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ABSTRACT. The goal of this paper is to present rigorous mathematical
formulations and results for Lorentzian models, introduced in physical
papers. Lorentzian models represent two dimensional models, where
instead of a two-dimensional lattice one considers an ensemble of trian-
gulations of a cylinder, and natural probability measure (Gibbs family)
on this ensemble. It appears that correlation functions of this model
can be found explicitly. Such models can be considered as an example
of a new approach to quantum gravity, based on the notion of a causal
set. Causal set is a partially ordered set, thus having a causal structure,
similar to Minkowski space. We consider subcritical, critical and super-
critical cases. In the critical case the scaling limit of the light cone can
be restored.
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1. INTRODUCTION

Lorentzian models were introduced in physical papers, see [1, 2, 6]. The goal
of this paper is to present rigorous mathematical formulations and results for such
type of models. The presented models are explicitly solvable, and thus a complete
control is possible.

Such models can be considered as an example of & new approach to quantum
sravity, based on the notion of causal set, see [12, 4]. A causal set is a partially or-
lered set, thus having a causal structure, similar to the Minkowski space structure.
There are two main approaches to the construction of random and quantum causal
iets: the Gibbs and the Hamiltonian approaches. In the physical literature they
lefine “complex amplitudes” and the definitions are not exact, thus the difference
retween them is not so easy to understand. The Gibbs approach corresponds to
he Euclidean approach in quantum field theory, the Hamiltonian approach more
esembles quantum spin systems. In this context, they give quite different models.
n the critical Gibbs case, one can define the continuous limit but the unitarity
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is absent. In the Hamiltonian approach, on the contrary, one has the unitarity,
however, the continnous limit gives unnatural results.

We consider Gibbs families puy on a class €y of finite causal sets, depending
on a thermodynamic parameter N, and prove that as N — oo the sequence pn
converges in probability to some (non-random) continuous surface, where at each
point the future and past cones are defined. For other models such scaling problems
were earlier considered in the physical literature, see [13, 14].

1.1. Causal sets and graphs. A causal set (not necessarily countable) is a
partially ordered set with a binary (causal) relation <, satisfying the following
properties: (transitivity) if # < y and y < z then z < z; (reflexivity) z < x;
(antisymmetry) if ¢ < y and y < z then £ = y. For denumerable sets the fol-
lowing local finiteness property is assumed: for any z < y the Alexandrov set
Az, y) = {z: £ < z < y} is finite.

" For a given (countable or finite) causal set V' one can define a directed graph G
(called the Hasse diagram of V), so that V becomes the set of vertices of G and
there is a directed edge from z to y, if * < y, & # y, and there is no other 2
such that z < z < y. Vice versa, with a directed graph with the set V' of vertices
without cycles (cycle is a closed directed path) one can associate a causal set V:
for z, y € V we put z < y if either y = z or there is a directed path from z to y.

We shall need some subsets of a causal set. The causal future of a point v is
defined as F(v) = {v': v/ > v}. A causal set is a subset A of V such that no pair
v, v of points in A are related by the causal relation. .

We shall consider the following class of examples of causal sets. Let G be some
connected (not directed) graph with the set V of vertices and the set L of edges.
For example, it can be the one-dimensional skeleton of some triangulation of a
manifold M. Choose some subset Vo C V; we call ¥, the zero slice. Define the N-
slices as R(Vo, N) = {v: p(v, Vo) = N}, where the distance p between two vertices
is the minimal number of edges in a path connecting them. For N =0, 1, ..., we
make directed any edge between teh N-slice and the (N + 1)-slice. That is, we
. define its direction from v to v if v belongs to the N-slice and v’ belongs to the
(N + 1)-slice. All other edges of G are not directed, we call them space-like edges.
Thus, we get a causal set where all slices will be maximal acausal subsets, that is
not belonging to any other acausal set.

For such examples one can define the future light cone FL(v) of a point v. F.L(v)
is the set of points v’ such that v € F(v) and there is a point v”, which does not
belong to F(v) but is connected with v’ by a space-like edge of G.

1.2. Planar Lorentzian Model. Consider triangulations T' of the strip St x
[M, N], where S is a circle, M < N are integers. Assume the following properties
of T: each triangle belongs to some strip S x [§,j +1],j=M,..., N-1, and
has all vertices and exactly one edge on the boundary (S* x {j}) U (8* x {j +1})
of the strip S x [4, 5 +1]. Let k; = k;(T) be the number of edges on St x {j}. We
assume k; > 1. Then the number of triangles F = F(T) of T is equal to
N-1
F=2 Z kj + kyr + kn. (1)
j=M+1
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Assume that kpr = k and ky = [ are fixed. For technical reasons it will be con-
venient to consider triangulations with a fixed vertex vy (the origin) on the slice
S x {M}. We define combinatorial triangulations (further we call them triangu-
lations) as equivalence classes of triangulations under the homeomorphisms ¢ of
S! x [M, N] which transform slices, the sets of vertices, edges, triangles and the
origin into themselves.

Introduce the Gibbs measure on the (countable) set .Ajaz,ny(k, I) of all such
triangulations

s,k (T) = Z[}},N] exp(—pF(T)). 2

Define correlation functions for random variables k;, j € [M + 1, N — 1], taking
values in N = {1, 2, ...}, and for finite subsets J C [M +1, N — 1]

B, Ny k(K5 = ng, § € J). 3)

1.8. Main Results. We define the subcritical, critical or supercritical region if
2exp(—p) < 1, 2exp(—p) =1 and 2exp(—p) > 1 respectively.
In the subcritical region we get a limiting probability measure on A%,

Theorem 1. If 2exp(—p) < 1 then the limiting correlation functions
. 10 .
im p-nN Nk = k5, 7 € J)
exist for any finite subset J C Z and any vector (k?, j € J). The measure defined

by these correlation functions is a stationary ergodic Markov chain on N with the
following stationary probabilities:

(n) = (1= (Aa(s))®)2n(Aa(s))>Y,
V1-—s2

1-—
Ao(s) = —————, s=2exp(~4).

where

Theorem 2. In the subcritical case, the asymptotics of the partition function is
Zi-w,mi(ks 1) ~ B(1 = (Aa(5))%)? (Aa(s))FHH2 74V,

We see that the latter expression is not symmetric with respect to k and [. This
is because of the specified vertex on the (—N)-slice. Without this specified vertex,
one should divide by k, after that the symmetry is restored.

Theorem 3. In the critical case, the asymptotics of the partition function is
k > k
Z_ k, I}~ N2 Zi_ k)~ =N"1,
(=N (ks 1)~ 2N ; NNk, 1)~ 5N

For any J and any k?, the correlation functions behave as
Jim pioy sk =k, 5 € J) = 0.

In the critical case, there is no limiting measure but one can interpret the par-
tition function as follows. Consider a Galton—Watson branching process with one
particle type and the distribution of offsprings p,,, = (1/2)™*, m > 0. This branch-
ing process is critical. Let 7; be the number of particles in the branching process
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of v. Then we add an edge connecting the vertex v to the vertex which is on the
rightmost edge of the vertex u (see Fig. 2).

FiGURE 2. Tree parameterization

Let the tree Try (k, I) correspond to the triangulation Ty (k, ) and D(Trn (k, 1))
be the number of vertices in the tree, except the root. Then there is a simple con-
nection between the number of triangles F(T(k, [)) in the triangulation Tn(k, I)
and number of vertices D(Trn(k, 1)):

F(Tw(k, 1)) + k+1=2D(Trn(k, 1)). (5)

Now the trick will be to establish a one-to-one correspondence between the trees
and the trajectories of the simple random walk on the interval [0, N + 1] with
reflecting barriers. Let §t(N) be a simple random walk with reflecting barriers at the
points 0 and N + 1. More precisely, consider the random walk with the transition
probabilities

Pl =nr 110 =n) =P (e =n =116 =n) =5
if0<n<N+1and
P(ef?=116™M=0) =P (M =NV =N+1) =1

Let TT n(k, I; t) be the set of all trajectories of the length ¢ which start at 0, reach 0
at the time ¢, and hit the bottom (top) barrier k(l) times.

It is well-known that there exists a one-to-one correspondence between the set
TRy(k, l) and the set TT n(k, I) = U, TT n(k, I; t). Indeed, following the contour
of the tree from the lower left edge, one can translate the sequence of ascents and
descents into a trajectory of the random walk (this is shown on Fig. 3).

So, we have a one-to-one correspondence between Ty (k, !) and 7.7 v (k, I). If the
trajectory T'jn(k, ) corresponds to some triangulation Tx(k, {), then the length of
the trajectory t = F(Tn(k, 1))+ k + 1.

L WUSLILIVIDUNOIASAN A L) LNJRULIN & ALIAIN AVANS A Ltddbs pa—

[~
L
>

(a) (b)

FiGURE 3. Random walk parameterization

Let P4V (t, k, 1) be the probability for the random walk §t(N) starting at 0 to
reach 0 in ¢ steps hitting k times the bottom barrier and ! times the top barrier.

Lemma 6. The partition function can be written as follows:

Zgwy(k, 1) = Bon Z 2exp(—p))t P, &, 1). (6)

(2 exp(—

Proof. Thanks to the one-to-one correspondence between the sets Ty(k, ) and
TIn(k, 1), we have

Zpmk )= Y (exp(~p)FT
TeTn(k,l)

= Y (exp(-p)HTIR

THETT n (ki)

Since the probability of trajectory with k + I reflections is (1/2)!~*—!, we find

ZomE D= > (exp(-p))~F

t=1 TieTT n(kl):
HTj)=t

=Y @ep-w)y Y /)

TjeTT n (ki)
t(T5)=t

= 3 @exp(-w) 5P, k, )

t=1

The lemma is proved. O
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2.2. Partition Function and Transfer-matrix. In the Hilbert space lo(N) the
partition function can be represented as follows:

Zomk, )= D exp(—pF(T)) = (er, UNer), (7)
TeAn(kl) ‘

where ey, is the natural orthonormal basis in l3(N'), and the elements of the transfer-
matrix U are given by

(n+m—1)!

u(n, m) = LI exp (i -+m), ®)

and n, m > 1. Indeed,

Znk )= Y exp(—pF(T))

TeAn(k,1l)
N-1
= Z Cn(k, k1y ..oy kn=1, 1) exp(—u<k+l+ Z ki)>, (9)
ki,....kn -1 i=1
where Cn(k, ki, ..., kn~1, 1) is the number of triangulations with M triangles,

N strips, k points on the 0O-slice and ! points on the N-slice and k; points on the
i-slices. But

Cn(k, ki, ..oy k=g, 1) = clk, k1)e(ka, ko) ... c(kn—1, 1), (10)

where c(k;, ki41) is the number of triangulations of the strip S* x [i, 7 + 1]. Note
that c(k;, kit1) is equal to the number of all arrangements of “up” and “down”
triangles such that the first triangle is “up”. Since the total number of triangles in
the strip [¢, ¢ + 1] is k; + ki1, we have

(i + kia — 1) (11)

(ki — D! kigq!
Taking into account (9)—(11) we obtain (7).
We now find an explicit expression for the partition function.

Let PV )(t, 1) be the probability for the random walk starting at 0 to reach 0 in
t steps at the first time hitting the top barrier | times. Then

P, k)= Y Yoo Py, ). PN (e, b). (12)

litebly=l e ttp=t

c(ki, ki1) =

Coming to the generating functions we have

Fs,k, )= Y F(s,lh)...F(s, It). (13)

it le=l
Let

oM =P (e 20, 0<eM < N+1,0<s<t|EM =1
t t s

=P(§N)=N+1,o<§§N><N+1,0<s<t|§3N)=N)
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and
BV =P (M =N +1,0<6M <N+1,0<s<t |6V = 1)
=P (&M =00<McN+1,0<s<t |V =N).

Define the corresponding generating functions

fnpa(s) = > sta™, gnia(s) = > st Y.

It is well known that
AN (s) =AY (s)

fnya(s) = (14)
AN () = 2 (s)
e Ma(s) = Xo(s)
1(8) — Ag(8
gN+1(s) = ) (15)
MH(s) = A (s)
where A
1++/1-s2
Mas) = —————, s=2exp(-), (16)
are the roots of the quadratic equation
sA2(s) — 2X(s) + s = 0.
Theorem 7. The partition function has the form
min(k,l)
Zpmk, )= Y Bl k DI (s) gk (s), (17)
r=1

where

B(r, k1) = (’:) (i ~ 11)

ﬁ(& )= 31+1912v+1(5)f11v—4:1(5)’

Proof. If 1 > 0,

and if [ =0,
F(s, 0) = sfns1(s).
Inserting these expressions into (13), we find
min(k,l)

F(s, k, 1) =8 N~ B(r, k, 1) fiHET () g3 (5),
r=1
where 7 is the number of nonzero l; and B(r, k, [) is the number of all solutions to
the equation I; + - .- + Iz = [ such that the number of nonzero I; equals r. O
Corollary 8. If s = 2exp(—p) < 1, then, as N — oo,
Zpo,ni(k, 1) ~ k(L= (A2(s))?)? (o (s)) 242N,
If s =2exp(—p) =1, then, as N — oo,
Zio,ny(k, 1) ~ kN2,
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2.3. Subcritical case. Put J = {0, 1, ..., i}. By definition, we have

Zyg, N](k no)u(ng, n1). .. u(ni-1, mi) Zj;, Ny (ni, 1)
Zi_n,ny(k, 1)

BN, Nk {70, R1y -y ) =

It follows from (17) that as N — oo,
Ziow (k1) ~ B(1 = Qa(6))*)? (as)) -2+,

Hence, the correlation functions pj_n, njx,:(no, 71, ..., n;) are asymptotically
equivalent to

k(1 = (A2(8))2)* (Aa(8)) 022Ny (g, my) ... uniy, mi)ni(Da(s))sH—2+2(N =D
k(1 — (A2(s))2)2 (X ())k+z —244N :

It follows that as N — oo,

B-N, Nk 1(R0, L,y .y ) =

_ §))2)2 g))mo-1 u(no, n1) “("i—la"i)n_ §))mi=l
(1= Qa(s))?)? Qale))o™ Tl SR mialo)™

where s = 2exp(—u) < 1. :
Thus, in the limit we have an ergodic Markov chain on N with the transition
matrix

u(ni—1, nidn;

P=(Pni_smi) = (m (/\2(5))”‘_""—1)

and the stationary distribution
(n) = (1= (Ma(8))*) n(da(s))* V.
It is useful to know that

Corollary 9. The transfer matriz U has the right eigenvector with components
(A2(8))""! and the left eigenvector with components n(Xa(s))* 1. The correspond-
ing eigenvalue equals (Aa(s))?.

Now we calculate the mean drift for the limiting Markov chain.
M(n) = ank k—n)= Z U R ( (s))e==2(k )
Z T xR -+ ) Oale) e )
= xp(-uln+ 2)0a(e) ™ 3 S
x exp (—p(k = 2)) (Aa(s))* 2 (k= 1) +1-n
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But

> R e (-l —2) 0a(e)* (k- )
k=2
(n+k-1)! 1)'
T iz (Z nl (k- 1)!

because of

_ n+1
T (1 = exp (—p)(Aa(s)))mF2’

> z=exp (~p)ra(s)

i n + k- 1)' 1
—p)ntl”

— n! (1 z)?

Using this fact we come to the following expression:

n+1
(1 — exp (—p)(Xe(s)))+2

M(n) = exp(—u(n +2)) (A2(s)) ™" +1-mn.

Since

1
(T —exp () (a(8)))7F2 exp(u(n +2)) (Aa(s))"*2,

we get
M(n) = —n(1 — X3(s)) + 1 4+ Ai(s). (18)

2.4. Critical case. In the critical region we do not have a stationary (translation
invariant) probability measure for k;, but instead we can get some scaling limit.
Consider the partition function in the critical case. It follows from (14), (15) that

1 N
1 = —0— = ee—
gn+1(1) ol In+1(1) ol (19)
For some « € [0, 1] consider
Yoy N2 an) (ks 1) Zian,ny(n, l)
LCN(ay k, 1) = ==
w( ) Zio,ny(k, 1)
Denote
N o' N
'=l-q, N =—2 =
@ % 1= N+ 1’ 2T WN+1
By (17) and (19) we have
LCN(o; K, 1) A
where
min(k,1) N \FH
B=N B(r, k, ) N7 ——
S Bk o ()
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and

oo min(k,n) min(n,l)
A=Y"n 3 B(n,k n)(aN)" N > B(rg, n, )(a/N) 22 NpH
n=1 ry=1 rg=1

co min{k,n) min(n,l) (k) ( -1 )Nk+r1 NH'T‘Z gritra

T‘z—-l

- Z (r1 = )lra! (@N)?r1 (o/ N)?r2 Ozm10yr

n=1 r=1 ro=1

k 1 k) (r 1)N1k+1‘1 NH-'I‘z gritra 1
—_ 2
= X 3 e e ()
1‘1= =

n
@)y
y=N2

(21)

=Ny )
y=Nz

LOn(os k, 1) _ LCP (o5 k, 1) . LC¥(e; K, 1) 22)
N = N N ’

where

$=N1

2
ENFFLNEH (al) 2 (@ N) 20 (—1 )
= e, (23)

Lcy dzdy \1—azy

N - min(k,l) N k-l
N Z B(r, k, )N < )

N+1

s G e (1)

LC(2) s (r1 — DIrgl (@N)?1 (! N)?r2 9zr10y™ \ 1 — zy

N Nmm(k 1) B( k l) k-1
N +1

I=N1
y=Na

(24)
o N2r

Since for any positive r; and 7o
on +r2 1
Oz Oy (1 - a:y)
where ¢ depends on 71, 79 and a. We have

N’“"INH'1 8% ( Ty
ey _ (aN) (@' N)? 8z 0y \ (1 — zy)?

N L k+o L
N N
For any r1, ro such that ry +r9 > 2, we have

N1k+1'1 Né+1‘2 gritra 1
(aN)?21 (o N)2r2 9z yr2 (1 — zy)

z . _ CN”+T2+1, (25)
=N
=Na

'-Nz N-ooo

a(l —a).

N-—oo
— 0.
I’_Nl

So
LC’,(\?)(a; k1) Nooo
N
The first assertion of Theorem 4 is proved.

0. (26)
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To prove the second assertion of the theorem the following interpretation will
be essential. Consider a discrete time branching process with the distribution of
offsprings pm = (1/2)™*1, m > 0. Let y be the number of offsprings at time N.

Lemma 10. The partition function
Zo,ny(k, 1) =P(ny =1{m = k),
forallk, !> 0.

Proof. 1t is well known that the process 7y is a Markov chain with the transition

probabilities
_(n+m-1! (1\™"
Pnm) = \3)
In the critical case, it coincides with elements of the transfer matrix given by (8).
The lemma is proved. O

By Lemma 10, the fraction
LOn(as k) Yo Yy nZan(k, n) Zg_a)n(n, 1)
N - N E;):-'l ZN(k7 l) '
can be rewritten as
LON(o5 k) YoorinP(nan =nlno=k) Y72 P(Na-ayy =1|m =n)
N NY 2 Plow =1]mo=k) '
It is well known for branching processes ny that for any &, N,

(27)

Y P =1|m=Fk =Py #0|n=Fk)
=1

k
- @ =0lm=1=1- (7). 9

Substituting (28) to (27) we get
LOn(as k) _ E(an |mo =k) = 307 nP(an = n | no = k)Ng
= : .
N N1 -(#5))

We have

min(k,n) k n—1 1
- k+
bt =nlm=i =30 Y ()(00)) s

=N{°Té<k)(a—$r‘{(v;%Tyaa; ( iw)

_ NN, k +Nki K\ (NilNg)" 2:( 1
" eV a-mmee M 2L\ e -1 6 \T-

Note that
or 1
or" \1-—-z

z=N; Na

=N Ny

~ NH—T,
z=N; No
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1
-o(3)
1'=N1N2 N

NN 1 (1))
k{1-—2 +0| =
LOn(as k) _ ( (@N)? (1-MNNs)? NJJ Nowy (1~ a2,

’ (i o(x))

Theorem 4 is proved.

where ¢ depends on 7 and a. Hence

Nfi (I:) (a]g)\;]zr:)—rl)! ;:T (113:)

r=2

Finally

Remark 11 (Local distribution). Consider the measure o, nj,k,1- In the critical
case, we do not have a probability measure for k; but instead we have a limiting
probability measure for local variables. Then, for example, it can be shown that
the probability m;(ny(i, d) that the point on the slice j(N) — oo so that l%vl - 0,
and on the distance d from vj(y), has ¢ outcoming links tends to (3)**! for any d.
One could define some unitary operator for this local distribution, but its physical
sense is not clear.

2.5. Supercritical case. Here we prove Proposition 5. In the supercritical case
s = 2exp(—p) > 1. Consider the functions fy11(s), gn+1(s) given by (14), (15).
Using the binomial formula and reducing the algebraic singularity v1 — 52, one can
obtain that the functions fx+1(s), gn+1(s) are rational with a common denomina-
tor. Tt is well known that all roots of a polynomial in the denominator are real and
the minimal root is given by:

Sl(N)= !

™
COS T
Note that the minimal root s1(N) tends to 1 as N — co. So Zjg,nj(k, I) (as a
function of y) exists only if

2exp(—p) < s1(N),
™
g>In <2cosN+1> .

In <2cos N:—l) N2, no.

3. HAMILTONIAN APPROACH

that is

Note that

3.1. The Lorentzian Model as a Grammar. In this section we identify some
quantum grammar with the 2-dim unitary Lorentzian Model. Here triangulations
will be created by quantum dynamics.

Let & = {1, ..., r} be a finite set (the alphabet), T* —the set of all finite words
(including the empty one) @ = z;...Zn, z; € X, in this alphabet. The length n
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of the word « is denoted by |a|. Concatenation of two words @ = ...z, and
B =y -..Ym is defined by

af=21...TpY1 .. Ym. (29)

The word 8 is a factor of o if there exist words 6 and « such that a = §8y. A
grammar over ¥ is defined by a finite set Sub of substitutions (productions), that
is the pairs &; — v, i = 1, ..., k = |Sub|, &;, v; € E*. Further on we assume that
all §;, ~; are not empty. The grammar is context-free if |§;| = L foralli=1, ..., k.

Let H = I5(Z*) be the Hilbert space with the orthonormal basis e, o € X*:
(as €8) = 84p, Where the function e,(8) = dap. Each vector ¢ of H is a function
on the set of words and can be written as

6= deacH, oI => Is@PF. (30)

The states of the system are wave functions, that is vectors ¢ with the unit norm
6l = 1.

Consider one symbol alphabet S = {a} and the following substitutions a — aa,
aa — a, with intensities AMa — aa) = A(aa — a) = A. Define the substitution
operators a.(j) and a—_(j) which act as follows:

a+(j)e'n = En4ls .7 = 17 <oy n, a+(j)en = 0: .7 >n, (31)
a_(fen=tn-1, Jj=1,...,n—-1, a_(flen=0, j=n, (32)

where e, is an orthonormal basis of the Hilbert space l3. Define the formal Hamil-
tonian by

o0 .
H=2X) (a+(j) +a-(5)- (33)
j=1
More exactly, H is essentially selfadjont on the set D of finite linear combinations
of en, see [8].

The word @™ = aa. .. a at time 0 is identified with a partition of the slice S* x {0}
of the cylinder S x [0, oo]. This will be called the initial boundary. Another bound-
ary (called frontal) will change at random time moments. The slice $* x {0} (the
boundary at time 0) is subdivided into n intervals, the length being irrelevant.
One interval corresponds to one symbol a of the word a®, a space quantum. Each
substitution correponds to appending a new triangle: a — aa corresponds to con-
structing a triangle having one side— the interval, corresponding to a, two other
sides are new space quanta. The substitution aa — a constructs a triangle with
two sides corresponding to aa and the third side over those two. See Fig. 4.

a

FIGURE 4. Lorentzian moves
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3.1.1. Generalized eigenfunctions. Let us define the Hardy space H2 as the set of
analytic functions f(2) for |2| < 1 such that the integrals

/ ” |f(re*®)Pdg < Cf (34)
0

are uniformly bounded for 0 < r < 1, we refer here to the paper [15], where the
spectrum of the operator H is obtained as well. For the Hardy space H? one can
define the scalar product as

27

(f,9)= lim o[ Fre®)gre?)ds. (35)

r—1-0 27 0

This Hilbert space is isomorphic to l3(Z, ). Introducing the generating functions
(o0}
f(2)=>" 2" fn, (36)
n=1

for vectors {fn, n > 1} belonging to I3, one can get the Hamiltonian in the following
form:

Hf=MX_z (@>I +A:24(f(2)) (37)

z

which acts in the Hardy space H2. Put f(2) = zp(z). Then the equation Hf = v f
is equivalent to

A-p(z) + Ar2(2p(2))' = vp(2). (38)

Solving this equation, we find the generalized eigenfunctions

ol wen(E)

Ay
1+/\—

pu(2) = (39)

2

3.1.2. Time evolution of the mean length. The action of the Hamiltonian H can be
written in the form:

Hf)1=A_fa,
Hf)n=A(n =V foe1 +ANfry1, n>2,
where f = {f,} € 12(Z,).

Let f(t) = e*¥ f(0), where f1(0) = 1 and fn(0) = 0 for n > 2. Then f(t) =
{fn(t), n > 1} satisfies the following system of differential equations:

dht) .
d 2 = ix_f00), o
_[Zt(_t) = i(/\+(n - 1)fn—1(t) +Anfr (t)), n > 2,

with the initial condition f1(0) = 1, f,(0) = 0, n > 2. We will seek a solution
to (40) in the form fn(t) = a(t)(b(t))"~!. After the substitution we come to the

TWO-DIMENSIONAL LORENTZIAN MODELS 455

following system:

% = iA_b(t),
-j-%b(t) + (n— 1)b(t) = (A (n — 1) + A_nb¥(2), (41)

a(0) =1, 5(0) = 0.
It follows that b(t) satisfies the equation
' b(t) = i(A+ + A_b2(£)), b(0) =0.

The solution to this equation is

b(t) = \/g tan(iviy A t) = Z\/E% tanh(VALA_ ).

The function a(t) can be found from the equation:

%% =~V tanh(vA Ao t).

Solving this equation, we find

1
aft) = cosh(vVA A_t)

B 1 ) )\—+ n-1
fn(t) = m <Z\/;tanh(v /\+)\_ t)) .

We define the mean length of the quantum word at time ¢ as
[ o]
m(t) = Y nlfa(t)]?.
n=1
Proposition 12. If the initial condition has the form f0)=1, f,(0)=0,n>1,
then

So

m(t) = cosh?(|AJt). (42)
Proof. If Ay = A_ = ) then

1 /\ n—1
50 = s (zmtanh(ww) -

Therefore
m(t) = 3 2 _ 1 S 2(n—1)
(t) n§=lj nl fn ()] T n§=1: n(tanh(|Alt))

1 1
~ cosh®(|A[¢) (1 — tanh?([A[t))2

We see that the volume of the Universe has nonlinear behaviour in t, thus the future
cone does not have standard behavior. O

= cosh?(|AJt).
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