω2

1

2

N1−1∑
i=1

(
xi+1−xi−

a1

M

)2

+
ω2

0

2

(
x1 +y1−

a0

M

)2

where all parameters aj , ωj > 0 and b = N/M, c = N1/N < 1 are of order 1,
but M,N1, N2, N = N1 +N2 are sufficiently large but of the same order.

Put

r0 =
L1 + L2 − a1cb− a2 (1− c) b− a0M

−1

M−1 + bω2
0

(
ω−2

1 c+ ω−2
2 (1− c)

) . (3.4)

Theorem 3.6. 1) For fixed parameters aj , ωj , b, c there exists equilibrium state,
satisfying conditions (3.2) and (3.3), iff the following two inequalities hold:

ω2
0r0

ω2
1

+ a1 > 0,
ω2

0r0

ω2
2

+ a2 > 0.

In this case equilibrium state is unique and is defined by

xk+1 − xk =
(ω2

0r0

ω2
1

+ a1

) 1

M
,

yl+1 − yl =
(ω2

0r0

ω2
2

+ a2

) 1

M
,

for all k = 1, . . . , N1 − 1 and l = 1, . . . , N2 − 1.
2) This equilibrium state defines also the unique minimum of U , which is

equal to

U(b, c,M) =
ω2

0(L1 + L2 − a1cb− a2 (1− c) b− a0M
−1)2

2bM(ω2
0

(
ω−2

1 c+ ω−2
2 (1− c)

)
+ (bM)−1)

.

Remark 3.1. To get macroscopic (of the order 1) values for U one should scale
also all frequencies as ω2

i ∼ ciM . Then we will get finite “thermodynamic limit”
of U as M →∞.
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4. Proofs

Proof of Theorem 3.1 We get linear system of N equations for the forces
Fk acting on the particles k = 1, 2, . . . , N , using the fact that the total force on
each of the particles k = 0, 1, . . . , N − 1 equals zero:

F0 = −ω2
0x0 + ω2

1(x1 − x0 − a) + f = 0, (4.1)

Fk = ω2
1(xk+1 − xk − a)− ω2

1(xk − xk−1 − a) = 0, k = 1, . . . , N − 1, (4.2)

where the coordinates satisfy the conditions: xk ≤ L, k = 1, . . . , N − 1 and
xN = L.

From equation (4.2) it follows that the difference xk−xk−1 does not depend
on k = 1, . . . , N. Put r = xk − xk−1 − a. Then

xk = x0 + k(r + a), k = 1, . . . , N.

Using the condition xN = L we get one more equation:

xN = x0 +N(r + a) = L⇐⇒ r + a =
L− x0

N
.

Finally we get system of two linear equations for two unknowns x0, r:

−ω2
0x0 + ω2

1r + f = 0 (4.3)

x0 +N(r + a) = L. (4.4)

Multiplying second equation on ω2
0 and adding both equations we can find r

(ω2
1 + ω2

0N)r + ω2
0Na+ f = ω2

0L⇐⇒ r =
ω2

0L− f − ω2
0Na

ω2
1 + ω2

0N
.

Then

xk − xk−1 = r + a =
ω2

0L− f − ω2
0Na

ω2
1 + ω2

0N
+ a =

ω2
0L+ aω2

1 − f
ω2

1 + ω2
0N

.

From equation (4.3)

−ω2
0x0 + ω2

1

(L− x0

N
− a
)

+ f = 0⇐⇒ −
(
ω2

0 +
ω2

1

N

)
x0 + ω2

1

( L
N
− a
)

+ f = 0

we get

x0 =
ω2

1(L−Na) +Nf

ω2
1 + ω2

0N
.

Thus, the solution of the system (4.1), (4.2) is

xk = x0 + k
ω2

0L+ aω2
1 − f

ω2
1 + ω2

0N
=

(ω2
1 + ω2

0k)L− ω2
1(N − k)a+ (N − k)f

ω2
1 + ω2

0N
(4.5)
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where k = 1, . . . , N − 1.
According to (4.5) the condition that xk ≤ L for k = 1, . . . , N − 1 is equiv-

alent to the condition f ≤ ω2
0L+ ω2

1a. For f < ω2
0L+ ω2

1a we get the condition

x0 < x1 < · · · < xN−1 < xN = L.

For f = ω2
0L+ω2

1a we get the solution xk ≡ L, k = 0, 1, . . . , N. For f > ω2
0L+ω2

1a
the solution (4.5) does not have sense as by (4.5) we have

x0 > x1 > · · · > xN−1 > xN = L,

what is impossible if we assume that the particles cannot jump through fixed
particle xN = L. Thus, for f > ω2

0L+ω2
1a we get the equilibrium as xk ≡ L, k =

0, 1, . . . , N.
Note that the uniqueness of equilibrium configuration for f ≤ ω2

0L + ω2
1a

follows from uniqueness of solution of the linear system (4.3), (4.4).
As the equilibrium configuration is unique and the potential energy U is

bounded from below (and unbounded from above) quadratic function, then this
point is the unique minimum of U.

Proof of Theorem 3.2 We have the following system of equations for the
forces Fk acting on the particles k = 1, 2, . . . , N :

F0 = −ω2
0x0 + ω2

1(x1 − x0 − a) + f = 0, (4.6)

Fk = ω2
1(xk+1 − xk − a)− ω2

1(xk − xk−1 − a) = 0, k = 1, . . . , N − 1 (4.7)

FN = −ω2
0(xN − L)− ω2

1(xN − xN−1 − a) = 0. (4.8)

From (4.7) it follows that the difference xk − xk−1 does not depend on k. Put
r = xk − xk−1 − a. Then

xk = x0 + k(r + a), k = 1, . . . , N.

Substituting xN = x0 +N(r + a) and r = xN − xN−1 − a to equation (4.8) we
get system of two equations with respect to x0, r:

−ω2
0x0 + ω2

1r + f = 0, (4.9)

−ω2
0x0 − (ω2

1 +Nω2
0)r − ω2

0Na+ ω2
0L = 0. (4.10)

Subtracting second equation from the first we get, we find r:

(2ω2
1 +Nω2

0)r + f + ω2
0Na− ω2

0L = 0⇐⇒ r =
ω2

0(L−Na)− f
2ω2

1 +Nω2
0

,

xk − xk−1 = r + a =
ω2

0L+ 2ω2
1a− f

2ω2
1 +Nω2

0

, k = 1, . . . , N (4.11)
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and x0 we find from equation (4.9)

x0 =
ω2

1r + f

ω2
0

=
ω2

1 (L−Na) +Nf + ω2
1ω
−2
0 f

2ω2
1 +Nω2

0

.

Finally also for other coordinates in equilibrium

xk = x0 + k
ω2

0L+ 2ω2
1a− f

2ω2
1 +Nω2

0

=
(ω2

1 + kω2
0)L+ (N − k)f + ω2

1ω
−2
0 f − ω2

1(N − k)a+ kω2
1a

2ω2
1 +Nω2

0

,

xN =
(ω2

1 +Nω2
0)L+ ω2

1ω
−2
0 f +Nω2

1a

2ω2
1 +Nω2

0

.

Accordingly to (4.11), we get the following equivalences

x0 < x1 < . . . < xN ⇐⇒ f < ω2
0L+ 2ω2

1a;

x0 = x1 = . . . = xN ⇐⇒ f = ω2
0L+ 2ω2

1a;

x0 > x1 > . . . > xN ⇐⇒ f > ω2
0L+ 2ω2

1a;

xN ≤ L⇐⇒
(ω2

1 +Nω2
0)L+ ω2

1ω
−2
0 f +Nω2

1a

2ω2
1 +Nω2

0

≤ L⇐⇒ f ≤ ω2
0(L−Na);

x0 ≥ 0⇐⇒ ω2
1 (L−Na) +Nf + ω2

1ω
−2
0 f

2ω2
1 +Nω2

0

≥ 0⇐⇒ f ≥ −ω
2
1 (L−Na)

N + ω2
1ω
−2
0

.

It follows that the condition, 0 ≤ x0 < x1 < . . . < xN ≤ L is equivalent to

−ω
2
1 (L−Na)

N + ω2
1ω
−2
0

≤ f ≤ ω2
0(L−Na)

as from f ≤ ω2
0(L−Na) it follows that f < ω2

0L+ 2ω2
1a.

As in Theorem 3.1 this equilibrium configuration is unique and stable.

Proof of Theorem 3.3 The system of equations is

F0 = −ω2
0x0 + ω2

1(x1 − x0 − a) + f = 0,

Fk = ω2
1(xk+1 − xk − a)− ω2

1(xk − xk−1 − a) = 0, k = 1, . . . , N − 1,

FN = −ω2
0(xN − L)− ω2

1(xN − xN−1 − a)− f = 0.

Also xk − xk−1 does not depend on k, and we put

xk = x0 + k(r + a), k = 1, . . . , N
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where r = xk − xk−1 − a.
Substituting xN = x0 + N(r + a), r = xN − xN−1 − a to equation FN = 0,

we get the system of two equations w.r.t. x0, r:

−ω2
0x0 + ω2

1r + f = 0,

−ω2
0x0 − (ω2

1 +Nω2
0)r − ω2

0Na+ ω2
0L− f = 0,

from where we get

r =
ω2

0(L−Na)− 2f

2ω2
1 +Nω2

0

, x0 =
ω2

1 (L−Na) +Nf

2ω2
1 +Nω2

0

.

It follows x0 ≥ 0⇐⇒ω2
1 (L−Na) +Nf > 0⇐⇒f ≥ ω2

1(a− L/N). And then

xk − xk−1 = r + a =
ω2

0L+ 2ω2
1a− 2f

2ω2
1 +Nω2

0

, k = 1, . . . , N,

and

xk = x0 + k
ω2

0L+ 2ω2
1a− 2f

2ω2
1 +Nω2

0

=

=
(ω2

1 + kω2
0)L+ (N − 2k)f − ω2

1(N − k)a+ kω2
1a

2ω2
1 +Nω2

0

.

Thus,
x0 < x1 < . . . < xN ⇐⇒ 2f < ω2

0L+ 2ω2
1a.

In particular,

xN =
(ω2

1 +Nω2
0)L−Nf +Nω2

1a

2ω2
1 +Nω2

0

,

xN ≤ L⇐⇒
(ω2

1 +Nω2
0)L−Nf +Nω2

1a

2ω2
1 +Nω2

0

≤ L⇐⇒ f ≥ ω2
1

(
a− L

N

)
a.

Finally

0 ≤ x0 < x1 < . . . < xN ≤ L⇐⇒ ω2
1

(
a− L

N

)
a ≤ f < ω2

0L+ 2ω2
1a

2
.

Proof of Theorem 3.4 The system of equations is

F0 = −ω2
0x0 + ω2

1(x1 − x0 − a) + f = 0, (4.12)

Fk = ω2
1(xk+1−xk− a)−ω2

1(xk−xk−1− a) + f = 0, k = 1, . . . , N − 1, (4.13)

where the coordinates xk should also satisfy the conditions: xk ≤ L, k =
1, . . . , N − 1 and xN = L.
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Put rk = xk−xk−1− a. Then the system (4.12) and (4.13) can be rewritten
as:

r1 = − f

ω2
1

+
ω2

0x0

ω2
1

, rk = − f

ω2
1

+ rk−1, k = 2, . . . , N.

Then

rk = − f

ω2
1

k +
ω2

0x0

ω2
1

, k = 1, . . . , N.

Using the last formula we write xk, k = 1, . . . , N − 1 in terms of x0 :

xk = x0 +

k∑
l=1

(xk − xk−1 − a) + ka = x0 +

k∑
l=1

rl + ka =

= x0 +

k∑
l=1

(
− f

ω2
1

l +
ω2

0x0

ω2
1

)
+ ka = x0 + k

(ω2
0x0

ω2
1

+ a
)
− f

ω2
1

k(k + 1)

2
.

Then,

xk = x0 + k
(ω2

0x0

ω2
1

+ a
)
− k(k + 1)f

2ω2
1

,

xk − xk−1 = rk + a = − f

ω2
1

k +
ω2

0x0

ω2
1

+ a. (4.14)

From the condition xN = L we get the equation for x0

x0 +N
(ω2

0x0

ω2
1

+ a
)
− N(N + 1)f

2ω2
1

= L⇐⇒

x0 =
ω2

1

(
L+N(N + 1)f/(2ω2

1)−Na
)

ω2
1 + ω2

0N
.

It is easy to see that

x0 ≥ 0⇐⇒ ω2
1

(
L+

N(N + 1)f

2ω2
1

−Na
)
> 0⇐⇒ f ≥ −2ω2

1(L−Na)

N(N + 1)
.

Then by (4.14) we have

xk − xk−1 = −fk
ω2

1

+
ω2

0

(
L+N(N + 1)f/(2ω2

1)
)

+ aω2
1

ω2
1 + ω2

0N
, k = 1, . . . , N − 1.

Assume that f > 0. Then the condition x0 < x1 < . . . < xN−1 < L is equivalent
to

−fk
ω2

1

+
ω2

0(L+N(N + 1)f/(2ω2
1)) + aω2

1

ω2
1 + ω2

0N
> 0, ∀k = 1, . . . , N ⇐⇒
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ω2
0(L+N(N + 1)f/(2ω2

1)) + aω2
1

ω2
1 + ω2

0N
>
fN

ω2
1

⇐⇒ f <
2ω2

1

(
ω2

0L+ aω2
1

)
N(2ω2

1 + ω2
0(N − 1))

.

Thus for f > 0 the condition 0 ≤ x0 < x1 < . . . < xN−1 < xN = L is equivalent
to

−2ω2
1(L−Na)

N(N + 1)
≤ f <

2ω2
1

(
ω2

0L+ aω2
1

)
N(2ω2

1 + ω2
0(N − 1))

.

If f < 0 the condition xk > xk−1 for any k = 1, . . . , N is equivalent to

−fk
ω2

1

+
ω2

0(L+N(N + 1)f/(2ω2
1)) + aω2

1

ω2
1 + ω2

0N
> 0 ∀k = 1, . . . , N ⇐⇒

− f

ω2
1

+
ω2

0(L+N(N + 1)f/(2ω2
1)) + aω2

1

ω2
1 + ω2

0N
> 0⇐⇒ f < − 2ω2

1(ω2
0L+ aω2

1)

ω2
0N(N − 1)− 2ω2

1

.

And in general, for f < 0 the condition 0 ≤ x0 < x1 < . . . < xN−1 < xN = L is
equivalent to

−2ω2
1(L−Na)

N(N + 1)
≤ f < − 2ω2

1(ω2
0L+ aω2

1)

ω2
0N(N − 1)− 2ω2

1

.

Proof of Theorem 3.5 The equations are

F0 = −ω2
0x0 + ω2

1(x1 − x0 − a) + f = 0, (4.15)

Fk = ω2
1(xk+1− xk − a)−ω2

1(xk − xk−1− a) + f = 0, k = 1, . . . , N − 1, (4.16)

FN = −ω2
0(xN − L)− ω2

1rN + f = 0. (4.17)

Putting rk = xk − xk−1 − a and as Theorem 3.4, from equations (4.15), (4.16)
we find

rk = −fk
ω2

1

+
ω2

0x0

ω2
1

⇐⇒ xk − xk−1 = −fk
ω2

1

+
ω2

0x0

ω2
1

+ a, (4.18)

xk = x0 + k
(ω2

0x0

ω2
1

+ a
)
− f

ω2
1

k(k + 1)

2

for k = 1, . . . , N. Substituting

xN = x0 +N
(ω2

0x0

ω2
1

+ a
)
− N(N + 1)f

2ω2
1

, rN = − f

ω2
1

N +
ω2

0x0

ω2
1

to (4.17), we can get x0 :

x0 =
ω2

1(L+N(N + 1)f/(2ω2
1)−Na) + ω2

1ω
−2
0 f(N + 1)

2ω2
1 +Nω2

0

. (4.19)
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According to (4.18) we have

xk − xk−1 = −fk
ω2

1

+
ω2

0x0

ω2
1

+ a =

= −fk
ω2

1

+
ω2

0(L+N(N + 1)f/(2ω2
1)) + f(N + 1) + 2ω2

1a

2ω2
1 +Nω2

0

, k = 1, . . . , N. (4.20)

For f > 0 the condition xk > xk−1 for any k = 1, . . . , N is equivalent to

ω2
0(L+N(N + 1)f/(2ω2

1)) + f(N + 1) + 2ω2
1a

2ω2
1 +Nω2

0

>
fk

ω2
1

∀k = 1, . . . , N ⇐⇒

ω2
0(L+N(N + 1)f/(2ω2

1)) + f(N + 1) + 2ω2
1a

2ω2
1 +Nω2

0

>
fN

ω2
1

⇐⇒

f <
2ω2

1

(
ω2

0L+ 2aω2
1

)
(N − 1)(2ω2

1 + ω2
0N)

.

For f < 0 the condition xk > xk−1 for any k = 1, . . . , N is equivalent to

−ω2
0(L+N(N + 1)f/(2ω2

1))− f(N + 1)− 2ω2
1a

2ω2
1 +Nω2

0

< −fk
ω2

1

∀k = 1, . . . , N ⇐⇒

−ω2
0(L+N(N + 1)f/(2ω2

1))− f(N + 1)− 2ω2
1a

2ω2
1 +Nω2

0

< − f

ω2
1

⇐⇒

−f <
2ω2

1

(
ω2

0L+ 2aω2
1

)
(N − 1)(2ω2

1 + ω2
0N)

.

And then

x0 < x1 < . . . < xN ⇐⇒ |f | <
2ω2

1

(
ω2

0L+ 2aω2
1

)
(N − 1)(2ω2

1 + ω2
0N)

.

From (4.19), (4.20) we have

xN =
N(N + 1)f/2 + ω2

1ω
−2
0 f(N + 1) + ω2

1(L+Na) +Nω2
0L

2ω2
1 +Nω2

0

.

Then

xN ≤ L⇐⇒ f ≤ ω2
1ω

2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
.

By (4.19)

x0 ≥ 0⇐⇒ f ≥ −2ω2
1ω

2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
.
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Denote

A =
2ω2

1

(
ω2

0L+ 2aω2
1

)
(N − 1)(2ω2

1 + ω2
0N)

,

B =
ω2

1ω
2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
.

Note that 0 < 2B < A is equivalent to

f ≤ ω2
1ω

2
0(L−Na)

(2ω2
1 +Nω2

0) (N + 1)
<

2ω2
1

(
ω2

0L+ 2aω2
1

)
(N − 1)(2ω2

1 + ω2
0N)

.

As 2B < A, the condition 0 ≤ x0 < x1 < . . . < xN ≤ L is equivalent to the
condition that −2B ≤ f ≤ B and B > 0.

Proof of Theorem 3.6 We get the following system of equations from the
condition that forces on each particle equal zero:

ω2
1

(
xk+1 − xk −

a1

M

)
− ω2

1

(
xk − xk−1 −

a1

M

)
= 0, k = 2, . . . , N1 − 1,

ω2
1

(
x2 − x1 −

a1

M

)
− ω2

0

(
x1 + y1 −

a0

M

)
= 0,

ω2
2

(
y2 − y1 −

a2

M

)
− ω2

0

(
x1 + y1 −

a0

M

)
= 0,

ω2
2

(
yi+1 − yi −

a2

M

)
− ω2

2

(
yi − yi−1 −

a2

M

)
= 0, i = 2, . . . , N2 − 1.

Denote
Rk = xk+1 − xk −

a1

M
, k = 1, . . . , N1 − 1,

R0 = x1 + y1 −
a0

M
,

Qi = yi+1 − yi −
a2

M
, i = 1, . . . , N2 − 1.

Then

R1 = . . . = RN1−1 =
ω2

0R0

ω2
1

,

Q1 = . . . = QN2−1 =
ω2

0R0

ω2
2

,

and it follows

xk+1 − xk −
a1

M
=
ω2

0R0

ω2
1

⇐⇒ xk+1 = x1 +

(
ω2

0(x1 + y1 − a0/M)

ω2
1

+
a1

M

)
k,
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yi+1 − yi −
a2

M
=
ω2

0R0

ω2
2

⇐⇒ yi+1 = y1 +

(
ω2

0(x1 + y1 − a0/M)

ω2
2

+
a2

M

)
i.

By conditions (3.2) and (3.3) it should be

xk+1 > xk ⇐⇒
ω2

0R0

ω2
1

+
a1

M
> 0⇐⇒ R0 > −

ω2
1a1

ω2
0M

,

yk+1 > yk ⇐⇒
ω2

0R0

ω2
2

+
a2

M
> 0⇐⇒ R0 > −

ω2
2a2

ω2
0M

and then

x1 + y1 −
a0

M
> −min

(ω2
1a1

ω2
0M

,
ω2

2a2

ω2
0M

)
.

The potential energy is then

U =
ω4

0R
2
0(N2 − 1)

2ω2
2

+
ω2

0R
2
0

2
+
ω4

0R
2
0(N1 − 1)

2ω2
1

=

=
ω2

0

2

(
ω2

0

(
N2 − 1

ω2
2

+
N1 − 1

ω2
1

)
+ 1

)(
x1 + y1 −

a0

M

)2

=
ω2

0N

2

(
ω2

0

(
ω−2

1 c+ ω−2
2 (1− c)

)
+N−1

)
×
(
x1 + y1 −

a0

M

)2

.

Finally, from equations

xN1 = x1 +

(
ω2

0(x1 + y1 − a0/M)

ω2
1

+
a1

M

)
cN = L1,

yN2 = y1 +

(
ω2

0(x1 + y1 − a0/M)

ω2
2

+
a2

M

)
(1− c)N = L2,

we have

x1 + y1 −
a0

M
=
L1 + L2 − a1cb− a2 (1− c) b− a0M

−1

1 + bMω2
0

(
ω−2

1 c+ ω−2
2 (1− c)

)
and it should be

L1 + L2 − a1cb− a2 (1− c) b− a0M
−1

1 + bMω2
0

(
ω−2

1 c+ ω−2
2 (1− c)

) > −min
(ω2

1a1

ω2
0M

,
ω2

2a2

ω2
0M

)
,

and the potential energy is easily calculated.
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5. Distribution of kinetic and potential energies

5.1. Necessary definitions

Here we give well-known definitions (more general than necessary) for better
understanding the results below.

We consider systems with N0 particles in Rd, denote N = dN0 the number
of coordinates xi = qi ∈ R, i = 1, . . . , N, velocities vi, masses mi > 0 and
momenta pi = mivi, vi = ẋi, of these particles. The dynamics (trajectories)
xi(t), 0 ≤ t <∞, is defined by the Hamiltonian H = T + U, with kinetic T and
potential U energies

T =

N∑
i=1

miv
2
i

2
, U = U0(x1, . . . , xN ) + Uext,

where

Uext = Uext(t, x1, . . . , xN ) = −
N∑
i=1

fi(t)xi.

The equations are

mi
d2xi
dt2

= − ∂U
∂xi

= −∂U0

∂xi
+ fi(t)

with initial conditions xi(0), vi(0). Here U0 corresponds to interaction between
particles and fi(t) are external forces.

Time averages of the energies are defined as the limits (if they exist)

〈T 〉 = lim
t→∞

1

t

∫ t

0

T (s)ds, 〈U〉 = lim
t→∞

1

t

∫ t

0

U(s)ds.

General virial theorem It is the following equality:

〈T 〉 = −
N∑
i=1

〈(fi, ri)〉 (5.1)

where fi is the force on the i-th coordinate, ri - its coordinate vector.

Proof. Let

G =

N∑
i=1

(pi, ri).

Then

Ġt =

N∑
i=1

(fi, ri) + 2T.
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If all pi and ri stay uniformly bounded then virial theorem follows as

1

t

∫ t

0

Ġdt =
1

t
(G(t)−G(0))→ 0.

Virial theorem for quadratic potential For general quadratic potential
energy

U(x) =
1

2
(x, V x),

where x ∈ RN , V = (vij) is positive definite symmetric (N ×N)-matrix. Then
the force Fi on particle i

Fi = −∇xi
U(x) = −

N∑
j=1

vijxj .

Then
N∑
i=1

Fixi = −
N∑
i=1

N∑
j=1

vijxixj = −(V x, x) = −2U(x).

Put

G =

N∑
i=1

mivixi.

Then

Ġt =

N∑
i=1

miv
2
i +

N∑
i=1

miv̇ixi = 2T +

N∑
i=1

Fixi = 2T − 2U (5.2)

and for the averages

2 (〈T 〉 − 〈U〉) = 〈Ġt〉 = lim
t→∞

G(t)−G(0)

t
= 0

as G(t) is uniformly bounded. To see this note first that the kinetic and potential
energies are positive and due to energy conservation are uniformly bounded.
Then the system stays in bounded volume.

It follows that kinetic and potential energies are equal

〈T 〉 = 〈U〉. (5.3)

Now assume also time-dependent external forces. For example, a harmonic force
fi(t) = sinωit on particle i. Then the potential energy is

U(x) =
1

2
(x, V x)−

N∑
i=1

fixi.
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Similarly to (5.2) we get

〈Ġt〉 = 2 (〈T 〉 − 〈U〉) .

Let ν1, . . . , νN be eigenvalues of V. They are positive and assume that for all i, j

ωi 6=
√
νj .

Then 〈Ġt〉 = 0 due to boundedness of G(t) and 〈T 〉 = 〈U〉.
More interesting is analogs of virial theorem for local parts of a large system

of particles. For example, in biological organism (or even in social organism) one
part of the system can move more intensively (large < T >, small < U >) and
another part could be the contrary. We consider here simple system and try to
understand when could this be. For calculations we will use explicit calculations
– direct but cumbersome. Our example is the following.

5.2. Simplest system under periodic boundary force

Consider the chain of N + 1 particles with coordinates x0 ≡ 0, x1, . . . , xN .
We assume that particle 0 is fixed at 0 and on the particle N acts periodic force
f(t) = c sinωt. Potential energy of the system is

U(x) =
ω2

1

2

N∑
i=1

(xi − xi−1 − a)2 − xNc sinωt

and the equations are

ẍk = −ω2
1(xk − xk−1 − a) + ω2

1(xk+1 − xk − a)

= ω2
1(xk+1 − 2xk + xk−1), k = 1, . . . , N − 1,

ẍN = −ω2
1(xN − xN−1 − a) + c sinωt

with initial conditions xk(0) = ka, vk(0) = 0.
After change

qk = xk − ka, k = 0, 1, . . . , N

the equations will be

q̈k = ω2
1(qk+1 − 2qk + qk−1), k = 1, . . . , N − 1,

q̈N = −ω2
1(qN − qN−1) + c sinωt.

In the matrix form they can be rewritten as

q̈ = −V q + c sinωteN , eN = (δ1,N , . . . , δN,N ) = (0, . . . , 0, 1),
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where V is the following tridiagonal matrix N ×N

V =


2ω2

1 −ω2
1

−ω2
1 2ω2

1 −ω2
1

. . . . . . . . . . . .
−ω2

1 ω2
1


In the last row there is ω2

1 , all the rest are 2ω2
1 .

Spectrum of matrix V Denote λk the eigenvalues of V and let {hk, k =
1, . . . , N} be the corresponding eigenvectors V hk = λkhk with coordinates hk =

(h
(j)
k , j = 1, . . . , N).

Lemma 5.1. The eigenvalues and eigenvectors of V are

λk = 2ω2
1

(
cos

(
πk

N + 1/2

)
+ 1

)
, k = 1, . . . , N

h
(j)
k =

sin
(
j(N−k+1/2)π

N+1/2

)
sin
(

(N−k+1/2)π
N+1/2

) , j = 1, . . . , N.

As all eigenvalues are positive, we can denote them as λk = ν2
k , k = 1, . . . , N,

where it will be convenient to assume all νk also positive. Denote by gk the
normalized eigenvectors

gk =
hk√

(hk, hk)
, k = 1, . . . , N,

which form an orthonormal basis.
The energy of the system then is

H(ψ(t)) = U(ψ(t)) + T (ψ(t))− f(t)qN .

where ψ = (q1, . . . , qN , p1, . . . , pN ) and

U(ψ(t)) =
1

2

∑
1≤j,l≤N

Vj,lqjql =
1

2
(q, V q), T (ψ(t)) =

N∑
j=1

p2
j

2
=

1

2
(p, p),

are internal potential and kinetic energy of the system. Then the dynamics
satisfies the following system of equations:

q̈j = −
∑
l

Vj,lql + f(t)δj,N , j = 1, . . . , N,
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where δj,N is the Kronecker symbol. Let us rewrite this in Hamiltonian form:{
q̇j = pj ,
ṗj = −

∑
l Vj,lql + f(t)δj,N ,

and in vector notation:
ψ̇ = A0ψ + f(t)gN , (5.4)

where

A0 =

(
0 E
−V 0

)
is (2N × 2N)-matrix, E is the unit (N ×N)-matrix, and

rN = (0, . . . , 0, eN )T ∈ R2N , eN = (δ1,N , . . . , δN,N ).

It is well-known that the solution of (5.4) is:

ψ(t) = eA0tψ(0) +

∫ t

0

eA0(t−s)f(s)rNds (5.5)

with

eA0t =

(
cos(
√
V t) (

√
V )−1 sin(

√
V t)

−
√
V sin(

√
V t) cos(

√
V t)

)
,

where matrix sine and cosine are defined, similar to matrix exponent by corre-
sponding series. Then we can write down the solution as:

q(t) = cos(
√
V t)q(0) + (

√
V )−1 sin(

√
V t)p(0)

+

∫ t

0

f(s)(
√
V )−1 sin(

√
V (t− s))eNds, (5.6)

p(t) = −
√
V sin(

√
V t)q(0)+cos(

√
V t)p(0)+

∫ t

0

f(s) cos(
√
V (t−s))eNds. (5.7)

Let us expand the vectors eN , q(0), p(0) in the basis of eigenvectors of V :

eN =

N∑
k=1

(gk, eN )gk, q(0) =

N∑
k=1

(gk, q(0))gk, p(0) =

N∑
k=1

(gk, p(0))gk.

Then, as

(
√
V )−1gk =

1

νk
gk,

sin(
√
V t)gk = gk sin(νkt),

cos(
√
V t)gk = gk cos(νkt),
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we have

q(t) =

N∑
k=1

[
(gk, eN )

∫ t

0

f(s)
sin(νk(t− s))

νk
ds

+ (gk, q(0)) cos(νkt) + (gk, p(0))
sin(νkt)

νk

]
gk, (5.8)

p(t) =

N∑
k=1

[
(gk, eN )

∫ t

0

f(s) cos(νk(t− s))ds

− (gk, q(0))νk sin(νkt) + (gk, p(0)) cos(νkt)

]
gk. (5.9)

We have to find functions

q̂k(t) = ν−1
k

∫ t

0

f(s) sin(νk(t− s))ds,

p̂k(t) =

∫ t

0

f(s) cos(νk(t− s))ds.

Since f(t) = c sinωt, for ω 6= νk we have

q̂k(t) =
cω

ν2
k − ω2

(
sin(ωt)

ω
− sin(νkt)

νk

)
, (5.10)

p̂k(t) =
cω

ν2
k − ω2

(cos(ωt)− cos(νkt)) .

Further on we consider zero initial conditions, then coordinates and momenta
of particle j are:

qj(t) =

N∑
k=1

(gk, eN )(gk, ej)q̂k(t), (5.11)

pj(t) =

N∑
k=1

(gk, eN )(gk, ej)p̂k(t).

5.3. Kinetic energy

Now we can find kinetic energy of particle j:

Tj(t) =
1

2

N∑
k=1

N∑
l=1

(gk, eN )(gk, ej)(gl, eN )(gl, ej)p̂k(t)p̂l(t),
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where
p̂k(t) =

cω

ν2
k − ω2

(cos(ωt)− cos(νkt)) , k = 1, . . . , N,

ν2
k = 2ω2

1

(
cos
( πk

N + 1/2

)
+ 1
)
, k = 1, . . . , N,

(gk, ej) =
h

(j)
k√

(hk, hk)
=

1√
(hk, hk)

sin
(
j(N−k+1/2)π

N+1/2

)
sin
(

(N−k+1/2)π
N+1/2

) , k, j = 1, . . . , N.

Note also that

sin

(
j(N − k + 1/2)π

N + 1/2

)
= sin

(
jπ − jkπ

N + 1/2

)
= (−1)j−1 sin

(
jkπ

N + 1/2

)
,

(gk, ej) =
1√

(hk, hk)

(−1)j−1 sin
(

jkπ
N+1/2

)
sin
(

kπ
N+1/2

) . (5.12)

Then

(hk, hk) = sin−2

(
kπ

N + 1/2

) N∑
j=1

sin2

(
jkπ

N + 1/2

)
.

Now we want to find the mean kinetic energy of the particle j

〈Tj〉 =
〈p2
j (t)〉
2

.

Theorem 5.1. If ω 6= νk for any k then (for zero initial conditions)

〈Tj〉 =
1

4

(
N∑
k=1

(gk, eN )(gk, ej)
ωc

ν2
k − ω2

)2

+
1

4

N∑
k=1

(gk, eN )2(gk, ej)
2

(
ωc

ν2
k − ω2

)2

(5.13)

Proof. By (5.9),

pj(t) =

N∑
k=1

(gk, eN )(gk, ej)p̂k(t),

where
p̂k(t) = Ak (cos(ωt)− cos(νkt)) , Ak =

ωc

ν2
k − ω2

,

then we can show that

〈p2
j (t)〉 =

N∑
k=1

N∑
l=1

(gk, eN )(gk, ej)(gl, eN )(gl, ej)〈p̂k(t)p̂l(t)〉,
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where

〈p̂k(t)p̂l(t)〉 =

{
A2
k k = l,

1
2AkAl k 6= l.

In fact, for ω 6= νk

〈p̂2
k(t)〉 = A2

k〈(cos(ωt)− cos(νkt))
2〉 = A2

k

(
〈cos2(ωt)〉+ 〈cos2(νkt)〉

)
= A2

k

and for k 6= l

〈p̂k(t)p̂l(t)〉 = AkAl〈(cos(ωt)− cos(νkt))(cos(ωt)− cos(νlt))〉

= AkAl〈cos2(ωt)〉 =
AkAl

2
.

Then
〈p2
j (t)〉
2

=
1

2

N∑
k=1

(gk, eN )2(gk, ej)
2A2

k+

+
1

4

N∑
k 6=l

(gk, eN )(gl, eN )(gk, ej)(gl, ej)AkAl =

=
1

4

N∑
k=1

(gk, eN )2(gk, ej)
2A2

k+

+
1

4

N∑
k,l=1

(gk, eN )(gl, eN )(gk, ej)(gl, ej)AkAl =

=
1

4

N∑
k=1

(gk, eN )2(gk, ej)
2A2

k +
1

4

(
N∑
k=1

(gk, eN )(gk, ej)Ak

)2

.

Theorem 5.2. Assume that ω2 > 4ω2
1 . Then there exist limits

lim
N→∞

〈T1〉 = 0, lim
N→∞

〈TN 〉 = K > 0.

Proof. By (5.13),

〈T1〉 =
1

4

(
N∑
k=1

(gk, eN )(gk, e1)
ωc

ν2
k − ω2

)2

+
1

4

N∑
k=1

(gk, eN )2(gk, e1)2

(
ωc

ν2
k − ω2

)2

,

〈TN 〉 =
1

4

(
N∑
k=1

(gk, eN )2 ωc

ν2
k − ω2

)2

+
1

4

N∑
k=1

(gk, eN )4

(
ωc

ν2
k − ω2

)2

.
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According to (5.12),

(gk, e1) =
1√

(hk, hk)
,

(gk, eN ) =
(−1)N−1√

(hk, hk)

sin
(

kπ
1+1/(2N)

)
sin
(

kπ
N+1/2

) .

Then

〈T1〉 =
1

4

 N∑
k=1

1

(hk, hk)

sin
(

kπ
1+1/(2N)

)
sin
(

kπ
N+1/2

) ωc

ν2
k − ω2

2

+
1

4

N∑
k=1

1

(hk, hk)2

sin2
(

kπ
1+1/(2N)

)
sin2

(
kπ

N+1/2

) (
ωc

ν2
k − ω2

)2

, (5.14)

〈TN 〉 =
1

4

 N∑
k=1

1

(hk, hk)

sin2
(

kπ
1+1/(2N)

)
sin2

(
kπ

N+1/2

) ωc

ν2
k − ω2

2

+
1

4

N∑
k=1

1

(hk, hk)2

sin4
(

kπ
1+1/(2N)

)
sin4

(
kπ

N+1/2

) (
ωc

ν2
k − ω2

)2

, (5.15)

where

ν2
k = 2ω2

1

(
cos

(
πk

N + 1/2

)
+ 1

)
, k = 1, . . . , N,

(hk, hk) = sin−2

(
kπ

N + 1/2

) N∑
j=1

sin2

(
jkπ

N + 1/2

)
, k = 1, . . . , N.

Note that as N →∞

kπ

N

N∑
j=1

sin2

(
jkπ

N + 1/2

)
∼ kπ

N

N∑
j=1

sin2

(
jkπ

N

)

→
∫ kπ

0

sin2 udu

= k

∫ π

0

sin2 udu =
kπ

2
.

It follows
N∑
j=1

sin2

(
jkπ

N + 1/2

)
∼ N

2
, N →∞. (5.16)
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Consider the first term in (5.14)

I1 =

N∑
k=1

1

(hk, hk)

sin
(

kπ
1+1/(2N)

)
sin
(

kπ
N+1/2

) ωc

ν2
k − ω2

=

=

N∑
k=1

sin
(

kπ
N+1/2

)
∑N
j=1 sin2

(
jkπ

N+1/2

) sin

(
kπ

1 + 1/(2N)

)
ωc

ν2
k − ω2

.

Since

sin

(
kπ

1 + 1/(2N)

)
= (−1)k−1 kπ

2N
+O(N−3) (5.17)

we have

I1 ∼ S = − 1

π

N∑
k=1

π

N
(−1)k

kπ

N
sin

(
kπ

N

)
ωc

2ω2
1 (cos (πk/N) + 1)− ω2

.

Firstly, we sum up separately in even and odd k. That is, we can write

S = S1 + S2,

where

S1 = − 1

2π

[N/2]∑
k=1

2π

N

2kπ

N
sin

(
2kπ

N

)
ωc

2ω2
1 (cos (2πk/N) + 1)− ω2

,

S2 =
1

2π

[N/2]∑
k=1

2π

N

(2k + 1)π

N
sin

(
(2k + 1)π

N

)
ωc

2ω2
1 (cos ((2k + 1)π/N) + 1)− ω2

.

As N →∞

S1 → −
1

π

∫ π

0

u sinu du

2ω2
1 (cosu+ 1)− ω2

,

S2 →
1

π

∫ π

0

u sinu du

2ω2
1 (cosu+ 1)− ω2

.

Then, I1 → 0. Thus the first term in (5.14) tends to 0.
Consider now the first term in (5.15)

I2 =

N∑
k=1

1

(hk, hk)

sin2
(

kπ
1+1/(2N)

)
sin2

(
kπ

N+1/2

) ωc

ν2
k − ω2

=



190 V.A. Malyshev and A.A. Zamyatin

=

N∑
k=1

sin2
(

kπ
1+1/(2N)

)
∑N
j=1 sin2

(
jkπ

N+1/2

) ωc

ν2
k − ω2

.

According to (5.16) and (5.17)

I2 ∼
1

π

N∑
k=1

π

N

(
kπ

N

)2
ωc

2ω2
1 (cos (πk/N) + 1)− ω2

as N →∞. Thus

I2 →
c

π

∫ π

0

u2 du

2ω2
1 (cosu+ 1)− ω2

.

The integral is not 0, as the integrand has constant sign.
It is not difficult to show that the second terms in (5.14) and in (5.15) tend

to 0. Finally, we get

〈TN 〉 →
c2

4π2

(∫ π

0

u2 du

2ω2
1 (cosu+ 1)− ω2

)2

, 〈T1〉 → 0.

5.4. Potential energy

We define potential energy of the particle j

〈Uj〉 =
ω2

1

4

(
〈(qj − qj−1)2〉+ 〈(qj+1 − qj)2〉

)
for j = 2, . . . , N−1.Here 1/4 appears because we take only half of the interaction
energy of the particle j with its neighbors.

For j = 1, N we have:

〈U1〉 =
ω2

1

2
〈q2

1〉+
ω2

1

4
〈(q2 − q1)2〉,

〈UN 〉 =
ω2

1

4
〈(qN − qN−1)2〉 − c〈qN sinωt〉.

Theorem 5.3. Assume that ω2 > 4ω2
1 . Then the following limits exist

lim
N→∞

〈U1〉 = 0,

lim
N→∞

〈UN 〉 =
1

2

(
ω1

π

∫ π

0

cu2 du

2ω2
1 (cosu+ 1)− ω2

)2

− 1

4π

∫ π

0

cu2 du

2ω2
1 (cosu+ 1)− ω2

> 0.
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Proof. Using

qj(t) =

N∑
k=1

(gk, eN )(gk, ej)q̂k(t)

where

q̂k(t) =
cω

ν2
k − ω2

(
sin(ωt)

ω
− sin(νkt)

νk

)
we get

〈U1〉 =
ω2

1

2

N∑
k,l=1

(gk, eN )(gl, eN )(gk, e1)(gl, e1)〈q̂k(t)q̂l(t)〉+

+
ω2

1

4

N∑
k,l=1

(gk, eN )(gl, eN )((gk, e2)− (gk, e1))((gl, e2)− (gl, e1))〈q̂k(t)q̂l(t)〉,

where

〈q̂k(t)q̂l(t)〉 =


A2
k

2

(
ω−2 + ν−2

k

)
k = l,

AkAl
2ω2

k 6= l.

In fact, in more details

〈q̂2
k(t)〉 = A2

k

〈( sin(ωt)

ω
− sin(νkt)

νk

)2〉
= A2

k

( 1

ω2
〈sin2(ωt)〉+

1

ν2
k

〈sin2(νkt)〉
)

=
A2
k

2

(
ω−2 + ν−2

k

)
and for k 6= l

〈q̂k(t)q̂l(t)〉 = AkAl

〈( sin(ωt)

ω
− sin(νkt)

νk

)( sin(ωt)

ω
− sin(νlt)

νl

)〉
=
AkAl
ω2
〈sin2(ωt)〉 =

AkAl
2ω2

.

Finally we get

〈U1〉 =
ω2

1

4ω2

N∑
k,l=1

(gk, eN )(gl, eN )(gk, e1)(gl, e1)AkAl+

+
ω2

1

4

N∑
k,l=1

(gk, eN )2(gk, e1)2A
2
k

ν2
k

+
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+
ω2

1

8ω2

N∑
k,l=1

(gk, eN )(gl, eN )((gk, e2)− (gk, e1))((gl, e2)− (gl, e2))AkAl+

+
ω2

1

8

N∑
k=1

(gk, eN )2((gk, e2)− (gk, e1))2A
2
k

ν2
k

=

=
ω2

1

4ω2

(
N∑
k=1

(gk, eN )(gk, e1)Ak

)2

+
ω2

1

4

N∑
k,l=1

(gk, eN )2(gk, e1)2A
2
k

ν2
k

+

+
ω2

1

8ω2

(
N∑
k=1

(gk, eN )((gk, e2)− (gk, e1))Ak

)2

+

+
ω2

1

8

N∑
k,l=1

(gk, eN )2((gk, e2)− (gk, e1))2A
2
k

ν2
k

.

Using formula (5.12) for (gk, ej), we get

〈U1〉 =
ω2

1

4ω2

 N∑
k=1

1

(hk, hk)

sin
(

Nkπ
N+1/2

)
sin
(

kπ
N+1/2

) cω

ν2
k − ω2

2

+

+
ω2

1

4

N∑
k=1

1

(hk, hk)2

sin2
(

Nkπ
N+1/2

)
sin2

(
kπ

N+1/2

) ( cω

νk (ν2
k − ω2)

)2

+

+
ω2

1

8ω2

( N∑
k=1

1

(hk, hk)

sin
(

Nkπ
N+1/2

)(
− sin

(
2kπ

N+1/2

)
− sin

(
kπ

N+1/2

))
sin2

(
kπ

N+1/2

) cω

ν2
k − ω2

)2

+

+
ω2

1

8

N∑
k=1

1

(hk, hk)2

sin
(

Nkπ
N+1/2

)2 (
sin
(

2kπ
N+1/2

)
+ sin

(
kπ

N+1/2

))2

sin4
(

kπ
N+1/2

) ×

×
(

cω

νk (ν2
k − ω2)

)2

.

Now we can prove that 〈U1〉 → 0 as N → ∞, similarly to the proof of the fact
that 〈T1〉 → 0 in the Theorem 5.2.

Now we find

〈(qN (t)− qN−1(t))2〉 =

(
1

2ω2

N∑
k=1

(gk, eN )((gk, eN )− (gk, eN−1))
cω

ν2
k − ω2

)2

+
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+
1

2

N∑
k=1

(gk, eN )2((gk, eN )− (gk, eN−1))2

(
cω

νk (ν2
k − ω2)

)2

,

and using (5.12), we find

〈(qN (t)− qN−1(t))2〉 =

=
1

2ω2

(
N∑
k=1

1

(hk, hk)

sin
(

kπ
1+1/(2N)

)
sin2

(
kπ

N+1/2

) ×
×
(

sin

(
kπ

1 + 1/(2N)

)
+ sin

(
kπ

1 + 3/(2(N − 1))

))
cω

ν2
k − ω2

)2

+

+
1

2

N∑
k=1

1

(hk, hk)2

sin2
(

kπ
1+1/(2N)

)(
sin
(

kπ
1+1/(2N)

)
+ sin

(
kπ

1+3/(2(N−1))

))2

sin4
(

kπ
N+1/2

) ×

×
(

cω

νk (ν2
k − ω2)

)2

.

Denote by J1 and J2 correspondingly the first and second terms in the last
expressions.

Using formulas (5.16), (5.17) we get that as N →∞,

J1 ∼
2

ω2π2

(
N∑
k=1

π

N
(kπ/N)

2 cω

2ω2
1 (cos (πk/N) + 1)− ω2

)2

→

→ 2

(
1

π

∫ π

0

cu2 du

2ω2
1 (cosu+ 1)− ω2

)2

.

Similarly to Theorem 5.2 one can show that J2 → 0.
We should find also the mean value

〈qN sinωt〉 =

N∑
k=1

(gk, eN )2〈q̂k(t) sinωt〉 =
1

2

N∑
k=1

(gk, eN )2 c

ν2
k − ω2

=

=
1

2

N∑
k=1

1

(hk, hk)

sin2
(

kπ
1+1/(2N)

)
sin2

(
kπ

N+1/2

) c

ν2
k − ω2

.

Then quite similarly as for J1 we get that, as N →∞,

〈qN sinωt〉 ∼ 1

2π

N∑
k=1

2π

N

(
kπ

2N

)2
c

2ω2
1 (cos (πk/N) + 1)− ω2
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→ c

4π

∫ π

0

u2 du

2ω2
1 (cosu+ 1)− ω2

and finally

〈UN 〉 →
1

2

(
ω1

π

∫ π

0

cu2 du

2ω2
1 (cosu+ 1)− ω2

)2

− 1

4π

∫ π

0

cu2 du

2ω2
1 (cosu+ 1)− ω2

as N →∞.

5.5. Conservation of initial order of particles (no collisions)

Assume that initial conditions are qj(0) = 0⇐⇒ xj(0) = ja, vj(0) = 0.
If ω2 > 4ω2

1 (in particular, no resonance), then we will show that, if the
constant c is sufficiently small with respect to a, for any t the initial order will
not change, that is there will not be collisions of particles, that is

x1(t) < x2(t) < . . . < xN (t).

By (5.10)

|q̂k(t)| ≤ cω

ω2 − ν2
k

(
1

ω
+

1

νk

)
= cbk.

As ω2 > 4ω2
1 the constants bk > 0, as ν2

k < 4ω2
1 . Then using (5.11) we get

|qj(t)| ≤ c
N∑
k=1

|(gk, eN )(gk, ej)|bk.

By (5.12)

|(gk, eN )(gk, ej)| =
1

(hk, hk)

∣∣∣sin( Nkπ
N+1/2

)
sin
(

jkπ
N+1/2

)∣∣∣
sin2

(
kπ

N+1/2

)
≤ 1

(hk, hk)

∣∣∣sin( kπ
1+1/(2N)

)∣∣∣
sin2

(
kπ

N+1/2

) .

Further, using (5.16), (5.17), we get

|qj(t)| ≤
cB

N2

N∑
k=1

bk =
cB

N2

N∑
k=1

(
1

ω2 − ν2
k

+
1

νk

)
(5.18)

for some constant B > 0. Since ω2 − ν2
k > ω2 − 4ω2

1 > 0, we have

1

N2

N∑
k=1

1

ω2 − ν2
k

≤ 1

N

1

ω2 − 4ω2
1

→ 0, N →∞.
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Finally, from ν1 > ν2 > . . . > νN , where

ν2
k = 2ω2

1

(
cos

(
πk

N + 1/2

)
+ 1

)
, k = 1, . . . , N,

it follows
N∑
k=1

1

νk
≤ N

νN
.

Note that

cos

(
πN

N + 1/2

)
+ 1 = O(N−2).

Hence, ν−1
N = O(N) and

N∑
k=1

1

νk
= O(N2).

So the right hand side of the inequality (5.18) is equal to O(1) as N →∞.
It follows that one can choose parameters c and a so that for all N

|qj(t)| <
a

2
, j = 1, . . . , N.

Another case was considered in [15], where frequencies and constant a are
scaled so that this property (called regularity in [16]) holds for all N .

6. Conclusion

In all examples of ground states above, it can be easily proved that for the
system of equations

d2xk(t)

dt2
= Fk − αkvk(t), k = 0, 1, . . . , N, (6.1)

where vk = dxk/dt and αk ≥ α for some α > 0, the following statement holds:
for any initial conditions xk(0), vk(0) the solution converges to the corresponding
minimum of potential energy. The proof is exactly the same as in ( [10]) for
Coulomb systems. More difficult is the question whether it is true when some
αk = 0.

One of the next problems is the following. Assume that we define the system
to be “healthy” if the configuration is close to the ground state in l1-metrics
that is if for some ε > 0 and all k we have |xk(t) − a| < ε. The question is
the following: is this domain invariant w.r.t. dynamics (6.1), or some differences
|xk(t)− xk−1(t)| between nearest neighbors can become too small (or even col-
lide) or can become “too big”. Obviously, it is for the scaled parameters for
which the ground state satisfies condition x0 < x1 < . . . < xN .
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